Chapter 2
Low Correlated Systems: Gases and Dilute
Solutions

The Kinematic Theory covers any description of the X-ray scattering process by a
distribution of electrons where rescattering (with phase coherence) of the already
scattered waves by the distribution has negligible effects. In other words, the
scattered radiation is composed by photons that interacted once with the sample.
Under these conditions, the scattered intensity, often called the kinematic intensity,
is proportional to the form factor square module, (1.25). Material samples in a
gaseous, liquid, or solid state are nothing more than atom systems with different
degrees of correlation between the atomic positions, ranging from disperse systems,
such as a gas, until strongly correlated systems as in a crystals. The Kinematic
Theory describes very accurately the X-ray scattering by any of these systems,
except only by highly perfect crystals with dimensions larger than a few microns. In
this chapter we will begin in fact to discuss analysis methods of atomic systems by
kinematic scattering of X-rays starting with the disperse system of lowest possible
degree of correlation.

2.1 Monatomic Gas

By considering a discrete distribution of N atoms, as in (1.51), we come to the
general expression of kinematic intensity
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wherer,, = r,—r, and f;7 (Q) # f,(Q) when the resonance amplitudes are taken into
account, (1.60). At first this expression of intensity is valid for any type of sample
scattering within the kinematic regime being especially useful in cases where it is
feasible to discretize the electronic density atom-by-atom.

In the case of monatomic gas, f,(Q) = f,(Q) = f(Q) and the r,, separations
between pairs of atoms vary continuously over time so that

N N
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corresponds to the instantaneous intensity scattered by the system. The coherent
scattering cross-section of an atom, e.g. Fig. 1.11, has very small values, reaching at
most a few thousand barns, ~ 1072 m2. The scattered intensities are so weak that
the intensity measures are in most cases done in relatively long times compared to
the average time that the atoms in the gas take to move through the dimensions of the
illuminated volume by the X-ray beam. A measure of /(Q) therefore contains the
temporal average value (---), of the double summation in (2.2). Since each atom
has independent movements—a characteristic of disperse systems'—the cosine
temporal average is zero, i.e. {cos(Q - ry)); = 0 for any pair of atoms, as long
as Q # 0, making the term in brackets, [-- -], contribute only with one factor of N.
However, when Q = 0, the double summation is equal to N(N — 1) and the term in
brackets contributes with a factor N2. Note that in a random distribution of many
atoms, the instantaneous intensity also obeys the relations 71(Q # 0) o N and
I1(Q = 0) o N2, but in this case it is because of the statistical average null value
of the cosine in the distribution. How different from zero should the @ vector be
for the average (temporal or statistical) of the cosine be null? Or, in other words,
what is the function 7(Q) in the region where the multiplicative factor (term in
brackets) changes from N to N2? This function depends on shape and size of the
gas volume illuminated by radiation or, more specifically, on the volume dimension
perpendicular to the beam on the incidence plane. Quantitatively, the volume Fourier
transform determines how far from Q = 0 we must look at the scattered radiation
for the average of the cosines to be null. For a qualitative description, we can make
a simple estimation of the scattering angle 26 where the average is no longer null.
From the definitions of versor & and reciprocal vector @, (1.3) and (1.23), it is easy
to verify that
21911—130Q =on.

If D is the volume dimension in direction 7, the vectorial product maximum value
will be Q - r,, = OD. For the average cosines to be null we need QD > 2, and
thus

'Tdeal gases under normal temperature and pressure conditions stand for ideally disperse systems
(Guinier and Fournet 1955).
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Fig. 2.1 Ultra-small angle region, 20 < 1/D, where all the gas atoms scatter in phase, I o< N2. In
real situations, D and L generally correspond to the transverse and longitudinal coherence lengths
of the X-ray beam, as in Fig. 1.4

10) = Nleh lf(Q)Iz2 se Q>2n/D (20 = A/D) 2.3)
N2 In [f(0)2 se Q <2x/D (20 < A/D)

as illustrated in Fig. 2.1.

Generally, D is the smallest value among sample size, beam transverse section,
or beam transverse coherence length, (1.16). In practice, the value of D is large
enough for the high intensity region—proportional to N>—to be indistinguishable
from the direct beam. Away from the direct beam, the intensity is proportional to
the number N of atoms and varies with Q according to the atomic scattering factor
of the element in question, showing that experiments to directly measure f(Q) are
possible, in principle, in monatomic gases.

