
Chapter 2
A Survey of Metaheuristics Methods
for Bioinformatics Applications

Ahmed Fouad Ali and Aboul-Ella Hassanien

Abstract Over the past few decades, metaheuristics methods have been applied to
a large variety of bioinformatic applications. There is a growing interest in applying
metaheuristics methods in the analysis of gene sequence and microarray data. There-
fore, this review is intend to give a survey of some of the metaheuristics methods
to analysis biological data such as gene sequence analysis, molecular 3D struc-
ture prediction, microarray analysis and multiple sequence alignment. The survey is
accompanied by the presentation of the main algorithms belonging to three single
solution based metaheuristics and three population based methods. These are fol-
lowed by different applications along with their merits for addressing some of the
mentioned tasks.

2.1 Introduction

In the 1970s, metaheuristics have been emerged to combine basic heuristic methods
in higher level frameworks to explore a search space in an efficient and an effective
way. Metaheuristics have two classes, population based methods and single solution
based method as shown in Fig. 2.1. The population based method includes but not
restricted to ant colony optimization (ACO) [11], genetic algorithms (GAS) [30],
particle swarm optimization (PSO) [31], scatter search (SS) [22], etc., while the
single solution based methods includes but not restricted to tabu search (TS) [21],
simulated annealing (SA) [32], variable neighborhood search (VNS) [36, 37], iter-
ated local search (ILS) [43]. The main key feature of designing any metaheuristics
algorithm is its capability of performing wide diversification and deep intensifica-

A.F. Ali (B)
Faculty of Computers and Information, Department of Computer Science,
Member of Scientific Research Group in Egypt, Suez Canal University, Ismailia, Egypt
e-mail: ahmed_fouad@ci.suez.edu.eg

A.-E. Hassanien
Faculty of Computers and Information, Chair of Scientific Research Group in Egypt,
Cairo University, Cairo, Egypt

© Springer International Publishing Switzerland 2016
A.-E. Hassanien et al. (eds.), Applications of Intelligent Optimization
in Biology and Medicine, Intelligent Systems Reference Library 96,
DOI 10.1007/978-3-319-21212-8_2

23

24 A.F. Ali and A.-E. Hassanien

Fig. 2.1 Metaheuristics methods

tion. The term diversification generally refers to the exploration of the search space,
whereas the term intensification refers to the exploitation of the accumulated search
experience. There are several different single solution based methods, also called
(trajectory methods), which can be seen as an extensions of local search algorithms.
The goal of this kind of metaheuristic is to escape from local minima in order to
proceed in the exploration of the search space and to move on to find better local
minima such as TS, ILS, VNS, SA.We can find a different population basedmethods
such as ACO and EC, they incorporate a learning component in the sense that they
implicitly or explicitly try to learn correlations between decision variables to iden-
tify high quality areas in the search space. For instance, in evolutionary computation
this is achieved by recombination of solutions and in ant colony optimization by
sampling the search space at each iteration according to a probability distribution.
Metaheuristics also classified into nature-inspired versus non nature-inspired meta-
heuristics, into memory-based versus memory-less methods, or into a dynamic or a
static objective function methods. Metaheuristics have been applied to solve many

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 25

problems in different fields such as engineering, economics, management, biology,
etc. In this work we describe some of the most important metaheuristics according to
the single-point versus population-based search classification and how they have been
applied in different bioinformatics applications. We survey the usage of metaheuris-
tics methods with three different bioinformatics applications. The first application
is a gene selection from gene expression data for cancer classification, we present
the successful hybridization between PSO and TS methods. The second application
is molecular 3D structure prediction by applying two proposed algorithms, the first
algorithm is the group search optimizer (GSO) algorithm, the second proposed algo-
rithm is a hybrid simulated annealing and variable neighborhood search algorithm.
The two algorithms have been proposed to minimize the molecular potential energy
function. Finally we present the role of genetic algorithm with the multiple sequence
alignment application.

This paper is organized as follows. Section2.2 presents the single solution based
methods, and describes three algorithms of the main algorithms that belong to this
methods, i.e tabu searchmethod (TS), simulated annealingmethod (SA) and variable
neighborhood method (VNS). Section2.3 presents the population based metaheuris-
tics methods, and outlines three important population based methods, one of them
belongs to the evolutionary algorithms such as genetic algorithm (GA), the other two
methods belong to swarm intelligence methods such as particle swarm optimization
(PSO) and group search optimizer (GSO) methods. In Sect. 2.4, we survey the role
of the mentioned metaheuristics algorithms for solving the three different bioinfor-
matics applications. Finally, Sect. 2.5 summaries this paper by its main conclusions.

2.2 Single-Solution Based Metaheuristics Methods

In this section, we present single solution based metaheuristics (S-metaheuristics)
methods, also called trajectory methods. They could be viewed as walks (moves)
through neighborhoods in the search space of the problem [9]. S-metaheuristics
methods are unlike P-metaheuristics methods, they iteratively apply the generation
of the neighborhood solutions from the current single solution. This process iterates
until a given stopping criteria e.g. (number of iterations). The most popular examples
of such S-metaheuristics methods are tabu search (TS), simulated annealing (SA),
itreted local search (ILS), guided local search (GLS) [46–48], variable neighborhood
search (VNS), greedy randomized adaptive search procedure (GRASP) [14, 15]. The
following subsections present a global overview of three method of S-metaheuristics
i.e. tabu search, simulated annealing and variable neighborhood and their principles.

