
Chapter 2
Reverse Engineering Under Uncertainty

Paul Kirk, Daniel Silk and Michael P.H. Stumpf

Abstract The increased availability of experimental data in systems biology and
systems medicine can only lead to better understanding of biological and disease
related processes, if we can place them in the context of mechanistic models. Such
models can serve as conceptual, but also computational frameworks in which we
can reason about, or predict the behaviour of e.g. molecular networks, or cellular
processes. Constructing such models, however, remains a formidable challenge: not
only are the data noisy and incomplete, but the models that are currently available
are hopelessly oversimplified. In this chapter we set out the problems and a list of
potential ways of tackling them. The essential premise is always to be aware of the
uncertainties inherent in the data and our models.

Keywords Inverse problems · Model selection · Extrinsic versus intrinsic noise ·
Model misspecification

2.1 Introduction

Reverse engineering the processes that govern the behaviour of biological systems is
one of the principal aims of systems biology [46]. From experimental data, we seek
to elucidate key aspects of the underlying mechanisms that give rise to observed
complex behaviour. We may initially have only very vague, perhaps even wrong,
ideas regarding these mechanisms, in which case our first aim may be to use the
data in order to generate testable hypotheses. Alternatively, we may have already
expressed our existing hypotheses as one or more mathematical models, in which
case we may wish to use the data in order to tune their parameters, or to choose
between them.

A defining feature of reverse engineering in a biological context is the variety
of ways in which we encounter uncertainty [11]. In addition to the usual challenges
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presented bymeasurement noise, wemust also contendwith the inherently stochastic
nature of biochemical and biophysical processes. Moreover, given the complexity
and interconnectedness of biological processes, we are currently only able to probe
incomplete portions of the systems of interest, which has obvious consequences for
the analysis [12]. While in vitro studies typically provide us with more control and
might even enable us to isolate a particular process, we are still faced with the prob-
lem of establishing whether this idealised environment can be representative of the
much more complex one that exists in vivo [33]. This combination of measurement
noise, incomplete observations, and inherently nonlinear and stochastic underlying
processes makes reverse engineering biological systems a particularly difficult task.

In this chapter,we discuss someof the challenges presented by reverse engineering
under uncertainty in a biological context. In Sect. 2.2, we provide a broad overview of
the inverse problem in systems biology, and consider the various ways in which this
problem is encountered in practice. We then consider manifestations of uncertainty
in Sect. 2.3, and ways in which we can try to cope with them when addressing the
inverse problem. In Sect. 2.4, we consider the consequences of uncertainty in the
context of modelling, and the potential limitations that uncertainty imposes on what
we are able to learn. We offer some final conclusions and advice in Sect. 2.5.

2.2 The Inverse Problem in Systems Biology

An inverse problem is one inwhichwe seek to reverse engineer details of a system (or
data-generating mechanism) from experimental observations or measurements [49].
Typically, thiswill involve inferring amodel or its parameters fromexperimental data.
In contrast, a forward problem is one inwhichwe have a fully specifiedmodel andwe
use it to make predictions or draw conclusions about its behaviour. There is clearly
an interplay between inverse and forward problems: a reverse engineered model can
subsequently be used for prediction, while a model whose predictions disagree with
novel experimental observations might form the basis for a new model. The inverse
problem has gained particular prominence in systems biology [22, 55, 58, 61], where
we often have access to large quantities of high-throughput data, but may initially
lack a deep understanding of how these measurements relate to one another, or what
they can tell us about the underlying biological processes [36].

The difficulty of the inverse problem is hard to overstate. Even for simple sys-
tems (in terms of the model) it presents formidable challenges and is vastly more
complicated than any associated forward problem.

2.2.1 The Different Types of Inverse Problems

We can consider three different, yet closely related, types of inverse problem: (i) we
do not have a model and need to reverse engineer one from the data; (ii) we have
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a model, the parameters of which need to be estimated/inferred from the data; and
(iii) we have a number of distinct candidate models (for which we may or may not
know the parameters) and we need to choose between them.