Exercise 2.1. Given a pictorial expression of coherent intensity

Q) = NInlf(QP[1+ N~ 1) GO

where N is the number of atoms within the coherence volume V ~ D?L. G(Q) =
exp(—Q?/ 205), with 09 = /D, is an empirical function used here to describe the
intensity variation around the direct beam, (2.3). (a) Estimate the relative percentage
R of photons scattered outside the direct beam in relation to the total number of
photons scattered by the N atoms. Note: write the result as a function of volumetric
density o of atoms in the sample. (b) Using D = 0.04um and L = 0.03 um as
the coherence lengths for Cu radiation, Exercise 1.5, what is the value of R for gas
argon (Ar) at standard conditions of temperature and pressure (STP)? (¢) If in the
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liquefied argon the smaller interatomic distances were in the order of 3.6 A, what is
the value of R? (d) Interpret the results.

Answer (a): The scattered intensity outside the direct beam is I} = N ® o, (1.50).
In the ultra-small angle region,” the intensity is I, = 0.57 N(N — 1) ® 72 |fa(0)|?
(A/D)?. Since N — 1 ~ gV,

I
R =100 =
I+ 1

Ik R~ 100 ox
or +0.57 2 |far(0)2 (N = 1)(A/D)>" — " or + 0.57 12 |far(0)|2 LA 0

= 100

Answer (b): For 8 keV photons, ogx(Ar) = 63.9barn and A = 1.54 A. f5,.(0) = 18
and 7> = 0.0794 barn. At STP the molar volume of an ideal gas is 24.467 L/Mol,
0 = 2.46 x 107 atoms/wm? and N = 1.2 x 103, Then,

63.9
R>~100 ————— =989% .
63.9+0.71

Answer (c): In a liquid, assuming that each atom occupies an average free volume
of 46.7 A3, we have o = 2.14 x 10'° atoms/pum?® and N = 1.0 x 10°, which leads to

63.9
R~100 —————= =94%.
63.9 +615.7

Answer (d): The results in (b) and (c) show that measurable coherent intensity from
disperse systems only occurs because the X-ray beam is not a perfect plane wave
(infinity coherence lengths). Otherwise, the coherence volume would be as extensive
as the macroscopic dimensions of the total illuminated volume by the X-ray beam,
of the order of 1 mm?, containing about 10'® atoms (Ar gas) and resulting in
R = 0, which means a completely destructive interference outside the direct beam.
On the other hand, even with beams of finite coherence, liquid or solid samples
where the atom density varies between 10'° and 10! atoms/pum? have values of R
practically null in the absence of constructive interferences (diffraction) produced
by correlation of atomic positions in the sample. The use of X-ray equipment with
focusing optics, providing high flux and low coherence, is therefore ideal for the
study of low correlated systems.

2With Q = (4r/A)sin(y/2), [G(Q)dQ = 2x [exp{—a sin’(y/2)} sinydy =~ 4n/a =
0.5 (/D)™
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2.2 Dispersed Molecules: Random Orientations

Similar to the case of monatomic gas, the scattering by a gas of identical molecules
is independent of the mutual interference between molecules,® containing only
internal structure information of the molecule. Other disperse molecular systems,
such as low concentration solutions, may also exhibit scatterings free from mutual
interference. Unlike atoms, molecules are 3-D structures that, in general, do not
have spherical symmetry. Intensity measurements in such systems thus correspond
to the sum of the scattered intensities by molecules in all possible orientations.

The molecule form factor F;, (1.52), is calculated by adding up the contributions
of all N,, molecule atoms, whose relative positions do not change (rigid molecules)
and the redistributions of electrons in chemical bonds are neglected. The intensity
scattered by a single molecule is then given by

Nat Nat
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In a disperse system of N molecules, the scattered intensity outside the direct beam
would be N I,(Q) if all molecules had the same spatial orientation. By the very fact
that the system is sufficiently dispersed so that the molecules do not influence each
other, the molecules have random orientations and all orientations with the same
probability. The measurable intensity thus represents the average value of I,

Nat Nat
1(Q) =N (Iy(@) =Nl Y Y f(Qf(Q) () 2.5)
a=1 b=1
is the coherent intensity scattered by the disperse system of N molecules randomly
oriented. The interatomic distances r,, inside the molecules are fixed for each pair
of atoms, and the average is calculated over all orientations of these interatomic
distances with respect to the reciprocal vector. The averaging is similar to the
angular part solution of the integral in Exercise 1.6(a), i.e.,

