Chapter 2
Networks Analysis and Beyond

This chapter is aimed to present an overview of the basic concepts underlying the
use of network paradigms in data analysis.

2.1 Introduction

In real-world systems, there are plenty of phenomena occurring as a result of
complex interactions among several elements. Network paradigm has been suc-
cessfully introduced to describe the relationships among elements, and hence for
analyzing complicated systems.

The reason for the great success of networks is primarily due to the fact that
the concept of network is universal; besides the network’s apparatus offers a set
of intuitive tools to analyze big amounts of data; as such it can be applied to a
wide range of fields, including (but not limited to) biology, mathematics, economics,
etc. Furthermore, as networks can be represented as sets of nodes and edges drawn
between the nodes, from the mathematical viewpoint managing networks is likewise
studying graphs. In following, we are going to provide some definitions and notational
conventions useful to deal with this formalism.

A graph G = (V, ) consists of a (finite) set denoted by V, and a collection
€ C V x V, of unordered pairs {u, v} of distinct elements from V.

Each element of V is called a vertex (point, node), and each element of E is called
an edge (line, link). Typically, it is assumed that self-loops, i.e., edges of the form
(u, u), for some u € V, are not contained in a graph.

A sequence of connected vertexes forms a path. The number n of vertexes, (i.e.,
the cardinality of V'), is called the order of graph and denoted by |V| := n. The
number m of edges (the cardinality of £), is called the size of graph and denoted by
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Fig. 2.1 From left to right directed (a) versus undirected graphs (b)

|E| := m. The degree k, of a vertex v € V is the number of its neighbors in the
graph.
Moreover, the graph G will be claimed to be

e directed, if its edge set is composed of ordered vertex (node) pairs; undirected if
the edge set is composed of unordered vertex pairs: Fig. 2.1 shows an example of
both types of graphs;

e simple, if it has no loops or multiple edges;

e acyclic, if there is not any possibility to loop back again from every vertex; cyclic
if the contrary holds.

e connected, if there is a path in G between any given pair of vertexes, otherwise it
is disconnected;

e regular, if all the vertexes of G have the same degree;

e complete, if every two distinct vertexes are joined by exactly one edge. The com-
plete graph with n vertexes will be denoted by K,,: some examples of complete
graph, varying the number of vertexes from 3 to 8 are provided in Fig.2.2;

e apath, if consisting of a single path. The path graph with n vertexes will be denoted
by Py;

e bipartite, if the vertex-set can be split into two sets in such a way that each edge
of the graph joins a vertex in the first set to a vertex in the second. A complete
bipartite graph is a bipartite graph in which each vertex in the first set is joined to
each vertex in the second set by exactly one edge;

e atree, if itis connected and it has no cycles. If G is a connected graph, the spanning
tree in G will be a subgraph of G which includes every vertex of G and is also a tree.
The minimum length spanning tree is called Minimum Spanning Tree (MST). We
will turn back on it in Chap. 7, in the second part of this book.
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Fig.2.2 From top to bottom and in clockwise sense; complete graphs varying the number of nodes n
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Fig. 2.3 From left to right the adjacency matrix for an undirected graph (a), and the corresponding
graph (b)

Commonly, the representation of graphs passes through the building of the adja-
cency matrix, i.e., a matrix that marks neighbor vertexes with one, and labels with a
zero those nodes that are not adjacent.

Figure?2.3 explains this idea in deeper detail. From left to right, the adjacency
matrix for an undirected graph (a) and the corresponding graph (b) are represented.
In the left-hand side picture, ones indicate the existence of connection among nodes,
while zeroes mean no connection. The adjacency matrix provides then complete
information about the graph; as a matter of fact, the provided information is self-
containing and enable us, without looking at the right-hand side of Fig.2.3, to fully
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describe the graph, claiming that it has a loop in node 1, and ties between nodes 1
and2 (2and 1),2and 3,2 and 5 (3 and 2, 5 and 2), 3 and 4 (4 and 3), 4 and 5, 4 and
6 (5and 4, 6 and 4).

2.2 Classical Networks

The beginning of the modern networks theory dates back the 1950s and 1960s, when
Paul Erdos and Alfred Rényi introduced the random graph model [52, 53, 54], also
known as Erdos—Rényi (ER) model.

The model consists of n nodes joined by edges which are placed at random between
pairs of vertexes; by the notation G, ,, it is meant that p is the independent probability
for each possible edge to be present; on the contrary, 1 — p is the probability for the
edges of being absent. In the case of simple networks, the expected number of edges
£ is expressed as

(a) (b)

(o) () (9]

Fig. 2.4 Random graph with probability p drawn from a binomial distribution. From top to bottom
and from left to right, results for p = 0 (a), p = 0.4 (b), p = 0.6 (¢), and for p = 1 (d)
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Fig. 2.5 Lattice networks: some examples. In the left-hand side, a one-dimensional network (a) is
provided, while a rectangular two-dimensions lattice is shown in the right-hand side (b)

because the total number of possible edges (combinations) is Cé") =nn-—1)/2.

