Chapter 2
A Reconfigurable Two-Qubit Chip

Machines take me by surprise with great frequency.
Alan Turing

2.1 Introduction

The discovery and development of universal computing machines is one of the great-
est scientific accomplishments of the 20th century. The Church-Turing thesis—that
all calculable functions can be computed by a particularly simple type of machine—is
generally expressed as a statement about mathematical functions, and the evaluation
of numbers. However, the influence of universal computing machines has stretched
much further than the academic mathematical context in which they were first con-
ceived, having profound effects on social, economic and artistic life.

The prospective benefits of quantum computing enjoy a similar promise of univer-
sality. Specifically, we believe [1] that a scalable machine satisfying the DiVincenzo
criteria (Sect. 1.4.1) would be universal for quantum computing, and could run any
quantum algorithm, prepare any quantum state or operator,’ and would also be uni-
versal for classical computation. This promise allows us to progress with the devel-
opment of the basic building blocks of quantum information technologies, without
complete information on the potential applications of quantum computing: although
we have a small number of specific examples of quantum algorithms which provide
an exponential speedup over classical machines, it is reasonable to think that, as with
classical computation, the scope of useful applications will ultimately prove to be
much broader.

The results of KLM (Sect. 1.6.2), together with more recent developments in
cluster-state theories [2—5], show that in principle LOQC can provide a scalable route

Note that this does not imply any particular scaling: arbitrary N-qubit state preparation is expo-
nentially hard even for quantum computers. See Chap. 5 for further discussion.
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to universal quantum computation. More recently, integrated quantum photonics
(Sect. 1.6.5) has been shown to offer an experimentally scalable approach to the
construction of LOQC machines, potentially allowing millions [6] of components
to be lithographically fabricated on a single monolithic chip. Early results in the
field include the demonstration of quantum interference in passive linear optical
interferometers [7—10], as well as active devices with reconfigurable phase shifters
[11-13]. Notably, most of these reconfigurable devices used a single phase shifter,
giving the device a single classical control parameter. This was sufficient for novel
demonstrations of quantum metrology [11] and switching of entangled photonic
states [13]. However, much of the utility and interest of a universal quantum computer
arises from the fact that a single machine can be arbitrarily reconfigured to perform a
broad variety of tasks. This degree of reconfigurability requires a large (polynomial)
number of classical control parameters, and is the main focus of work described in
this section.

We describe a waveguide linear-optical circuit which can encode and manipu-
late the state of two photonic qubits using two indistinguishable photons from an
SPDC source. This device features eight voltage-controlled phase shifters, which
can be arbitrarily reconfigured to prepare any two-qubit state. The architecture of the
device includes four reconfigurable single-qubit operations, together with a passive
two-qubit entangling gate. As such, the gate operations implemented in this device
comprise a universal quantum gate set (Sect. 1.4.1).

In close analogy with classical computers, we find that the degree of reconfig-
urability afforded by this device has allowed a surprisingly rich variety of physical
phenomena and quantum information techniques to be studied, above and beyond the
original intent of the device. Indeed, Chaps. 3, 4, and 5 all make use of the two-qubit
chip described here. This work highlights the fact that nontrivial experiments can be
performed using even a very small number of qubits, in contrast with the classical
case—where the scope of worthwhile experiments using only two classical bits is
limited.

To our knowledge, this work includes the first experimental implementation of
photonic two-qubit quantum state and process tomography (where state prepara-
tion and measurement were performed on-chip), and the first photonic on-chip Bell
inequality violation.

2.2 CNOT-MZ

The CNOT-MZ is a reconfigurable quantum photonic chip, shown schematically
in Fig.2.1b. Two qubits are encoded in path, using indistinguishable photon pairs
at 808 nm, generated by type-I SPDC. The chip uses a total of 6 waveguides, 13
directional couplers and 8 voltage-controlled thermal phaseshifters to implement the
circuit model diagram shown in Fig.2.1a.
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Fig. 2.1 CNOT-MZ chip. a Circuit-model diagram. Two qubits are prepared in the |00) state.
H’ is a Hadamard-like gate corresponding to a directional coupler, with the same unitary matrix
representation as a beamsplitter (1.119). R_(¢) correspond to voltage-controlled phase shifts, and
implement single-qubit rotations about the z-axis of the Bloch sphere (1.148). At the centre of the
chip is a two-qubit CNOT-P entangling gate, locally equivalent to the maximally entangling CNOT
gate. Each qubit can be effectively measured in an arbitrary basis, by combining single-photon
rotations with measurement in the z-basis. b Waveguide architecture. All DCs have coupling ratio
n = 1/2, apart from cg, c7 and cg, which are engineered to transmit a fraction n = t = 2/3 of
incident light. Two indistinguishable photons generated by type-I SPDC are coupled into the chip,
and encode two qubits in path. Waveguides wy 3 and wy 5 correspond to the |0) and |1) states of
the control and target qubit respectively. Waveguides w; and we do not correspond to logical basis
states. The first stage of the chip uses two MZIs and four phaseshifters to implement arbitrary
two-qubit separable state preparation. The central section implements the CNOT-P gate. The final
section of the chip uses two MZIs, together with off-chip single-photon detection, to implement
arbitrary separable two-qubit measurements

The architecture of the chip is based around a passive postselected linear-optical
CNOT(CNOT-P) gate, which implements a maximally entangling CNOT-like oper-
ation on the two qubits. This gate is discussed in detail in Sect.2.2.4. The control
qubit is encoded using waveguides wy and w3, corresponding to the |0) and |1)
states respectively, and the target qubit is similarly encoded across w4 and ws. Each
qubit is initially prepared in the |0) state, with photon pairs coupled directly from
the source into waveguides w, and w4. Arbitrary state preparation of each qubit is
then accomplished using an MZI with two phaseshifters, as described in Sect.2.2.5.
At the output of the CNOT-P gate, each qubit is measured in a local basis using an
MZI together with two single-photon detectors, as described in Sect.2.2.6.

The device was fabricated by CIP technologies [14] in a silica-based material
system, described in Sect.2.2.1. The chip die is 3mm wide and 70 mm long. Full
details of the photon source, control system and supporting experimental setup are
given in Sect.2.3.
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2.2.1 Silica-on-Silicon

Glass (silica) waveguides are particularly well-suited for quantum applications. In
particular, they exhibit very low propagation loss (<0.1 dB cm™!), couple well to
single-mode optical fibre (typically ~70 % coupling efficiency), and are transparent
to the band around ~800 nm where SPDC sources and room-temperature APD single-
photon detectors are most efficient. Propagation/coupling loss and detection effi-
ciency are particularly important in multiphoton experiments, where the N-photon
detection rate typically falls off exponentially with overall loss 7 as 1/5"V. The main
disadvantage of this material system is the limited refractive index contrast, typi-
cally on the order of A = 0.5 %. This imposes a large minimum waveguide bend
radius of ~15 mm (see Sect. 1.5.1), leading to 200 wm-wide directional couplers on
the order of ~6 mm in length. Recently, more compact devices have been achieved
using alternative material systems, at the cost of greater loss (see Sects.6.3.3, 6.3.4
and 2.10).

The CNOT-MZ device was fabricated using silica-on-silicon planar lightwave
circuit technology, shown in Fig.2.2. A 16 pm buffer layer of undoped silica was
grown on a silicon substrate, forming the lower cladding of the waveguides. A
3.5 wm layer of silica doped with germanium and boron oxides was overgrown, and
was then lithographically etched to form the square 3.5 pm x 3.5 wm waveguide
core, with a refractive index contrast between core and cladding of A = 0.5%. A
16 wm-thick upper cladding of silica, doped with phosphorous and boron to match
the lower cladding, was then overgrown. Finally, a metallic layer was deposited and
lithographically etched to form resistive heaters, electrical connections, and probe
contact pads on the top surface of the chip.

— Au wire to PCB

Ti/Pt resistive heater

Ti/Pt/Au contacts

P/Bo-doped silica cladding
5|~ P/Bo-doped silica cladding
—— Silica lower cladding

2.5um f----""77 — Silicon substrate

16pm [77_
16pm

Ge/Bo-doped silica core

250pm

Fig. 2.2 Silica-on-silicon material system and waveguide geometry. Square 2.5 pm X 2.5 pm
waveguides were fabricated in germanium/boron-doped silica, on a silicon substrate. The
waveguide cladding is a combination of undoped silica and phosphorous/boron-doped silica. Tita-
nium/platinum/gold traces connect to titanium/platinum resistive heaters, allowing a reconfigurable
voltage-controlled phase shift to be applied. Contact pads were gold-wire-bonded to a standard
PCB


http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_6

2.2 CNOT-MZ 67

The waveguides used here have a symmetric (square) profile, which together with
the amorphous, isotropic nature of silica leads to negligible birefringence. As aresult,
in principle these waveguides will support any single polarization of light. Although
on-chip polarization encoding has been demonstrated in a number of material sys-
tems [13, 15, 16], it remains challenging—in particular due to unwanted rotations
introduced by waveguide bends—and in this work we operate in vertical polarization
only.