0=02=10,0,0], ra =ralsiny cosg, siny sing, cosy],

Q-ry =Qrgp cosy, and

) 1 2w b4
(e'QTary — y / [cos(Qrap cos y) + i sin(Qry, cos y)] siny dy dp =
T Jo 0
1 +QOrap 1 »
= / (cosw—i—isinw)dw:w.
2Qry —Qrap Orap

where w=Qrq, cos y

3 Assuming X-ray beams with finite coherence lengths.
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Thus,
by sm(Qrab)

Q) =N {Iu(@) =NlIn Y Y fa(Q)f; (Q) ——= = =NmPQ. (26
a=1 b=1

For the sake of calculation efficiency, since r,, = rp,, the molecule’s scattering
power is rewritten as follows:

N, Na—1 N,
at at— at Sln(Qrab)

P(Q) = Z QP +2 )" ) Relfu(QU(Q)} —— — 2.7)

a=1 b>a

so as to avoid double computing of the contribution of each atom pair. The
sine function in the second term of P(Q) appears solely due to the interference
phenomenon between the molecule atoms, implying in a modulation of the scattered
intensity as a function of Q.

The existence of an interference pattern in the scattering curve is more evident
when evaluating the scattering curve normalized by N Iy, Y, [f.(Q)|?, the intensity
that would be scattered by the system in case of total absence of interference
owing to the atomic structure of each molecule. The interference pattern is thus
characterized by the structural function

1(0) P(Q)
S = = =
Q= N S 0P~ S HOP
Sln(Qrab)
Ty lf(Q)|2 ;Z;Re{fa(@fb @} —5— (2.8)

which has a maximum value equal to or slightly smaller than N, at Q = 0, i.e.
S(Q = 0) < Ny, and oscillates around the unit for Q — oo.

Exercise 2.2. Consider a gas composed only of N benzene molecules, C¢Hg. (a)
Neglecting the hydrogens, what is the structural function for this molecule? (b)
Compare the intensity pattern of the gas with the one scattered by a single molecule
in Fig. 1.13. (c) Decompose the interference pattern in the individual contributions
of the molecule’s characteristic interatomic distances. Which distance has greater
weight? (d) How significant is the Compton scattering?
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Answer (a): For a continuous distribution of orientations,

S(Q)
_ 2 sin(Qd) sin(Qd+/3)  sin(20d) |
1(Q) = NI, 6|fc(Q)] [1+2 0d +2 NG + 204 :| -

=N (|PE)P) dQ6lfc(Q)* S(Q)

is the intensity scattered by N molecules and S(Q) is the structural function.
Answer (b): By using the same cylindrical detector geometry shown in Fig. 1.12,

272 (1_ Dcos ¢ )1/2
A vDr+22)

(|P(§")|?) and dS2 are those used in Exercise 1.9. Figure 2.2a shows the intensity
pattern for the gas. It is highly concentrated around the direct beam and has
much less details than the pattern for a single molecule in Fig. 1.14. However, the
movement of the molecules does not affect the measureable intensities, allowing
long exposures and improving statistical resolution of the scattering curve outside
the direct beam. In practice the resolution is limited by background radiation
(Compton) and by the dynamic range* of the radiation detector.

Answer (c): In the benzene molecule, the interference pattern given by the structural
function S(Q) is defined by the superposition of three functions of the type
sin(Qd)/Qd, concerning to the distances d = 140, 243, and 280 pm, as shown in
Fig. 2.2b. The weights are 2, 2, and 1, respectively.

Answer (d): To include the Compton scattering in Fig. 2.2a:

0. ¢) =

1(Q) = NI, 6 [|fc(Q)* S(Q) + S(Z,0)]

where the function S(Z, Q) is given by (1.56), with Z = 6 in the case of carbon. For
20 keV photons, Compton becomes more significant than the coherent scattering,

ie. S(Z,0) > [fe(0)2S(Q), when @ > 3.5A7" (20 > 20°).