The first type of inverse problem has attracted a lot of attention in systems biol-
ogy, particularly in the context of network inference [22, 38, 39, 50, 57]. Network
inference approaches often proceed by first calculating measures of statistical depen-
dence between different biological entities (which form the nodes of the network),
and then identifying the pairs of entities between which there is a significant statisti-
cal dependence (these define the edges of the network). Some approaches take pains
to try to identify direct, causal relationships by eliminating conditional dependen-
cies. Network inference techniques typically have the advantage of being applicable
to large-scale problems (e.g. finding dependencies between the expression levels
of genes). The resulting network representations tend to be descriptive rather then
predictive, and hence network inference is often seen as a method for hypothesis
generation, which may be a first step toward developing more detailed mechanistic
models.

The second type of inverse problem describes the problem of estimating the para-
meters of a known (or assumed) model, which is sometimes known as model cal-
ibration. In addition to more heuristic methods [6], approaches such as maximum
likelihood estimation [56] andBayesian inference have gained traction in recent years
as ways in which to tackle model calibration problems. We consider these methods
in more detail in Sect. 2.2.2.

The third type of inverse problem refers tomodel selection. In this case, wewish to
choose the ‘best’ model(s) from a collection (and/or may wish to reject the ‘worst’).
Usually, our assessment of a model requires us to strike a balance between two crite-
ria: (i) quality of fit; and (ii) complexity. In the interests of parsimony (also known as
Occam’s razor), we ideally wish to maximise the former while minimising the latter,
and numerous approaches exist that seek to address this problem. Measures such as
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
do this by combining an assessment of quality of fit with a penalty on the number of
parameters (which is taken as a proxy formodel complexity). Alternatively, Bayesian
approaches usually focus on estimating the evidence (or marginal likelihood) for dif-
ferent models, and then compare these quantities via the calculation of Bayes factors.
Marginal likelihood estimation is typically challenging and computationally costly;
however, Bayesian approaches have the advantage of naturally embodying the prin-
ciple of Occam’s razor. These and other procedures for model selection are discussed
in more detail in [28, 47].

2.2.2 Statistical Inference Approaches

The general problem of fitting a model to data is often approached by considering
some function that quantifies the discrepancy (or, alternatively, agreement) between
themodel’s predictions and the observed data, and then tuning themodel’s parameters
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in order to obtain a good fit. Examples of the kind of discrepancy function that
might be employed include quantitative distances such as sum of squares and sum
of absolute difference errors, or qualitative measures such as the eigenvalues or Lya-
punov spectrum of a dynamical system [3, 41]. The choice of discrepancy function is
usually based upon heuristic arguments, but is often important, affecting (for exam-
ple) the degree to which outliers influence the fit. A key problem when adopting
such a fitting approach is how to find the minimum of the discrepancy function, and
numerous optimisation strategies exist that can be applied for this purpose [7, 53].
Two further important considerations are: (i) the problem of local minima; and (ii)
over fitting. The first of these refers to the common problem of the optimisation
algorithm getting “stuck” in a local minimum, rather than identifying the parameters
that yield the true, global minimum. The second refers to the challenge of how to
avoid fitting the experimental noise [40], whichwill typically result in poor predictive
performance.

If our model is probabilistic, we will often be able to define a likelihood function
[10], L(θ) = p(D|θ,M), which scores parameters by assessing how likely the
observed data, D, would be under the assumption that those parameters θ (and
our model, M) are correct. In maximum likelihood (ML) estimation, we seek the
parameters that maximise this likelihood function. In order to improve numerical
stability, in practice we often work with the log likelihood function. Moreover, due
to theway inwhich optimisation routines are typically implemented,weoften think in
terms ofminimising the negative log likelihood, whichwe can consider as a particular
kind of discrepancy function that happens to have the advantage of having a formal
probabilistic grounding. The challenges of escaping local minima and avoiding over
fitting remain.

