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Pathogenesis of psoriasis and
psoriatic arthritis

Laura Coates, Laura Savage, and Paul Emery

Pathophysiology of psoriasis

The pathophysiology of psoriasis is multifaceted and dynamic, involving
a complex interplay between constitutive cells of the skin and the innate
and adaptive immune systems. Until the early 1980s, psoriasis was con-
sidered to be primarily a disease of epidermal keratinocyte proliferation,
with the cutaneous inflammatory infiltrate a secondary consequence [1].
However, the effective use of therapies designed to inhibit T-cell activa-
tion, such as cyclosporine [2] in the late 1970s, and interleukin (IL)-2
toxin [3] and alefacept [4,5] (lymphocyte function-associated antigen3-
Ig) and IL-17A [6] more latterly, has led to a paradigm shift in psoriasis
pathogenesis to an immune cell-mediated inflammatory etiology.

Over the past decade, evidence from mouse models and translational
research strongly indicates that psoriatic plaques result from both a
primary defect in keratinocytes and an inappropriate innate and adap-
tive immune response mediated mainly by resident and infiltrating T
cells [7-10]. Psoriatic skin lesions are highly infiltrated most notably
with CD3* T lymphocytes, CD4* T helper cells and CD11c* myeloid
dendritic cells within the dermis [11,12], and CD8+ T cells and neutro-
phils in the epidermis [13]. Complex interactions between these T cells,
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dendritic cells, keratinocytes, neutrophils and the proinflammatory
cytokines produced by these cells — including tumour necrosis factor
alpha (TNF-o), interferon-gamma (IFN-y), IL-17, IL-22, IL-23, IL-12
and IL-1f — contribute to the initiation and perpetuation of cutaneous
inflammation characteristic of psoriasis [14,15].

Etiology

Population studies clearly signify a genetic association in psoriasis, with
the incidence being greater amongst first-degree and second-degree
relatives of patients than among the general population [16,17]. Genetic
linkage and subsequent genome wide association studies (GWAS) have
confirmed associations with numerous polymorphisms within genes
involved in: (i) immune regulation such as IL-23 signalling (IL-23A,
IL-12B and IL-23R) [18-21] and nuclear factor (NF)-«B signalling (REL,
TNIP1, TRAF31P2, TNFAIP3, KFKBIA, FBXL19, and CARD14) [18,19,22,23];
(i) barrier function (late cornified envelope (LCE) proteins 3B and
3C) [18]; and (iii) epidermal microbial defence (DEFB4) [24]. These
analyses add confirmation to the definition of psoriasis as an immune
cell-mediated disease of defective keratinocytes [25], although the precise
functional effects of these associated single nucleotide polymorphisms
remain to be determined.

The locus with the largest effect identified to date in genetic studies
of psoriasis is PSORS1, a major histocompatibility complex (MHC) class I
region on chromosome 6p21 [26]. Within PSORS1, the human leukocyte
antigen (HLA)-CwO06 allele is pinpointed as the risk variant that confers
the strongest susceptibility to psoriasis [27]. However, only 60—-65% of
patients with psoriasis carry the HLA-Cw06 gene, compared with 15%
of individuals without psoriasis [28]. Furthermore, a low penetrance
of approximately 10% points towards other genetic and environmental
factors being involved [29].

In individuals with a genetic predisposition, external stimuli such
as trauma (Koebner phenomenon), infections, stress, drugs, and alcohol
can all trigger an initial episode of psoriasis through activation of the
innate immune system. A cascade of immunological events then ensues,

leading to a persistent inflammatory state within the skin:



DIAGNOSIS AND STAGING + 9

* Following epidermal damage, ‘stressed’ keratinocytes release both
LL-37 (cathelicidin) antimicrobial peptide and host DNA/RNA,
which together activate plasmacytoid dendritic cells to produce
large quantities of interferon (IFN)-alpha [9,30,31].