“4Useful range of a radiation detector in intensity scales or dose per pixel.
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Fig. 2.2 (Top) Intensity scattered by N benzene molecules with random orientations. The
background intensity from Compton scattering is considered only for carbon atoms and negative
values of 26. X-rays of 20keV, sample-film distance D = 50mm, ¢ polarization, and flux
so that N Cbrg = lcps. (Bottom) Function S(Q) (black line) for the benzene molecule,
S(0) = 6. The individual contributions (dashed curves) of the three characteristic interatomic
distances in the molecule are displaced in the ordinate axis for better viewing [benzenesaxs1.m,
benzenesaxs2.m]
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2.3 Small Angle Scattering

The analysis of S(Q) in the large Q region would provide, in principle, information
on minor values of r,;,. However, there are several experimental difficulties to access
such information, one of them imposed by the maximum value of Q that is limited
by the radiation energy, usually in the order of a few tens of keV, (1.49). This
implies that, when studying disperse systems by X-ray scattering, the information
on the smaller interatomic distances, in scale of angstrom, are only accessible at
high angles, just where the atomic scattering factors are very reduced in comparison
with the values at small angles and the Compton scattering is more intense, as can
be seen in Fig. 1.16. Since low density of molecules and absence of long-range
order are inherent properties of disperse systems, measurements with satisfactory
statistical resolution of the coherent scattered intensity at high angles are most times
impracticable in these systems.

On the other hand, measures of scattered intensity in the small Q region
provide information about the largest interatomic distances of the order of physical
dimensions of the molecules. To demonstrate this property of the small angle
scattering, we take the limit of (2.6) when Qr,, — 0 so that

Nat Nar

1
Q) ~ NI 33 1@ @] 1~ (]
a=1b=1
Nar Nas 1 1
~ 2 _ - 2 _ 2 2 122
~ NI f (0) ;; [1 = (Ora) ] = NiInf2 (0) N, (1 O >) :
To get to the equation above, use
. 3
i S0F ¥ x/6 =1—1x2
x>0 X X 6

and replace f,(Q)f;(Q) with £,2(0) since N2,£.2(0) is the value of the summation

when Q = 0, or for a more general definition: 2(Q) = Na_l2 |Za f2(0) |2. Recalling
that e™ ~ 1 —x for x < 1, we obtain the intensity expression in the limit as Q
approaches zero,

. —1o2¢/

lim 1(0) = NI fr () Ny =17 2.9)
1 Nm Nat Nat_l Nat

() = (5 ZZ@) /Ny = (Z Zr§b> /N, (2.10)
a=1 b=1 a=1 b>a

is the molecule mean square radius, thus demonstrating that the scattered intensity
at small Q region is determined by the size of the molecules. The root-mean-square
radius R, = /(r?) is commonly called radius of gyration of the molecule.
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2.3.1 Macromolecules

The atom-by-atom description is not restricted to cases of simple molecules. Thanks
to the current computational facilities, exact calculations of both the radius of
gyration and intensity are feasible even for giant molecular complexes containing
tens of thousands of atoms. The protein database is one of the largest sources
available on discrete structures (atom-by-atom). When a protein has its structure
determined, in general by X-ray diffraction in the crystallized protein, it is available
at the Protein Data Bank (http://www.pdb.org/). Among other format options, there
are text files (x.pdb) in standard pdb format where the atomic coordinates are given
in the lines starting with “ATOM” or “HETATM,” such as

ATOM 84 N LYs A 12 55.325 15.647 18.827 1.00 19.22 N
ATOM 85 CA LYS A 12 55.370 17.014 18.328 1.00 22.23 C
HETATM 4716 Cl4 MYR A1006 29.904 5.219 -4.802 1.00 48.47

HETATM 4717 FE HEM A 605 32.347 8.521 32.831 1.00 25.18 FE

column: 12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

where the atom with sequential number 85 is a carbon of the amino acid lysine
(LYS) with coordinates X = 55.370 A (columns 31-38), Y = 17.014 A (columns
39 to 46), and Z = 18.328 A (columns 47—54). The symbol of the chemical element
is given in columns 77 and 78. For more details about the pdb standard, see the file-
format documentation also available at the pdb website.

In the Appendix B, the saxs.c routine written in C++ reads files in pdb format
and returns P(Q), S(Q), and R, calculated according to (2.7), (2.8), and (2.10),
respectively. Although the calculation of P(Q) through (2.7) is exact for any Q,
it is a method of small computational efficiency. Later we will take a look at
some approaches that make the calculation much more efficient and executable in
MatLab™ in the experimentally accessible region of Q (small angle), but it will be
interesting to have the exact calculation for the sake of comparison.

Exercise 2.3. With the known structure of a protein (file *.pdp), calculate its
scattering power, P(Q), and radius of gyration. (a) What is the mean number
of electrons per atom effectively scattering X-rays? Relate this number with the
expected value of P(0). Note: despise hydrogens and chemical bonds, use f,(Q) for
neutral atoms. (b) Which region of the P(Q) curve has exponential decay with Q*?