2.2.1 Tabu Search

In 1986, Glover proposed a deterministic method called tabu search method (TS)
in order to escape from local optima [21]. In 1990s, tabu search method becomes

26 A.F. Ali and A.-E. Hassanien

very popular in solving optimization problems. The key feature of TS method is
the use of memory, which records information related of the search process. TS
generates a neighborhood solution from the current solution and accepts the best
solution even if is not improving the current solution. This strategy may lead to
cycles, i.e. the previous vistaed solutions could be selected again. In order to avoid
cycles, TS discards the solution that have been previously visited by using memory
which is called tabu list. The length of the memory (tabu list) control the search
process. If the length of the tabu list is high the search will explore larger regions
and forbids revisiting high number of solution. On the opposite, a low length of the
tabu list concentrates the search on a small area of the search space. At each iteration
the tabu list is updated (first in—first out queue). The tabu list contains a constant
number of tabu moves called tabu tenure, which is the length of time for which a
move is forbidden. If a move is good and can improve the search process but it is in
tabu list, there is no need to be prohibited and the solution is accepted in a process
called aspiration criteria. The main algorithm of tabu search method is reported in
Algorithm 1. Good reviews of the TS method are provided in [18, 20]. TS have been
applied to solve continuous optimization problems, see [5, 27].

Algorithm 1 Tabu search algorithm
Set x = x0; � Initial candidate solution
Set length(L) = z; � Maximum tabu list length
Set L = {}; � Initialize the tabu list
repeat

Generate a random neighbor x ′;
if x ′ /∈ L then

if length(L) > z then
Remove oldest solution from L; � First in first out queue
Set x ′ ∈ L;

end if
end if
if x ′ < x then

x = x ′;
end if

until (Stopping criteria satisfied) � e.g. Number of iterations
return x; � Best found solution

2.2.2 Simulated Annealing

Simulated annealing (SA) has been proposed by Kirkpatrick [32], SA is probably
the most widely used meta-heuristic in combinatorial optimization problem. It was
motivated by the analogy between the physical annealing of metals and the process
of searching for the optimal solution in a combinatorial optimization problem. It is

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 27

inspired by the Metropolis algorithm [17]. The main objective of SA method is to
escape from local optima and so to delay the convergence. The basic SA algorithm
is described as shown in Algorithm 2. SA proceeds in several iterations from an
initial solution x0. At each iteration, a random neighbor solution x ′ is generated.
The neighbor solution that improves the cost function is always accepted. Other-
wise, the neighbor solution is selected with a given probability that depends on the
current temperature T and the amount of degradation ΔE of the objective function.
ΔE represents the difference in the objective value between the current solution x
and the generated neighboring solution x ′. This probability follows, in general, the
Boltzmann distribution as shown in Eq.2.1.

P(ΔE, T) = exp(
− f (x ′) − f (x)

T
). (2.1)

Many trial solutions are generated as an exploration process at a particular level
of temperature. The temperature is updated until stopping criteria satisfied.

Algorithm 2 Simulated annealing algorithm
Set x = x0; � Generate the initial solution
Set T = Tmax ; � Starting temperature
repeat

repeat � At a fixed temperature
Generate a random neighbor x ′;
ΔE = f (x ′) − f (x);
if ΔE ≤ 0 then

x = x ′; � Accept the neighbor solution
else

Accept x ′ with probability e
−ΔE

T ;
x = x ′;

end if
until (Equilibrium condition) � e.g. number of iterations executed at each T
T = g(T); � Temperature update

until (Stopping criteria satisfied) � e.g. T < Tmin
return x; � Best found solution

In order to improve the performance of SA, we should carefully deal with the
tuning of control parameters which included:

• Choice of an initial temperature. Choosing too high temperature will cost com-
putation time expensively, while too low temperature will exclude the possibility
of ascent steps, thus losing the global optimization feature of the method. We have
to balance between these two extreme procedures.

• Choice of the temperature reduction strategy. If the temperature is decreased
slowly, better solutions are obtained but with a more significant computation time.
On the other side, a fast decrement rule causes increasing the probability of being
trapped in a local minimum.

28 A.F. Ali and A.-E. Hassanien

• Equilibrium State. In order to reach an equilibrium state at each temperature,
a number of sufficient transitions (moves) must be applied. The number of iter-
ations must be set according to the size of the problem instance and particularly
proportional to the neighborhood size.

• Stopping criterion. Concerning the stopping condition, theory suggests a final
temperature equal to 0. In practice, one can stop the search when the probability
of accepting a move is negligible, or reaching a final temperature T F .

2.2.3 Variable Neighborhood Search

Variable neighborhood search (VNS) method has been proposed by Hansen and
Mladenovic [37]. In VNS method, a set of predefined neighborhoods are explored
to provide a better solution. VNS explores a set of neighborhoods to get different
local optima and escape from local optima as shown in Fig. 2.2. The main steps of
VNS algorithm are shown in Algorithm 3. In Algorithm 3, a set of neighborhood
structure Nk are defined where k = 1, 2, . . . , n. At each iteration, an initial solution
x is generated randomly. A random neighbor solution x ′ is generated in the current
neighborhood Nk . The local search procedure is applied to the solution x ′ to generate
the solution x ′′. If the solution x ′′ is better than the x solution then the solution x ′′
becomes the new current solution and the search starts from the current solution. If the
solution x ′′ is not better than x solution, the search moves to the next neighborhood
Nk+1, generates a new solution in this neighborhood and try to improve it. These
operations are repeated until a termination criteria satisfied.

Fig. 2.2 Variable neighborhood search method

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 29

2.3 Population-Based Meta-heuristics Techniques

Population based metaheuristics methods (P-metaheuristics) start from an initial
population of solutions, this is the main difference between them and the (S-
metaheuristics) methods which start from a single solution. After the initial pop-
ulation is generated, the replacement phase is started by selecting a new population
from the previous population. This operation iterates until a given stopping crite-
ria. Most of the (P-metaheuristics) are nature-inspired methods. The most popular
(P-metaheuristics) are evolutionary algorithms (EAs), deferential evolutionary (DE)
[42], particle swarm optimization (PSO), ant colony (AC), group search optimizer
(GSO), artificial immune system (AIS) [13]. In the following subsection we outline
three of these methods, the three methods are genetic algorithm (GA), which is one
of the most popular algorithm in EAs, particle swarm optimization (PSO) and group
search optimizer (GSO). The three methods are different in the generation and the
selectionmechanisms and the searchmemorywhich they are using during the search.