Figure 2.4 shows some examples of the random graph model, created by assuming
to draw p from a binomial distribution.! Networks change with the probability p.

Clearly, the literature discussed in this chapter is far from being exhaustive; the
interested reader can refer to [60, 92, 125] for several examples of this approach.
Note that this model has been widely employed in several research fields such as
sociology, ecology, and mathematical biology because of its simplicity; however, it
conflicts with real-world networks. Nevertheless, random networks are often used
as benchmarks in comparison to the statistical properties observed in real-world
networks, in order to test the significance of those latter.

2.3 Lattice Network

Another famous network model involves lattice networks whose examples are pro-
vided in Fig.2.5.

Lattice networks are simply networks where nodes are arranged in a rectangular
(or more generally, a regular) lattice, aimed to overcome the major drawback of
the ER model. As a matter of fact, although the Erdos-Rényi random network is a
nice and tractable model, it fails to capture some nonrandom aspects of real-world
networks. This is, for instance, the case of patterns consisting of a small collection
of nodes with a certain combinations of edges (motifs), the existence of nodes with
much higher connectivity than the rest (hubs).

I This assumption is fully straightforward, as we are going to explain later with further details in
Sect.2.4.
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Lattice networks are relatively unsuitable for hypothetical models in network
analysis, because they seem to be artificial. However, they are useful when con-
sidering spatial dimensions such as distance. By assuming the regular networks in
mathematical models, further, it may be easy to derive exact solutions of the models
because of the regularity of lattice networks. Thus, in addition to the random network
model, this model is utilized in various research fields.

However, real-world networks possess remarkable statistical properties that can-
not be fully explained either by random networks or lattice networks. Over the past
two decades, this issue determined the flourishing of alternative models, best tailored
to fit the observable phenomena.

2.4 Scale-Free Networks

In order to discuss this kind of network, we need some preliminary definitions that
we are going to introduce in the following subsection.

2.4.1 Degree Distribution

The node degree, the simplest measure of a network, is defined as the number of
edges (neighbors) that a node has. A simple question might arise, regarding the
way in which degree is distributed in real-world networks. Barabasi and Albert [21]
answered this question by defining the degree distribution

l n
P(k) = ;Za (ki — k) (2.2)
i=1

where k; is the degree of the ith node, and §(-) is the Kronecker’s delta function. As
(2.2) returns 1 when k; —k = 0, and O otherwise, the term Z,N=15 (k; —k) corresponds
to the number of nodes with degree k.

In ER random networks, P (k) corresponds to the probability of a node to have k
edges. Since an edge is independently drawn between two given nodes with proba-
bility p, the degree distribution can be expressed as a binomial distribution.

In the case of lattice networks, the degree distribution will be peaked too, because
each node has the same degree.

2.4.2 Power-Law Distribution in Real-World Networks

The degree distributions P (k) of several real-world networks follows a power-law
distribution [9, 49]:

Pk) o k~¢ (2.3)
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where ¢ is a constant, the so-called degree exponent [10], with values bounded within
the interval (2, 3).

A correct interpretation of the power-law distribution suggests that a few nodes
integrate numerous nodes, while most of the remaining nodes do not. In such net-
works, the average degree is not representative, because it is common to observe
vertexes (hubs) with a degree that greatly exceeds the average. For this reason, net-
works sharing this statistical property are called scale-free networks. Moreover, the
scale-free property seems to have a strong connection to self-similarity [165], being
satisfied as

f(Cx)=(Cx)* =C"f(x) 24

for constants C and «, where f(x) = x“.

2.4.3 Barabasi-Albert Model

Hubs (and hence power-law degree distribution) represent the most striking differ-
ence between a random and a scale-free network. A model of network bridging this
gap was proposed and analyzed in [21], highlighting two hidden assumptions of the
Erdo6-Rényi model, each of which are violated in real networks, namely growth and
preferential attachment.

For what is concerning the former, in fact, the random network model assumes
that the number of nodes # is fixed (time invariant). Real networks, however, are
the result of a growth process that leads n to continuous increase. Moving to the
second feature, it has been proved that in real networks new nodes prefer to link
to the more connected nodes. Due to such preferential attachment, new nodes are
therefore more likely to connect to the more connected nodes than to the smaller
degree nodes. Hence, the more connected nodes will acquire links at the expense of
the less connected nodes, eventually turning into hubs.