Answer (a): From (2.6) follows P(0) = ‘Zg‘“ fa(O))z. Since at Q = 0 all the
electrons scatter in phase, the mean effective number of electrons per atom is
fn(0) = N,'\/P(0). In the case of the protein shown in Fig.2.3, there are 4635
atoms (“ATOM” records in the IN5U.pdb file): 784 N, 2926 C, 884 O, and 41 S.
P(0) = |784fx(0) + 2926 fc(0) + 884 f5(0) + 41£5(0)|> ~ 9.469 x 10% if atomic
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Fig. 2.3 Amino acid chains of human albumin, protein IN5U in the Protein Data Bank (http://
www.pdb.org/)

resonances are neglected, otherwise P(0) = 9.547 x 10% for X-ray photons of 8 keV.
So there are f;,(0) = 6.6665 effective electrons per atom.
Answer (b): In Fig. 2.4, P(Q) = P(0) exp(—%RéQz) from Q = 0 to approximately

0 =008A"" (0> = 0.0064 A~*) where the value of R, = 27.9A was obtained
by (2.10).

2.3.2 Particles of Uniform Density

Scattering properties in the region of small O can be obtained in an equivalent
manner to that shown for discrete molecules, starting from the assumption of
particles of uniform density. When we look at the radiation scattered in a small
enough angle so that the interatomic distances do not affect the scattering of X-rays,
the electron density is rewritten as

o) = 1O oy o Ml ) ). e

p Up
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log(P)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 004
Q% (A3

Fig. 2.4 Log(P) curve versus Q7 in the region Q < 0.2 A™" for human albumin (PDB ID: IN5U).
Inset: scattering power in an extended region of Q [saxs.c, ex1N5U.m]

s(r) is the shape function: s = 1 (or 0) for r inside (or outside) of the particle
outline. Fj;(0) = ZZV‘” f2(0) >~ Nufu(0) = |Z;V“' f.(0)] is the effective number
of electrons in the particle of volume v,, so that p = N, fn(0)/v, is the average
density of electrons in the particle effectively scattering radiation. Thus, the new
particle form factor for small angles, including cases of particles dispersed in a
homogeneous medium with electron density py, is

Fy(Q) = (p— po) FT{s(r)} . (2.12)

Since the measureable intensity is the average (---) on all possible particle
orientations, we have

1(Q) ~ NI, (|F;(Q)?) = NI, (5 — po)* ([FT{s(r)}|*) = NI P(Q)  (2.13)

where the scattering power P(Q) depends only on the particle shape and its density
contrast with the medium.

The technique known as small angle X-ray scattering (SAXS) is widely used in
the study of low correlated systems, particularly those systems where the particles
have sizes in the range of 1-50nm. Typically, 0.1° < 260 < 10° corresponds
to the angular range analyzed by SAXS, depending on the particularities of each
instrumental setup (Craievich 2002).
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2.3.3 Morphology of Particles

The approach of uniform density is valid within a restricted range of reciprocal space
ranging from O = 0 to a certain value of Q, from which the scattering curve starts to
be affected by the density fluctuations inside the particle. Around the direct beam, in
the so-called Guinier region, this approach is very good. The intensity curve always
shows the exponential decay with Q, as given by (2.9), which in terms of average
density is

lim /(Q) = N I (5= po)® lim ([FT{s(r)}?) = N I (5 — po) vy e3¢

0—0 0—0

(2.14)

where

() = L f r*dv (2.15)

Up

is the mean square radius,’ equivalent to that obtained by the discrete summation
in (2.10), but with the advantage of being calculated from the particle shape without
the need for prior knowledge of the interatomic distances. For example, for a
spherical particle of radius a,

R = (%) =3a%/5 and 1(Q)/I(0) = e 020"

Note that this is almost the same result of the exponential decay e 2! Qa?
used to adjust the initial part of the scattered intensity curve by a spherical and
uniform electron density in Exercise 1.6(b); the slight difference arises from the
fact that in the Exercise the scattering at half maximum was used as reference,
1(Qa=1.815)/1(0) = 1/2, rather than the limit for 0 — 0.

The intensity curve range that can be reproduced by an exponential decay with
Q? varies with the particle morphology. In most cases, it goes from Q = 0 to a value
not far beyond Q = 1/R,. This value serves as an estimate of the extent of Guinier
region in the intensity curve, from which only information on particle size (radius
of gyration) can be extracted.