* IFN-alpha induces the maturation of myeloid (dermal)
dendritic cells, which in turn produce cytokines including IL-23
and IL-12 [8].

e JL-23 and IL-12 stimulate the attraction, activation and
differentiation of T cells within skin draining lymph nodes,
thereby bridging the gap between the innate and adaptive immune
systems [32]. Subsequent T-cell expansion and migration into
the epidermis (through expression of alf1 integrin) results in
characteristic epidermal remodeling [10].

» Differentiated psoriatic T cells are of two distinctly polarised
types [33,34]: IFN-gamma secreting T helper 1 (Th1) cells [35] and
Th17 cells, which when influenced by IL-23 [35-37] produce IL-17
and IL-22 [39-41].

* IFN-gamma enhances expression of MHC class I on keratinocytes,
which may promote presentation of putative autoantigens to intra-
epidermal T cells. In turn, this may lead to further activation of
pathogenic autoimmune T cells [42].

e IL-17 and IL-22 are key mediators linking the adaptive immune
response and epithelial dysregulation in psoriasis [43,44]:

* IL-22 causes keratinocyte hyperproliferation (seen
histologically as acanthosis). This is enhanced by IFN-
alpha which up-regulates IL-22 receptor expression on
keratinocytes [45]. IL-22 therefore provides an interface
between immune activation and epidermal acanthosis [45,46].
* Both IL-17 and IL-22 increase production of LL-37 [47-49]
leading to sustained production of IFN-alpha and unregulated
activation of myeloid dendritic cells, thus fuelling the
continued activation of the immune system through a positive
feedback loop [50].
In addition to the established role of conventional T cells in the pathogen-
esis of psoriasis, increasing interest surrounds innate y8T cells resident
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within the dermis. y8T cells constitutively express the IL-23 receptor
(IL-23R), and in the presence of IL-23, rapidly produce copious IL-17,
thus amplifying Th17 responses [51-53]. Accumulations of y8T cells
have been found in psoriatic plaques [52], as have Vy9V82 T cells (a
novel proinflammatory subset that seems to mediate an immediate tissue
response upon koebnerization) [54], suggesting these innate cells may

play some role in psoriasis pathogenesis.

Pathophysiology of psoriatic arthritis

Psoriatic arthritis (PsA) was not recognized as a disease separate from
RA until the 1950s, but since then our understanding of where PsA fits
within a spectrum of spondyloarthritides alongside cutaneous psoriasis
has clarified considerably. As in psoriasis, PsA seems to be associated
with changes in both the innate immune system and also in the adaptive

immune system with the involvement of T cells.

Etiology

Genetic factors

As with many other inflammatory arthritides, PsA was recognized to
be highly heritable from early family studies. Interestingly the herit-
ability of PsA (recurrence risk or yS estimated at 27 [55]) seems to be
much greater than that of psoriasis (yS between 4 and 11) [56]. A study
in Iceland confirmed the significantly increased risk ratios for develop-
ment of PsA in first- to fourth-degree relatives of those with PsA (39, 12,
3.6, and 2.3, respectively, p<0.0001 [17]. On review of GWAS studies,
it is clear that the majority of the genetic associations found in PsA are
the same as those seen in cutaneous psoriasis, with a much smaller
overlap seen with RA [57]. There are also shared genetic susceptibili-
ties with ankylosing spondylitis (AS), including HLA-B27, IL-23R, and
IL-12B [58], particularly in those with axial involvement. It has been
recognized that psoriatic patients are at high risk of developing systemic
co-morbidities and have an association with the metabolic syndrome.
The relationship between skin disease and a co-morbid condition has

recently been reviewed [59].