TheBayesian formalism [16, 45], provides a framework for performing parameter
inference, in which assessments of fit (as quantified by the likelihood function) are
combined with our prior belief regarding the parameter values. Here, “prior belief”
refers to the belief we have before observing the current dataset, and may have been
obtained on the basis of previous experiments (e.g. on related biological systems, or
in similar conditions). The Bayes rule provides us with a formal mathematical means
by which to update our prior belief in light of the observed data, in order to obtain
the posterior distribution. The posterior quantifies the uncertainty remaining in the
values of the parameters after having observed the data, and may be used to derive
credible regions for the parameter vector. More precisely, we have,

p(θ |D,M) = p(θ |M)p(D|θ,M)
∫
θ∈�

p(θ |M)p(D|θ,M)dθ
, (2.1)

where D is the dataset, θ is the vector of parameters that is to be inferred, and M
represents the model. In words, we have,

Posterior = Prior × Likelihood

Model evidence
. (2.2)
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In practice, elucidation of the posterior distribution is rarely possible analytically,
and hence we must resort to techniques for obtaining samples from the posterior,
such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC),
or nested sampling [25, 42]. For some problems it may not even be possible
to write down the likelihood, in which case approximate likelihood techniques
and approaches such as approximate Bayesian computation might be appropriate
[52, 60].

2.2.3 Bypassing the Inverse Problem

It is usually impossible to measure all of the parameters or all of the components
of a biological system experimentally, and hence addressing the inverse problem
is an unavoidable reality. However, even if we were able to measure all of these
quantities, they would only be valid for the particular experimental and biological
conditions under which the measurements were taken; molecular reaction rates, for
example, depend on ambient temperature and pH values among many other things.
Given that these conditions are themselves subject to random fluctuations, modelling
the variation in these quantities is of vital importance if we wish to understand the
sources of uncertainty and variability in the system and in our data.

2.3 Manifestations of Uncertainty

One of the most significant challenges to be overcome when trying to reverse engi-
neer biological processes is the variety of sources of uncertainty that we must take
into account. In this section, we describe the various sources of noise that might
be important, and discuss strategies for coping with this noise when performing
inference.

2.3.1 Sources of Noise

There are many different sources of noise that have an impact on if and how we can
reverse engineer a given biological process. On the one hand, we have experimental
noise, which arises from imprecision and or inaccuracy in the measurement process.
On the other, we have the inherently stochastic nature of the underlying biological
system [4, 29, 51], which is a component of what we seek to reverse engineer. In the
context of cellular noise, this is often investigated in terms of intrinsic and extrinsic
sources.
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2.3.1.1 Experimental Noise

In the analysis of experimental error, a distinction is made between the precision
and accuracy of an observation [37]. Precision refers to the inherent error distribu-
tion associated with a particular type of experiment, and accuracy to the existence
of systematic errors in the experimental process. Contributions to the former will
vary for repeat observations and include, for example, random fluctuations in the
experimental conditions or behaviour of the experimental instruments. In contrast,
systematic errors remain unchanged for repeated experiments, and are caused by, for
example, imperfect calibration of experimental instruments. If the cause is known,
systematic errors should be explicitly modelled in order to avoid bias in any inferred
quantities. Otherwise, undetected systematic error can be viewed as a source model
misspecification which will be discussed more generally in Sect. 2.4.2.

2.3.1.2 Intrinsic Noise

Cellular behaviour is governed by the biochemical reactions that occur between
different molecular species within the cell. The timing of individual reactions is a
random quantity, which gives rise to the source of cellular stochasticity known as
intrinsic noise. Since each individual reaction only changes the numbers ofmolecules
of the reacting species by one or two, the effects of intrinsic noise are particularly
important when there are only low copy numbers of the molecular species of interest.

2.3.1.3 Extrinsic Noise

Extrinsic noise refers to variability in the physical and biological environment within
which the intrinsically noisy interactions take place. For example, a collection of
cells may vary in cellular volume, be at different stages of the cellular cycle, or have
different abundance of RNA polymerase and ribosomes; all of which may contribute
to variability in behaviour between cells and subsequent experimentalmeasurements.