After the Guinier region, the exponential decay with Q is replaced by a behavior
strongly influenced by the particle shape. The extent at Q of this region with
particle’s morphological information, which is often called Porod region (Guinier
1994), depends on how much larger are the dimensions of the particle in relation
to the scale length of the internal density fluctuations. Due to the wide variety of

3Tt is an optional task to demonstrate that Qlim0(|FT{s(r)}|2) =v) e =32 Such demonstration
—

can be found in several books on SAXS, e.g. Giacovazzo (2002), Glatter and Kratky (1982), and
Guinier (1994).
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systems it is difficult to establish a general rule for the occurrence or not of the
Porod region. However, as a rule, it is expected that the morphological analysis is
feasible when the particle is dozens of times larger than the size of the molecules
composing it.

In the case of particles of uniform density, abrupt interfaces and regular
surfaces, (2.13) foresees intensity curves with asymptotic fall of the type 1/Q"
where n is an integer® related to the dimensionality of the particle. Analytical
solutions for the term (|FT{s(r)}|?) are possible for specific types of particles, while
numerical solutions are necessary in most cases, see, for example, Lindner and
Zemb (2002). Here we will make a simple, but quite versatile, numerical approach
to demonstrate the main features of the asymptotic behavior in the intensity curves.
This demonstration is based on the fact that (2.6) and (2.13) provide nearly the same
results in the Q range comprising both Guinier and Porod regions, i.e.

1 , 2 O sin(0ra)
HQ/10) = 5 {FTsR) =~ g > O (2.16)
a b>a

as long as the position vectors r are uniformly distributed within the particle shape
(outline) and in sufficient quantity so that the r,, values of adjacent positions are
much smaller than the dimensions of the particle.

Through (2.16), using random distributions of position vectors within the chosen
particle shape, the following asymptotic behaviors can be verified. Particles with
dimension 3 where the ratio between dimensions in three orthogonal directions
tendsto 1 : 1 : 1, such as spheres and cubes, the intensity of the interference fringes
falls with 1/Q*, n = 4, Fig. 2.5. In the case of spherical particles, the fall with 1/Q*
can be verified analytically from the FT of a sphere, as calculated in Exercise 1.6(b).
Sharp reduction in one or two dimensions of the particle eliminates the interference
fringes in the Porod’s region and changes the value of n. Particles with dimension
2 are those with a planar aspect for which n = 2, 1/Q* asymptote. Those with
elongated aspects, rod-type, have dimension 1 for which n = 1, 1/Q asymptote.
Figure 2.5 also shows the theoretical scattering curves of particles with ratios 1:1:w
(dimension 2) and w:w:1 (dimension 1) in the limitw — 0. Curves with asymptotes
1/Q" for larger Q values occur when the particle dimensional aspect (3, 2 or 1) is
well defined, i.e. at the w = 0 and w = 1 limits (solid line curves in Fig.2.5). In
intermediate cases, the range where the 1/Q" behavior occurs is less and less the
more the particle proportions deviate from the limiting cases (dashed line curves in
Fig.2.5).

%Non-integer values occur in particles without defined interfaces, such as macromolecules and
materials with fractal properties (Teixeira 1988).
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Fig. 2.5 Asymptotic behavior of the intensity scattered by particles with different dimensional-
ities: 1:1:1 (dimension 3), 1:1:w (dimension 2), and w:w:1 (dimension 1) where w = 1/100
(straight line), 2/100 (dashed line), and 5/100 (dashed with dotted line). Curves calculated
numerically by using (2.16) with N = 2000 [assintotic.m]

Exercise 2.4. Particles of uniform density and spheroidal shapes. (a) How does the
radius of gyration R, depend on oblate and prolate shapes? (b) When does R, cease
to depend on the ratio w between the smallest and largest dimensions of the particle?
Answer (a): By writing (2.15) in cylindrical coordinates (p, ¢, z),

20 € PR
(P) = —/ / (02 +2)p'dp'dz.
vp —c JO
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Fig. 2.6 Radius of gyration R, as a function of ratio w between the smallest and the largest
dimension (2L). Particles of uniform density and spheroidal shapes, w = 1 implies sphere of
radius L [exellipsoid.m]

From the equation of an ellipsoid of revolution, (x/a)?> + (y/a)* + (z/c)* = 1, we
have p%(z) = a*[1 — (z/c)*] and v, = 4 a’c/3. The analytical solution of the
integral leads to (r?) = (2a® + ¢?)/5. Oblate shapes: a = L, c = wL where w < 1,
and R; = (2 + w?)L?/5. Prolate shape: ¢ = L, a = wL, and R; = (2w?* + 1)L?/5.
Answer (b): From the R, x w graph, Fig. 2.6, it can be seen that for w < 0.1, R, is
already close to the limit values: 1/2/5 L (oblates) and /1/5 L (prolates).