PATHOGENESIS OF PSORIASIS AND PSORIATIC ARTHRITIS - 11

Environmental factors

As in cutaneous psoriasis, there is some evidence in PsA that environmen-
tal factors can trigger the disease in genetically susceptible individuals.
The most reported trigger of PsA is trauma, suggested as a ‘deep Koebner
phenomenon’ with multiple studies showing an association with acute
physical trauma [60,61] or psychological trauma (eg, moving house) [62].
Infection may also be a significant trigger for PsA. Clear associations
between human immunodeficiency virus (HIV) infection and psoriasis
and PsA have been reported [63], and an increased prevalence of hepa-
titis C viral infection has been observed in patients with PsA as com-
pared with psoriasis, RA and general population controls [64]. Despite
strong links to streptococcal infections in psoriasis, particularly guttate
psoriasis, there is no evidence of a relationship between such infections
and the development of PsA.

Inflammatory pathways in psoriatic arthritis
Investigating inflammatory pathways in PsA is complex given the het-
erogeneity of the condition. PsA can result in inflammation within the
synovium, entheses and spine, affecting both soft tissue and bone. Within
the synovium, significant morphological changes are seen in the vascu-
lature similar to that seen in psoriatic skin plaques and this angiogenesis
has been related to functional changes in infiltrating immune cells [65].
Raised levels of proinflammatory cytokines have also been identified
within the joint including p40 (a common subunit of IL-12 and IL-23),
TNF-a, IL-1, IL-6, IL-8, and IL-10 with some relationships noted between
cytokine levels and clinical arthritis severity [66]. There is some evi-
dence of a relationship between synovitis and subsequent bone erosion
in PsA [67] and destructive matrix metalloproteinases identified in the
synovium. Severe osteolysis can also be seen in subtypes of PsA such as
arthritis mutilans and there is an implication of increased osteoclastic
activity in PsA. In the joint, increased receptor activator of nuclear factor
kappa-B ligand (RANKL) expression is associated with activation of
osteoclasts. Increased levels of osteoclast precursors have been identi-
fied in the peripheral blood of patients with PsA, which decreased after
administration of anti-TNF therapies [68].
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Investigation of the immunopathogenesis of enthesitis has been
limited by the difficulty in obtaining appropriate material for study
given the inability to biopsy entheses. Imaging studies have suggested
increased vascularity at the tendon insertions as well as extracapsular
inflammation seen adjacent to synovial joints and soft tissue inflam-
mation in subcutaneous tissues in dactylitis. This led to the theory of
differentiation in pathogenesis in PsA. Jevtic et al [69] first described
the extensive extra-capsular inflammation seen on magnetic resonance
imaging (MRI), with half of their cases showing predominantly synovial
inflammation whereas other cases showed neighboring inflammation in
thickened collateral ligaments and periarticular soft tissue, particularly in
dactylitic joints. This research suggested that there may be heterogeneity
in PsA where some patients have a predominantly synovial disease, as
in RA, and some show a predominantly entheseal-driven disease, as in
spondyloarthritis. After similar imaging results, McGonagle et al went
on to hypothesize the primary role of enthesitis in PsA with a secondary
spread of inflammation to the synovium [70].

Among the sites affected by PsA, axial involvement is perhaps the
least understood. Although there are some similarities with other spon-
dyloarthritides such as AS, different morphological patterns of spinal
involvement are seen in PsA and some important genetic associations
seen in AS do not apply to all patients with PsA. Radiological changes
in the cervical spine occur in up to 70-75% of patients with PsA [71,72],
much more common than observed in patients with sacroiliitis. Disease
seen in the cervical spine is particularly interesting as it seems that two
distinct pathological types occur. In 1964, Kaplan et al observed that
radiological changes in the cervical spine in PsA and skin psoriasis bore
a closer resemblance to AS than to RA [73]. Blau and Kaufman went on
to describe two separate patterns of cervical spine disease: primarily
ankylosing in nature or a rheumatoid-like form of inflammatory cervical
involvement [71]. Despite the strikingly different radiological features,
there seems to be no difference between the two groups in terms of clini-
cal symptoms, however rheumatoid-like disease is associated with B39

and DR4 antigens with evidence of radiocarpal erosions [72].
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