
Chapter 2
Algorithms of the TP Model Transformation

Abstract This chapter proposes the generalized TP model transformation that
includes various TP model manipulation facilities into one conceptuar framework.
The generalized TP model transformation includes extensions such as the HOSVD
and quasi HOSVD canonical form, the Bilinear-, Multi, Pseudo, and convex TP
model transformation which all serves the goal to have a Transformation technique
that is capable of freely manipulating all components of the TP model according to
various conditions.

Keywords Bi-linear- • Pseudo- • Muti- • Generalised TP model transformtion

2.1 Original TP Model Transformation

This section recalls the TP model transformation from [1, 3, 6] and restructures it
in order to have a core algorithm that can readily assume further extensions to be
introduced in the chapter.

Definition 2.1 (Discretization Space �). � is a space in which we intend to
perform the discretization of a given function f .x/.

Definition 2.2 (Discretized Function). Tensor F D.�;G/ 2 RG1�����GN�O1�����OK is
the discretized variant of function Y D f .x/ 2 RO1�����OK in the discretization
space �, and over the discretization grid G D G1 � � � � � GN (Gn denotes
the number of gridpoints on dimensions n 2 N). Vector gn defines the posi-
tions (typically, but not necessarily equidistantly located) of the grid as gn D�

gn;1 D !min
n � � � gn;Gn D !max

n

�
by dimensions. Thus, the O1 � : : : � OK sized

elements Fm1;m2;:::;mN of tensor F D.�;G/ (such that mn D 1; : : : ; Gn) are:

Fm1;m2;:::;mN D f .x/; (2.1)

where x D
�

g1;m1 � � � gN;mN

�
.

If we have a vector w.x/ containing weighting functions wi.x/, (i D 1; : : : ; I) as

w.x/ D
�

w1.x/ � � � wI.x/
�

(2.2)
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12 2 Algorithms of the TP Model Transformation

then WD.!;G/ 2 RG�I is a matrix whose column vectors are the discretized variants
of the functions wi.x/ as:

WD.!;G/ D
�

.w
D.!;G/
1 /T � � � .w

D.!;G/
I /T

	
; (2.3)

where

w
D.!;G/
i D

�
wi.g1/ � � � wi.gG/

�
: (2.4)

Thus

WD.!;G/ D

0

B
@

w1.g1/ � � � wI.g1/
:::

: : :
:::

w1.gG/ � � � wI.gG/

1

C
A : (2.5)

Lemma 1. The discretization of a given f .x/ D B �
n2N

wn.xn/ simplifies to the

discretization of the weighting functions as:

FD.�;G/ D B �
n2N

WD.!n;Gn/
n (2.6)

Note that the result of HOSVD has the same structure as the discretized TP
functions. Thus, the key idea is that executing HOSVD on the discretized function
F D.�;G/, we obtain the discretized form of the HOSVD based canonical form of the
TP function:

Algorithm 1 (TP Model Transformation). Let us assume a function given as
Y D B �

n2N
vn.xn/, x 2 � � RN. The goal of the algorithm is to numerically

reconstruct the HOSVD based canonical TP function:

Y D

�
S �

n2N
wn.xn/

�
�

NC.k2K/
Tk (2.7)

in �:

• STEP 0: Numerical initialization: Define discretization grid G fit to �.
• STEP 1: Discretization: Determine FD.�;G/.
• STEP 2: Reconstruct the core tensor of the model: Determine S and Un by

executing compact HOSVD (CHOSVD) on FD.�;G/ (in case of rank reduction
or complexity trade-off RHOSVD is executed in this step). This results in

FD.�;G/ D OS �
n2f1;:::;NCKg

Un (2.8)

Thus OTk D UNCk (k 2 K).
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• STEP 3: Determine wn.xn/: Let OW
D.Gn;!n/

n D Un. Weighting functions Own.xn/ in

Y D

�
OS �

n2N
Own.xn/

�
�

NCk2K
OTk (2.9)

can be reconstructed over any point in !n. For instance, let us calculate the
weighting functions Owd.xd/ on dimension d over a given point xd. Let us define a
new discretization grid G0 as G1 � � � � � Gd�1 � 1 � GdC1 � � � � � GN and restrict
the discretization space to xd as �0 D !1 � � � � � !d�1 � xd � !dC1 � � � � � !N,
then define FD.G0;�0/. Then for xd:

Owd.xd/ D F
D.G0;�0/

.d/

�
Q.d/

�C
: (2.10)

where

Q D

�
OS �

n2N;n¤d
Un.xn/

�
�

NCk2K
OTk: (2.11)

lower case “./.d/” denotes the n-mode layout of that dimension.
• STEP +1: Transformation error: This step is a numerical checking of the

accuracy of the resulting TP function over a huge number of random points in �.

Proof 3. Szeidl et al. [8] proves that the TP model transformation numerically
reconstructs the HOSVD canonical form in case of scalar output functions, i.e.,
that if Gn ! 1 then OS ! S and Un D OW

D.!n;Gn/
n ! W

D.!n;Gn/
n . If we consider

matrices OTk resulting from SVD in the same way as matrices Un are considered
for n 2 N in the proof presented in paper [8] (but without transforming them
to functions), we arrive at a proof of the claim that the TP model transformation
numerically reconstructs the HOSVD based canonical form ( OT ! T, as well as a
quasi-HOSVD based canonical form when we multiply by OTk (see Theorems 1.1
and 1.2). Paper [8] also gives theorems for the speed of the convergence for
the numerical reconstruction depending on whether we use equidistant or non-
equidistant rectangular grids for discretization.

Remark 2.1. The numerical implementation limits the grid density, as 8n 2

N W Gn ! Gmax
n < 1. Furthermore, the computational load of HOSVD can

easily explode as Gn and N grow larger. These factors form the bottlenecks
of this algorithm. However, we can still say that the TP model transformation
numerically reconstructs S and the weighting functions. Further, papers [4, 7]
propose very effective computational complexity reduction techniques for the TP
model transformation, especially for cases when it is executed on qLPV models.

Remark 2.2. The paper of Szeidl et al. [8] also derives theorems for the smallest
grid density necessary for finding all the ranks of the TP function or model, thus, the
discretization density should be set according to Szeidl’s theorems and based on the
fact that the maximum rank is determined by the number of the weighting functions
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by dimensions of the given TP function or model. If we do not see the structure of
the given TP function or model to be transformed, or the given model is not a TP
function or model (see later), then we can practically use a grid with the highest
density made possible by the numerical implementation. If we have limitations for
the maximum number of weighting functions and vertexes to be accepted, then
we may apply Szeidl’s theorem as in the case where we have information about
the maximum rank. As a matter of fact, this may lead to an approximation if the
accepted number of weighting functions is less than the rank of the TP function.