2.2.2 Directional Coupler

Leading approaches to the implementation of two-mode beamsplitter operations in
integrated photonics include multimode interference (MMI) couplers and DCs. Here
we consider the latter, illustrated in Fig.2.3, in which two waveguides are brought
close together so as to couple the guided modes via the evanescent field (Sect. 1.5.1).
Any DC is characterised by its coupling ratio 5, corresponding to the fraction of
optical power transmitted from one waveguide to the other, which is equivalent to
the BS transmissivity (Sect. 1.5.2) and is controlled by the separation distance s and
length L of the coupling region.

Mode coupling theory [17] gives the relationship between the field amplitude
(1.66) in two coupled waveguides A, B as a system of coupled differential equations
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Fig. 2.3 Geometry of a directional coupler. Two waveguides are adiabatically brought into close
proximity, such that the evanescent fields overlap. Light periodically couples from one waveguide
to the other as a function of the propagation distance L and the coupling constant «, which depends
in part on the spatial separation s and refractive index n
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where k is a coupling constant which depends on the spatial overlap of the two guided
modes. This leads to solutions of the form

A(z) = Agcos(kz) — Boisin(kz); B(z) = Bpcos(kz) — Api sin(kz), (2.2)

where Ag, By are the initial field amplitudes at the input ports. As a result, in the
coupling region of the DC, optical power oscillates sinusoidally between the two
waveguides as a function of the interaction length L. By tuning this length, the DC
can be designed to implement an arbitrary BS operation (1.119)

A(L)| _ | cos(kL) —isin(kL)|[Ao| _ o 1) Aol [ V7 iyr
B(L)|  |—isin(kL) cos(xL) By | ~ “PCYe Bo| = |ivr V7|
(2.3)

In order to obtain a 50:50 DC with ¢t = r = %, we must therefore have L = 7 /4«,
which for the silica-on-silicon material system used here, with s = 3 um, corresponds
to an interaction length of ~4 mm.

The quality of fabrication of directional couplers is critical to the performance of
the reconfigurable two-qubit chip (CONTZ-MZ) and other linear-optical quantum
circuits described in this thesis. Deviation from the designed coupling ratio leads to
unitary errors in qubit state preparation and measurement, and reduces the contrast of
classical interference. Moreover, errors in both coupling ratio and imperfect mode-
matching at the interaction region of the coupler lead to reduced visibility of HOM
interference, and thus contribute to the observed sub-unit quantum state/process
fidelities reported in Sects. 2.6 and 2.7 of this thesis.

2.2.3 Thermal Phaseshifter

The general-purpose flexibility of the CNOT-MZ is achieved through the inclusion of
eightreconfigurable phase shifters, as shown in Fig. 2.1. In silica-on-silicon, reconfig-
urable phase shifts are most easily implemented using the thermo-optic effect. Here, a
metallic (titanium/platinum) resistive heater of length L is lithographically patterned
on the top surface of the upper waveguide cladding, directly above the waveguide
core, as shown in Fig. 2.2. This heater is connected via Ti/Pt/Au electrodes to a current
source, allowing the temperature of a local region of the waveguide to be precisely
controlled via Ohmic heating. This gives rise to a to a change in the refractive index
of the local core and cladding, with dn/dT ~ 107> /K, increasing the effective path
length and leading to a phase shift ¢ with respect to the unperturbed waveguide.
The maximum temperature difference supported by the silica-on-silicon material
system is ~30 °C, and in order to achieve a range in phase of 27 the resistive heater
must therefore have a length on the order of 4 mm. The heaters are rated for a
maximum voltage of 5 V, however in order to achieve a full 27 phaseshift in all
MZIs we had to exceed this limit, running most phaseshifters between 0 and 7V,
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leading to a total of ~1 W per heater at maximum voltage. I-V curves for each resistive
heater on the CNOT-MZ are shown in Fig.2.8d, showing a typical resistance of R
~ 60 2. Further details of phaseshifter calibration are given in Sect.2.3.3.

The main drawback of thermal phase shifting is switching speed: in the silica-
on-silicon platform used here, heating/cooling of a phaseshifter for a differential
phaseshift of 7 takes at least ~100 ms (Fig.2.8c, inset). This limits the scope of
applications—for instance, active feed-forward is not possible using this technology.
However, in the majority of experiments described in this thesis, the time taken to
acquire a sufficient number of single-photon detection events, corresponding to a
single measurement of an expectation value, is typically at least 1 s, and in practice
there was not any need to switch phases faster than 1 Hz. Alternative material systems
for integrated quantum photonics support an electro-optic effect, where phase can
switched electrically up to GHz frequencies. See [13] for an example in lithium
niobate.

2.2.4 Linear-Optical CNOT-P Gate

It was shown by Lloyd [18] that almost any two-qubit entangling gate is universal for
quantum computing, and by DiVincenzo that a universal gate set can always be con-
structed from a two-qubit entangling gate together with single-qubit rotations [19].
We have seen in Sect. 1.5.4 that deterministic, arbitrary single-qubit rotations are very
easily constructed using linear optics. However, since photons do not interact, the
greatest challenge (and the greatest accomplishment of KLM), is to find a scalable
two-qubit entangling gate. All scalable approaches to linear optical quantum comput-
ing (LOQC), including KLM and more recent cluster-state techniques (Sects. 1.6.2
and 1.4.1), depend on active feed-forward. At the time of writing, although fast
switching, low propagation loss, high refractive-index contrast, integrated GHz logic
and single-photon detectors, etc. have all been demonstrated in separate photonic
devices, no existing technology or material system satisfies all necessary conditions
for a full demonstration of scalable LOQC with active feed-forward. Certainly, the
thermal phase-shifters previously described are too slow for such applications.

In 2002, two groups [20, 21] proposed a scheme by which a two-qubit maximally-
entangling gate can be implemented using linear-optics and postselection, without
any need for feed-forward. It has already been stated (Sect.1.6.2) that LOQS is
not scalable without feed-forward, and indeed this gate does not scale—successful
operation of the gate is postselected with probability 1/9, leading to exponentially
decreasing success probability for composite circuits. However, the scheme is exper-
imentally much more accessible, and an experimental demonstration was almost
immediately reported by a number of groups [22-25]. An important property of the
design of this postselected gate is that it possesses many of the same experimental
prerequisites—indistinguishable photons, high visibility classical and quantum inter-
ference, stable interferometers—as the scalable CZ gate of KLM, and experimental
implementations of the former thus constitute real progress towards the latter.
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We will now sketch the basic mechanism of the postselected two-qubit gate,
starting from an implementation of the CZ gate. CZ is a maximally entangling gate,
which flips the sign of the target qubit when both input qubits are in the state |1):

[0c07)in = 10c07)outs  10c17)in = [0c17)ours
|1COT)in - |1COT>outv |1C1T)in g _|1C1T>outﬂ (24)

and is therefore described by a unitary operator

100 0
0100
001 0
000 -1

Ucz = 2.5)

In order to see how this gate can be implemented in linear optics, it will be instruc-

tive to first consider the circuit shown in Fig.2.4a. If two photons are injected into

modes Cy and Ty, encoding the logical input state |0c07);,, the resulting evolution

is trivial

1007 )ip = g, g, [0) = (id(,)(af,)10) = —[1¢)0c; Lry I;) = ~10C 0T .

(2.6)

where the phase i arises from reflection at the mirrors. Similarly, for input states

|0c17);y and |1¢07);, the two photons never meet, and the system evolves as

(a) (b)
. Co C/\CC(') . Co
Cq 1/3 Cj C,
T > T To
° T T °
To -_— To Ty
bececcd

CNOT-P

Fig. 2.4 CNOT-P gate construction. a Postselected linear-optical CZ gate, without dump modes.
Control and target qubits are encoded in path, using indistinguishable single photon pairs. Postse-
lecting on detection events in the two-qubit subspace, quantum interference at the 1/3-reflectivity
beamsplitter gives rise to a relative phase shift of —1 for the |11) input state. Note that as shown, the
effective gate operation after postselection is not unitary. b Waveguide implementation of a linear-
optical CNOP-T gate. 1/3-reflectivity DCs in the central region of the device implement a CZ gate,
where the top and bottom couplers “dump” probability amplitude, avoiding the non-unitarity of the
device shown in (a). By adding two 1/2-reflectivity DCs to the target qubit, the CZ gate is converted
to a CNOT-like gate, acting on the logical basis. This gate forms the basis for the CNOT-MZ circuit,
Fig.2.1
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10c17)in = alydn, 10) = (4T agy +/1ag)10)
= - («/; I1¢; 0c; Ogy L) + /1 |1y 1y OTg)OT’l)), (2.7)
A o A Nt
[1c07)in = @, 1, 10) > /7l + Vi g)Giaj,)10)
= — (V7 l0c 1, 1y 0r) + V7 106, 0c, Iy 1)), (28)

where further phases i arise from reflection at the BS. Now, the Fock states
|1C{)1C/1 OT()OT/I) and |0C60C’1 1T6 lT/I) have both photons occupying the same qubit,
and do not have a representation in the two-qubit encoding. We must therefore post-
select on the two-qubit subspace, resulting in the effective evolution

0c17)in = =V 10c17)ous  11c07)in = —/7 11¢07) - (2.9)