2.3.2 Coping with Uncertainty in Inference

Having identified a variety of sources of noise,we nowdiscuss howwe should address
or capture these when performing parameter inference. The key question is how to
model each type of noise, so that we can either derive a likelihood function (and
hence adopt a maximum likelihood or Bayesian approach) or else find some other
(possibly simulation-based) method for inferring parameters. We consider strategies
for coping with each of the three types of noise identified in the previous section.
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2.3.2.1 Coping with Experimental Noise

Each source of randomexperimental uncertaintymay be categorised further as apply-
ing to either the inputs or outputs of an experiment. In the latter case themeasurement
error, ε, is typically assumed independent of both the parameters and known inputs,
(θ, u), and the true state of the system. The likelihood thus factorises into compo-
nents describing the uncertainty generated by the system and parameters, and by the
measurement process,

L(θ) = p(D|θ, u)

= p(D∗|θ, u)p(ε)

where D∗ is the error-free (i.e. absent of experimental noise) state of the system.
In the less commonly discussed case of uncertain inputs, the true state of the

observable is no longer independent of the uncertainty in question, and the likelihood
is obtained by integrating over possible values of u,

L(θ) = p(ε)

∫
p(D∗|θ, u)du. (2.3)

The integral in Eq.2.3 describes how the error propagates through the system for
particular values of θ , and often may only be approximately evaluated. A variety of
methods to do so exist, includingMonte Carlo approaches [35], Sigma point methods
[26], or Gaussian quadrature [43], the appropriateness of each of which is determined
by both the complexity of the system model, and the distribution, p(u).

Commonly the total experimental error is summarised as additive and Gaussian.
Such an approximation may be justified (as a consequence of the Central Limit theo-
rem) when the errors are the accumulation of large numbers of independent sources
of uncertainty. The Gaussian assumption is certainly computationally convenient.
For example, if all sources of uncertainty and the data itself are Gaussian distributed,
then calculation of the integral in Eq.2.3 may be undertaken with relative efficiency
(e.g. by using the unscented transform [27]). However, it is important to note that
the effects of input error (even when assumed Gaussian) on p(y) will almost cer-
tainly not be Gaussian in the presence of any non-linearity. Further, care must be
taken when measured quantities lie close to limiting boundaries (e.g. abundance or
concentration is strictly positive), as this can induce non-Gaussian effects upon the
error distribution. In these cases, more sophisticated and computationally expensive
Monte-Carlo based approaches are necessary for evaluating the likelihood.

2.3.2.2 Coping with Intrinsic Noise

Weassume that the available data comprise intrinsically noisymeasurements obtained
at discrete time points. While it is possible to derive exact Markov chain Monte
Carlo schemes for inference in such situations, their computational cost is usually
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prohibitively expensive.However, a number of approaches exist for simulating intrin-
sic fluctuations, and hence several simulation-based inference procedures have been
proposed. We refer the reader to [19, 59] for examples. At the heart of all of these
approaches is simulation using Gillespie’s stochastic simulation algorithm (SSA)
[18] (see also the top plots in Fig. 2.1 for example realisations). Given a chemical
reaction system with known rate constants and initial molecule numbers, the SSA
proceeds by using Monte Carlo techniques to simulate both the time until the next
reaction, and the next reaction to occur. A number of modifications exist in order
accelerate simulation using the SSA, including the Gibson-Bruck algorithm and the
τ -leap method [19, 59]. All of these simulation methods have in common that they
they provide exact realisations from the underlying (discrete state, continuous time)
stochastic kinetic model.

Alternative methods for parameter inference approximate the underlying stochas-
tic kinetic model in order to derive approximate likelihood functions. A popular
approach is to consider the continuous-state diffusion approximation of the true
process, which yields a stochastic differential equation (SDE) known as the chemi-
cal Langevin equation (CLE). An alternative continuous approximation is given by
the linear noise approximation (LNA) [20]. Additionally, several moment expansion
and moment closure approaches have been proposed as ways of approximating the
underlying model, some of which have also been used in order to allow parameter
estimation to be performed.