Suggestion: Calculate the scattering curve by using (2.16) in the Guinier region
and numerically obtain the radius of gyration for particles with different dimension-
alities.

2.3.4 Polydisperse Systems and Dispersion of Size

The kinematic intensity in polydisperse systems, i.e. composed by different particles
without interacting with each other, can be treated as the sum of the intensities
of monodisperse systems, (2.6) or (2.13). So, I(Q) = I, ZijPj(Q) where the
index j specifies each of the independent systems that comprise the total system
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(polydisperse). Within the approaching of particles of uniform density in a solvent
of electronic density po, P;(Q) = (p; — po)* (|FT{s;(r)}|*) and weight

Ci(0) = N;P;(0) = N;(p;j — po Zvij
of the contribution of each system j in the scattered intensity is determined by the

number N; of particles j, and their scattering power in relation to the media. The
intensity in polydisperse systems in the limit Q — 0 remains

1(Q) = 1(0) e T3 %,
but the radius of gyration is given by

2
j &
where (r?); is the mean square radius of the j particles, and /(0) = I, Zj C(0).
A very common type of polydisperse system found in many real situations is the
one formed by particles with the same electronic density p, but presenting variations
in shape and size. This allows rewriting the expression of intensity as

1Q) = I (5 — po)” Y _ Ni([FT{s5;(r)3}[) - 2.18)
J

In the most general cases of particles having different morphologies, the analysis
of scattering curves is often infeasible. On the other hand, when the particles have
the same shape, e.g. spherical particles embedded in a homogeneous liquid or
solid matrix, the dispersion of size softens the interference fringes that normally
occur in the intensity curve, making it easier to analyze the asymptotic behavior in
the Porod region. Determining the size distribution (point of interest in research
involving many nanoparticle synthesis) is possible under certain circumstances.
When the shape function depends only on the dimensional variable L of the particle,
si(ry — s(L,r) and N; — Np(L)dL where N is the total number of particles in
the system and p(L) is the size distribution function so that fooo p(L)dL = 1. The
intensity in (2.18) is thus given by the integral

o0
Q) =Nim 5= [ p(D) (FTEs@iP)dL. @19)
0
and the radius of gyration in (2.17) becomes

R J2 p(L) v2(L) RA(L) dL |
C P pvi)dL

(2.20)
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R,(L) is the radius of gyration of the particles whose value of dimensional variable
is between L and L + dL.

Intensity curves with asymptotes 1/Q* are associated with regular particles
without surface fractality and without sharply planar or linear character—ratio
between smallest and largest size a lot greater than 1/10. In such cases, it is possible
to show that the integral in (2.19) is

00 2w [ N(A,) A
N/O p(L) ([FT{s(L, P} dL ~ oV | POAW AL =2m=5 = 2m o
@2.21)

in the region where the interference fringes are softened by the size distribution
p(L). As(L) is the surface area of the particles with size L, and A = N(A;) is the
total surface area of the N particles, corresponding to the total area of the interface
between particles and solvent, that is, between materials with densities p and py.

A
1(Q) = 27 Iy, (p — po)* o (2.22)

is known as the Porod’s law and can be observed in several systems consisting of
materials with two different electron densities (Craievich 2002).

Exercise 2.5. Spherical particles, besides being analytically tractable, quite often
occur in the synthesis of nanoparticles. Considering a disperse system of spherical
particles with continuously distributed radius around a most likely value aq. (a)
Make the theoretical demonstration’ of Porod’s law in (2.22). (b) What is the
relationship between visibility of the fringes and dispersion of size (radius)?
Answer (a): When s(L, r) is the shape function of a spherical particle of radius q, it
follows from (1.38) that

. 2
(FT(S(L.PIP) = v2(@) ©2(Qa) = (4"’ [S‘“(Q“) — (@) C°S(Q“)] _

(Qa)?
2 2 2
~ 8x? [é + et (% - 5) c0s(20a) — Q—‘S’ sin(2Qa)i| .