Remark 2.3. If the density of the discretization grid is not sufficiently high to find
the rank of the given TP function, then the TP model transformation results in an
approximation only.

In the case of the above two remarks the transformation works as in the case of
non-TP functions (see details later and also [9]).

2.1.1 Numerical Example

The example of this section presents a HOSVD based canonical from (e.g.,
transformed from the result of an identification) of a very simple qLPV state-space
model. This numerical example will be used in this part of the book to study the
different features of the generalized TP model transformation and the convex hull
manipulation techniques to be discussed in the next sections. All examples in the
book are computed using the TP-tool MATLAB toolbox [5].

Let us assume that we have the following qLPV model:

�
Px.t/
y.t/

�
D S.p.t//

�
x.t/
u.t/

�
; (2.12)

where p.t/ 2 � � R2, � D Œ�5; 5� � Œ�5; 5� and

S.p.t// D

�
p2

1.t/ p2
2sin.2p2.t//

2 p1.t/ C p2.t/

�
: (2.13)

Executing the TP model transformation over G D 137 � 137 results in a very
simple quasi-HOSVD based canonical form:

S.p.t// D S �
n2N

wn.pn.t//; (2.14)

where S 2 R3�3�2�2 and N D f1; 2g. The normalized (and the original)
singular values of the first dimension are �1;1 D 13:00166.1781:23/, �1;2 D

4:54219.622:28/ and �1;3 D 2:90790.398:382/. The singular values of the second
dimension are �2;1 D 11:88067.1627:65/, �2;2 D 7:05744.966:869/ and �2;3 D

2:67823.366:918/.
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This two-dimensional case can be easily given without tensor operations as:

S.p.t// D

3X

iD1

3X

jD1

w1;i.p1.t//w2;j.p2.t//Si;j D

9X

rD1

wr.p.t//Sr; (2.15)

where vertexes Sr 2 R2�2 stored in S are equivalent to Si;j and wr.p.t// D

w1;i.p1.t//w2;j.p2.t//, where r D 1; : : : ; 9 is a one-dimensional linear indexing of
2 dimensional index i; j.

The vertex systems of the HOSVD based canonical form are:

S1;1 D 1000 �



1:5199 �0:0000

0:2379 �0:0000

�
(2.16)

S2;1 D



324:4647 0:0000

�135:9956 �0:0000

�
(2.17)

S3;1 D



�0:0000 0:0000

�0:0000 �398:3823

�
(2.18)

S1;2 D



0:0000 826:6437

0:0000 145:6048

�
(2.19)

S2;2 D



0:0000 �472:6149

�0:0000 �83:2463

�
(2.20)

S3;2 D 10�12 �



�0:0000 �0:2981

�0:0001 �0:2593

�
(2.21)

S1;3 D



0:0000 55:2557

�0:0000 �313:7040

�
(2.22)

S2;3 D



0:0000 �31:5912

�0:0000 179:3532

�
(2.23)

S3;3 D 10�13 �



�0:0000 �0:1992

�0:0008 0:6839

�
(2.24)

and the assigned weighting functions are shown in Fig. 2.1.
If we would like to generate the “full” HOSVD based canonical form, we can

execute the HOSVD on all dimensions of S. This results in:

S.p.t// D S0 �
n2N

wn.pn.t// �3 T1 �4 T2 (2.25)

T1 D



�0:987937 �0:154851

�0:154851 0:987937

�



16 2 Algorithms of the TP Model Transformation

0.1

0.05

0

-0.05

W
ei

gh
tin

g 
fu

nc
tio

ns
W

ei
gh

tin
g 

fu
nc

tio
ns

-0.1

-0.15

-5

0.1

0.15

0.2

0.05

0

-0.05

-0.1

-0.15

-0.2

-4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5

P1

P2

w3

w3

w2

w2

w1

w1

Fig. 2.1 Weighting functions of the exact HOSVD and the quasi-HOSVD based canonical form
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T2 D



�0:999837 �0:018028

�0:018028 0:999837

�

and the new vertexes are:

S0
1;1 D



131:9268 �0:0000

17:6940 0:0000

�
(2.26)

S0
2;1 D



31:8852 0:0000

�9:3233 �0:0000

�
(2.27)

S0
3;1 D



�0:0000 �0:0000

0:0000 �31:9142

�
(2.28)

S0
1;2 D



�0:0000 �82:8854

�0:0000 5:1783

�
(2.29)

S0
2;2 D



�0:0000 43:6737

0:0000 �2:7285

�
(2.30)

S0
3;2 D 10�12 �



0:0000 �0:1790

�0:0000 0:1688

�
(2.31)

S0
1;3 D



0:0000 �1:7340

0:0000 �27:7556

�
(2.32)

S0
2;3 D



0:0000 0:9137

�0:0000 14:6249

�
(2.33)

S0
3;3 D 10�14 �



�0:0000 �0:0079

0:0000 �0:1421

�
(2.34)

Obviously the weighting functions do not change (Fig. 2.1).
In order to perform complexity trade-off we can execute RHOSVD during the

TP model transformation and discard the singular values in increasing order, namely
�2;3, �1;3, �1;2, �2;2. Figures 2.2, 2.3, 2.4, and 2.5 show the weighting functions of
the relaxed quasi and “full” HOSVD based canonical forms.

2.2 Bi-Linear TP Model Transformation

In various engineering cases we have different accuracy requirements for different
components of the TP function; hence, it is not always necessary to find all points
of the weighting functions in Step 3 of the TP model transformation. For instance,
in case of robust control design the precise core tensor S is important to the extent
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that the control design is based on it; however, in the final implementation of the
TP controller, we can accept a good piece-wise approximation of the weighting
functions. This idea leads to a practically useful engineering implementation, where
we simply use the piece-wise linear variant of the weighting function in the
controller.

Definition 2.3 (Piece-Wise Linear Weighting Function System Denoted by
Nw.x/). Function Nw.x/, including functions Nwi.x/, is defined by matrix U and grid
G over x 2 ! in such a way that U D NWD.!;G/. A linear interpolation between
neighboring values in each column of U fully defines the piece-wise linear functions
Nwi.x/.

Algorithm 2 (Bi-Linear TP Model Transformation). The Bi-linear TP model

transformation results in a bi-linear approximation f .x/ � S
N
�

nD1
Nwn.xn/ of the given

function fit to a given grid G. It differs only in Step 3 as:
STEP 3: Nwn.xn/ is directly defined by Un (determined in Step 2) and grid G.