When the input state is |1¢17);,, the two photons meet at the beamsplitter and
undergo quantum interference as described in Sect. 1.5.3. The system then evolves
as

el = ag, a}1|0> N ( Jrak, +JZaT1) ( Jrab +ial, ) 0), (2.10)
¥ )ou = ((r st +ivrvialal +ivivral al, ) (2.11)

where we have used the relation [&é] , &;1] = 0, since the two photons are indistin-
guishable. Postselecting on the C; T} term, which is the only component correspond-
ing to a two-qubit state, we find

[lclr)in — & —)lclr)on (2.12)

Settingr = 1 —t = 1/3, we arrive at

—1
|0COT)in - _|0C0T>outs |OC1T>in - _|OClT>outf

V3

—1 1
|1COT)in_) _|1COT)out7 |1C1T)in_> gllclT)out' (2.13)

V3

Neglecting the global phase of —1, we have then accomplished the essential function
of the CZ gate: a conditional phaseshift by —1 of the |1¢17) term only. However,
this postselected operation does not correspond to a unitary operator on the qubit
subspace, and is clearly biased towards the |0c07) state. To overcome this issue, we
simply replace the mirrors shown in Fig. 2.4a with 1/3-reflectivity beamsplitters. It
is easy to see that this has the effect of multiplying the amplitudes of the |0c07),
|0c17) and |1¢07) terms by factors of 1/3, 1/+/3 and 1/+/3 respectively, balancing
the gate, and restoring unitarity. The circuit then exactly reproduces the behaviour of
the CZ gate, conditional on detection of one photon in Cy or Cy and one photon Ty


http://dx.doi.org/10.1007/978-3-319-21518-1_1

72 2 A Reconfigurable Two-Qubit Chip

or T7. By the Born rule, this occurs with probability 1/9. It has been shown that this
success probability is optimal for linear-optical two-qubit gates of this type [26]. A
waveguide implementation is shown in the center of Fig. 2.4b.

The CZ gate together with local rotations is universal for quantum computing.
However, the CNOT gate, which is the quantum equivalent of a classical reversible
reversible exclusive-OR (XOR) gate, is often conceptually easier to handle than CZ.
The CNOT gate flips the state of the target qubit, conditional on the state of the
control

l0cO7) — 0c07), [0clt)— [0cl7), [1cO07) — [lclr), [lclr) — [1c07).
(2.14)
Starting from the CZ gate, this is easily constructed by the addition of two single-qubit
Hadamard operations

1000
%mngﬁﬂ =@®@0@@®ﬁ) (2.15)
0010

Since the single-qubit Hadamard gate is almost equivalent to a beamsplitter operation,
this leads to a natural construction of the linear-optical CNOT gate by the addition of
two 1/2-reflectivity beamsplitters or DCs, as shown in Fig. 2.4b. Note that this gate
does not exactly reproduce the two-qubit unitary Ucnor, instead implementing the
locally equivalent operation

0i0 0

A ~ N A 100 0

MmmLP=(1®Um)M2(1®Um): b0t ol @1e
000—1

As such we will refer to this postselected gate operation generated by the circuit in
Fig.2.4b as CNOT-P, to distinguish from the canonical CNOT gate. This gate was
demonstrated in bulk optics by a number of groups [22-24, 27]. More recently, the
CNOT-P was implemented in a silica-on-silicon integrated platform [7], and formed
the basis for a linear-optical implementation of Shor’s factoring algorithm [28].

Itis important to emphasize that the basic mechanism of the CNOT-P gate depends
necessarily on two-photon quantum interference, and that the gate fails if the input
photon pair is made distinguishable.

2.2.5 State Preparation

The first stage of the CNOT-MZ is used to prepare two qubits in an arbitrary separable
state. Two photons from the source are always injected into waveguides i and iy
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Fig. 2.5 State preparation and measurement of a single path-encoded qubit in linear optics

respectively, encoding the state |00). Each qubit is then acted upon by an MZI with
two phaseshifters ¢1, ¢, (Fig.2.5a). We have already seen that an MZI with three
phaseshifters is adequate for arbitrary single-qubit SU (2) rotations. With the |0) state
as input, two phaseshifters are sufficient for arbitrary state preparation:

) C[e/2 0 7. [sin(@1/2) cos(¢i/2) ][1
Uprep(¢1, $2)10) = |: 0 ei¢2/2:|l |:cos(¢1/2) - Sin(¢l/2):| |:O]

=i (ef¢2/2 sin(¢1/2)|0) + e~i92/2 cos(¢1/2)|l)) 2.17)
= [¥(¢1. $2))ou = sin(¢1/2)[0) + ™' cos(@1/2)|1), (2.18)
where we have neglected the phase ie~7%2/2. Equation (2.18) thus parametrizes an

arbitrary single-qubit state, up to a global phase. Phase settings to prepare commonly-
used single-qubit states are given in the table below.

10) [D[1+) =) |I4) [=i)
¢1 |lm O |7w/23x/2|\m/2 m/2
s¢2/0 0 [0 O 3n/2 /2

2.2.6 Measurement

By a similar argument, arbitrary single-qubit projective measurements can be per-
formed using an MZI with two phaseshifters ¢, ¢, together with two singl-photon
detectors Dy, D (Fig.2.5b). Each detector projects onto a logical basis state

fip, =10)(01; Tp, =[1)(1; POIY)= Oly)* = Tr [ﬁ ﬁDo] =1—-P([y).

(2.19)
Assigning eigenvalues of =1, the effect of the two detectors together can be written
as a projective measurement M with spectral decomposition

M= Milwi) kil = 10)(0] — [1)(1], (2.20)

1
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which is equivalent to measurement in the z-basis (M = 6;). Tomeasure in a different

basis, we apply a unitary rotation Umeas to each qubit prior to detection using the
MZI shown in Fig.2.5b. This evolves an input state |/);, as

sin(¢2/2) cos(¢a/2) [ ?/2 0

cos(#2/2) — sin<¢z/2)] [ 0 iz |Whin
(2.21)

and the overlap between the |¢);, and each eigenstate |A;) of 6, becomes (A;|[Vin) =

(Ail U meas| Yout) - To find the effective measurement operator M’ (¢1, ¢2), we therefore

propagate the projectors (2.19) backwards through the unitary

1) out = Umeas (@1, 92)1¥)in = —i [

M) = Upeas (b1, 62 [1i): (2.22)
M'($1.¢2) = D MilAY M| = Ueas (D1, 82) 62 Uneas (b1, ¢2).  (2.23)

By a similar argument to that used in Sect.2.2.5, U[Leas can map |0) and |1) to any
desired eigenstate | 1), and M’ can therefore be made to implement any desired single-
qubit projective measurement. Phase settings to measure in the Pauli basis are given
in the table below.

6x 6y O
¢110 =/2 0
¢ |T/23n/2

2.2.7 CNOT-MZ Is Universal

The CNOT-MZ can prepare any entangled or separable pure two-qubit state, up to
a global phase. To see this, first note that by the Schmidt decomposition [29], any
pure two-qubit state can be expressed as an arbitrary superposition of two orthogonal
separable states

\Wer) = al0c07) + Bl0c1r) + y[1c07) + 8]1clr) (2.24)
= VA lrhe) ® [ar) + V1= AE) ® [AF). (2.25)

where A is a real nonnegative number. This immediately implies that the state has
six independent real parameters

Wer) = Va (cos 0c10) + ¢9¢ sin 9C|1>) (cos 6710) + € sin 9T|1>) (2.26)

et JT—n (e—"¢c sin B¢ |0) — cos 9C|1>) (e—f¢T sin 6710) — cos 9T|1)) ,
(2.27)
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up to a global phase. To show that this arbitrary state can be prepared by the CNOT-
MZ with |00) as input, we will propagate (2.25) backwards through the circuit. By the
same argument given in Sect.2.2.5, the MZI comprising DCs c¢1¢ and c», together
with phaseshifters ¢s and ¢7, can be configured to map the control qubit into the |0),
|1) basis

W) = (Dreast@s, 1) ®1) 1Wer) = VAI0) @ A7) + VT2 11) @ 124).
(2.28)
Propagating backwards through the CNOT-P gate, the target qubit is flipped condi-
tional on the control:

") = Ulnor_pl¥) = V2 10) ® A7) + VT A1) ® [Ar).  (229)

We then use the MZI formed by DCs ¢, and cq4, together with ¢, and ¢4, to rotate
the target qubit:

W) = (18 Oy @2.0)) 197) = (VE10) + e VT=211)) ® [0),  (230)
and finally rotate the control, using ¢ and c3 together with ¢; and ¢3

W)in = (Orep (1. 63) © 1) |97} = 100). 231)

This capability is used to the fullest extent in Chap. 5 of this thesis.