Algorithm 3 Variable neighborhood search algorithm
Define a set of neighborhood structure Nk for k = 1, . . . , kmax ;
Set x = x0; � Generate the initial solution
repeat

k = 1;
repeat

Generate a random neighbor x ′ from the kth neighborhood Nk(x) of x ;
x ′′ = local search (x ′);
if f (x ′′) < f (x) then

x = x ′′;
Continue to search in N1;
k = 1;

else
k = k + 1;
Move to a new neighborhood area;

end if
until K = Kmax � e.g. Number of Neighborhood structures

until (Stopping criteria satisfied)
return x; � Best found solution

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic (P-metaheuristics) that have been suc-
cessfully applied to many real and complex problems. EAs are based on the notion of
competition. They are based on the evolution of a population of individuals, this pop-
ulation is usually generated randomly. Each individual in the population is evaluated

30 A.F. Ali and A.-E. Hassanien

by using an objective function (fitness function). At each generation, individuals
with better fitness are selected to form the parents. Then the selected parents are
reproduced using crossover and mutation operators to generate new offsprings. In
the final stage a survival selection is applied to determine which individuals of the
population will survive from the offsprings and the parents. This process is iterated
until a stopping criteria are satisfied. Algorithm 4 illustrates the main steps of an
evolutionary algorithm.

Algorithm 4 Evolutionary algorithm
Set the generation counter t := 0;
Generate an initial population P0 randomly; � Initial population.
Evaluate the fitness function of all individuals in P0;
repeat

Set t = t + 1; � Generation counter increasing.
Select an intermediate population Pt from Pt−1; � Selection operator.
reproduced Pt ; � Crossover and mutation operators.
Evaluate the fitness function of all individuals in Pt ;

until Termination criteria satisfied.
produce the best individual or best population found;

Genetic algorithm. Genetic algorithms (GAs) have been developed by Holland
in the 1970s to understand the adaptive processes of natural systems [30]. Then,
they have been applied to optimization and machine learning in the 1980s [10, 23].
Traditionally,GAsare associatedwith the use of a binary representationbut nowadays
one can find GAs that use other types of representations (continues). GA usually
applies a crossover operator to two solutions that plays a major role, plus a mutation
operator that randomlymodifies the individual contents to promote diversity.GAs use
a probabilistic selection that is originally the proportional selection. The replacement
(survival selection) is generational, that is, the parents are replaced systematically by
the offsprings. The crossover operator is based on the n-point or uniform crossover
while the mutation is bit flipping. A fixed probability pm is applied to the mutation
operator. The general structure of GA is shown in Algorithm 5. A problemwithmany
standard search algorithm, i.e. hill-climbing, is that they often find solutions in the
search space locally not globally when the space is not smooth. GAs due to their
stochastic are able to avoid this behavior for the most part. The main steps of the
GAs are illustrated as follows.

Initial population. The initial population consists of solutions, each solution is
called chromosome. The chromosome is a genetic representation of a single solution
to the problem and its performance at solving that problem is evaluated by a function
which relates the chromosome representation of a problem. The most important skill
in applying a GA to a problem is to be able to correctly map the problem to a set
of integers or binary variables and compute a fitness so that it reflect the problem at
hand.

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 31

Algorithm 5 Genetic algorithm
Set the generation counter t := 0;
Generate an initial population P0 randomly;
Evaluate the fitness function of all individuals in P0;
repeat

Set t = t + 1; � Generation counter increasing.
Select an intermediate population Pt from Pt−1; � Selection operator.
Associate a random number r from (0, 1) with each row in Pt ;
if r < pc then

Apply crossover operator to all selected pairs of Pt ;
Update Pt ;

end if � Crossover operator.
Associate a random number r1 from (0, 1) with each gene;
in each individual in Pt ;
if r1 < pm then

Mutate the gene by generating a new random value for the selected
gene with its domain;
Update Pt ;

end if
� Mutation operator.

Evaluate the fitness function of all individuals in Pt ;
until Termination criteria satisfied
produce the best individual or best population found;

Selection operator. GA needs to remember good solutions and discard bad ones if it
is to make progress towards the optimum solution. To make sure that the GA doesn’t
converge on a set of solution too quickly, a random element is usually introduced
into the selection procedure. The parents are selected according to their fitness by
one of the following strategies:

Roulette wheel selection. Roulette wheel selection is the most common selection
strategy. It will assign to each individual a selection probability that is proportional to
its relative fitness. In the roulettewheel selection the probability to be selected is Pi =
fi/

∑n
j=1 fi . The total fitness of a population of individuals can be represented as a

wheel, where the fitness of an individual chromosome is represented an appropriate
slice of the wheel (Fig. 2.3).

Tournament selection. In tournament selection, a number of chromosomes are
selected randomly (minimum 2) from the population and their fitness compared.
The chromosome with greatest fitness is selected for entry to the next generation.

Rank selection. The rank of individuals is used instead of using the fitness value
of an individual. The function is biased toward individuals with a high rank (the
individual with good fitness). The rank may be scaled linearly using the following
formula: p(i) = 2−s

μ + r.r(i)(s−1)
μ(μ−1) .

Crossover operator. The role of crossover operator is to inherit some characteris-
tics of the two parents to generate the offsprings. There are a number of methods of
achieving this operator for instance, single point crossover [30], uniform crossover

32 A.F. Ali and A.-E. Hassanien

Fig. 2.3 Roulette wheel
selection

[34, 44], two point crossover [34], arithmetical crossover [34], geometrical crossover
[35], simplex crossover [45], simulated binary crossover [7], parent-centric crossover
[6]. Figures2.4 and 2.5 show the 1-point crossover and the uniform crossover respec-
tively.

Mutation operator. The mutation operator randomly alters one or more genes, of
a selected individual (chromosome) so as to increase the structural variability of the
population. The main role of mutation operator in GAs is that of restoring lost or
unexplored geneticmaterial into the population to prevent the premature convergence
of GA to suboptimal solutions. Figure2.6 shows the mutation operator. In Fig. 2.6
gene number 6 is randomly flipped from 0 to 1. Mutation can occur at each bit
position in a string with some probability, usually very small (e.g., 0.01).