2.2.1 Numerical Example

Let us take the simple dynamic TP model from the previous section and execute
the Bi-linear TP model transformation over a sparse grid G ( G1 � G2 D 10 � 10)
to define the quasi-HOSVD based canonical form. Figure 2.6 shows the piece-wise
linear weighting functions of the resulting TP model.

The vertexes are:

S1;1 D



131:9268 �0:0000

17:6940 0:0000

�
(2.35)

S2;1 D



31:8852 0:0000

�9:3233 �0:0000

�
(2.36)

S3;1 D



�0:0000 0:0000

�0:0000 �31:9142

�
(2.37)

S1;2 D



�0:0000 �82:8854

�0:0000 5:1783

�
(2.38)

S2;2 D



�0:0000 43:6737

0:0000 �2:7285

�
(2.39)

S3;2 D 10�13 �



0:0000 0:0329

0:0000 0:1332

�
(2.40)



2.2 Bi-Linear TP Model Transformation 23

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

p1

W
ei

gh
tin

g 
fu

nc
tio

ns

 w2

 w1

 w3

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

p2

W
ei

gh
tin

g 
fu

nc
tio

ns

 w2

 w1

 w3

Fig. 2.6 Weighting functions of the bi-linear canonical form
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S1;3 D



0:0000 �1:7340

0 �27:7556

�
(2.41)

S2;3 D



0:0000 0:9137

0 14:6249

�
(2.42)

S3;3 D 10�14 �



�0:0000 0:0069

�0:0000 �0:7105

�
(2.43)

2.3 Enriched TP Model Transformation

If the grid density is sufficient to find the precise core tensor, but is too sparse
to determine the weighting functions Nwn.xn/ with good resolution, then we may
combine the third steps of the TP model transformation and the bi-linear TP
model transformation. Step 3 of the TP model transformation does not require the
execution of HOSVD. Only the memory available limits the off-line storage of a
number of points of wn.xn/ in Step 3, which can readily be calculated over any x.
Therefore, we may simply determine Hn new gridpoints on dimension n in Step 3 of
the TP model transformation, where Hn can be considerably larger than Gmax

n , and
we can determine W

D.!n;Hn/
n in Step 3 of the TP model transformation, which leads

to a better resolution of Nwn.xn/.

Remark 2.4. The enriched TP model transformation can be used as a tool for
relaxing the computational complexity of the TP model transformation. If we
know the ranks of the given function in each dimension (i.e., if we know the TP
structure of the given function) we can set the minimal grid density accordingly
[8]. Alternatively, we may increase the grid density gradually until we find all the
nonzero ranks (i.e., the point after which only the number of the zero singular values
are found to increase with Gn); following this point, we do not need to further
increase the grid density, but may instead use the enriched TP model transformation
to define a high resolution for the weighting functions. If we are not sure whether
we have found all ranks, we may still proceed further with the enriched TP model
transformation. In either case, the step where we numerically check the solution
(Step +1) will indicate us whether the system has a sufficient number of weighting
functions per dimension. This helps in cases where N is large, so that we can set a
very sparse grid per dimension in order to be able to execute the computationally
expensive HOSVD then we can define the higher resolution of the piece-wise
weighting functions.
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2.3.1 Numerical Example

Let us continue the example of the previous section and increase the grid density
to 20-by-20 and to 500-by-500. Using the enriched TP model transformation, we
have the weighting functions shown in Figs. 2.7 and 2.8. It is important to remark
that the vertexes do not change in obvious ways in the present case (only Step 3
of the TP model transformation is executed for the extra, dense grid); it is mostly
the resolution of the weighting functions that is improved without having to execute
HOSVD on a huge tensor that would be obtained through discretization over a dense
20-by-20 or 500-by-500 grid. Note that the weighting functions will converge to
the weighting functions defined by the points taken over the 10 � 10 grid. This is
different from the case where the density of the discretization grid is increased
in the first step of the TP model transformation, and the weighting functions
converge to the singular weighting functions of the HOSVD based canonical
form.

2.4 Convex TP Model Transformation: Convex Hull
Manipulation

The goal is to transform the given function to a convex TP function S �
n2N

wCo
n .xn/.

This section focuses on the step where the weighting functions can be manipulated
and where the already published convex hull generation methods can be incorpo-
rated in the algorithm of the TP model transformation.

Algorithm 3 (Convex TP Model Transformation). Let us assume a given TP
function f .x/, x 2 � � RN. The goal is to numerically reconstruct TP function
f .x/ D S �

n2N
wCo

n .xn/ and to include a complexity trade-off if needed. The steps of

this transformation are the same as in the TP model transformation. Only Step 2
is extended by the convex hull generation. We also add evaluation Step +2 to the
algorithm to be executed after Step 3 or Step +1.

• STEP 2: Reconstruct the core of the TP structure: Determine S and Un via
HOSVD, then use the SN and NN transformations introduced by Yam in [11],
which transform Un to UCo

n , which will be considered as WCo;D.!n;Gn/ in Step 3;

further, define S for FD.�;G/ D S �
n2N

UCo
n . For instance S D FD.�;G/ �

n2N

�
UCo

n

�C
,

where “+” means pseudo inverse.
• STEP +2: The weighting functions are wCo

n .xn/ in the case of the bi-linear TP
model transformation; however one has to check this between the grid if all
points of the weighting functions are recalculated.
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Fig. 2.7 Results of the enriched TP model transformation when G is increased from 10 to 20
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Fig. 2.8 Results of the enriched TP model transformation when G is increased from 20 to 500
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Further types of convex TP functions can be generated by using Normalized
(NO), Close to NO (CNO), Inverse NO (INO), Relaxed NO (RNO), Inverse RNO
(IRNO), etc. transformations in the same way as SN and NN transformation is
executed in Step 2 above, see for instance [2, 6, 10, 11].

2.4.1 Numerical Example

Let us continue the example of the previous section. Using the convex TP model
transformation the following models are derived:

2.4.1.1 SNNN Type TP Model

The vertexes of the model are:

S1;1 D



122:9804 �62:4297

2:0000 28:5317

�
(2.44)

S2;1 D



�4:5476 �62:4297

2:0000 77:5678

�
(2.45)

S3;1 D



�4:5476 �62:4297

2:0000 28:5317

�
(2.46)

S1;2 D



122:9804 124:7210

2:0000 22:1938

�
(2.47)

S2;2 D



�4:5476 124:7210

2:0000 71:2299

�
(2.48)

S3;2 D



�4:5476 124:7210

2:0000 22:1938

�
(2.49)

S1;3 D



122:9804 �13:0489

2:0000 �17:7209

�
(2.50)

S2;3 D



�4:5476 �13:0489

2:0000 31:3152

�
(2.51)

S3;3 D



�4:5476 �13:0489

2:0000 �17:7209

�
(2.52)
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The weighting functions of the resulting TP model are shown in Fig. 2.9. The
weighting functions of the relaxed SNNN type TP models are shown in Figs. 2.10,
2.11, and 2.12.

