Selection of Significant Features Using
Monte Carlo Feature Selection

Susanne Bornelov and Jan Komorowski

Abstract Feature selection methods identify subsets of features in large datasets.
Such methods have become popular in data-intensive areas, and performing feature
selection prior to model construction may reduce the computational cost and improve
the model quality. Monte Carlo Feature Selection (MCFS) is a feature selection
method aimed at finding features to use for classification. Here we suggest a strategy
using a z-test to compute the significance of a feature using MCFS. We have used
simulated data with both informative and random features, and compared the z-test
with a permutation test and a test implemented into the MCFES software. The z-test
had a higher agreement with the permutation test compared with the built-in test.
Furthermore, it avoided a bias related to the distribution of feature values that may
have affected the built-in test. In conclusion, the suggested method has the potential
to improve feature selection using MCFS.

Keywords Feature selection - MCFS - Monte Carlo - Feature significance *
Classification

1 Introduction

With the growth of large datasets in areas such as bioinformatics, computational
chemistry, and text recognition, limitations in the computational resources may force
us to restrict the analysis to a subset of the data. Feature selection methods reduce the

S. Bornel6v - J. Komorowski (D<)

Department of Cell and Molecular Biology, Science for Life Laboratory,
Uppsala University, Uppsala, Sweden

e-mail: jan.komorowski@icm.uu.se

S. Bornelov
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
e-mail: susanne.bornelov@imbim.uu.se

J. Komorowski
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

© Springer International Publishing Switzerland 2016 25
S. Matwin and J. Mielniczuk (eds.), Challenges in Computational Statistics

and Data Mining, Studies in Computational Intelligence 605,

DOI 10.1007/978-3-319-18781-5_2



26 S. Bornel6v and J. Komorowski

data by selecting a subset of the features. An assumption in feature selection is that
large datasets contain some redundant or non-informative features. If successfully
removing those, both the speed of the model training, the performance, and the
interpretation of the model may be improved [1].

There are several feature selection methods available. For a review of feature
selection techniques used in bioinformatics, see Saeys et al. [2]. Some methods are
univariate and consider one feature at a time; others include feature interactions to
various degrees. In this paper we have studied Monte Carlo Feature Selection (MCFES)
[3]. MCFS focuses on selecting features to be used for classification. The use of
MCEFS was originally illustrated by selecting genes with importance for leukemia
and lymphoma [3], and it was later used to study e.g. HIV-1 by selecting residues in
the amino acid sequence of reverse transcriptase with importance for drug resistance
[4, 5]. Furthermore, MCFS may be used to rank the features based on their relative
importance score. Thus, MCFS may be applied even on smaller datasets if the aim
is to rank the features by their impact on the outcome (see e.g. [6—8]).

MCEFS is a multivariate feature selection method based on random sampling of
the original features. Each sample is used to construct a number of decision trees.
Each feature is then given a score—relative importance (RI)—according to how it
performs in the decision trees. Thus, the selection of a feature is explicitly based on
how the feature contributes to classification.

One question is how to efficiently interpret the RI of a feature. If MCFS is used
to select a subset suitable for classification, a strategy may be to select the x high-
est ranked features [6]. However, a stronger statistical basis for making the cutoff
would be preferred, particularly, when MCFS is used to determine which features
significantly influence the outcome.

The MCFS algorithm is implemented in the dmLab software available at [9]. There
is a statistical test on the significance of a feature implemented in the software. The
strategy of the test is to perform a number of permutations of the decision column,
and in each permutation save the highest RI observed for any feature. Thereafter,
the test compares the RI of each feature in the original data to the 95 % confidence
interval of the mean of the best RI scores [5].

Here, we suggest a different methodology that tests each feature separately to its
own set of controls. We show that this methodology leads to more accurate results
and allows us to identify the most significant feature even when they do not have the
highest RI. Furthermore, by testing each feature separately, we avoid biases related
to the distribution of feature values. Our suggested methodology is supported by
experiments using simulated data.

In conclusion, we have provided a methodology for computing the significance of
a feature using MCFS. We have shown that this methodology improves the currently
used statistical test, and discussed the implications of using alternative methods.
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2 Materials and Methods

2.1 Monte Carlo Feature Selection

The MCEFS algorithm is based on extensive use of decision trees. The general idea
is to select s subsets of the original d features, each with a random selection of m
features. Each such subset is divided into a training and test set with 2/3 and 1/3 of the
objects, respectively. This division is repeated ¢ times, and a decision tree classifier
is trained on each training set. In all, st decision trees are trained and evaluated on
their respective test set. An overview of the methodology is shown in Fig. 1.