2.3 Experimental Setup

The full experimental setup is shown schematically in Fig. 2.6. The input and output
ports of the CNOT-MZ were butt-coupled to two V-groove fiber arrays, each holding
six single-mode optical fibres with 250 pm pitch, to match that of the waveguides.
Using an oil-based index-matching fluid at the chip-fibre interface, a fibre-to-fibre
coupling efficiency of ~60 % was typically achieved. PMF fibre was used at the
input of the chip, so as to preserve indistinguishability of the incoming photon pair,
while SMF was employed at the output. The chip die was mounted on a standard
PCB, to which the electrodes of each resistive heater were gold-wire bonded. This
PCB provides a pinout via two standard 8-pin headers to an 8-channel DC current
source.
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Fig. 2.6 CNOT-MZ experimental setup. A Toptica iBeam 404 nm CW laser pumps a BIBO non-
linear crystal, cut and phase-matched to generate degenerate 808 nm photon pairs by type-I SPDC.
Spectral indistinguishability is optimized using tilted Semrock Maxline 3 nm notch interference
filters (IF). The pump is absorbed by a beam dump (BD). Photon pairs are coupled in and out of
the CNOT-MZ through optical fibre and V-groove fiber arrays (VG). PMF is used at the input, as
HOM interference is sensitive to the polarization of incoming photons, while SMF can be used
at the output, as the detectors are not strongly polarization-sensitive. A current source connects to
resistive heaters onboard the chip via a custom PCB. Four Si-APD single-photon detectors, together
with an FPGA, are used to count coincidences at the output of the chip

2.3.1 Photon Pair Source

The CNOT-MZ requires two indistinguishable photons as input. Arguably (see Ref.
[30]), the CNOT-P gate does not depend on entanglement from the source—certainly,
the Fock state needed to run the gate and encode the control and target qubits,
[1y1ly2) = |V V) will not violate a Bell inequality as-is, and is not entangled
in polarization. This state is naturally generated by postselection on coincidental
detection of two photons from the type-I SPDC state (1.168).

The two-photon source used throughout this thesis is shown in Fig.2.6. A 1404
nm CW laser (Toptica iBeam) pumps a 2 mm-thick BiBO crystal, cut and phase-
matched for type-I SPDC, with a 3° opening angle. Downconverted photon pairs,
both of which are vertically polarized, were filtered using 3 nm full-width half-
maximum (FWHM) notch interference filters (IFs), and then coupled into PMF using
an arrangement of prisms together with 11 mm aspheric lenses. One collection stage
was mounted on a motorized linear actuator with micron resolution, allowing the
relative arrival time—and thus the temporal distinguishability—of the photon pair
to be precisely controlled. Using Perkin-Elmer silicon APD single-photon detectors
with a quantum efficiency of ~60 %, we measured a typical single-photon count-
rate S of ~1 x 10%Hz, and a coincidence count-rate C of ~1 x 10° Hz, implying a
collection efficiency of C/S ~ 10 %.

Photon indistinguishability is a crucial factor for high-fidelity operation of the
CNOT-P gate. We first ensured temporal overlap of the downconverted photon pair
by matching optical path lengths of the two arms of the source to within the photon
coherence length (~500 pm) using the linear actuator, measuring two-photon HOM
interference in a fiber-coupled 50:50 BS. In order to optimize the spectral indis-
tinguishability of the photon pair, we measured spectra of down-converted photons
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Fig. 2.7 The visibility of the HOM dip is a crucial factor for the performance of the CNOT-P
gate. A number of measures were taken to optimize the visibility of quantum interference between
photon pairs generated by the type-I source. a Experimental data showing the spectra of single
photons generated in the two arms of the source (red, blue respectively). (i) Spectra measured prior
to optimization of the source. By tilting interference filters placed in each beam, we ensured that
photon pairs sent to the CNOT-MZ were maximally spectrally indistinguishable. (ii) The small
peaks are due to stray light from an LCD computer monitor. b HOM visibility measured as a
function of BiBO crystal orientation, which affects the polarization and spectral distinguishability
of downconverted photon pairs (color online)

in each arm while tilting interference filters, shifting the wavelength of the trans-
mitted band (Fig.2.7a) and leading to a measurable increase in the visibility of the
HOM dip. Finally, we scanned the orientation of the BiBO crystal which affects both
pair collection efficiency and polarization distinguishability, further optimizing the
visibility of quantum interference (Fig.2.7b).

2.3.2 Control, Automation and Readout

Many of the experiments presented throughout this thesis depend on the ability to
perform hundreds or thousands of consecutive measurements, each with different
phase settings. As such, it was important that the experimental setup be fully auto-
mated. The eight heaters of the CNOT-MZ were driven by a National Instruments
digital-to-analog converter (DAC), providing eight computer-controlled voltages in
the range [0, 7] V. An eight-channel current amplifier was necessary to satisfy the
power draw of the heaters, a total of ~1 W per heater at maximum voltage.

Under typical conditions, when all eight heaters are active, the chip dissipates
around ~1 W of heat energy. An experimental difficulty is then presented by the
fact that the top surface of the chip, where the heaters and waveguides are located, is
raised to a higher temperature than the substrate, leading to thermal expansion and
distortion of the chip itself. This leads to movement of the chip facets and decoupling
of the waveguides from the V-groove arrays (VGs), as shown in Fig.2.8c. To solve
this issue, we found that the best compromise between coupling efficiency, stability
and repeatability was achieved by pulsing current to the heaters, with a duty cycle
measure/ fcool ~ 5 %. Current was first supplied to the chip for 1 s, allowing the
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Fig.2.8 Calibrating the CNOT-MZ. a Single-photon interference fringes, measured using heralded
single photons from the SPDC source, as a function of resistive heater control voltage. Black dots
show the experimental data, up to a maximum rated voltage of 7 V. Blue lines show a fit to the
data, whose parameters completely characterise the phase-voltage relation of each heater. b Phase-
voltage relations for each thermal phase shifter, based on fit parameters from (a). The dominant
component is quadratic, ¢ &« AT o« P = IV o V2. ¢ Optical intensity measured at the output of
the CNOt-MZ, as heaters are switched on and off. The chip deforms under load, resulting in optical
decoupling of the V-groove arrays, seen as an immediate dip in intensity as the heater is switched
and held on (red line). In order to minimize the extent of decoupling we pulse current to each heater,
only measuring coincidence events while the heater is switched on (blue line). Inset zoom showing
the response time of the phaseshifter, ~100 ms. d Superimposed I-V curves of all eight heaters.
The characteristic nonlinearity at high voltage is due to increased resistance of the heating element
at high temperatures (color online)

phaseshifter to warm up and stabilize, and was then held on for a further 1 s, while
single-photon detection events were measured. The current source was then switched
off, allowing the chip to cool for 15 s, after which the cycle was repeated for the next
measurement setting.

This decoupling effect was exacerbated by the fact that the fiberglass PCB
material, upon which the chip was directly mounted, is a thermal insulator. Ide-
ally, the chip would instead be mounted on a conducting heat sink, or a Peltier-
effect thermoelectric cooling system. We expect that this difficulty could be further
mitigated using standard chip packaging techniques, in which the VGs are glued
directly to the chip facets. Dispensing with the need to periodically cool the chip
would lead to an overall improvement in efficiency by a factor of ~20. This would
facilitate experiments demanding large numbers of measurements, such as those
described in Chap. 5. As with classical classical central processing units (CPUs), heat
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dissipation will likely remain a significant experimental consideration as the scale
and complexity of reconfigurable integrated quantum photonic chips is increased.

The coincidence-counting system was based around a Xilinx Virtex-5 FPGA.
This system was configured to count a specified subset of single detection events and
coincidences, with a fixed coincidence window of 5 ns. In all coincidence-counting
experiments there is a nonzero probability of detection of temporally distinguish-
able photons generated in separate downconversion events. These accidental coin-
cidences lead to a constant background coincidence rate (5 % of the true count-rate),
reducing the apparent visibility (1.134) of quantum interference. In order to cor-
rect for this background and obtain a more accurate measure of the performance of
the device, during all single-photon measurements presented in this thesis (except
those described in Chap. 6 and Sect.4.5), the background rate of accidental coinci-
dences for each detection pattern was constantly measured and subtracted from the
experimental data. This measurement was performed by inserting an electronic delay
>> 5 ns between pairs of detectors, and measuring the resulting coincidence count-
rate. See Sect. 6.2 for further discussion of correlated single-photon counting systems.

Scripting and control of the experimental setup was performed using the Python
programming language together with a custom library, gy. More recently, access to
the CNOT-MZ has been made available to other researchers and the general public
via an open web interface. Further detail regarding scripting and remote automation
of theCNOT-MZ is given in Appendix A.

2.3.3 Calibration

Applying a voltage V to the resistive heater of a particular MZI, we obtain a phase
shift ¢. In order to choose the voltage required to apply a desired phase shift at a
particular MZI, we must find and invert the phase-voltage relation ¢ (V). Since the
phaseshift is proportional to the change in temperature of the waveguide material,
the phase-voltage relation is approximately quadratic

¢ (V,d) =ag+arV> +a3V3 +he;, a3 < a, (2.32)

where a are calibration parameters depending on the geometry and fabrication of the
heater and surrounding waveguides. Here, a3 accounts for higher-order effects such as
those shown in Fig. 2.8d, and ay is the phase in the interferometer at V = 0, i.e. when
the resistive heater is switched off. Imperfect waveguide geometry, together with
imperfections introduced during lithographic fabrication of the heaters themselves,
lead to each MZI having a small nonzero value of agp, which must be individually
calibrated. Moreover, small inconsistencies in heater fabrication lead to variance in
the values of a and a3, which also must be individually characterised.