Remark 2.5. Figure 2.12 shows an interesting case when the number of weighting
functions is still 4 (the number of singular values kept is 3). This means that
the SNNN transformation increased the number of weighting functions to achieve
convexity. Thus, in this case we do not have complexity reduction, but the approx-
imation accuracy is degraded because of the rank reduction (the added weighting
functions are not linearly independent). As a result, this solution actually has no
meaning in the sense of TP model relaxation. The previous solution has a better
approximation accuracy with the same complexity!

2.4.1.2 CNO Type TP Model

The vertexes of the model are:

S1;1 D



�18:5023 8:2775

2:0000 �12:9462

�
(2.53)

S2;1 D



25:0000 8:2775

2:0000 �7:8897

�
(2.54)

S3;1 D



25:0000 8:2775

2:0000 �18:0028

�
(2.55)

S1;2 D



�18:5023 �21:1903

2:0000 �2:1129

�
(2.56)

S2;2 D



25:0000 �21:1903

2:0000 2:9436

�
(2.57)

S3;2 D



25:0000 �21:1903

2:0000 �7:1695

�
(2.58)

S1;3 D



�18:5023 77:4772

2:0000 90:3550

�
(2.59)

S2;3 D



25:0000 77:4772

2:0000 95:4115

�
(2.60)

S3;3 D



25:0000 77:4772

2:0000 85:2984

�
(2.61)

The weighting functions of the resulting TP model are shown in Fig. 2.13.
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Fig. 2.9 Weighting functions of the SNNN type exact TP model
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Fig. 2.10 Weighting functions of the SNNN type relaxed TP model where 5 singular values are
kept
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Fig. 2.11 Weighting functions of the SNNN type relaxed TP model where 4 singular values are
kept
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Fig. 2.13 Weighting functions of the CNO type exact TP model
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The weighting functions of the relaxed CNO type TP models are shown in
Figs. 2.14, 2.15, and 2.16. We have the same situation with the number of weighting
functions as in the previous case when 3 singular values are kept.

2.4.1.3 IRNO Type TP Model

The vertexes of the model are:

S1;1 D



48:2074 �32:7238

2:0000 6:2024

�
(2.62)

S2;1 D



7:8944 �32:7238

2:0000 18:9717

�
(2.63)

S3;1 D



�6:8121 �32:7238

2:0000 �0:0777

�
(2.64)

S1;2 D



48:2074 40:0422

2:0000 �0:4252

�
(2.65)

S2;2 D



7:8944 40:0422

2:0000 12:3441

�
(2.66)

S3;2 D



�6:8121 40:0422

2:0000 �6:7053

�
(2.67)

S1;3 D



48:2074 �7:3183

2:0000 �12:8303

�
(2.68)

S2;3 D



7:8944 �7:3183

2:0000 �0:0610

�
(2.69)

S3;3 D



�6:8121 �7:3183

2:0000 �19:1104

�
(2.70)

The weighting functions of the resulting TP model are shown in Fig. 2.17.
The weighting functions of the relaxed IRNO type TP models are shown in

Figs. 2.18, 2.19, and 2.20. We have the same situation with the number of weighting
functions as in the previous case when 3 singular values are kept.

2.5 Pseudo TP Model Transformation

We may want to find an equivalent TP function with a predefined weighting function
system, namely, to transform a given function to a TP function with given weighting
functions. For such purposes, we propose the pseudo TP model transformation as
follows:
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Fig. 2.14 Weighting functions of the CNO type relaxed TP model where 5 singular values are
kept
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Fig. 2.15 Weighting functions of the CNO type relaxed TP model where 4 singular values are
kept
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Fig. 2.16 Weighting functions of the CNO type relaxed TP model where 3 singular values are
kept
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Fig. 2.17 Weighting functions of the IRNO type exact TP model
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Fig. 2.18 Weighting functions of the IRNO type relaxed TP model where 5 singular values are
kept



2.5 Pseudo TP Model Transformation 41

W
ei

gh
tin

g 
fu

nc
tio

ns

-5

0.5

0.6

0.7

0.9

0.8

1

0.4

0.3

0.2

0.1

0

W
ei

gh
tin

g 
fu

nc
tio

ns

1

0.7

0.8

0.9

0.5

0.6

0.4

0.3

0.2

0.1

0
-4 -3 -2 -1 0 1 2 3 4 5

P2

-5 -4 -3 -2 -1 0 1 2 3 4 5

P1

w1

w1

w2

w2

Fig. 2.19 Weighting functions of the IRNO type relaxed TP model where 4 singular values are
kept
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Fig. 2.20 Weighting functions of the IRNO type relaxed TP model where 3 singular values are
kept
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Algorithm 4 (Pseudo TP Model Transformation, TPC Model Transformation
for Short). Assume a given function Y D f .x/, x 2 � � RN and weighting
function system wn.xn/. The goal is to determine S such that f .x/ D S �

n2N
wn.xn/,

or if this is not possible, then the goal is to find Of .x/ D S �
n2N

wn.xn/, where Of .x/ is

the best or at least a good approximation under the rank constraints implicitly given
by wn.xn/ (e.g., the number of linearly independent weighting functions may be less
in dimension n than rankn.f .x//). Steps 0 and +1 are the same as in the TP model
transformation, and only the following steps are extended:

• STEP 1: Discretization: Determine FD.�;G/ and W
D.!n;Gn/
n .

• STEP 2: Determine the core tensor:

S D FD.�;G/ �
n2N

�
WD.!n;Gn/

n

�C
: (2.71)

If WD.!n;Gn/
n introduces rank reduction, then we arrive at Of .x/ D S �

n2N
wn.xn/.

This works like in the case of complexity trade-off via TP model transformation.
If we have predefined transformations T:

S D Q �
NCk2K

TC
k ; (2.72)

where

Q D FD.G;�/ �
n2N

�
WD.!n;Gn/

n

�C
: (2.73)

• STEP +2: Checking the weighting functions: Once we have the core tensor S we
may recalculate the weighting functions between the points of WD.!n;Gn;/

n through
Step 3 and numerically compare to the given wn.xn/.