Fig. 2.4 One point crossover operation

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 33

Fig. 2.5 Uniform crossover

Fig. 2.6 Mutation operation

2.3.2 Swarm Intelligence

A group can be defined as a structured collection of interacting organisms (or mem-
bers). The global behavior of a group (swarm) of social organisms therefore emerges
in a nonlinear manner from the behavior of the individuals in that group. Thus, there
exists a tight coupling between individual behavior and the behavior of the entire
group. Swarm intelligence (SI) is an innovative distributed intelligence paradigm for
solving optimization problems which takes inspiration from the behavior of a group
of social organisms. There are many algorithms belong to SI such as ant colony
optimization (ACO), particle swarm optimization (PSO), Bee colony optimization,
artificial immune systems, etc. In the following subsections we outline two of these
algorithms, PSO and GSO algorithms.

34 A.F. Ali and A.-E. Hassanien

Particle swarm optimization. Particle swarm optimization (PSO) is one of the most
popular swarm intelligence method. The initial concept of PSO was to simulate the
graceful and unpredictable choreography of a bird flock [31]. In PSO, a swarm
consists of a set particles, each particle represents a solution. The position of each
particle is changed according to its own experience and its neighbors. Algorithm 6
shown the main structure of the particle swarm optimization method. As shown in
Algorithm 6, the initial swarm is generated randomly, each particle has position xi .
At each iteration, the performance of each particle is evaluated by using the objective
function. The performance of each particle is compared with its best value pbesti
and global best particle gbest .

Algorithm 6 Particle swarm optimization algorithm
Set the iteration counter t := 0;
Generate an initial swarm S0 randomly;
Evaluate the fitness function of each particle xi in S0;
Set gbest ; � gbest is the best global solution in the swarm.
Set pbesti ; � pbesti is the best local solution in the swarm.
repeat

Set t = t + 1; � Generation counter increasing.
for i=1 to m do � m is a swarm size.

v
(t+1)
i = v

(t)
i + c1 × (pbesti − x (t)

i) + c2 × (gbest − x (t)
i); � Update velocities.

x (t+1)
i = x (t)

i + v
(t+1)
i ; � Update particle positions.

Evaluate the fitness function f (xi) of each particle xi in St ;
if f (xi) < f (pbesti) then � Solving minimization problem.

pbesti = xi ;
end if
if f (xi) < f (gbest) then

gbest = xi ;
end if
Update xi , vi ;

end for
until Termination criteria satisfied.
produce the best particle;

The position of each particle xi is changed as shown in Eq.2.2.

x (t+1)
i = x (t)

i + v
(t)
i (2.2)

where vi is a particle velocity, the velocity of each particle is changed as shown in
Eq.2.3.

v
(t+1)
i = v

(t)
i + c1 × (pbesti − x (t)

i) + c2 × (gbest − x (t)
i) (2.3)

c1, c2 are positive acceleration constant. The operation is repeated until termination
criteria satisfied.Usually a PSOalgorithm is executed for a fixed number of iterations.

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 35

Group search optimizer. Group search optimizer (GSO) is a recent swarm intelli-
gence algorithm (SI) proposed by [25]. GSO is based on Producer-Scrounger (PS)
behavior of group living animals [24, 25], which assume group members produc-
ing (searching for foods) and scrounging (joining resources uncovered by others).
Because of the efficiency and the promising performance in terms of accuracy and
convergence speed of GSO, many researchers have been attracted to apply GSO
algorithm in many applications. For example Fang et al. [12] proposed a hybrid
group search optimizer algorithm to solve optimization problems. He et al. [26] pro-
posed interactive dynamic neighbor deferential evolutionary GSO (IDGSO) to solve
high dimensional problems. Akhand et al. [2] employ the concept of swap operator
(SO) and swap sequence to modify GSO for travailing salesman problem (TSP). Liu
et al. [33] presented a modified group search optimizer algorithm for high dimen-
sional function optimization, which is based on Levy flight strategy, self-adaptive
joining strategy, and chaotic mutation strategy. In the following section, we give an
overview of GSO algorithm for function optimization.

Group search optimizer (GSO) is the novel population based nature inspired algo-
rithm, especially animal searching behavior. The population of GSO algorithm is
called a group and each individual in the population is called a member. The i th
member at the kth iteration, has a current position Xk

i ∈ Rn , a head angle Dk
i (φk

i) =
(dk

i1, . . . , dk
in) ∈ Rn . Search direction (head direction) φk

i = (ψk
i1, . . . ,ψ

n
i1) ∈ Rn−1

that can be calculated from φk
i via a polar to Cartesian coordinates transformation as

shown in Eq.2.4

dk
i1 =

n−1∏

p=1

cos(ψk
ip)

dk
i j = sin(ψk

i(j−1)) ·
n−1∏

p=i

cos(ψk
ip) (2.4)

dk
in = sin(ψk

i(n−1))

In GSO, there are three kinds of members in a group: producer, scroungers and
rangers (dispersed) members. There is only one producer at each searching iteration
and remaining members are scroungers and rangers members. At each iteration the
groupmember which has best fitness value is selected as the producer. All scroungers
will join the resource found by the producer, rangers members are less efficient
members who perform random walks. At kth iteration the producer X p behaves as
follows:

1. The producer will scan at zero degree and then scan laterally by randomly sam-
pling three points in the scanning field:
one point at zero degree

Xz = Xk
p + r1lmax Dk

p(φ
k) (2.5)

36 A.F. Ali and A.-E. Hassanien

one point in the right hand side hypercube

Xr = Xk
p + r1lmax Dk

p(φ
k + r2θmax/2) (2.6)

and one point in the left hand side hypercube

Xl = Xk
p + r1lmax Dk

p(φ
k − r2θmax/2) (2.7)

where r1 ∈ R1 is a normally distributed randomnumberwithmean 0 and standard
deviation 1, r2 ∈ Rn−1 is a random sequence in the range (0, 1), θmax ∈ R1 is
the maximum pursuit angle and lmax is the maximum pursuit distance.