The Barabasi—Albert Model (BA) attempts to reproduce those two simple mech-
anisms described in previous rows.

The BA model network can be generated following the steps provided below.

(i) Define the number ng of starting isolated nodes, a number 0 < n; < ng, and
the number n of desired overall nodes.
(i1) While ng is lower than n, connect a new node to the n( isolated nodes.
(iii) Add and connect a new node to n| existing nodes, which are selected with the
probability given by

o = 2.5)

(iv) Repeat Steps (ii) and (iii) until the network size reaches the target size n.
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Fig. 2.6 An example of
Barabasi—Albert network
model (a) and the
corresponding power-law
degree distribution (b)
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Figure 2.6 shows an example of Barabasi—Albert network model and the corre-
sponding power-law degree distribution.

2.5 The Configuration Model

As seen in Sect. 2.4, the degree distribution is a handy tool for exploring properties
of networks. An interesting point, however, concerns the discussion of the extent to
which the degree distribution captures certain aspects of the network. In particular,
adding minimal structure beyond a degree distribution could allow the exploration
of the consequences of having a large spread of degrees, including hubs that have a
much larger degree than most nodes.

The configuration model [25, 114] makes possible to generate a network model
that has exactly a fixed degree distribution; as such, it allows to generate networks
with the same degree distribution as a given network.

In order to understand the model, a preliminary definition can be given.

Definition 2.1 The degree sequence of a graph G = (V, &) is the sequence of
degrees of vertexes V written in nonincreasing order.
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For example, going back to the graph illustrated in Fig. 2.2, its degree sequence is
(3,2,2,2,2, 1). Note that not all nonincreasing sequences of nonnegative integers
can be realized as degree sequences of simple graphs. When it is possible, these
sequences are called graphical sequences.

Definition 2.2 A stub or half hedge is a hedge connected only on one side, while
the other remains free.

Thanks to those definitions, the configuration model algorithm can be summarized
as follows:

(i) Define a sequence (d, da, ..., d,) suchthatd; > dy > --- > dy,, and > ;_,d;
is even.
(i1) Create vertexes V = {1, 2, ..., n}, and assign them stubs or half edges accord-
ing to the sequence (d1, da, ..., dy).
(iii) Pick any two stubs uniformly at random, and connect their free ends; these two
stubs became one edge.
(iv) Repeat Step (iii) until no free stubs are left.

Observe that the algorithm allows both loops (created when picking two stubs
from the same vertex) and multiple edges (created when picking pairs of stubs from
the same pairs of vertexes). A variant without multiple edges can be found in [34, 35].

2.6 Small-World Networks

Small-world (SM) networks, according to Watts and Strogatz [178], are a class of
networks that are highly clustered, like regular lattices, yet have small characteristic
path lengths, like random graphs. As a result, those networks, also known as
Watts—Strogatz (WS) networks, have unique properties of regional specialization
with efficient information transfer. Interestingly, in those networks the distance
between a given node pair is known to be surprisingly small, although the network
size is very large.

An intuitive example of SM organization is provided by social networks, in which
cliques or clusters of friends are interconnected but each person is really only five
or six people away from anyone else. This property is referred to as the small-world
property, and was originally known as the six degrees of separation in sociology.

The WS network can be built in four steps:

(i) Start with a one-dimensional lattice with n nodes.
(i1) Select in a clockwise sense a node and the edge connecting it to its nearest
neighbor.
(iii)) Rewire the edges with the probability p, as given in (2.5), and elect at random
a new target node.
(iv) Repeat Steps (ii) and (iii) until one lap is completed.
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Fig. 2.7 An example of small-world network model

An example of small-word network is provided in Fig.2.7.

The model generates networks similar to lattice networks when p = 0, and close
to random networks when p = 1. In practice, the WS model includes the random
network and the lattice network models as special cases; in this sense, we can claim
that WS network expresses the transition from lattice networks to random networks.

2.7 Measuring the Robustness of Networks

We are now going to provide some insights on the main tools employed in order to
assess networks features; more specialized indexes will be then introduced when
necessary in the second part of the book, in the chapters focusing on practical
applications.
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2.7.1 Average Shortest Path Length

The distance between a node pair can be measured using the average shortest path
length of a network, which is defined as

n n

1 ..
ASPL = mZZd(l, ) (2.6)

i=1j=1

where d(i, j) indicates the shortest path length between nodes i and j, with
d(i,i) = 0,and d(i, j) — 400, if there is no shortest path between nodes i and ;.
Thus, the average shortest path length is only calculated in connected networks, in
which there are shortest paths between all node pairs.