2.3.2.3 Coping with Extrinsic Noise

Extrinsic noise may be modelled by specifying a probability distribution, p(θ, x0),
over the parameters and initial conditions [4]. In Fig. 2.1 (right column), we illustrate
the effects of extrinsic noise on the oscillations in a model of p53 dynamics, where
the extrinsic noise enters themodel through fluctuations in just one of the parameters.
In this example, we have both intrinsic and extrinsic effects (see also Sect. 2.3.2.4).
In the absence of intrinsic stochasticity, extrinsic effects may be simulated in exactly
the same way as propagating input uncertainty (discussed in Sect. 2.4.2)—by propa-
gating p(θ, x0) through the model. The parameters of the extrinsic noise distribution
p(θ, x0), may also be the subject of inference given suitable data, such as multiple
measurements at single cell resolution.

2.3.2.4 Coping with Mixed Noise Sources

When intrinsic and extrinsic noise are both present, themodelling challenges aremore
substantial, both conceptually and computationally. The most common approach,
originating from [48], is to derive a framework under which each source of noise
may be considered separately, whilst other sources are held fixed. The theoretical
justification is made via the following decomposition of the stochasticity of cellular
products, x , as the direct sum of extrinsic and intrinsic (and experimental) contri-
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butions. Defining the extrinsic and intrinsic variables (or parameters) as E and I
respectively, the total law of variance gives us,

σ 2
x = σ 2〈x |E〉︸ ︷︷ ︸

Extrinsic

+〈σ 2〈x |E,I 〉|E 〉
︸ ︷︷ ︸

Intrinsic

+ 〈σ 2
x |E,I 〉︸ ︷︷ ︸

Experimental

(2.4)

where the angular brackets represent the expectation. The first term is the variance
of the mean values of x with E held fixed, and describes the portion of the total
uncertainty arising from extrinsic variability. The second term describes the intrinsic
contribution—the mean variance of x when sources of uncertainty other than E and
I are averaged out, and E is held fixed. The final term is that part of the total variance
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Fig. 2.1 We consider a model of oscillatory p53 dynamics [17]. The model comprises three
protein species (p53, precursor of Mdm2 and Mdm2) connected through a nonlinear feedback
loop. We take the parameters of the system (see [1] for details) to be [k1, k2, k3, k4, k5, k6, k7] =
[90, 0.002, 1.7, 1.1, 0.93, 0.96, 0.01], with initial conditions fixed at [p53, pre-mdm2, mdm2] =
[10, 20, 30] at time t = 0. In the top left, we show individual realisations of the number of p53
molecules over time, obtained using Gillespie’s stochastic simulation algorithm (SSA). Below this,
we have 3 plots showing the population mean (solid line) and a 1 standard deviation shaded region
for the 3 protein species (as indicated), obtained by averaging over many SSA runs. On the right,
we show the same 4 plots, but this time we illustrate the effects of extrinsic fluctuations by assuming
that the k4 parameter is drawn from a Gamma(12, 0.1) distribution (so that the mode is at k4 = 1.1).
While it is difficult to discern any difference from the individual SSA simulations (top plots), it is
clear from the plots of the population means that the effect of extrinsic noise in this case is stronger
dampening of the oscillations
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that is not explained by experimental or intrinsic sources, and which we attribute to
uncertainty in the measurement process.

This noise decomposition suggests the innovative dual-reporter experiments—
where the products of two genes, regulated by identical promoters are simultaneously
measured—in order to quantify intrinsic and extrinsic contributions. Furthermore,
it suggests that intrinsic, extrinsic and experimental uncertainty may be modelled
jointly by combining their separate strategies in hierarchical fashion. This is demon-
strated for intrinsic and extrinsic variability by Toni and Tidor [51], using the linear
noise approximation and the unscented transform respectively.

The total law of variance based approach, however, is only accurate when changes
in extrinsic variableswith time aremuch slower thanfluctuations in intrinsic variables
[23]. It turns out that inferring the contributions to total variance from extrinsic and
intrinsic sources is reliant upon the history of extrinsic fluctuations and not just their
present state. Even if all extrinsic variables can be measured accurately, Eq.2.4 will
introduce errors if the extrinsic variables cannot be assumed constant in time.