2. The producer will then find the best point with the best resource (fitness value).
If the best point has a better resource than its current position, then it will fly to
this point. Otherwise it will stay in its current position and turn its head to a new
randomly generated angle:

φk+1 = φk + r2αmax (2.8)

where αmax is the maximum tuning angle.
3. If the producer cannot find a better area after a iterations, it will turn its head back

to zero degree:

φk+a = φk (2.9)

where a ∈ R1 is a constant.

At kth iteration a number of group members are selected as scroungers, these mem-
bers walks randomly toward the producer.

Xk+1
i = Xk

i + r3(Xk
p − Xk

i) (2.10)

where r3 ∈ Rn is a uniform random sequence in the range (0, 1). The groupmembers,
who are less efficient foragers than the dominant (rangers), will be dispersed from
the group. If the i th group member is dispersed, they random walks searching for
randomly distributed resources.

li = ar1lmax (2.11)

and move to the new point

Xk+1
i = Xk

i + li Dk
i (φk+1) (2.12)

The main structure of GSO algorithm is shown in Algorithm 7.

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 37

2.4 Metaheuristics as a Tool for Bioinformatics Applications

The following sections show how metaheuristics methods described above can
applied with three different bioinformatics applications.

Algorithm 7 Group search optimizer algorithm
Set values of θmax , lmax , αmax ; � Parameters initialization
Generate an initial group randomly for all the members Xi ; � Group initialization
Evaluate all the group members by calculating the fitness values.
of each member f (Xi); � Members evaluation
repeat

repeat
Find the producer X p of the group; � Producing operation
Create new points using the producer by randomly sampling
three points in the scanning filed as shown in Equations2.5, 2.6, 2.7;
Evaluate the fitness function of each generated point;
if the best point is better than the current position then

Producer will fly to the best point; � Accept the best point
else

Stay in the current position and turn its head to a new
randomly generated angle as shown in Equation2.8;

end if
Select a number of group members as scroungers; � Scrounging operation
Each scrounger walks randomly to join the resources
founded by the producer as shown in Equation2.10;
Select rest of the members as rangers (dispersed); � Dispersion operation
Each dispersed member walks randomly searching
for randomly distributed resources as shown in Equation2.12;

until (Visiting each member i in the group)
until (Stopping criteria satisfied)

2.4.1 Application 1: Selecting Genes from Gene Expression
Data for Cancer Classification

Gene selection is an important component for gene expression-cancer (tumor) clas-
sification system. A large datasets of thousand of genes are produced by microarray
experiments with expression values in order to be useful for cancer prediction. Most
of genes in microarray may be irrelevant genes or noisy genes which make these
genes difficult to analysis. Many efficient metaheuristics methods have been pro-
duced to solve this problem such as GAs, evolution algorithms (EAs) [16, 19, 38,
41, 49], simulated annealing (SA), tabu search (TS) and particle swarm optimization
(PSO). Tabu search and particle swarm optimization are combined to solve this prob-
lem inmanyworks, for example [40]. In [40] a hybrid PSO and tabu searchmethod is
proposed for gene selection for tumor classification, the method is called (HPSOTS).

38 A.F. Ali and A.-E. Hassanien

Tabu search has the ability to avoid convergence to local minima, it increases the
exploitation process of the algorithm. The main structure of TS algorithm is shown
Algorithm 1. The PSO based methods are intractable to efficiently produce a small
subset of informative genes for high classification accuracy. The main algorithm of
PSO is shown in Algorithm 6. The main steps of HPSOTS method is described as
follows.

1. Randomly initialize all the initial binary strings IND in HPSOTS with an appro-
priate size of population and evaluate the fitness function of individual in IND.
IND is strings of binary bits corresponding to each gene.

2. Generate and evaluate the neighbors of 90% of individual in IND according to
information sharing mechanism of PSO.

3. Pick new individual from the explored neighborhood according to the aspiration
criteria and tabu conditions and update the IND population.

4. To improve further the ability of HPSOTS to overleap local optima, other 10%
of particle in IND are forced to fly randomly not following the two best particles.
Evaluate the fitness function of these ten percent of particles.

5. If the best object function of the generation fulfills the end condition, the training
is stopped with the results output, otherwise, go to the step to renew population.

The different microarray data sets were used by HPSOTS method. HPSOTS are
compared with the standard TS and PSO methods, the results show that HPSOTS
method is a useful tool for gene selection and mining high dimensional data.

2.4.2 Application 2: Molecular 3D Structure Prediction

The potential energy of a molecule is derived from molecular mechanics, which
describes molecular interactions based on the principles of Newtonian physics. An
empirically derived set of potential energy contributions is used for approximating
these molecular interactions. The molecular model considered here consists of a
chain of m atoms centered at x1, . . . , xm , in a 3-dimensional space as shown in
Fig. 2.7. For every pair of consecutive atoms xi and xi+1, let ri,i+1 be the bond length
which is the Euclidean distance between them. For every three consecutive atoms
xi , xi+1, xi+2, let θi,i+2 be the bond angle corresponding to the relative position
of the third atom with respect to the line containing the previous two. Likewise,
for every four consecutive atoms xi , xi+1, xi+2, xi+3, let ωi,i+3 be the angle, called
the torsion angle, between the normal through the planes determined by the atoms
xi , xi+1, xi+2 and xi+1, xi+2, xi+3.

The force field potentials corresponding to bond lengths, bond angles, and torsion
angles are defined respectively [8] as

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 39

Fig. 2.7 Coordinate set of atomic chain

E1 =
∑

(i, j)∈M1

c1i j (ri j − r0i j)
2,

E2 =
∑

(i, j)∈M2

c2i j (θi j − θ0i j)
2, (2.13)

E3 =
∑

(i, j)∈M3

c3i j (1 + cos(3ωi j − ω0
i j)),

where c1i j is the bond stretching force constant, c
2
i j is the angle bending force constant,

and c3i j is the torsion force constant. The constant r
0
i j and θ0i j represent the “preferred”

bond length and bond angle, respectively, and the constant ω0
i j is the phase angle that

defines the position of the minima. The set of pairs of atoms separated by k covalent
bond is denoted by Mk for k = 1, 2, 3.