2.7.2 Clustering Coefficients

Clustering coefficients help to determine the level of organization inside the network.
A first measure concerns the density evaluation among neighbors for each network

node
E; 2FE;

K\ kiki—1)
2

where E; is the number of edges among the neighbors of node i, and k os the degree
of the ith node. Note that CC; is defined as the ratio of the number of edges among
the neighbors to the number of all possible connections among the neighbors.

The overall tendency of clustering can be then measured by the average clustering
coefficient C = %Z?:l CC;, where n is the number of nodes in the network. A high
average clustering coefficient implies that the network is clustered.

CC; =

Q2.7)

2.7.3 Hierarchical Modularity

Hierarchical modularity relates to the possibility for a system to exhibit modularity
on several topological scales. For many years, researchers have been fascinated by
the ubiquity of modularity and hierarchical modularity across social, technological,
and biological systems.

One of the earliest and most influential ideas was formulated by Simon [163,
164], who argued that a “nearly decomposable” system built of multiple, sparsely
interconnected modules allow faster adaptation or evolution of the system in response
to changing environmental conditions.
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Modular systems can evolve by change in one module at a time, or by duplication
and mutation of modules, without risking loss of function in modules that are already
well adapted. Well-adapted modules thus represent stable intermediate states such
that further evolution of other modules does not jeopardize function of the entire
system. This robustness is a major advantage for any system evolving under changing
or competitive selection criteria, and this may explain the widespread prevalence of
modular architectures across a very wide range of information processing systems.

This statistical property is defined as

Z;’ZICCi X S(ki —k)
218 (ki —k)

HC(k) = (2.8)

where CC; is the clustering coefficient of node i as defined in (2.8), and §(-) is
the Dirac’s delta, as previously defined in Sect.2.4.1: [142] found that the degree-
dependent clustering coefficient follows a power-law function in several real-world
networks.

2.7.4 Assortativity

The relationship among the degrees in a connected node pair is very interesting. Since
real-world networks are nonrandom, we can expect this relationship to be significant.
However, the degree distribution only involves the degree of each node. Thus, we
need an alternative measure for characterizing such a relationship of degrees.
To characterize the relationship between node degrees, [124] proposed the assor-
tative coefficient
_ dkikj — (ki +kj)?
207 +k3) — (ki + kj)?

P (2.9)

where k; and k; are the degrees of two nodes at the ends of an edge. This is simply
the Pearson correlation coefficient of degrees between a connected node pair, and
it lies in the range [—1, 1]. The relationship between the assortative coefficient and
network structures can be described as follows:

e For p > 0, the network shows assortativity.

e For p = 0, there is no correlation between the degrees in a connected node pair,
that is, such networks are randomly constructed.

e For p < 0, the network shows disassortativity, in which low-degree nodes tend to
connect to high-degree nodes.

It is generally known that social and technological networks exhibit assortativity
and that biological and ecological networks exhibit disassortativity.
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2.7.5 Degree Correlation

Assortativity relates to another important measure known as degree correlation. The
degree correlation characterizes the expected degree of the neighbors of a node with
degree k

N
- _1Ci6(ki — k
knn (k) = —z’jvlgl (e — &) (2.10)
25215 (ki — k)
where ¢; denotes the average nearest-neighbor degree, being:
N >k 2.11)
gl - k_ hs .

" hev ()

and V (i) corresponds to the set of neighbors of node i, that is, the positive and
negative degree correlations indicate assortativity and disassortativity, respectively.

2.8 Centrality Measures

In networks theory, the centrality refers to indicators which identify the most impor-
tant vertexes within a graph. Several measures of centrality have been proposed, at
present. We simply enumerate the most important ones to the extent of our study.

The degree centrality is the simplest centrality measure, as for the generic node i
is defined as

: ki
Cp(i) = —— (2.12)
n—1
where n is the network size (i.e., the total number of nodes). Since this centrality is
essentially similar to the node degree, this is widely used in network analysis.
The closeness centrality [62] is based on the shortest path length between nodes
i and j, and it is expressed as

nl
Z'}:Lj#dost(i, 7

Cc(i) = (2.13)

where dist(i, j) is the distance between nodes i and j.
The betweenness centrality [62] is based on the shortest path between nodes

Cpli)= > Spat (@) (2.14)
skt Pst
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where sp;; (i) and sp;; are, respectively, the number of shortest paths between nodes
s and ¢, on which node i is located, and the number of shortest paths between
nodes s and 7. For normalization, the betweenness centrality is finally divided by the
maximum value.

Finally, the Katz centrality [88] measures the influence of a node in a network

+0o0 n

Crar(i) = D> BH(AY);i (2.15)

k=1j=1

where A is an adjacency matrix, and § is an attenuation constant.
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