2.3.3 Quantifying Information and Knowledge

Given the variety of noise sources that may exist in the underlying processes that
generated the data, we may wonder exactly how much information can be extracted
from a given dataset. In the context of reverse engineering, our principal concern is
the degree to which we will be able to reconstruct the biological process of interest
from the available experimental observations. It is therefore useful to be able to
quantify the amount of information that our data contain about the parameters that
we seek to infer. In the Bayesian formalism, this is conceptually simple. Before we
conduct the experiment, the prior distribution describes the knowledge that we have
regarding the values of the unknown model parameters. The posterior distribution
serves the same role, but after observation of the data. The compression from prior to
posterior provides an information theoretic measure of the information gain provided
by the data. This compression can be quantified by calculating the Kullback-Leibler
divergence [9] between posterior and prior,

dK L (p(θ |D,M), p(θ |M)) =
∫

θ∈�

p(θ |D,M) log

(
p(θ |D,M)

p(θ |M)

)

dθ . (2.5)

Typically, it will not be possible to calculate this divergence analytically; however,
there are Monte Carlo methods that permit its estimation.



2 Reverse Engineering Under Uncertainty 25

2.4 Models in Biology and Confidence in Models

2.4.1 Data versus Reality

Despite the increasing range and power of experimental techniques, datasets continue
to represent low-dimensional snapshots of the complex cellular environment. It is
the task of reverse engineering to interpret the data and fill in the blanks—to explain
observed, and allow the prediction of unobserved properties of the real system. It
is clear that the quality, quantity, context and subject of experimental observations
determines both the inferences that may be drawn and the confidence we associate
with them. For example, larger datasets with higher signal to error ratios will in
general lead to greater accuracy and precision. However, in many cases the relative
utility of different experimental choices can be hard to foresee, e.g., which species
should be measured or perturbed (illustrated in Fig. 2.2 and more generally by Liepe
et al. [32]), and whether longitudinal datasets or time-point data should be generated
in order to reduce the uncertainty in parameter estimates [30].

Here it can be useful to close the loop between experiment and model, by ratio-
nally seeking experiments that maximise the expected information available for the
inference task at hand. This is known as experimental design, of which recent devel-
opments in the context of model calibration include the work of Liepe et al. [32]
that builds upon existing methods [2, 8, 24, 31, 34, 54], by utilising a sequen-
tial approximate Bayesian computation framework to choose the experiment that
maximises the expected mutual information between prior and posterior parameter
distributions. In so doing, they are able to optimally narrow the resulting poste-
rior parameter or predictive distributions, incorporate preliminary experimental data

(a) (b) (c)

Fig. 2.2 Some experiments aremore informative than others. a Schematic of a three variable system
of ordinary differential equations. Arrows represent interactions that are modelled by linear terms
with coefficients shown. Inference for k is performed independently for two timeseries datasets that
are generated by simulating the model with k = −0.1, and measuring the state of b the top variable
and c the middle variable for times t = 0.5, 1, 1.5, 2. The broadness of the resulting marginal
posterior distributions differ substantially, reflecting the different levels of information contained
within the datasets
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and provide sensitivity and robustness analyses. Design frameworks also exist for
model selection (e.g. [15]), where experiments are sought that maximally distinguish
the prior predictive distributions of the competing models.

Although experimental design offers a powerful auxiliary tool to statistical infer-
ence, care must be taken in interpreting the confidence associated with inferred mod-
els and parameters. For example, it is unsurprising that we assign high confidence
to the outcome of a model selection analysis given data from an optimally designed
experiment. When each of the models is subject to some level of misspecification,
such confidence may be misleading.