2.6 Partial TPC Model Transformation

Algorithm 5 (Partial TPC Model Transformation). Assume a given TP function
Y D f .x/, x 2 � � RN. Further, assume a given weighting function system wd.xd/,
d 2 D � N. The goal is to determine S such that f .x/ D S �

n2N
wn.xn/, where

weighting functions wn.xn/, n … D, are the same as in the case of the TP model
transformation. If this is not possible, or if we need a complexity trade-off, then
the goal is to find Of .x/ D S �

n2N
wn.xn/, where Of .x/ is the best, or at least a good

approximation under the rank constraint implicitly given by wd.xd/. Steps 0,1,3,+1,
and +2 are the same as in the case of the TPC model transformation:
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STEP 2: Determine the core tensor as K D FD.�;G/ �
d2D

�
W

D.!d ;Gd/
d

	C

. Execute

HOSVD on K in all dimensions n … D to obtain:

K D S �
n2N
n…D

Un: (2.74)

Let WD.!n;Gn/
n D Un, n … D, in which case:

FD.G;�/ D

 

S �
n2N
n…D

Un

!

�
d2D

W
D.!d ;Gn/
d D (2.75)

D S �
n2N

WD.!n;Gn/
n : (2.76)

2.6.1 Numerical Example

Let us use the model discussed in the previous examples. We assume that the
following weighting function systems

w1.p1.t// D
�
0:5sin.p1.t/=5/ 0:000025p2

1.t/ 0:005p1.t/
�

; (2.77)

and

w2.p2.t// D
�
0:2p2.t/ �0:2p2.t/ 20

�
: (2.78)

are given, see Fig. 2.21.
The TPC model transformation results in the following vertexes

S1;1 D



�0:0000 0:0295

�0:0000 0:0343

�
(2.79)

S2;1 D



�0:0000 �1:1354

0:0000 �1:3181

�
(2.80)

S3;1 D



�0:0000 0:9292

�0:0000 1:0787

�
(2.81)

S1;2 D



0:0000 �0:0295

0:0000 �0:0343

�
(2.82)

S2;2 D



0:0000 1:1354

�0:0000 1:3181

�
(2.83)
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Fig. 2.21 Predefined weighting function systems
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S3;2 D



0:0000 �0:9292

0:0000 �1:0787

�
(2.84)

S1;3 D



0:2399 �0:0407

0:0186 �0:0946

�
(2.85)

S2;3 D



1:5845 1:5668

�0:7171 3:6380

�
(2.86)

S3;3 D



0:0914 �1:2822

0:5868 �2:2419

�
(2.87)

Let us keep the weighting function system on the first dimension and assume that
we need a CNO type system of weighting functions in the second dimension. The
partial TPC model transformation results in the following vertexes:

S1;1 D



4:7985 �0:2571

0:3728 0:9948

�
(2.88)

S2;1 D



31:6892 9:8893

�14:3410 �38:2666

�
(2.89)

S3;1 D



1:8274 �8:0930

11:7362 46:0220

�
(2.90)

S1;2 D



4:7985 5:2362

0:3728 �1:0247

�
(2.91)

S2;2 D



31:6892 �201:4098

�14:3410 39:4138

�
(2.92)

S3;2 D



1:8274 164:8268

11:7362 �17:5490

�
(2.93)

S1;3 D



4:7985 �29:8745

0:3728 �12:1163

�
(2.94)

S2;3 D 1000 �



0:0317 1:1491

�0:0143 0:4661

�
(2.95)

S3;3 D



1:8274 �940:4026

11:7362 �366:6966

�
: (2.96)

The related weighting functions of the second dimension are shown in Fig. 2.22.
If we have the same predefined weighting functions on the first dimension and we
need IRNO type weighting function system on the second dimension we obtain the
results shown on second image of Fig. 2.22.
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Fig. 2.22 The CNO and the IRNO type weighting functions obtained by the partial TPC model
transformation
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2.7 Multi TP Model Transformation

We may want to transform a set of functions simultaneously to a set of TP functions
with the same weighting functions system. First we investigate a simple case, when
the functions have outputs with same size, then we discuss the general case when
each functions may have different sized output.

Algorithm 6 (Multi TP Model Transformation-Simple Case). Let us assume
that we have parameter dependent scalar, vector, matrix, or tensor functions
Y D fl.x/, l 2 L, x 2 � � RN. An important property is that they have
the same size and dimensionality as 8l W fl.x/ 2 RO1�O2�����OK . The goal is to
find their TP function representations over the same weighting function system as
8l W fl.x/ D Sl �

n2N
wn.xn/.

• STEP 0: Define discretization grid G fit to �.
• Step 1: Construct an N C K C 1 dimensional tensorH storing all the discretized

function F
D.�;G/
l into the .N C K C 1/th dimension.

• Step 2: Execute Step 2 as in previous algorithms, but on tensor H that result in
(SVD is not executed in the N C K C 1th dimension)

H DM �
n2N

wn.xn/: (2.97)

Then decompose tensorM in dimension N C K C 1 into tensors Sl just oppose
to the construction done in Step 1. This results in:

F
D.�;G/
l D Sl �

n2N
wn.xn/: (2.98)

The more complex case:

Algorithm 7 (Multi TP Model Transformation). Let us assume that we have
parameter dependent scalar, vector, matrix, or tensor functions Y D fl.x/, l 2 L,
x 2 � � RN. An important property is that they may have different sizes and
dimensionality as fl.x/ 2 ROl;1�Ol;2�����Ol;Kl . The goal is to find their TP function
representations over the same weighting function system as fl.x/ D Sl �

n2N
wn.xn/:

• STEP 0: Define discretization grid G fit to �.
• STEP 1: Discretization: store all the output elements of all fl.x/ in a vector that

is actually a construction of the function v.x/ D
�
h1.x/ h2.x/ : : : hZ.x/

�
, where

Z D
PL

lD1 …
Kl
kD1Ol;kl ; or directly arrange the discretized values according to this

ordering that yields the N C 1 dimensional tensor FD.�;G/ of size G1 � G2 � � � � �

GN � Z.
• STEP 2–3: These two steps are the same as in the case of the TP model

transformation (including trade-off and convex manipulation etc). As a result
we have v.x/ D B �

n2N
wn.xn/, where B is N C 1 dimensional.
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• STEP 4: By repartitioning tensor B in the N C 1th dimension, in a fashion
opposite to Step 1, we obtain tensors Sl containing elements with size of
Ol;1 � Ol;2 � � � � � Ol;Kl . Thus we have fl.x/ D Sl �

n2N
wn.xn/.