In addition to the above, there is a potential E4 which characterizes the 2-body
interaction between every pair of atoms separated by more than two covalent bonds
along the chain. We use the following function to represent E4:

E4 =
∑

(i, j)∈M3

(
(−1)i

ri j

)

, (2.14)

where ri j is the Euclidean distance between atoms xi and x j .
The general problem is the minimization of the total molecular potential energy

function, E1 + E2 + E3 + E4, leading to the optimal spatial positions of the atoms.
To reduce the number of parameters involved in the potentials above, we simplify
the problem considering a chain of carbon atoms.

40 A.F. Ali and A.-E. Hassanien

Inmostmolecular conformational predictions, all covalent bond lengths and cova-
lent bond angles are assumed to be fixed at their equilibrium values r0i j and θ0i j ,
respectively. Thus, the molecular potential energy function reduces to E3 + E4 and
the first three atoms in the chain can be fixed. The first atom, x1, is fixed at the origin,
(0, 0, 0); the second atom, x2, is positioned at (−r12, 0, 0); and the third atom, x3,
is fixed at (r23 cos(θ13) − r12, r23 sin(θ13), 0).

Using the parameters previously defined and Eqs. (2.13) and (2.14), we obtain

E =
∑

(i, j)∈M3

(1 + cos(3ωi j)) +
∑

(i, j)∈M3

(
(−1)i

ri j

)

. (2.15)

Although the molecular potential energy function does not actually model the real
system, it allows one to understand the qualitative origin of the large number of
local minimizers the main computational difficulty of the problem, and is likely to
be realistic in this respect.

Note that E3 in Eq. (2.13), is expressed as a function of torsion angles, and E4 in
Eq. (2.14), is expressed as a function of Euclidean distance. To represent Eq. (2.15)
as a function angles only, we can use the result established in [39] and obtain

r2il = r2i j + r2jl − ri j

(r2jl + r2jk − r2kl

r jk

)

cos(θik)

− ri j

(
√
4r2jlr

2
jk − (r2jl + r2jk − r2kl)

2

r jk

)

sin(θik) cos(ωil),

for every four consecutive atoms xi , x j , xk, xl . Using the parameters previously
defined, we have

ri j =
√
10.60099896 − 4.141720682(cos(ωi j)) for all (i, j) ∈ M3. (2.16)

From Eqs. (2.15) and (2.16), the expression for the potential energy as a function
of the torsion angles takes the form

E =
∑

(i, j)∈M3

(

1 + cos(3ωi j) + (−1)i

√
10.60099896 − 4.141720682(cos(ωi j))

)

,

(2.17)

where i = 1, . . . , m − 3 and m is the number of atoms in the given system. The
problem is then to find ω14,ω25, . . . ,ω(m−3)m , considering ωi j ∈ [0, 5], which cor-
responding to the globalminimumof the function E , represented by Eq. (2.17). E is a
nonconvex function involving numerous local minimizers even for small molecules.
Finally, the function f (x) can defined as

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 41

f (x) =
n∑

i=1

(

1 + cos(3xi) + (−1)i

√
10.60099896 − 4.141720682(cos(xi))

)

(2.18)

and 0 ≤ xi ≤ 5, i = 1, . . . , n.

Despite these simplification, the problem remains very difficult. A molecule with
as few as 30 atoms has 227 = 134,217,728 local minimizers.

Many metaheuristics methods are applied to solve this problem see for example,
[1, 3, 4, 28, 29]. To solve this problem, we proposed a group search optimizer
method called group search optimizer with matrix coding partitioning (GSOMCP)
to minimize the molecular potential energy function.

The algorithmic scenario of GSOMCP is described as follows. Each individual in
the search space consists of n variables. GSOMCP starts with an initial population
containingμ chromosomes. Therefore, the population can be coded as amatrix of size
μ× n called population matrix (PM). At generation t , the P Mt matrix is partitioned
into several sub-matrices P Mt

(i, j), i = 1, . . . , η, j = 1, . . . , ν. The formal detailed
description of GSOMCP is given in the following algorithm.

Algorithm 8 The proposed GSOMCP algorithm
Set values of m, μ, ν, and η. Set the generation counter t := 0.
Generate an initial population P0 of size μ and code it to a matrix PM0.
t = 0
repeat

Partition ˜PMt into ν × η sub-matrices.
repeat

Apply Algorithm 7 on each partition.
until visit all partitions
t = t + 1

until termination criteria satisfied
produce the best solution;

Also in order to solve themolecular 3D structure prediction problem,we proposed
a hybridmethod by combining a variable neighborhood search and simulated anneal-
ing algorithm. The method is called simulated annealing with variable partitioning
(SAVP). The description of SAVP are presented as follows.

SAVP starts with an initial solution x0 generated randomly. At each iteration the
solution is divided into η partitions. The variable neighborhood zone is generated
in order to generate a trail neighborhood solutions in the random selected parti-
tions. The generated neighbor solution that improve the objective function is always

selected. Otherwise the solution is accepted with a given probability e
−ΔE

T , where T
is the current temperature, and ΔE the amount of the degradation of the objective
function. The scenario is repeated until the equilibrium state is reached. In SAVP
the equilibrium state is a given number of iterations executed at each temperature,
this number is equals to μ, μ is a user predefined number. Once the equilibrium state
is reached the temperature is decreased gradually according to a cooling schedule.

42 A.F. Ali and A.-E. Hassanien

This process is repeated until the stopping criteria satisfied, which is in our algorithm
T ≤ Tmin . The structure of the SAVP with the formal detailed description is given
in Algorithm 9.