Each feature is scored according to how it performs in these classifiers by a score
called relative importance (RI). The RI of a feature g was defined by Draminski
etal. [3] as
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where s is the number of subsets and ¢ is the number of splits for each subset. M is
the number of times the attribute g was present in the training set used to construct a
decision tree. For each tree T the weighted accuracy wAcc is calculated as the mean
sensitivity over all decision classes, using
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where ¢ is the number of decision classes and 7;; is the number of objects from class
i that were classified to class j.

Furthermore, for each ng(7) (a node n in decision tree T that uses attribute g) the
information gain (IG) of ng(7) and the fraction of the number of training set objects
in (no.in) n,(t) compared to the number of objects in the tree root is computed.
There are two weighting factors u and v that determine the importance of the wAcc
and the number of objects in the node.

Fig. 1 Overview of the
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2.2 Construction of Datasets

To apply MCFS and to compute the significance of the features, we constructed
datasets with 120 numerical and 120 binary features. For each type of features, 20
were correlated to the decision and 100 were uncorrelated. The decision class was
defined to be binary (0 or 1) with equal frequency of both decisions. The number of
simulated objects was set to either 100 or 1,000. Thus, for each object the decision
class value was randomly drawn from the discrete uniform distribution [0,1] prior to
generating the attribute values. Detailed description of the attributes is provided in
the following sections. To verify that the features with an expected correlation to the
decision indeed were correlated, the Pearson correlation between each non-random
feature and the decision was computed after the data generation (Table 1).

Numerical Uncorrelated Features: RandNumg to RandNumgg. The values of a
numerical uncorrelated feature (RandNum;, 0 < i < 99) were randomly drawn from
the discrete uniform distribution [1, i +1]. Thus, the indices defined the range of

Table 1 Pearson correlation between each correlated feature and the decision. Presented for both
datasets (100 objects and 1,000 objects) separately

i 100 objects 1,000 objects

Numy; Bin; Num; Bin;
0 0.74 0.96 0.74 0.95
1 0.72 0.94 0.65 0.91
2 0.58 0.86 0.63 0.87
3 0.66 0.84 0.50 0.81
4 0.50 0.77 0.50 0.78
5 0.53 0.73 0.47 0.69
6 0.19 0.60 0.43 0.66
7 0.39 0.64 0.41 0.64
8 0.34 0.56 0.35 0.60
9 0.28 0.54 0.35 0.55
10 0.38 0.39 0.28 0.46
11 0.22 0.41 0.29 0.41
12 0.18 0.33 0.23 0.45
13 0.21 0.30 0.20 0.31
14 0.29 0.33 0.14 0.32
15 0.18 0.19 0.16 0.32
16 0.15 0.31 0.16 0.18
17 -0.01 0.01 0.07 0.14
18 0.08 0.07 0.07 0.15
19 —0.06 -0.02 -0.03 0.05
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possible values, which allowed us to test whether the number of possible values for
a feature influenced its ranking.

Numerical Correlated Features: Numg to Numg9. The values of a numerical cor-
related feature (Num;, 0 <i< 19) were defined using the following algorithm: Let X
be a random variable from the continuous uniform distribution (0,1). If X > (i+1)/21
the value was selected randomly from the binomial distribution B(6, 0.5) if Deci-
sion=0, and from B(6, 0.5) + 3 if Decision=1. Otherwise, if X < (i + 1)/21, the value
was selected randomly from the uniform distribution [0, 9]. Thus, low values were
indicative of Decision=0 and high values of Decision =1, with a noise level indicated
by the feature index.

Binary Uncorrelated Features: RandBingy to RandBingg. The values of a binary
uncorrelated feature (RandBin;, 0 < i < 99) were defined using the following algo-
rithm: Let X be a random variable from the continuous uniform distribution (0,1). If
X > (i+1)/101 the value is 1, otherwise it is 0.

Thus, features with low indices will have ones in excess, features with middle
indices will have more even distribution of ones and zeroes, and those with high
indices will have zeroes in excess.