• STEP +1 and +2: These steps have the same error checking role as in the case
of the previously discussed variants of the TP model transformation.

2.7.1 Numerical Example

We assume that we have two different system matrices. The first one S1.p.t// is
taken from the previous example, the second one is:

S2.p.t// D

0

@
p2

1 p2
2 � sin.p2/ p1 C p2 11

p2
2 � cos.2 � p2/ 7 8 p1 C 0:625 � p2

2 5 12460 p1

1

A : (2.99)

If we execute the Multi-TP model transformation with CNO transformation on
these two models then we obtain weighting functions as shown in Fig. 2.23. The
common rank of the two systems is 3 in the first dimension and 5 in the second
dimension. Note that if we execute the TP model transformation on S2.p.t// only,
we will obtain three weighting functions on the first and only four weighting
functions on the second dimension.

The vertexes of S1.p.t// are:

S1;1 D 103 �



0:0025 0:0165

0:0002 0:0019

�
(2.100)

S2;1 D 103 �



0:0025 0:0165

0:0002 0:0030

�
(2.101)

S3;1 D 103 �



�0:0019 0:0165

0:0002 0:0024

�
(2.102)

S1;2 D 103 �



0:0025 �0:0007

0:0002 �0:0014

�
(2.103)

S2;2 D 103 �



0:0025 �0:0007

0:0002 �0:0004

�
(2.104)

S3;2 D 103 �



�0:0019 �0:0007

0:0002 �0:0009

�
(2.105)

S1;3 D 103 �



0:0025 �0:0013

0:0002 0:0000

�
(2.106)
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Fig. 2.23 The CNO weighting functions obtained by the multi TP model transformation
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S2;3 D 103 �



0:0025 �0:0013

0:0002 0:0010

�
(2.107)

S3;3 D 103 �



�0:0019 �0:0013

0:0002 0:0005

�
(2.108)

S1;4 D 103 �



0:0025 �0:0028

0:0002 �0:0004

�
(2.109)

S2;4 D 103 �



0:0025 �0:0028

0:0002 0:0006

�
(2.110)

S3;4 D 103 �



�0:0019 �0:0028

0:0002 0:0001

�
(2.111)

S1;5 D 103 �



0:0025 �0:0026

0:0002 �0:0014

�
(2.112)

S2;5 D 103 �



0:0025 �0:0026

0:0002 �0:0004

�
(2.113)

S3;5 D 103 �



�0:0019 �0:0026

0:0002 �0:0009

�
(2.114)

The vertexes of S2.p.t// are:

S1;1 D 103 �

2

4
0:0025 �0:0107 0:0019 0:0011

�0:0022 0:0007 0:0008 0:0010

0:0002 0:0005 1:2460 �0:0005

3

5 (2.115)

S2;1 D 103 �

2

4
0:0025 �0:0107 0:0030 0:0011

�0:0022 0:0007 0:0008 0:0020

0:0002 0:0005 1:2460 0:0005

3

5 (2.116)

S3;1 D 103 �

2

4
�0:0019 �0:0107 0:0024 0:0011

�0:0022 0:0007 0:0008 0:0015

0:0002 0:0005 1:2460 0:0000

3

5 (2.117)

S1;2 D 103 �

2

4
0:0025 0:0044 �0:0014 0:0011

�0:0023 0:0007 0:0008 �0:0011

0:0002 0:0005 1:2460 �0:0005

3

5 (2.118)

S2;2 D 103 �

2

4
0:0025 0:0044 �0:0004 0:0011

�0:0023 0:0007 0:0008 �0:0001

0:0002 0:0005 1:2460 0:0005

3

5 (2.119)
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S3;2 D 103 �

2

4
�0:0019 0:0044 �0:0009 0:0011

�0:0023 0:0007 0:0008 �0:0006

0:0002 0:0005 1:2460 0:0000

3

5 (2.120)

S1;3 D 103 �

2

4
0:0025 �0:0026 0:0000 0:0011

�0:0023 0:0007 0:0008 �0:0002

0:0002 0:0005 1:2460 �0:0005

3

5 (2.121)

S2;3 D 103 �

2

4
0:0025 �0:0026 0:0010 0:0011

�0:0023 0:0007 0:0008 0:0008

0:0002 0:0005 1:2460 0:0005

3

5 (2.122)

S3;3 D 103 �

2

4
�0:0019 �0:0026 0:0005 0:0011

�0:0023 0:0007 0:0008 0:0003

0:0002 0:0005 1:2460 0:0000

3

5 (2.123)

S1;4 D 103 �

2

4
0:0025 0:0020 �0:0004 0:0011

0:0017 0:0007 0:0008 �0:0004

0:0002 0:0005 1:2460 �0:0005

3

5 (2.124)

S2;4 D 103 �

2

4
0:0025 0:0020 0:0006 0:0011

0:0017 0:0007 0:0008 0:0006

0:0002 0:0005 1:2460 0:0005

3

5 (2.125)

S3;4 D 103 �

2

4
�0:0019 0:0020 0:0001 0:0011

0:0017 0:0007 0:0008 0:0001

0:0002 0:0005 1:2460 0:0000

3

5 (2.126)

S1;5 D 103 �

2

4
0:0025 0:0016 �0:0014 0:0011

0:0015 0:0007 0:0008 �0:0011

0:0002 0:0005 1:2460 �0:0005

3

5 (2.127)

S2;5 D 103 �

2

4
0:0025 0:0016 �0:0004 0:0011

0:0015 0:0007 0:0008 �0:0001

0:0002 0:0005 1:2460 0:0005

3

5 (2.128)

S3;5 D 103 �

2

4
�0:0019 0:0016 �0:0009 0:0011

0:0015 0:0007 0:0008 �0:0006

0:0002 0:0005 1:2460 0:0000

3

5 (2.129)

2.8 Generalized TP Model Transformation

This section provides a summary of the above sections and describes the summa-
rized algorithm of the TP model transformation.
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Let us assume a set of given functions fl.x/ 2 ROl;1�����Ol;Kl , x 2 � � RN ,
l 2 L. The goal is to find and further manipulate the TP model representations of the
functions in a given �. It is irrelevant whether these functions are given using closed
formulae or soft-computing techniques (e.g., fuzzy logic, neural network based
methods, etc.); the only requirement is that their discretized variant F D.�;G/

l should
be available. If there are no exact TP model representations for any of the functions,
then the goal is to find the best TP model representations of those functions by
achieving a trade-off between approximation accuracy and the complexity of the
core tensor.