This calibration procedure was accomplished using simple single photon mea-
surements. If bright light or single photons are injected into one port of an MZI, the
measured intensity at a given output port is a sinusoidal function of ¢ (V, a),
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Ip, = Iosin® (¢(V,a)/2); Ip, = Ipcos® (¢(V,a)/2). (2.33)

Using single photon detectors, we measured fringes of this type for each phaseshifter
of the CNOT-MZ, as shown in Fig.2.8. We fit curves of the form (2.33) to this data
with d and Iy as free parameters, thus recovering the unique phase-voltage relation
of each heater (Fig.2.8). By numerically inverting this function, we can find the
voltage required to set any desired phase in the interval [0, 27r] to any heater on the
CNOT-MZ.

Owing to the geometry of the device, it is not always possible to directly inject
light into a single input port of a particular MZI under test. Moreover, the contrast of
the measured fringe is sometimes dependent on the (initially unknown) phase inside
another interferometer: an example of such an interdependence is seen between
phaseshifters ¢, and ¢4. As a result, the full calibration procedure had to be com-
pleted in two stages. We first measured “rough” fringes with only a single resistive
heater active at any given time. Approximate information obtained from these mea-
surements was then used to take full-contrast fringes (Fig. 2.9) in a second pass, acti-
vating multiple phaseshifters at once to optimize contrast and signal-to-noise ratio.
We expect that such techniques will need to be considerably refined as the scale
and complexity of reconfigurable quantum photonic chips is increased. Progress on
automatic calibration and characterization of such devices was recently described by
Lietal. [31].
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Fig. 2.9 Single-photon interference fringe, measured at the two outputs of a single MZI on the
CNOT-MZ. Experimental data are presented as black circles, solid lines show fits to the theory.
Error bars, which assume Poissonian statistics, are too small to draw (color online)
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As shown in Sect. 1.5.1, uncontrolled polarization rotations in the waveguide, or
coupling to higher-order spatial guided modes, would give rise to reduced contrast
in these single-photon fringes, as would thermal or electric fluctuations (e.g. DAC
noise) in the phase shifter. These effects would reduce the fidelity with which single-
qubit states and measurements can be implemented, and would to all intents and
purposes resemble decoherence of the photonic qubit,? adding unwanted mixture to
the state. High-contrast single-photon fringes are therefore a good indicator of the
quality and single-mode operation of the waveguides, and are a prerequisite for high-
fidelity quantum operations. We measured an average contrast over all eight fringes
of C = 0.988 4 0.008. From these fringes, we estimated the average experimental
accuracy in phase to be §, ~ 0.05 rad. We did not find any significant evidence of
thermal cross-talk between phaseshifters.

2.4 On-Chip Quantum Interference

In addition to high-fidelity classical interference, as demonstrated in Fig.2.9, the
basic mechanism of the CNOT-P gate relies on high-fidelity quantum interference.
The same effects that would give rise to reduced contrast of single-photon interference
would also render photon pairs distinguishable, reducing the visibility of the HOM
dip and thus having a detrimental effect on the performance of the entangling gate.

In order to accurately assess the visibility of HOM interference supported by the
CNOT-MZ, we first set ¢ = m/2, rendering the interferometer formed by DCs
c1 and c3 (Fig.2.1) equivalent to a 50:50 BS. Injecting single photon pairs from the
source into waveguides w; and w3, we measured the coincidence count-rate C (Ar) at
output ports w; and wy, as a function of the linear actuator position—corresponding
to a difference At in the relative arrival time of the photon pair. The resulting HOM
dip is shown in Fig. 2.10.

The shape of the HOM dip is given by a convolution of the wavepacket of down-
converted photons and the top-hat profile of the interference filters. It it therefore
well-approximated by a function consisting of Gaussian and sinc terms, together
with a linear term to account for decoupling of the source as the actuator is moved:

(At —a3)?

C(At)y =~ (ajAt+az) |1 — Vexp| — 5
2a;

) sinc (as At + ae,):| (2.34)

where a are free parameters, and V is the visibility of quantum interference (1.134).
Fitting this curve to the data shown in Fig.2.10, we found V = 0.978 &£ 0.007,
taking into account the measured rate of accidental coincidences. Here uncertainty
was estimated using a Monte-Carlo technique, assuming Poissonian statistics.

2See Sect. 1.6.1.
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Fig.2.10 A HOM dip, measured using a single MZI on the CNOT-MZ as a 50:50 BS, as a function
of a relative delay between photon pair arrival times, controlled using the linear actuator shown in
Fig.2.6. Measured two-photon coincidence count-rates are shown as black dots. The red line shows
a fit to this data comprising Gaussian, sinc, and linear terms (2.34). The blue line shows a fit to the
measured rate of accidental coincidences, with Gaussian and linear components. Error bars assume
Poissonian statistics (color online)

2.5 Randomized Benchmarking

Having calibrated each phaseshifter and observed high-visibility quantum interfer-
ence in the CNOT-MZ, we then used a randomized benchmarking technique to to
characterise the operational real-world performance of the device, across the full
parameter space. We cannot expect to test every possible configuration of all eight
phase shifters. Instead, we checked performance for a large number of configura-
tions sampled uniformly at random from the full 8-dimensional parameter space of
the chip. A somewhat similar randomized approach to global characterization of
quantum gate operations has been proposed by Knill [32].

We first chose 1000 random vectors ¢; representing possible configurations of
the device

¢ =[¢1. 02, d5;]: 0<¢ij<2m (2.35)

Injecting indistinguishable photon pairs into waveguides w» and w4, we encoded
the logical qubit state [00) at the input of the device. For each configuration ¢;, we
then measured coincidence count rates at the output, postselecting on the 2-qubit
subspace of detection patterns
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Fig. 2.11 Randomized benchmarking of the CNOT-MZ. The histogram shows the distribution
of statistical fidelity F (P P’ ) between measured coincidence count-rates C~ CoP and those
predicted by an ideal theoretical model P', over 995 randomly-chosen phase settings ¢ . 96 %
of phase settings produced statistics corresponding with theory to F' > 0.97. The red line shows
the expected distribution for a device whose output is completely uncorrelated with the desired
behaviour, i.e. a white noise source (color online)

C] = [Coo.j. Co1.j. Cio.j. Ci1.j] ZCU 13]-. (2.36)

Using an idealized numerical model of the device, assuming unit visibility of quan-
tum interference and perfect fabrication, we then calculated the ideal probability
distribution P’ for each configuration of phases. The experlmental setup would ide-

ally exactly reproduce the theoretical prediction, Pj( = P]. We characterised the
discrepancy between the performance of the CNOT-MZ and theoretical predictions

using the statistical fidelity F(P, P') = 3 ; \/ P; - P/. The measured statistical dis-

tribution of these fidelities over 995 random configurations® is shown in Fig.2.11.
The average fidelity across all configurations was measured to be 0.990 +0.009 with
96 % of configurations producing photon statistics with ¥ > 0.97.

This result depends on simultaneous high fidelity quantum and classical interfer-
ence, as well as accurate joint control of all eight phase controllers. Poor performance
of any of these component parts would result in lower fidelity output for some subset
of configurations. The fact that we see good fidelity over many random trials allows
us to progress to more rigorous and sophisticated tests, described in the remainder
of this chapter.

3Five measurement outcomes were deemed to be spurious due to detectable experimental error.
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2.6 Quantum State Tomography

In order to characterize states generated by the experimental apparatus, we will often
make use of simple witnesses and metrics such as Bell-CHSH, concurrence, etc.
(see, for example, Sect. 1.3.8). However, the most complete information is encoded
in the density matrix p of the experimental state itself. We performed quantum state
tomography (QST) on a variety of states generated by the CNOT-MZ, using on-
chip MZIs to implement the requisite measurements and reconstruct 6. Previous
demonstrations of quantum state tomography in integrated photonics have not used
reconfigurable on-chip components to implement the different settings required for
QST. In this analysis we largely follow James et al. [33].

Imagine that we are given a three-dimensional object with some complex shape.
We are interested in completely learning the 3-D geometry of this object. It is natural
to first take a fixed viewpoint, projecting the 3-D structure of the object in question
onto the 2-D retina of the eye. With this information in mind, we then rotate the
object, and make a second projective measurement. Again we rotate, and project,
and rotate and so on, until after some sufficient number of measurements we can
completely reconstruct the object in the abstract 3-D space of the mind’s eye. Med-
ical imaging techniques such as X-ray computed tomography (CT) and magnetic
resonance imaging (MRI) make use of this method.

An analogous task exists for quantum states. In experiments, we are often pre-
sented with a device or source which generates a quantum state p which is partially
or entirely unknown or untrusted. Using QST [29, 33], the full density matrix can be
approximately (and in some cases exactly) reconstructed, by making an appropriate
set of projective measurements on a number of copies of the state 5. The origins of the
technique arguably lie with Stokes [34], who described a method to fully reconstruct
the polarization of a beam of light based on simple measurements.