Binary Correlated Features: Bing to Binj9. The values of a binary correlated
feature (Bin;, 0 <i < 19) were defined using the following algorithm: Let X be a
random variable from the continuous uniform distribution (0,1). If X > (i +1)/21,
the value is equal to the decision. Otherwise it is assigned by drawing another random
variable X, from the continuous uniform distribution (0,1). If X, > (i +1)/21, the
value is 1, otherwise it is 0.

2.3 Performing the Experiments

The experiments were performed using the dmLab software version 1.85. We applied
the rule-of-thumb to set the number of features selected in each subset to /d, where
d is the total number of features. Thus using 240 features, we used m = /240 ~
15. The number of subsets was set to s = 3,000 for the permutation runs and s =
100,000 for the original data. The number of trees trained in each subset was set to ¢
=5 and the number of permutation test runs was set to cutPointRuns = 10,000. The
weighting parameters were settou =0 and v = 1.

There were two main arguments for using a higher number of subsets on the
original data. Firstly, ranking of the features in the original data is the most crucial
part of the experiment. Therefore, it is generally motivated to focus more of the
computational resources onto this step. Secondly, both the z-test and the built-in test
require the rankings of the original data to be stable, which is obtained by constructing
a high number of subsets.

Setting # = 0 will omit the decision tree accuracy from the calculation of RIs.
Indeed, using model performance as a selection criteria may be counter-productive
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[10], and our experience is that the inclusion of the accuracy in the calculation of the
RI overestimates the importance of all features in the original data compared to the
permuted ones. This effect is expected, since the accuracy on the original data will
reflect the most predictive features, whereas on the permuted data it will only reflect
random variation of the decision trees.

2.4 Selection of Significant Features

In this section we present different strategies to estimate the p-value of the RI of a
feature using a permutation test, either alone or in combination with additional tests.
Using a traditional permutation test requires thousands of permutations to yield
efficient estimates of small p-values. Thus, alternative tests performing a smaller
number of permutations and using these to estimate the underlying distribution may
save computational time. The test that is built-in into dmLab employs this strategy
and performs a t-test comparing the best RIs obtained during the permutation runs
to the RI of a feature on the original data. Here we suggest another approach using
a z-test to compute the p-value by estimating a normal distribution for each feature
separately.

During the permutation test the number of permutations, N, was set to 10,000 to
obtain sufficient resolution of the p-values. The permutation test p-values were then
used as a gold standard to evaluate the build-in test and the suggested z-test. For these
tests a substantially smaller number of permutations are needed. Consequently, we
used only the 100 first permutation runs to estimate the p-values using the built-in
and the z-test.

Using a Permutation Test to Select Significant Features. A permutation test may
be applied to compute an approximation of the empirical p-value of a RI. The null
hypothesis is that the RI calculated on the real data is no better than the RIs com-
puted for the permutated data. The empirical p-value approximates the probability
of observing a test statistics at least as extreme as the observed value, assuming that
the null hypothesis is true. Typically, a significance level, such as 0.05, is defined
and attributes associated with p-values below this level are considered significantly
informative.

Theoretically, the true permutation test p-value of RI = x that was measured for
a feature g would be

Naii .
> I(RI; > x)

i=1

ptrue(RIg =x) = 3)

Nai

where I is the indicator function taking value 1 if the condition is met, and 0 otherwise.
RI'; is the RI of the attribute g in permutation iand N ,; denotes the total number of
possible permutations. However, since N,;; may be extremely large, only a limited
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number of permutations are commonly performed. Furthermore, pseudo-counts are
added to avoid p-values of zero, which are theoretically impossible since at least one
possible permutation has to be identical to the original data. Thus, an approximation
of the permutation test p-value is commonly applied, which is based on the N number
of permutations with N < Ny using the following expression

N .
1+ > I(RI} > x)

i=1

N +1

p(RIg = x) = @)
Using a z-Test to Select Significant Features. By performing N permutations, each
feature receives N estimates of its relative importance on non-informative data. If N
> 30 and the RlIs are normally distributed, the distribution mean p, and standard
deviation o of a feature g may be estimated from the data as

1<
e = > RI} (5)
i=1
and
1 N
g = |7 2 (RIG— o)’ 6)

i=1

where RI' ¢ 18 the RI of attribute g in permutation i.
Thus, the z-score of the RI for a feature g on the original data, RI; = x, may be
computed as

z=(x - ﬂg)/ag- @)

A z-test can be applied to calculate the p-value associated to a particular z-score.
Since no feature is expected to perform significantly worse on the original data
compared with the permuted one, an upper-tail p-value was computed.