Discarding terms with Q> and Q~°, and substituting this expression in (2.19) with
the radius a in the place of the dimensional variable L,

7See Guinier (1994, p. 336).
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2N A
10Q) = In (5 — po)® = /p(a)47mz[1 + cos(2Qa)] da = 27 Iy (p — po)’

ot o
The higher the dispersion of size distribution and the Q values, the more the cosine
contributions tend to cancel each other so that [ p(a)4mwa* cos(2Qa)da ~ 0, thus
leading to the Porod’s formula (or law) as we wanted to demonstrate.

Answer (b): Fringes are no longer visible when cos(2Qa) ranges from —1 to +1
within a small range of the a values, i.e. when Q > 7/ Aa where Aa represents the
dispersion of values such as the full width at half maximum of the distribution p(a).

Exercise 2.6. Consider a non-Gaussian distribution of spherical particles. (a) Sim-
ulate the scattering curve. From what value of Q does the curve become smooth
(without fringes)? (b) Compare values of gyration radius R, and average surface area
(A;) with those obtained by Gaussian distributions capable of generating similar
scattering curves. In what circumstances is it possible to clearly distinguish between
Gaussian and non-Gaussian size distributions?

Answer (a): One of the most common non-Gaussian distribution is the log-normal
distribution

e —(Ina—n b)? /202 ’

1
p(a)_ aonm

whose variable b = qy % depends on the value of ay (most probable radius) and
of the standard deviation in logarithmic scale, o,,. As expected, Exercise 2.5(b), the
fringes disappear for Q > m/Aa where Aa is the full width at half maximum of
p(a). As for example, the two distributions shown in Fig. 2.7 (inset), Aa = 23.5A
and 36.3 A, which implies that the regions without fringes have Q > 0.13 A" and

0 > 0.08 Ail, respectively.
Answer (b): Let p(a) =

¢~(@=a0)*/20* pe the Gaussian distribution used
o 21

for the sake of comparison.® In Table 2.1, the parameters of the two distributions
resulting in similar curves are compared. The values are no longer compatible when
the log-normal distribution is very asymmetric. However, in these cases 0 2 ao/3,
implying in a significant fraction of particles with null radius (¢ = 0), a fact that
can be used as a feasibility criterion of the Gaussian model for describing the size
distribution.

8For large values of o, such as ¢ > ap/3, the normalization constant is reset so that
o0
Jo pl@yda=1.
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Fig. 2.7 Normalized intensity curves of X-ray scattering by disperse systems of spheres with
uniform density and different size distributions (inset). Reference curve of the scattering by spheres
of radius g (most probable radius of the distributions) is also shown [exlognormal.m]

Table 2.1 Parameters of the log-normal and Gaussian size distri-
butions producing similar scattering curves

Log-normal Gaussian

ag(A) [0, |Ry(A) | (A)(AY) o (A) |R (D) | (A,)(A?)
50 0.1 [42.0 3.3x10* |59 42.0 3.2x104
50 02 |53.2 3.7x10* |13.7 53.0 3.4x10%
100 0.3 | 1535 |1.8x10° |49 1451 |1.6x10°
100 0.7 | 1095 8.8x10° |397 850 24.1x10°

R, and (A,) calculated from (2.20) and (2.21), respectively. For
comparison details see routine exlognormal.m

Summary

— Scattering power of discrete particles:

Sin(Qrab)

P(O) = 2., 25 Ja(Q) 15 (Q) O

— Scattering power of uniform particles in solution:

|P(Q) = (5— po)? (IFT{s()}?) |

— Low angle approach, limit Q — 0, Guinier region:
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P(Q) = P(0) exp (—10°R?)

— Particle’s gyration radius, R,:

Rsz’ = (3 Xu s 1) / N, (discrete)  or Ré = vL,, fv,, r2dV (uniform)

— Asymptotic behavior, regular uniform particles, Porod region:

P(0) = 27 (h— p0)*A/C
| |

— Total surface area of particles with p(L) size distribution:

A=N{(A) =N [;° p(L)A((L)dL

— Average gyration radius:

) _ o P vy KAL) dL
T [ pm v dL

— Size distributions:

e~ (L—Lo)*/20”

o 2m

¢—(nL—In b)? /202

Lo, /21
b = Ly exp(o?)

p(L) = (Gaussian) and p(L) = (log-normal)
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