QST, while closely analogous to classical tomography, is distinguished by the fact
that, for quantum systems, measurement necessarily changes the state of the object
under test. Therefore, we cannot always perform consecutive measurements 7; on a
single copy of a quantum state ¢ and expect to accurately recover the expectation
values (7;) = Tr[z; £]. This notion is captured in Heisenberg’s uncertainty principle
and is a direct result of the No-Cloning theorem (see Sect. 1.3.4). Since the observer
cannot clone the system without prior knowledge of p, we usually consider tomo-
graphic situations where a “black box™ device repeatedly outputs p on-demand, and
consecutive measurements are evaluated on copies of the state generated in this way.

In this discussion we will consider a system of n qubits, however the analysis
easily extends to higher-dimensional systems [35]. A general n-qubit mixed state
can be written as

3
p== Z Sit.in...in0iy ® 0y @ - -+ ® G, (2.37)

i1,i...ip=0
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where &; are the Pauli matrices and {S;, i, ;,} = S are the Stokes parameters,
4" real numbers which together completely and uniquely characterise 5. Complete
knowledge of S amounts to complete knowledge of the physical state of the system.
Normalization imposes the condition that So 0.0 = 1, leaving 4" — 1 real parameters
to be estimated.

The set of n-qubit measurement operators {7;} used for QST is referred to as the
quorum. A remarkable property of QST is that regardless of the degree of entan-
glement of p, there is no need to measure in entangled bases. Although entangled
measurements have advantages for certain tomographic applications [36], experi-
mentally it is often dramatically more convenient to measure in a separable basis.
4" — 1 local measurement operators of the form 7; = 7;, ® 7j, ® - - - ® 1, therefore
suffice for the reconstruction of any p, where f,-j is a 2 x 2 single-qubit measure-
ment operator on the jth qubit. When examining a classical 3D object, if we always
observe the object from one angle, changing only our distance from the sample, we
will not obtain full information of its shape. Similarly, for complete reconstruction of
an unknown p each measurement in the quorum must be linearly independent from
all others, i.e. a given 7; cannot be written as a linear sum over the remaining {7;/; }.

Experimentally, we measure the expectation values

N AijCij . A An

T={Th Tr=2 =L (p M) () ~ (2) = Tr 6] (2.38)
j 1

over the quorum {7;}. where {|A;;), A;;} are the eigenstates and eigenvalues of the

experimental measurement measurement operator 7;; ~ %;;, ¢;j is the count-rate

corresponding to detection of |A;;), and C; = > jCij is the total number of detection

events for a particular measurement setting. Having obtained f”, the experimental

density matrix is typically reconstructed using one of two standard approaches: linear
or maximum-likelihood reconstruction.

2.6.1 Linear Reconstruction

Consider the choice of quorum
7,=0,®6,Q - ®0b;,, (2.39)

where o; are the usual Pauli matrices. It is easy to see from (2.37) that for this
quorum, under ideal experimental conditions, T = S—in which case 0 canbe simply
reconstructed by evaluation of the sum in (2.37). The simplicity of this reconstruction
motivates (2.39) as the quorum of choice in many experimental implementations
of QST. However, it is not necessary to choose (2.39) and there are sometimes
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experimental reasons* to make a different choice. In particular it is not necessary for
the eigenstates of 7; to be orthogonal. In order to accommodate more general quora
in this analysis, we can write the system of simultaneous equations relating T and S
as T = QS where Q is a change-of-basis matrix with entries

1 . a
0ij= 2_nTr %67]. (2.40)

This allows 7—the experimental data—to be converted to S by linear inversion of Q,
which is guaranteed to be possible because 7; and &; are both linearly independent.
Once this is done, reconstruction of ¢ is a simple matter of evaluating (2.37).

2.6.2 Maximum Likelihood Quantum State Tomography

Linear reconstruction as described above is attractive because of its simplicity. How-
ever in real experiments, finite statistics, errors in the implementation of 7 [37], and
detection errors, for example dark counts (Sect. 1.6.4), all give rise to imperfection
and noise in T, resulting in a discrepancy between the true state of the system p and
the reconstructed image 0,. Importantly, linear reconstruction can yield instances of
Or which are not physical, i.e. where one or more of the conditions that p, should be
trace-one, positive-semidefinite, and Hermitian (see Sect. 1.3.6) are not met.

When p, is not physical, we cannot confidently apply standard measures to esti-
mate its properties—for example by computing the quantum state fidelity with respect
to an ideal state. As a result, maximum-likelihood quantum state tomography [33]
was developed to guarantee physicality in reconstructed density matrices. This is
accomplished by use of numerical optimization to maximize, over the space of all
physical density matrices, a likelihood function describing the probability that a par-
ticular p, gave rise to the experimental data. The parametrization of this space can
be achieved using the following form, which is positive-semidefinite Hermitian and
normalized by construction:

. HOHOM

(1) = A Ty-wys B (2.41)
Tr[¢(D&(0)T]

where 7 is a vector of 4" real parameters and g is a 2" x 2" complex matrix.’

Rather than maximising the likelihood, we can instead minimize the least-squares

cost function

4See for example Ref. [37], where this problem is addressed for polarization-encoded qubits.

SThere are many ways to parametrize § in terms of 7. The only condition is that bp (7) spans the
entire Hilbert space. See [33] for one example.
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(Tr [4p ]_Ti)2
r0-3 e 24

with respect to 7. This minimization thus yields a description of the state, p D (Tmax)s
most likely to have generated the experimental data.

In (2.42) it is sufficient to iterate over a minimal set of 4" — 1 projective mea-
surements. Although this is experimentally the least costly option, it can be advan-
tageous to include an over-complete quorum. Depending on the particulars of the
experiment, we can use an arbitrary number of measurement outcomes, over and
above the minimal set, without any modification of (2.42). This has the advantage
of improved resilience to measurement error and spurious measurement outcomes,
with the result that p, gives a better approximation to the true state of the system p
(see [37)).

The numerical optimization task of finding the maximum-likelihood state is unsur-
prisingly computationally demanding, working as it must over 4" — 1 parameters.
This is compounded by the problem of estimating error bars on quantities computed
from the reconstructed state, which—due to the nonlinear, algorithmic nature of
the reconstruction process—is typically achieved through a Monte-Carlo approach,
requiring on the order of 100 repeated trials of the optimization process. For single-
qubit states this can be achieved in an acceptable time using high-level interfaces
to general-purpose Nelder-Mead simplex algorithms such as fminsearch in Mat-
lab and scipy.optimize. fmin in Python. However, for larger systems these
functions become unacceptably slow.

It turns out that maximum-likelihood estimation can instead be written as a semi-
definite programme, a particular class of optimization problems dealing with lin-
ear functions of positive semidefinite Hermitian matrices: i.e. density operators. By
exploiting this knowledge along with the fact that the function (2.42) is convex—it
has at most one minimum point—we can solve the optimization problem in much
less time with respect to general-purpose methods.

It should be emphasised that although general-purpose QST can be made tractable
for small systems (on the order of tens of qubits) [38], it is intrinsically exponentially
hard to learn or even represent an unknown n-qubit state. When we come to build
large-scale quantum computers with thousands or millions of physical qubits, it will
not be possible to learn the full state of the system at any point. Various methods
have been developed in order to mitigate this problem, many of which make use of
prior knowledge or reasonable assumptions on the state to make the representation
and tomography efficient. Significant examples include QST by compressed sensing
[39], which provides a logarithmic speedup with respect to full QST by assuming that
the state is relatively pure and therefore sparse in some basis, and matrix product state
methods [40], which also provide a logarithmic speedup by assuming that the state
is constructed by means of a particular sequence of entangling operations between
small numbers of adjacent qubits. However, it remains to be seen how well these
techniques perform when applied to the diagnosis of imperfection in a real quantum
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computer, and scalable validation and verification of quantum states remains a topic
of considerable interest and urgency. See Sect.6.3.5 for a discussion of these topics
outside the qubit encoding.

2.6.3 On-Chip Quantum State Tomography

Throughout this thesis, we make use of QST to characterize the quality of states
generated by the CNOT-MZ. As a first demonstration, we prepared and measured
each of the four canonical Bell states (1.38). These states, being maximally entangled,
provide a particularly rigorous test of the performance of the CNOT-P gate.

Setting appropriate voltages to phaseshifters ¢4 as described in Sect.2.2.5, we
prepared the separable superposition states

e ®10) 7, [F)ec®IDr, =) ®10)7, [=-)c®I|l)r (2.43)

at the input of the CNOT-P gate. The corresponding Bell states (|®*) and |W)
respectively) are then ideally produced at the output.

For each input state, phase shifters ¢5_g were then used to implement the quorum
of 16 measurement settings required to reconstruct the density operator of the state.
Since we collect statistics for all four logical outputs of the device simultaneously,
is straightforward to implement an over-complete quorum

i = |Ci)(Ci| ® |T; (T (2.44)
over all combinations of |C;), |T;) € {|0), |1), |4), |—=), | + i), | — i)}. The measured

density matrices of all four Bell states are shown in Fig.2.12, with quantum state
fidelities [29]

2
F= (Tr A/ PthPexp/ pth) (2.45)
of 0.947 +0.002, 0.945 + 0.002, 0.933 + 0.002, and 0.885 £ 0.002 respectively.

(©)

0.5

BT
o1 10 1

Fig. 2.12 On-chip quantum state tomography. Density matrices of the Bell states a |[®T), b |® ),
¢ |WT) and d |¥ ™), generated and characterized on-chip. Imaginary parts are not shown
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A discussion of sources of error in the CNOT-MZ, to which we attribute the
infidelity seen here, is given in Sect.2.10.