Using the Built-in Test to Select Significant Features. To compare our results,
we also used the combined permutation test implemented in the dmLab software.
This test is also based on N permutations of the decision, and using each such
permuted dataset, the whole MCFS procedure is repeated and the RI of each feature
is computed. As opposed to the previous strategies, only the highest RI from each
permuted dataset (RInax) is used, independently of which feature it is based on.
Thus, N such RIy,x values are generated and used to estimate the parameters [4max
and o pax applying

N
1 ,
Mmax = N -El RIIlnax (3
=
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and

N
1 .
Omax = ﬁ El (erlnax - Mmax)z' )
i=

A t-statistic is then computed per feature g as

T = (xg - Mmax)/(amax/\/N) (10)

and the two-sided p-value associated to the ¢-statistics is obtained.

3 Results

3.1 Results of Simulation Study

We applied MCES to the datasets with 100 and 1,000 objects. Table 2 summarizes
the results after MCFES using 100 objects. The RI of each feature is reported, as well
as the estimated RI mean and standard deviation on the permuted data. The 10,000
RIs computed for each feature on the permuted data were approximately bell shaped,
occasionally displaying a bias towards either of the distribution tails. The p-values
were calculated using the z-test and the permutation test as described in Sect.2.4.
Additionally, an overall RI threshold at the 0.05 significance level was estimated to
0.0787 using the built-in method in dmLab.

Using both the z-test and the permutation test Numqg-Nums, Numz-Numg, Numy,
Bing- Biny1, Binya, and Bing were significant at the 0.05 level. Using the built-in
t-test combining all features, the Bin|o-Bin11, Bin4, and Bin¢ were not identified as
significant since their RI was below 0.0787. Note that Bin ¢ was significant according
to the z-test and the permutation test, although it had a lower RI than Numyg that was
not significant using any of the tests.

A notable association between the ranking of the random binary features and their
indices was observed (Fig. 2a), where features with intermediate indices were ranked
higher than those with low or high indices. Since the random binary features with low
or high indices were defined to have an excess of ones or zeroes, respectively, this
corresponds to a weak preference for features with a uniform distribution of values.
However, no relation between the value range of a feature and its relative importance
was observed, consistent with previously reported results [11], although the variation
of the RIs increased slightly with the value range (Fig.2b). Both the binary and
numeric features were scored according to their expected relevance (Fig.2c, d).

Since the data was randomly generated simulating only 100 objects, the exact size
of the effect for a feature may differ slightly from the expectation. Thus, we repeated
the same methodology with a sample size of 1,000 objects instead. The results are
shown in Table 3. This time, Bing-Bin|s and Numgy-Num 3 were selected using z-test
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Table 2 Results of MCFS on simulated data with 100 objects. Significant features and the three
highest ranked non-significant features of each type are shown. The features are ranked according

to their RI. Grayed lines denote non-significant features

Rank Feature RI WRIperm ORIperm Pztest Poerm-test
1 Bing 0.859 0.0216 0.00458 <0.0001 0.0001
2 Bin, 0.806 0.0228 0.00600 <0.0001 0.0001
3 Bin, 0.557 0.0234 0.00548 <0.0001 0.0001
4 Bin; 0.521 0.0240 0.00519 <0.0001 0.0001
5 Num 0.408 0.0344 0.00928 <0.0001 0.0001
6 Biny 0.398 0.0248 0.01121 <0.0001 0.0001
7 Bins 0.351 0.0239 0.00547 <0.0001 0.0001
8 Num, 0.317 0.0326 0.00694 <0.0001 0.0001
9 Nums 0.239 0.0334 0.00820 <0.0001 0.0001