It can be further assumed that a set of predefined weighting functions wd.xd/

are given for dimensions d 2 D 	 N, or that predefined characteristics defined
by the specific points of the functions wh.xh/ expected for dimensions h 2 H 	 N
(obviously D\H D 0) are given in the form W

D.!h;Gh/
h . For such cases, the following

transformation is proposed:

Algorithm 8 (Summarized TP Model Transformation). We assume that Y D

fl.x/ 2 ROl;1�����Ol;Kl , x 2 � � RN, wd.xd/, d 2 D 	 N, WD.!h;Gh/
h , h 2 H 	 N,

D \ H D 0 and � are given and 8l W F D.�;G/
l exist. The transformation results in

fl.x/ D Sl �
n2N

wn.xn/:

• STEP 1: Discretization over G:

– Determine F D.�;G/
l 2 RG1�����GN�Ol;1�����Ol;Kl andWD.!d ;Gd/

d 2 RGd�Id .

– Rearrange the Ol;1 � � � � � Ol;Kl sized elements of tensor FD.�;G/
l into vectors

of tensor H 2 RG1�����GN�Z, Z D
PL

lD1 …
Kl
kD1Ol;kl .

• STEP 2: Determination of the TP structure

– Incorporate the predefined weighting functions or characteristics as

S0 D

�
H �

d2D

�
W

D.!d ;Gd/
d

	C
�

�
h2H

�
W

D.!h;Gh/
h

	C

(2.130)

– Execute CHOSVD, specifically by discarding all zero singular values, in
dimensions n 2 N; n … D [ H of S0:

S0 D S00 �
n2N;n…D[H

Un: (2.131)

– Let WD.!n;Gn/
n D Un (n 2 N; n … D [ H), in which the fully discretized

structure of the TP model can be expressed as:

H D S00 �
n2N

WD.!n;Gn/
n : (2.132)
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– S00 can be partitioned in dimension N C 1 according Step 1. Storing these
elements in tensor Sl in a fashion opposite to Step 1, tensor F D.�;G/

l is
obtained:

F D.�;G/
l D Sl �

n2N
WD.!n;Gn/

n : (2.133)

– When a complexity trade-off is necessary, RHOSVD is performed by dis-
carding nonzero singular values and the corresponding weighting functions.
This leads to an approximation of the discretized tensor, which implies
that the resulting TP model will only be an approximation. Obviously, the
transformation is also not exact if the rank of any WD.!n;Gn/

n , n 2 D [ H is less
than the d-mode rank ofH .

• STEP 3: Determination of the weighting functions
This step is the same as in the original TP model transformation. It determines

all points of the weighting functions of wn.xn/ or the piece-wise linear variant
Nwn.xn/ from the discretized variants WD.!n;Gn/

n .
• STEP +1 and +2: Error check of the resulting TP function and the weighting

functions The numerical computation of the TP model transformation, the
reduction of the number of singular values, the recalculation of the contin-
uous weighting functions, and the use of piece-wise weighting functions all
introduce errors into the resulting TP model. These errors can be theoretically
bounded based on the discarded singular values, but can also be numerically
approximated by measurement over a large number of random points in �. The
predefined weighting functions in dimensions d 2 D can be recalculated in the
third step and checked for accuracy. Such a step can serve as a kind of evaluation
of the transformation.

2.9 Interpolation of the Weighting Functions

Since the type of convexity of the TP model influences the LMI based design (see
later), it naturally follows that the control performance can be optimized through
various manipulations of the TP model. Typically, controller design benefits from
the use of a tight convex hull (cf. [6]) that is able to decrease the conservativeness
of the solution. However, it is not very well known in the control literature that
the effectiveness of the observer and the resulting control performance can also
be improved in cases by loosening the convex hull. Therefore, an optimal convex
hull exists between these two opposing directions. In the following, a simple TP
model manipulation technique is proposed for interpolation between two convex TP
models, which captures the transition of the convex hull, for instance, between tight
and loose forms. The key idea behind the interpolation is based on the interpolation
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of the weighting functions. Assuming that two different TP model representations
of a given model are available:

S.p/ D A �
n2N

wA
n .pn/ D B �

n2N
wB

n .pn/: (2.134)

A linear interpolation characterized by a parameter � 2 Œ0; 1� can be applied as
follows:

w�
n .pn/ D �wA

n .pn/ C .1 � �/wB
n .pn/: (2.135)

Executing the TPC model transformation on the given model with the predefined
weighting functions w�

n .pn/, the following form is obtained:

S.p/ D V �
n2N

w�
n .pn/ D A �

n2N
wA

n .pn/ D B �
n2N

wB
n .pn/: (2.136)

Note that this technique interpolates the weighting functions and, hence, the
vertexes of the interpolated TP model are not the linear interpolation of the vertexes
of the given two TP models.

2.9.1 Numerical Example

Let us examine the following simple example. We assume the following TP model
S.p.t// D

P3
rD1 wr.p.t//Sr given in HOSVD based canonical form, where p.t/ 2

� D Œ0; 0:04� and

S1 D



�11480:824 �11929:594 �8:6483351

11489:012 11921:288 8:6422240

�

S2 D



�132:28962 127:48303 2:1133932

130:26178 �125:36528 �2:1102187

�

S3 D



0:2018141 �0:1981534 �0:4225654

0:2117763 �0:2086436 0:4221598

�
:

The weighting functions are depicted in Fig. 2.24.
Let us execute the convex TP model transformation on the given TP model with

SN and NN transformation. This leads to a TP model where the vertexes define a
convex hull around the given qLPV model. The weighting functions are given in
Fig. 2.25. The vertexes are:

Ssnnn
1 D



935:16726 1064:7034 2:0443571

�937:13030 �1062:7079 �2:0421822

�
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Fig. 2.24 Weighting function system of the HOSVD canonical form
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Fig. 2.25 SNNN type weighting function system
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Fig. 2.26 CNO type weighting function system

Ssnnn
2 D



1159:1814 836:83060 �2:2077200

�1157:0535 �839:07308 2:2038245

�

Ssnnn
3 D



959:93584 1040:8290 0:9979833

�960:88224 �1039:8563 �0:9970246

�

We also execute the TP model transformation with CNO transformation that
leads to a weighting functions system such that the vertexes form a tight convex
hull around the given model,

S.p.t// D

3X

rD1

wSNN
r .p.t//SSNN

r D

3X

rD1

wCNO
r .p.t//SCNO

r : (2.137)

The weighting functions are given in Fig. 2.26. The vertexes are:

Scno
1 D



978:02837 1021:7823 0:9348855

�978:91888 �1020:8823 �0:9341519

�

Scno
2 D



996:04859 1003:8310 0:4273445

�996:44795 �1003:4311 �0:4272558

�

Scno
3 D



959:58489 1041:1860 1:0046280

�960:53769 �1040:2067 �1:0036599

�
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Fig. 2.27 Interpolated weighting functions at � D 0:53

We define the linear interpolation between the weighting function systems for all
p.t/ 2 � such that:

w�
n .p.t// D �wCNO

n .p.t// C .1 � �/wSNN
n .p.t//; (2.138)

where � 2 Œ0; 1�. This means that we are tightening the convex hull with �. Then,
using the TPC model transformation, we determine the interpolated and exact TP
model such that:

S.p.t// D

3X

rD1

w�
r .p.t//S�

r : (2.139)

Figure 2.27 shows the case when � D 0:53.
The vertexes are:

S�
1 D



980:74020 1018:7800 0:9897259

�981:68530 �1017:8291 �0:9889653

�

S�
2 D



1018:4915 980:84818 0:06826419

�1018:5465 �980:80845 �0:06872040

�

S�
3 D



959:61303 1041:1578 1:0039480

�960:56517 �1040:1791 �1:0029807

�
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2.10 Unifying the Weighting Functions

Let us assume that a set of TP functions are given in the form:

Yl D Sl �
n2N

wl;n.xn/; (2.140)

l 2 L. The goal is to find TP model representations in �:

Yl D Tl �
n2N

wU
n .xn/; (2.141)

where the TP models have the same weighting functions systems (superscript “U”
means unified). Thus the goal is to ensure:

8l W Sl �
n2N

wl;n.xn/ D Tl �
n2N

wU
n .xn/; (2.142)

One obvious way to fulfill these criteria is to execute the Multi-TP model trans-
formation. However, such an approach would result in a significant computational
load if HOSVD is executed on a large-sized discretized tensor constructed from all
of the individual TP functions. We may have a simplified way here as we know the
TP structure of the given TP functions; hence, we can easily determine W

D.!n;Gn/
l;n .

In order to find the unified set of weighting functions, the matrices of the discretized
weighting functions can be stored in the form:

Hn D
�
W

D.!n;Gn/
1;n � � � W

D.!n;Gn/
L;n

	
; (2.143)

and compact SVD (or reduced, if complexity reduction is on purpose) can be
executed on H as

Hn D UnDnVT
n D UnLn: (2.144)

If needed, the manipulation of the type of the unified weighting functions
(defining SN, NN, CNO, etc. type unified functions) can be integrated at this point
with the execution of SVD to obtain such a Un that leads to the desired weighting
functions. The discretized unified weighting functions, then, have the following
form:

WU;D.!n;Gn/
n D Un; (2.145)

Given these weighting functions, there are two ways to proceed. The first
approach consists in executing the TPC model transformation on the given set
of TP functions using the predefined weighting functions wU

n .xn/ available in
the discretized variant W

U;D.!n;Gn/
n . An alternative approach further relaxes the

computational requirements. Since we have all the transformation matrices in Ln
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we can directly derive the core tensors to the unified weighting functions. Thus, we
define the partitions of the matrix Ln according to the number of the columns of
blocks WD.!n;Gn/

l;n in Hn as follows:

Ln D
�
Vn;1 � � � Vn;L

�
: (2.146)

Thus

Hn D
�
W

D.!n;Gn/
1;n � � � W

D.!n;Gn/
L;n

	
D Un

�
Vn;1 � � � Vn;L

�
(2.147)

that means

W
D.!n;Gn/
l;n D UnVn;l: (2.148)

The core tensors can be derived using these transformation matrices as:

Sl �
n2N

W
D.!n;Gn/
l;n D Sl �

n2N
UnVn;l D (2.149)

D

�
Sl �

n2N
Vn;l

�
�

n2N
Un D Tl �

n2N
Un D (2.150)

D Tl �
n2N

WU;D.!n;Gn/
n : (2.151)

Thus

Tl D Sl �
n2N

Vn;l: (2.152)

Finally, the third step of the generalized TP model transformation can be
executed to determine the continuous weighting functions to one of the pairs of
fl.x/ and Sl, since we have unified weighting functions.

2.11 Operations Between TP Functions

Once a set of unified weighting functions are obtained, the addition of TP functions
can be performed easily by adding together the corresponding core tensors:

S �
n2N

wn.xn/ D

LX

lD1

�
Al �

n2N
wn.xn/

�
; (2.153)
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thus

S D

LX

lD1

Al: (2.154)

Further operations are defined between TP models in the following form:

S.x/ D f .A.x/; B.x// D f .A �
n2N

wA
n .xn/;B �

n2N
wB

n .xn//; (2.155)

can also be numerically reconstructed:

S.x/ D S �
n2N

wn.xn/; (2.156)

by executing the TP model transformation on f .A.x/; B.x//. Thus, the TP model
transformation is executed on the whole function. The result will be exact if it
is contained within the TP functions, namely, if the rank of S.x/ is bounded by
dimensions. For instance, adding TP functions can easily be derived using the TP
model transformation, even in cases when these functions are given using different
soft-computing representations (analytical operations between fuzzy and neural
network based representations would be very hard as if not impossible). While these
claims are quite trivial, they are not applied nearly as much in the literature as their
significance would suggest.

2.12 Towards Approximation in Case of Non-TP Functions

The TP model transformation works even in cases where the entire TP model
structure of the given function or model are hidden. The only requirement of the
presented algorithms is that the model at hand should be discretizable over G. In
the case of functions which have a TP model structure (with bounded number of
components), once we find all the ranks through the TP model transformation, then
irrespective of how many extra gridpoints we add to the discretization, the number
of the nonzero singular values will not increase upon the execution of HOSVD.
If we have a function that has no TP model representation (with bounded number
of components), then the rank of the discretized tensor will increase (at least in
one dimension) with the density of G, such that the rank will always be Gn. Since
the computational power available limits Gn, it becomes irrelevant in engineering
applications whether the given function is a TP function with a higher rank than
Gn, or if it is a function that does not have an exact TP function representation.
We are faced with the same uncertainty when we have a limitation on the number
of resulting weighting functions and we have to execute RHOSVD in any case.
If we find that the given function and the resulting TP function or model are
equivalent in a numerical sense, then we may suppose that we have found all the
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ranks. Therefore, it should be kept in mind that in a mathematical sense, we are
always dealing with approximations unless we perform further analysis; however,
from an engineering perspective, the possible cases will be numerically equivalent
(limitations are imposed only by the available computational resources).
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