2.4.2 Models versus Reality

The complexity of cellular behaviour makes it inevitable that reverse (or forward)
engineered systems models will be subject to misspecification errors (when they
relate to the observation model, they are called systematic errors). These errors in
the model may remain undetected, or they may be introduced knowingly via model
reductions aimed at simplifying downstream analyses or at increasing interpretabil-
ity. In either case, such model uncertainty affects predictions and the outcomes of
statistical inferences. For example, inferred values for the physical parameters of a
‘wrong’ model will also be ‘wrong’ in order to compensate for misspecification (for
example, see Fig. 2.3). Indeed, strictly speaking, Bayesian inference is valid only
when a ‘true’ model is considered.

The effects of parameter and input uncertaintymay be quantified by assessing their
effect on the likelihood and posterior model predictions. For some classes of model

(a) (b)

Fig. 2.3 Inference using a ‘wrong’model. aAmisspecifiedmodel of a ‘true’ data generating system
are considered. The grey circle and dotted arrows represent a true variable and its interactions that
are absent from the wrong model. Fixing (e1, e2, e3) = (−0.1, 0.1, 0.5), and (k1, k2, k3, k4) =
(−0.1, 0.5, 0.5,−0.1) a timeseries of 10 data points is simulated from which the ki are inferred
using the incompletemodel. bMarginal posterior densities for the ki . Maximum a posteriori (MAP)
estimates do not coincide with the true parameter values (shown in red)



2 Reverse Engineering Under Uncertainty 27

a similar treatment of model uncertainty may be undertaken by capturing the range
of possible errors through parametric expansions, and examining the importance
of each (e.g. [44]). However more generally, and certainly for mechanistic models,
such an approach is undermined by the conceptual and computational difficulties
of specifying the complete space of model errors. However, a consideration of the
possible sources of model uncertainty may still suggest a collection of possible
models that are in reasonable agreement with the data. In this case, the propagation
of misspecification may be managed, to an extent, by conditioning upon the whole
collection, rather than just on the single best model. This is the basis of the model
averaging framework, where the best estimate of the state or parameter of the system,
θ , along with confidence intervals may be calculated from the averaged probability
under the various models,

p(θ |M1, ...,MN ) =
N∑

i=0

p(Mi |D)p(θ |Mi )

where p(Mi |D) is the posterior probability of model, Mi , given the data, D, and
p(θ |Mi ) is the posterior distribution for θ under model Mi . While each Mi is
still ‘wrong’, the averaged prediction of all ‘wrong’ models at least accounts for a
portion of model uncertainty. However the major drawback of averaging, rather than
selecting, is to diminish their physical interpretability.

2.4.3 What Can Be Learned from Data?

Frequentlywe find that parameters, ormore often combinations of parameters, can be
varied over orders of magnitude without changing the output of a system appreciably
[13]. This has major implications for the inverse problem of estimating parameters
from data, as large sub-regions in parameter-space may be commensurate with a
given dataset. The dependence (or lack thereof) of parameters with respect to data
is referred to as inferability, which in practice may be quantified as the variance
about the Maximum a posteriori (MAP) estimate. More formally, the Cramer-Rao
inequality [10] gives us a bound on the precision to which a parameter may be
estimated in terms of the likelihood,

σ 2
θ ≥ I−1(θ),

with I(θ) being the Fisher information matrix (FIM),

I(θ) = Eθ

[(
∂ log(p(D|θ))

∂θ

)2
]

,

and σ 2
θ , the covariance matrix of a vector-valued θ .
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The FIM is at the heart of much of statistical inference and can be interpreted as
the curvature of the likelihood surface around the maximal value of the likelihood
function. It can also be used as a means to consider robustness and sensitivity of
dynamical systems. The reason for this is that if a system is sensitive to variation
in a parameter, or a combination of parameters, then this means that changing the
parameter, e.g. from θ to θ +δ, will result in a noticeable change to the system output,
which in turn means that the likelihood will also be altered appreciably. Notice,
however, that inferability is a property of both system and data—it is possible that
further observations will render previously ‘sloppy’ [21] parameters inferable with
high certainty (see Fig. 2.2).