10 Bin; 0.219 0.0251 0.00438 <0.0001 0.0001
11 Num, 0.212 0.0347 0.00941 <0.0001 0.0001
12 Nums 0.206 0.0344 0.01061 <0.0001 0.0001
13 Bing 0.178 0.0249 0.00496 <0.0001 0.0001
14 Numy 0.174 0.0342 0.00715 <0.0001 0.0001
15 Bing 0.146 0.0262 0.00462 <0.0001 0.0001
16 Bing 0.142 0.0257 0.00660 <0.0001 0.0001
17 Num; 0.096 0.0343 0.00683 <0.0001 0.0019
18 Numg 0.084 0.0357 0.01153 <0.0001 0.0024
19 Numyg 0.083 0.0353 0.01017 <0.0001 0.0032
20 Biny, 0.065 0.0271 0.00733 <0.0001 0.0020
21 Biny, 0.058 0.0277 0.00950 0.0006 0.0062
22 Binyy 0.052 0.0229 0.00486 <0.0001 0.0127
23 Numyg 0.044 0.0361 0.00925 0.2058 0.1349
24 Binyg 0.040 0.0247 0.00546 0.0032 0.0418
25 Biny, 0.039 0.0274 0.00760 0.0572 0.0458
26 Numy, 0.038 0.0343 0.00806 0.3310 0.2664
27 Num 3 0.037 0.0336 0.00719 0.3127 0.2540
29  RandNumzs 0.036 0.0326 0.00632 0.2990 0.1952
31 Biny; 0.034 0.0255 0.00784 0.1379 0.0829
32 RandNumjs 0.033 0.0323 0.00645 0.4753 0.3798
33 RandBins, 0.031 0.0237 0.00647 0.1254 0.1010
34 RandNumj), 0.028 0.0299 0.00605 0.6053 0.5193
39 RandBing; 0.022 0.0176 0.00522 0.1882 0.1670
41 RandBins, 0.021 0.0280 0.00857 0.7759 0.9115
64 Bins 0.018 0.0244 0.01166 0.7145 0.9874

and permutation test. The threshold using the built-in test was 0.0352, which in this
case identified the same features.

The relation between the RI scores and the indices of the features is shown in
Fig. 3. There is a substantial decrease in the noise compared with using 100 objects.
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Fig. 2 Relation between attribute indices and RI using a dataset with 100 objects. Shown for a, b
random and ¢, d informative features of both a, ¢ binary and b, d numeric type. Note that the y-axis
scale varies from panel to panel

3.2 Comparison of p-Values

In order to determine how accurate the p-values obtained through the z-test were,
we compared them with the permutation test p-values (Fig.4a). Furthermore, we
computed p-values based on the built-in method, and compared to the permutation
test p-values (Fig. 4b).

The p-values estimated using the z-test were closely following the ones obtained
by permutation test, whereas the built-in method failed to efficiently model the em-
pirical p-values, although the built-in method identified almost as many significant
features as the z-test. Essentially, the p-values obtained by applying the built-in
method were always equal to either 0 or 1. We speculate that the assumption of
comparing two means results in a biased downward estimate of the variance of the
data.

4 Discussion

We have used simulated data to evaluate the application of a z-test to identifying
features significant for classification using MCFS. The data was designed in such
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Table 3 Results of MCFS on simulated data with 1,000 objects. Significant features and the three
highest ranked non-significant features of each type are shown. The features are ranked according

to their RI. Grayed lines denote non-significant features

Rank Feature Rl URmperm ORIperm Pztest  Prerm-test
1 Binyg 0.855 0.0130 0.00126 <0.0001 0.0001