2.7 Quantum Process Tomography

QST allows us to obtain complete information about the output of a black-box source
of quantum states. Often, we are also interested in devices which transform an arbi-
trary input state, where we would like to learn the a priori unknown relationship
between input and output states of the device [41].

While many of the errors which arise in LOQC are described by unitary operators,’
in order to completely describe an arbitrary black-box device it is necessary to account
for processes which do not preserve the purity or orthogonality of their input states.
This can occur if the system couples to unknown environmental degrees of freedom,
which are traced over in the final measurement. Any black box of this type can be
completely and uniquely characterised by a completely positive map £. This operator
describes the effect of the device on an input state p;,,

-

b\out =& (;OAin) = Z AAi)ainAi (2.46)
i

where A; are a set of operators acting on the Hilbert space of p. In order to connect
this theoretical description with experiment it is helpful to re-write

AAi = Zawﬁj (247)
i

where A ; are the Kraus operators, which are fixed and independent of £. A j satisfy
Tr(A;Ak) ~ 8k and Zj A}Aj = ]. For qubit systems the Kraus operators are
typically chosen as tensor products of Pauli matrices, A; =6, ® 6, ® --- ® G,.
The quantum operation can then be completely and uniquely characterised by the
process matrix Xm,, = > ; i ma;,, a matrix of 22n complex numbers with 24n _p2n

in’
free parameters, which relates 0, to p;, as

raout =& (ﬁin) = Z Xm,nAm'ainAj;~ (2.48)

m,n

The task of quantum process tomography (QPT) is then to estimate x. For an input
state pin, the probability that the output state of the device is detected in a state Ty is
given by

Py =Tr [fk /sgm] =Tr [fk £ (,ai-{])] . (2.49)

For example, errors in BS reflectivity.
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In order to obtain sufficient information to fully reconstruct £ for an arbitrary device,
we follow a procedure which is equivalent to full QST of ﬁ({u[, for a complete or
over-complete set of linearly independent ﬁ{l;—that is, ﬁljn should at least form a
basis for the Hilbert space upon which £ acts. Experimentally, we measure count
rates

~ n k
ik~ P > nj=PyN; Pyo==2 (2.50)
]

for every possible combination over a quorum of at least 4” — 1 input states ﬁljn and
4" — | measurement settings 7.

Having acquired this data, we must then reconstruct y . Although linear reconstruc-
tion techniques exist, they suffer the same issues as linear QST: namely, experimental
imperfection and finite statistics can lead to a reconstructed process matrix which is
unphysical, precluding comparison with standard metrics. As a result, experimental
QST is usually performed using a maximum-likelihood reconstruction technique.
As with maximum-likelihood QST, we first choose a parametrization of y which
enforces physicality. Since the process matrix is subject to the same physical con-
straints as a density matrix (both are normalized, Hermitian, positive-semidefinite
square matrices), we use a similar parametrization:

oG
e (2.51)
Tr[2 ()2 ()]

We then minimize the cost function [41], constituting a least-squares difference
between the observed data and that predicted by theory, with respect to 7:

EN) < x (1) =

- i T\2
3 (ij —Tr [Tk E(I,oijn)])
i) = Z — (2.52)
2T [ Ean))]
Fortunately, this problem can be converted into a semidefinite program [37, 42],

allowing the used of convex optimization algorithms which can greatly accelerate
the numerical optimization procedure.

2.7.1 On-Chip Quantum Process Tomography

We used the state preparation and measurement stages of the CNOT-MZ to perform
full QPT of the CNOT-P gate. This test completely and uniquely characterizes the
CNOT-P gate itself, providing full information on the quality of our implementation.
In addition, the QPT protocol places stringent demands on the performance of the
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reconfigurable components of the chip: even if the CNOT-P were perfect, errors in
state preparation and measurement would lead to recovery of a flawed process matrix.
Moreover, QPT of a 2-qubit gate requires 256 measurements, and is particularly
demanding in terms of repeatability and stability of the experimental setup.

Setting appropriate voltages to phase shifters ¢1_4 as described in Sect.2.2.5, we
prepared 16 separable, linearly independent input states

Pl =W (W15 (W) =1C)) @1T) 5 1¥) €{[0), 1), |4), | + i) —i)).

_ (2.53)
For each ,oi]n, the output state of the CNOT-P gate was measured and reconstructed by
QST as before, using phase shifters ¢s_g to perform each of the 16 measurements.
These density matrices are shown together with ideal states in Fig.2.13a.

The process matrix y was then reconstructed according to the maximum likeli-
hood technique previously described. The experimentally measured process matrix
is shown together with the theoretical ideal matrix y;jgea in Fig. 2.13b—d. For clarity,
the experimental matrix has been rotated through a local two-qubit unitary which
maps CNOT-P to CNOT (see Sect.2.2.4). The process fidelity [29]

Fp = Tr(XidealXexp) (2.54)
(a) @ oy - [ ] . - . A i
$ [ ] "'::". .‘k'ﬁ‘.f ‘:,:' &% | g e o ",_ ‘? S |
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Fig. 2.13 Quantum process tomography of a maximally entangling gate. a Ideal and experimental
output states of the CNOT-P gate, for a complete set of linearly independent input states. b Ideal
process matrix of the CNOT gate. The imaginary part is zero everywhere. ¢ Real and d imagi-
nary parts of the measured process matrix of the CNOT-P device, after a local rotation to permit
comparison with the canonical CNOT gate
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between the reconstructed process and the ideal CNOT operation was found to be
0.841 £ 0.002. This is comparable with the process fidelity of 0.87 previously mea-
sured using an equivalent bulk-optical circuit [27]. The average fidelity [43], defined
as the state fidelity between actual and ideal output states averaged over all possible
input states, is 0.873£0.001. Here error was determined by a Monte-Carlo approach,
assuming Poissonian photon statistics. Sources of error contributing to this sub-unit
process fidelity are discussed in Sect.2.10.

2.8 Bell Inequality Manifold

Having shown that the CNOT-MZ can prepare maximally entangled states, we now
demonstrate that these states are nonlocal. As previously discussed, the Bell-CHSH
test (Sect. 1.3.8) provides a particularly rigorous criterion for a source of entangle-
ment. In particular, only a subset of the most strongly entangled states can generate
nonlocal statistics in a CHSH test. As such, CHSH is important not only as a funda-
mental test of foundational quantum theory, but also as a measure of the operational
performance of quantum technologies and devices.
In the context of the CNOT-MZ, all local realistic models demand that

A A A A

ISI = {Ci1Th) + (C1T2) + (CoTh) — (CaTa)| <2 (2.55)
where C;, f"j are measurement operators on the control and target qubits respectively.
If these qubits are entangled, this inequality can be violated up to a maximum value
of |S| = 2+/2—in which case we say that we detect nonlocal statistics, or that we
“obtain nonlocality”.

In order to further test the reconfigurability of the CNOT-MZ, we measured S over
arange of partially entangled states, using a variety of measurement settings. Even if
the state |\ (¢;_4)) generated by the CNOT-P is maximally entangled, (2.55) is only
violated for a subset of measurement settings. See Sect. 4.2 for further discussion of
this point.

We used ¢_4, together with the CNOT-P gate, to prepare the state

1 . .
[Your) = m[(l —€'9)]00) + (1 + € )[1D)], (2.56)

where ¢ = ¢ tunes continuously between two orthogonal states: for « = 0, m,
[Vour ) 1s a product state, and with o = 7 /2, 377/2, |, ) is the maximally entangled
state \% (]00) = i|11)) (up to a global phase). Scanning « in the interval [0, 27r], we
pass through a continuum of partially entangled states. In order to evaluate S, we used
phaseshifters ¢5_g to implement four two-qubit measurements on the state emerging
from the CNOT-P gate. While Alice’s measurement settings (¢g € {7/4, —m/4})
were fixed, Bob’s measurement operators were continuously rotated in the real plane
of the Bloch sphere, with ¢g € {8, B + 7/2}. We measured S(«, B) for « € [0, 27]
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Fig. 2.14 CHSH manifold. a The Bell-CHSH sum S, plotted as a function of phases « and f. In
the o axis, the state shared between Alice and Bob is tuned continuously between product states
at @ = 0, 7 and maximally entangled states at « = /2, 37/2. The B axis shows S as a function
of Bob’s variable measurements, which can be thought of as two operator-axes in the real plane of
the Bloch sphere, fixed with respect to each other at an angle of 7 /2 but otherwise free to rotate
with angle B between 0 and 277. The blue curves show a projection of the manifold onto each axis.
Yellow contours mark the edges of regions of the manifold which violate —2 < § < 2. Red lines on
the axes also show this limit. b Experimentally measured manifold. Data points are drawn as black
circles. Data points which violate the CHSH inequality are drawn as yellow circles. The surface
shows a fit to the experimental data (color online)

and B8 € [0, 2], with step size 27 /15, producing the “Bell manifold” shown in
Fig.2.14. We measured maximum and minimum values of S of 2.49 + 0.03 and
—2.54 £ 0.03 respectively. Errors were again determined by a Monte-Carlo tech-
nique, assuming Poissonian statistics.