Often improved fits to data or better model predictions are interpreted as evidence
that more about the true system is being captured. However, it is easy to construct
counter-examples where improved data fitting and even predictive power (although
desirable in their own right) can be achieved by including more inaccuracies into
a misspecified model. It is crucial then not to interpret the physical meaning of
any model too assuredly, but instead use them as tools to generate hypotheses for
experimental testing (with the result, perhaps, of invalidating the model).

2.5 Conclusion

Reverse engineering is never easy, and probably even harder in biology than in the
physical sciences, where sound physical principles can constrain the search space
considerably.But oncewe accept that there is a point to applying quantitativemethods
andmathematical or computermodels in biology,we have to face up to the challenges
presented by inverse problems. There have been some arguments, perhaps most
notably from Sydney Brenner [5], stating that the inverse problem in molecular and
cellular biology is insurmountable and that we should use “the Cellmap”; how this
looks and where it would come from has thus far, sadly or unsurprisingly, been left
unspecified.

In order to make progress with the topic of this chapter we have to consider
two aspects of reverse engineering. First, problems where models can be tackled
by existing methods of reverse engineering. Here we consider only those that make
a meaningful and robust attempt at quantifying uncertainty as serious contenders,
which restricts us essentially to methods based on statistical and sound probabilistic
principles. For such systems it is easy to show that the inverse problem should be
tackled in preference of solving sets of forward problems, which rely on experimen-
tally measured parameter values, and which typically are associated with levels of
uncertainty that are, it appears, rarely propagated in forward analyses. The best we
can make out the elusive “Cellmap” appears to be a fully parameterized model for
the (cellular) system under consideration. Taking the predictions of such a system at
face-value ignores uncertainty and does not appear a sound way of making progress.

There are statistical procedures which are provably consistent as the amount of
data becomes infinite. This is clearly a situation far from reality but it seems advisable
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to use these techniques also in situations where data are rare. The alternative would
be to use an approach which is provably sub-optimal as data become perfect and
abundant in the hope that it does a good job on poor data.

The second set of problems is more interesting, and probably more widespread:
there are numerous systems (and models thereof) for which the inverse problem is
indeed insurmountable. Here simple solutions simply do not exist (and a “Cellmap”
is sadly lacking). Two obvious attempts at addressing such problems—each with its
own set of caveats—include partial inference and model reduction. While the details
of their respective applicability depend crucially on the specific problem, we can
make some general statements.

By partial or composite inference we mean a pragmatic approach that proceeds
by either breaking up the problem into sub-systems for which satisfactory inferential
solutions might exist, and then stitching the solutions for such subsystems together.
This has the disadvantage that any correlations or interdependencies among subsys-
tems are ignored. Nevertheless, techniques such as composite likelihood approaches
[14] can help to make progress in inference problems that are not amenable to a
comprehensive or holistic analysis. This will, we believe, continue to be a fruitful
area for computational statistics.

Model reduction, on the other hand, requires more domain expertise about the
system to be investigated. In the simplest case, it could be an effective model, which,
for example, ignores somemolecular species, if they exist only briefly and transiently.
It could also be a model that looks at lower dimensional spatial problems (although
this can be fraughtwith fundamental problems asmathematical solutions to problems
in 1D and 2D can be qualitatively different from solutions in 3D).

Either approach, individually or in combination, may be worthwhile exploring
in problems in systems biology (developmental biology seems to be replete with
problems that pose challenges to inferential techniques), and is preferable to an
analysis of corresponding forward problems for fixed parameters, which wouldmask
uncertainty.

In summary, recent years have shown the fundamental new insights that can result
from searching for or determining the origins of uncertainty in biological systems.
In some cases, it will turn out that uncertainty is merely a nuisance (e.g. if it enters
via the experimental procedure), whereas other types of uncertainty either reveal
exciting new biological mechanisms (e.g. extrinsic variability typically points to
aspects of a biological system that require further investigation), or are fundamental
and inalienable aspects of biomolecular dynamics.

Failure to account for uncertainty in the analysis of biological systems (and in
particular in reverse engineering tasks)will likely introduce bias andmask interesting
biology. On the other hand, uncertainty becomes easier to deal with once we know
where and how it arises.
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