2 Bin, 0.732 0.0133 0.00134 <0.0001 0.0001

3 Bin, 0.612 0.0136 0.00139 <0.0001 0.0001

4 Bins 0.474 0.0139 0.00149 <0.0001 0.0001

5 Numy 0.439 0.0316 0.00129 <0.0001 0.0001

6 Biny 0.423 0.0139 0.00150 <0.0001 0.0001

7 Num, 0.298 0.0316 0.00122 <0.0001 0.0001

8 Bins 0.290 0.0140 0.00162 <0.0001 0.0001

9 Num, 0.288 0.0316 0.00139 <0.0001 0.0001
10 Bing 0.256 0.0147 0.00131 <0.0001 0.0001
11 Bin, 0.224 0.0147 0.00160 <0.0001 0.0001
12 Num; 0.183 0.0319 0.00149 <0.0001 0.0001
13 Bing 0.180 0.0147 0.00155 <0.0001 0.0001
14 Numy 0.178 0.0320 0.00128 <0.0001 0.0001
15 Nums 0.158 0.0318 0.00108 <0.0001 0.0001
16 Bing 0.152 0.0151 0.00141 <0.0001 0.0001
17 Numyg 0.135 0.0317 0.00129 <0.0001 0.0001
18 Num, 0.127 0.0315 0.00134 <0.0001 0.0001
19 Biny, 0.095 0.0151 0.00165 <0.0001 0.0001
20 Numg 0.091 0.0316 0.00136 <0.0001 0.0001
21 Numg 0.090 0.0316 0.00147 <0.0001 0.0001
22 Biny, 0.090 0.0149 0.00145 <0.0001 0.0001
23 Biny, 0.067 0.0155 0.00141 <0.0001 0.0001
24 Num, 0.061 0.0312 0.00130 <0.0001 0.0001
25 Num, 0.056 0.0316 0.00153 <0.0001 0.0001
26 Bins 0.044 0.0135 0.00134 <0.0001 0.0001
27 Num, 0.041 0.0314 0.00153 <0.0001 0.0001
28 Binyy 0.039 0.0145 0.00153 <0.0001 0.0001
29 Bin; 0.037 0.0153 0.00139 <0.0001 0.0001
30 Num s 0.036 0.0312 0.00149 0.0006 0.0046
31 Nums 0.025 0.0311 0.00131 1.0000 1.0000
32 Num g 0.025 0.0308 0.00115 1.0000 1.0000
33 Num 4 0.025 0.0309 0.00118 1.0000 1.0000
35 RandNum, 0.014 0.0314 0.00134 1.0000 1.0000
36 RandNum 0.013 0.0317 0.00077 1.0000 1.0000
38 RandNums 0.013 0.0321 0.00103 1.0000 1.0000
40 Binyg 0.013 0.0125 0.00137 0.3742 0.4528
137 Bing 0.010 0.0088 0.00089 0.1607 0.1239
138 Bin; 0.010 0.0106 0.00135 0.7737 0.8153
140 RandBings 0.008 0.0156 0.00156 1.0000 1.0000
141 RandBinsg 0.008 0.0150 0.00157 1.0000 1.0000
142 RandBins, 0.008 0.0157 0.00165 1.0000 1.0000
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a way that the influence of the distribution and domain of feature values could be
evaluated. We have shown that the RI of a feature depends on its distribution of
values across the objects. Features with more evenly distributed values tend to get
higher RI scores. This is likely caused by the inclusion of the information gain in the
calculation of the RI and may cause trouble if the Rls of all features are assumed to
follow the same distribution.
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The built-in test in the dmLab software assumes that the RI of all features derive
from the same distribution, which may bias the estimate of the feature significances,
essentially preventing some features from reaching significance if other—more fa-
vorably distributed—features are present in the data. In this study we suggest that
each feature should be evaluated individually, using its own null model.

We have shown that a z-test efficiently estimates the correct p-value as validated
by a permutation test, whereas applying the built-in strategy combining a t-test with
a permutation test failed to detect some significant features and to estimate the “true”
p-values obtained by the permutation test. The built-in-strategy treats the RI com-
puted on the original data as a mean instead of a single observation, which may
underestimate the sample variation.

It should be noted that since the true standard deviation and mean of the feature
RIs on the permuted data is not known, at least 30 permutations have to be performed
to convincingly estimate the distribution parameters from the observed data in order
to apply a z-test. This puts a lower limit on the number of permutations that can be
run to estimate the feature significances. The z-test requires the RIs measured for
the permuted data to be approximately normally distributed. Almost all features in
our study had a bell shaped distribution, but sometimes with an elongated tail in one
direction. Such a tail may lead to an overestimation of the variance in the permuted
data, underestimating the significance of a feature. However, we did not observe any
such effect.

Since the features are scored according to how they participate in decision tree
classifiers, non-informative features will generally not be selected when there are
informative features in the same subset. Thus, the more informative features that are
present in the data, the lower the non-informative features are scored. We do not
expect this effect to significantly affect the estimated p-values of the informative
features, but the, comparably, non-informative ones will get very poor p-values,
which may explain why many features obtained p-values close to 1 using both the
permutation test and the z-test.

Although this methodology is efficient at detecting informative features, the most
significant features may not necessarily be the best features to use for classification.
The effect size of a feature may be more important than its significance, and both the
RI and the p-value should be considered when selecting features for classification.

5 Conclusions

MCES is a reliable method for feature selection that is able to identify significant
features, even with small effects. In this study we showed that features with more
evenly distributed values tend to receive higher RIs than features with an uneven
distribution. To avoid biasing the selection towards such features, each feature should
be tested for significance separately. We have shown that a z-test is an efficient
method to estimate the significance of a feature and that these p-values have a strong
agreement with p-values obtained through a traditional permutation test.
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