Algorithm 9 SAVP Algorithm
Choose an initial solution x0; � Generate the initial solution randomly
Set initial values for Tmax , Tmin , β, μ, ν, z0;
Set z = z0, T = Tmax , x = x0; � Parameters Initialization
repeat

k := 0; � Initial counter
repeat � At a fixed temperature

Partition the solution x into η partitions;
where η = n/ν; � Variable partitioning
Generate neighborhood trials y1, . . . , yμ

around x in the generated neighborhood zones; � Tail solution generation
Set x ′ equal to the best trial solution from y1, . . . , yμ;
ΔE = f (x ′) − f (x);
if ΔE ≤ 0 then

x = x ′; � Accept the neighbor solution
else

if rand() < e
−ΔE

T then � rand()∈ (0,1)
x = x ′; � Accept the solution with a probability e

−ΔE
T

end if
end if
k := k + 1; � Increment counter

until k ≤ μ � Equilibrium condition
T = T − β; � Temperature update

until T ≤ Tmin � Stopping criteria satisfied
best solution obtained in the previous stage;

2.4.3 Application 3: Multiple Sequence Alignment

The third application is the multiple sequence alignment, which is the task of com-
paring sequences of nucleic or amino acids and find the similarity in the structure
between genes and protein. Also it used to predict the 3D structure of the protein by
comparing the primary structure of two proteins one of themwith known 3D structure
and the 3D structure of the other is unknown. The comparison of these sequences
can help in the discovery of similar genes across species. For example, a very simple
method would be to write to compare two sequences as shown in Fig. 2.8. In Fig. 2.8,
the “

√
” character means a matched column between the two sequences, whereas

the character “x” means there is no matched column between the two sequences.
However if any editing operation is done by inserting or deleting any characters, the
sequences alignment no longer exists. The problem now is to determine the optimal
alignment of these sequences by correctly inserting gaps to realign the sequences.

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 43

Fig. 2.8 Multiple sequence
alignment

This problem becomes very difficult when the number of bases in a typical gene is
very big. Genetic algorithms have been successful in this problem, the main struc-
ture of GA is presented in Algorithm 5. The implementation of GAwith the multiple
sequence alignment is described as follows.

1. The initial population of alignments are generated, where each alignment is eval-
uated according to its performance in terms of the number of columns which
match and the number of gaps which are introduced into the sequences.

2. GA uses survival selection to select the elitist alignments, where 50% of the best
alignments are copied to the next generations.

3. The one point crossover is applied to generate the offspring as shown inFig. 2.4, by
taking two separate alignments, make a cut at a random point in the first alignment
sequence and cut the second alignment at such a point that every sequence is cut
adjacent to the same symbol.

4. The operation is repeated until termination criteria satisfied.

The representation of the problem is fixed, alignment can be made by inserting
gaps in a sequence, and the genetic operators (crossover and mutation) had to be
modified accordingly.

2.5 Conclusion

We provided a good examples of how metaheuristics methods could be combined
together or work individually to produce good results when applied to bioinformat-
ics applications. The metaheuristics methods are classified into two classes, single

44 A.F. Ali and A.-E. Hassanien

solution based methods and population based methods. The single solution based
methods or the trajectory methods start the search with a single solution, whereas the
population based methods start the search with a group of solution called population.
Six different metaheuristic methods are presented in this work, three of them are sin-
gle solution based methods such as tabu search (TS), simulated annealing (SA) and
variable neighborhood search (VNS), the other three methods are population based
methods such as genetic algorithm (GA), particle swarm optimization (PSO) and
group search optimizer (GSO). These methods have been applied to three different
bioinformatics applications. The first application is the gene selection from gene
expression data for cancer classification by applying a hybrid particle swarm opti-
mizationmethodwith tabu searchmethods. The second application isminimizing the
molecular potential energy function by proposing a new group search optimization
algorithm. The last application is the alignment of multiple sequence using genetic
algorithm (GA). As these examples showed the advantage of using the metaheuristic
method for a different application in bioinformatics.

References

1. Ali, A.F., Hassanien, A.E.: Minimizing molecular potential energy function using genetic
Nelder-Mead algorithm. In: 8th International Conference on Computer Engineering& Systems
(ICCES), pp. 177–183 (2013)

2. Akhand, M.A.H., Junaed, A.B.M., Murase, K.: Group search optimization to solve traveling
salesman problem. In: 15th ICCIT 2012, University of Chittagong, 22–24 Dec 2012

3. Bansal, J.C.: Shashi, Deep, K., Katiyar, V.K.: Minimization of molecular potential energy
function using particle swarm optimization. Int. J. Appl. Math. Mech. 6(9), 1–9 (2010)

4. Barbosa, H.J.C., Lavor, C., Raupp, F.M.: A GA-simplex hybrid algorithm for global minimiza-
tion of molecular potential energy function. Ann. Oper. Res. 138, 189–202 (2005)

5. Chelouah, R., Siarry, P.: Tabu search applied to global optimization. Eur. J. Oper. Res. 123,
256–270 (2000)

6. Deb, K., Joshi, D.: A computationally efficient evolutionary algorithm for real parameter opti-
mization, Technical Report 003, KanGal (2002)

7. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex
Syst. 9, 115–148 (1995)

8. Draz̆ić, M., Lavor, C., Maculan, N., Mladenović, N.: A continuous variable neighborhood
search heuristic for finding the three-dimensional structure of a molecule. Eur. J. Oper. Res.
185, 1265–1273 (2008)

9. Crainic, T.G., Toulouse, M.: Parallel strategies for metaheuristics. In: Glover, F.W., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, pp. 475–513. Springer (2003)

10. De Jong, K.A.: Genetic algorithms: a 10 year perspective. In: International Conference on
Genetic Algorithms, pp. 169–177 (1985)

11. Dorigo, M.: Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico diMilano,
Italy (1992)

12. Fang, J.Y., Cui, Z.H., Cai, X.J., Zeng, J.C.: A Hybrid group search optimizer with metropolis
rule, In: Proceedings of the 2010 International Conference on Modeling, Identification and
Control (ICMIC), Okayama, Japan, pp. 556–561 (2010)

13. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine
learning. Physica D 2, 187–204 (1986)

2 A Survey of Metaheuristics Methods for Bioinformatics Applications 45

14. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set cov-
ering problem. Oper. Res. Lett. 8, 67–71 (1989)

15. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim.
6, 109–133 (1995)

16. Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer,M., Haussler, D.: Support vector
machine classification andvalidation of cancer tissue samples usingmicroarray expression data.
Bioformatics 16, 906–914 (2000)

17. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. C-21,
948–960 (1972)

18. Gendreau, M., Potvin, J.Y.: Chapter 6: Tabu search. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies, pp. 165–186. Springer (2006)

19. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh,
M., Downing, J., Caligiuri, M., et al.: Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring. Science 286, 531–537 (1999)

20. Glover, F.: Parametric combinations of local job shop rules. In: ONR Research Memorandum,
No. 117, GSIA, Carnegie Mellon University, Pittsburgh (1963)

21. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13, 533–549 (1986)

22. Glover, F.: A template for scatter search and path relinking. Lect. Notes Comput. Sci. 1363,
13–54 (1997)

23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, andMachine Learning. Addison-
Wesley, Reading (1989)

24. He, S.,Wu, Q.H., Saunders, J.R.: A novel group search optimizer inspired by animal behavioral
ecology. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation, Vancouver,
BC: Sheraton Vancouver Wall Center, pp. 1272–1278, July (2006)

25. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer–an optimization algorithm inspired
by animal searching behavior. IEEE Trans. Evol. Comput. 13(5), 973–990 (2009)

26. He, G.H., Cui, Z.H., Tan, Y.: Interactive dynamic neighborhood differential evolutionary group
search optimizer. J. Chin. Comput. Syst. (accepted, 2011)

27. Hedar, A., Ali, A.F.: Tabu searchwithmulti-level neighborhood structures for high dimensional
problems. Appl. Intell. 37, 189–206 (2012)

28. Hedar, A., Ali, A.F., Hassan, T.: Genetic algorithm and tabu search basedmethods formolecular
3D-structure prediction. Int. J. Numer. Algebra, Control Optim. (NACO) (2011)

29. Hedar, A., Ali, A.F., Hassan, T.: Finding the 3D-structure of amolecule using genetic algorithm
and tabu search methods. In: Proceeding of the 10th International Conference on Intelligent
Systems Design and Applications (ISDA2010), Cairo, Egypt (2010)

30. Holland, J.H.: Adaptation in Natural and Artificial Systems. University ofMichigan Press, Ann
Arbor (1975)

31. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw.
4, 1942–1948 (1995)

32. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220,
671–680 (1983)

33. Liu, C., Wang, L., Yang, A. (eds.): A Modified group search optimizer algorithm for high
dimensional function optimization. In: ICICA, Part II, CCIS, vol. 308, pp. 219–226 (2012)

34. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New
York (1992)

35. Michalewicz, Z., Nazhiyath, G., Michalewicz, M.: A note on usefulness of geometrical
crossover for numerical optimization problems. In: 5th Annual Conference on Evolutionary
Programming, San Diego, CA. MIT Press, pp. 305–312 (1996)

36. Mladenovic, N.: A variable neighborhood algorithm a new metaheuristic for combinatorial
optimization. In: Abstracts of Papers Presented at Optimization Days, Montral, Canada, p. 112
(1995)

37. Mladenovic,M., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100
(1997)

46 A.F. Ali and A.-E. Hassanien

38. Peng, S.H., Xu, Q.H., Ling, X.B., Peng, X.N., Du, W., Chen, L.B.: Molecular classification
of cancer types from microarray data using the combination of genetic algorithms and support
vector machines. FEBS Lett. 555, 358–362 (2003)

39. Pogorelov, A.: Geometry. Mir Publishers, Moscow (1987)
40. Shen, Q., Wei-Min, S., Wei, K.: Hybrid particle swarm optimization and tabu search approach

for selecting genes for tumor classification using gene expression data. Comput. Biol. Chem.
32, 53–60 (2008)

41. Sima, C., Dougherty, E.R.: What should be expected from feature selection in small-sample
settings. Bioinformatics 22(19), 2430–2436 (2006)

42. Storn, R.M., Price, K.V.: Differential evolution a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

43. Sttzle, T.: Local search algorithms for combinatorial problems: analysis, improvements, and
new applications, Ph.D. thesis, Darmstadt University of Technology (1998)

44. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings
of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann
Publishers, San Mateo (1989)

45. Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex crossover
in real-coded genetic algorithms. In: GECCO99 Genetic and Evolutionary Computation Con-
ference, pp. 657–664 (1999)

46. Voudouris, C.: Guided local search for combinatorial optimization problems, Ph.D thesis,
University of Essex (1997)

47. Voudouris, C.: Guided local search: an illustrative example in function optimization. BT Tech-
nol. J. 16, 46–50 (1998)

48. Voudouris, C., Tsang, E.: Guided local search. Eur. J. Oper. Res. 113, 469–499 (1999)
49. Xiong,M., Li,W., Zhao, J., Jin, L., Boerwinkle, E.: Feature (gene) selection in gene expression-

based tumor classification. Mol. Genet. Metab. 73, 239–247 (2001)

http://www.springer.com/978-3-319-21211-1

	2 A Survey of Metaheuristics Methods for Bioinformatics Applications
	2.1 Introduction
	2.2 Single-Solution Based Metaheuristics Methods
	2.2.1 Tabu Search
	2.2.2 Simulated Annealing
	2.2.3 Variable Neighborhood Search

	2.3 Population-Based Meta-heuristics Techniques
	2.3.1 Evolutionary Algorithms
	2.3.2 Swarm Intelligence

	2.4 Metaheuristics as a Tool for Bioinformatics Applications
	2.4.1 Application 1: Selecting Genes from Gene Expression Data for Cancer Classification
	2.4.2 Application 2: Molecular 3D Structure Prediction
	2.4.3 Application 3: Multiple Sequence Alignment

	2.5 Conclusion
	References