In order to quantitatively compare the theoretical manifold with experimental
data, we used the quantity

T2
Rzzl_m—T’) (2.57)

>SS — 82

where S; are experimentally measured values of the Bell-CHSH sum, S is the average
over S;, and 7; are the theoretical values of S shown in Fig.2.14a. In the ideal case,
R? = 1. For the data shown in Fig.2.14b, R> = 0.935.

2.9 Generating and Characterising Mixture

Mixture, introduced in Sect. 1.3.6, is a basic property of quantum mechanical states,
equivalent to classical randomness. The effect of decoherence, which is the major
source of errors in many proposed architectures for quantum computing, is to intro-
duce mixture to the computer’s state, and the study and modelling of mixed states
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will be important in future studies of decoherence mechanisms. Despite this broad
association of mixture with error, mixed states can actually be used for universal
quantum computing [44], and are believed to play an important role in biological
processes [45, 46] including photosynthesis.

One approach to generating mixed states is to build a source which randomly
samples from an ensemble of pure states: for example, to generate the maximally-
mixed single-qubit state 1/2, we can use a source which generates each of the logical
basis states with equal probability

1 1
ﬁ=ZPi|i)(i|=§I0><0|+§I1><1|=1/2- (2.58)

Note that in this approach, it is important that the random sampling technique, which
chooses between |0) and |1), must not “leak” information to the observer—otherwise
the state can be written in a pure form:

107, 11,11501, 04514 . . .) (2.59)

An alternative approach’ begins with a maximally entangled, pure, two-qubit state,
and traces over one qubit:

<
/2

The CNOT-MZ can prepare an arbitrary two-qubit state (Sect.2.2.7), and by tracing
over one qubit can thus prepare arbitrary single-qubit mixed states. Starting from
the parametrization (2.25) of an arbitrary two qubit state, and tracing over the target
qubit

1 1
pa =Trp [ (10408) + |1A13))} = 510001+ Z 1) {1[ =1/2. (2.60)

Wer) = Valre) ® Ihr) + VT =128 ® A7) (2.61)
=S be = Trr (WH®)) = Alac) (el + (1= DG (RE| (2.62)

Since |A¢) is an arbitrary single-qubit pure state, o¢ is an arbitrary mixed state. Note
that there is a one-to-one correspondence between the degree of entanglement of the
initial two-qubit state and the purity of the reduced density matrix, dictated by the
choice of A.

What does it mean to “trace over the target qubit” in the context of the CNOT-MZ?
Ideally, we would measure the control qubit independent of the target qubit, which
in principle need not be measured at all. However, since the CNOT-P is a nondeter-
ministic gate, we must count in the coincidence basis to postselect on successful gate
operation. Therefore, in practice we count coincidences across both qubits and then

7Note: these two forms of mixture are sometimes distinguished as improper (using entangled states)
and proper (using a random number generator). However, they are formally indistinguishable [47].
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combine two-photon count-rates to generate effective single-qubit data, independent
of the measurement outcome on the target:

EO(; = C0c0r + Coclrs EIC = Clc07 + Clely- (263)

We chose 119 single-qubit mixed states of varying purity, at random by the Hilbert-
Schmidt measure [48], which samples uniformly from the full volume of the Bloch
sphere. For each mixed state, we generated an appropriate two-qubit pure state,
traced out the target qubit, and performed full single-qubit QST on the control,
reconstructing the reduced density matrix based on ¢y, ¢i.. Figure2.15 shows the
distribution of quantum state fidelity (2.45) between reconstructed states and their
corresponding ideal mixed states. The average fidelity across all 119 states was found
tobe 0.98 £ 0.02, with 91 % of states having fidelity >0.95. We then chose 63 specific
mixed states that mapped out the symbol ‘W’ inside the Bloch sphere, and generated
them with high fidelity (Fig.2.15, inset). This picture gives a visual impression of
the typical fidelity with which mixed states (and, by implication, entangled states)
can be prepared and measured using the CNOT-MZ.
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Fig. 2.15 Histogram showing the statistical distribution of quantum state fidelity between 119
randomly chosen single-qubit target states and the corresponding mixed states generated and char-
acterized on-chip. Inset W drawn in the Bloch sphere using 63 mixed states, again generated and
characterized on-chip. These states are chosen from the real plane of the sphere for clarity. The point
at the centre of the sphere is maximally mixed, and was traced out from a two-qubit maximally
entangled state. Points on the surface of the sphere are pure, and were traced out from separable
states
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2.9.1 Errors in the CNOT-MZ

The imperfect performance of the CNOT-MZ seen in the previous experiments can
be attributed to a number of different sources of error. First, we do not achieve perfect
HOM interference, due to residual distinguishability of the photon pair—this is likely
due to small polarization rotations, temporal distinguishability, and imperfect mode-
matching at the DCs. A larger fraction of error is due to imperfect calibration and
operation of the thermal phaseshifters, which contributes significantly to imperfec-
tion in reconstructed states and processes. Figure 2.16 shows the effect of inaccuracy
in the control of phases in the CNOT-MZ: the fidelity of states reconstructed by QST
is reduced by ~4 % given 0.05 rad of variance at each phaseshifter. We expect that
imperfect fabrication of passive waveguide structures in the CNOT-MZ, which leads
to time-invariant unitary errors and is reflected in the results of Sect.2.7.1, accounts
for the remaining discrepancy between our experiment and the ideal performance of
the device.

1.0

Fidelity, F

o
©

o'3.70 0.75 0.80 0.85 0.90 0.95 1.00
Visibility, V/

Fig. 2.16 Errors in the CNOT-MZ. Solid lines show a numerical simulation, plotting quantum
state fidelity of states reconstructed by maximum-likelihood QST against the visibility of HOM
interference. The grey line assumes perfect phaseshifters and infinite statistics, while the black line
models the effect of 0.05 rad variance in phase on each phaseshifter, as well as the effects of finite
statistics for a realistic experimental count-rate. The red line shows the experimentally measured
visibility of HOM interference, and red crosses show measured quantum state fidelities of the four
Bell states (color online)
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2.10 Discussion

In this chapter, we have not shown any new ability to manipulate quantum states
which could not be duplicated in practice using bulk optics. The CNOT-P gate [24],
experimental state and process tomography [27], and mixed-state preparation have
all previously been shown in bulk. The main result of work presented in this chapter
is instead to show that the complexity and flexibility of bulk optics for quantum
information can be reproduced to equivalent or better fidelity in a waveguide chip.
This represents a significant step forward with respect to previous experiments in
integrated quantum photonics, where devices were either completely passive [7, 9,
10, 12, 28] or insufficiently complex/reconfigurable to perform multiple distinct
tasks [7, 11].

A side-effect of photonic integration is the ease with which the circuit can be fully
automated, enabling experiments which depend on a large number of measurements
(Chaps. 3 and 4), or feedback and optimization over a large number of experimental
parameters (Chap.5). Automation to this extent can be experimentally demanding
or expensive in bulk-optics.

There remains considerable scope for improvement of the experimental setup and
device fabrication. First, the silica-on-silicon material system used here is intrin-
sically limited by the available refractive index contrast, which leads to relatively
large devices. A competitive quantum information processor built in silica-on-silicon
would likely be prohibitively large. Recently, there has been great progress in inte-
grated quantum optics using material systems which allow for a much higher compo-
nent density: in particular, silicon nanowire waveguides [49-55], can provide up to
six orders of magnitude decrease in component size.

As discussed in Sect.2.9.1, inaccuracy in phaseshifter calibration is significantly
detrimental to the performance of the device. Recently, Li et al. [31] have shown
a new method for calibration of the CNOT-MZ, using a Bayesian learning method
to automatically find the optimal calibration settings. The authors report significant
improvements in the performance of the device, with respect to those reported here.

To summarize, we have shown an integrated quantum photonic chip with a con-
siderably greater degree of reconfigurability than previous devices. We have demon-
strated the ability of this chip to generate arbitrary two-qubit entangled states and
single-qubit mixed states. We have confirmed the entangling capability of the device
through violation of a Bell inequality across a large fraction of the parameter space.
Finally, we have completely characterised the quantum process implemented by the
CNOT-P gate by QPT. To our knowledge, in the field of integrated quantum pho-
tonics, this work constitutes the first demonstration of quantum state and process
tomography where state preparation and measurement were both implemented on-
chip, as well as the first on-chip Bell violation. The general-purpose utility of the
CNOT-MZ is borne out in the following chapters.
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Statement of Work

I optimized the photon source, and found and optimized the Hong-Ou-Mandel dip.
I built, optimized and programmed a large fraction of the supporting electronics.
I calibrated the resistive heaters, and designed and optimized the pulse sequence
described in Sect. 2.3.2. I measured all of the experimental data, and performed all of
the simulations shown in this section. I conceived the randomized characterization
protocol.
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