
Chapter 2
Modeling Quantum Information

Abstract Classical as well as quantum information is stored in physical systems, or
“information is inevitably physical” as Rolf Landauer famously said. These physical
systems are ultimately governed by the laws of quantum mechanics. In this chapter
we quickly review the relevant mathematical foundations of quantum theory and
introduce notational conventions that will be used throughout the book.

In particular we will discuss concepts of functional and matrix analysis as well as
linear algebra that will be of use later. We consider general separable Hilbert spaces
in this chapter, even though in the rest of the book we restrict our attention to the
finite-dimensional case. This digression is useful because it motivates the notation
we use throughout the book, and it allows us to distinguish between themathematical
structure afforded by quantum theory and the additional structure that is only present
in the finite-dimensional case.

Our notation is summarized in Sect. 2.1 and the remainder of this chapter can
safely be skipped by expert readers. The presentation here is compressed andwe omit
proofs. We instead refer to standard textbooks (see Sect. 2.7 for some references) for
a more comprehensive treatment.

2.1 General Remarks on Notation

The notational conventions for this book are summarized in Table2.1. The table
includes references to the sections where the corresponding concepts are introduced.
Throughout this book we are careful to distinguish between linear operators (e.g.
events andKraus operators) and functionals on the linear operators (e.g. states),which
are also represented as linear operators (e.g. density operators). This distinction is
inspired by the study of infinite-dimensional systems where these objects do not
necessarily have the same mathematical structure, but it is also helpful in the finite-
dimensional setting.1

1For example, it sheds light on the fact that we use the operator norm for ordinary linear operators
and its dual norm, the trace norm, for density operators.
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12 2 Modeling Quantum Information

Table 2.1 Overview of notational conventions

Symbol Variants Description Section

R, C R+ Real and complex fields (and non-negative reals)

N Natural numbers

log, exp ln, e Logarithm (to unspecified basis), and its inverse, the
exponential function (natural logarithm and Euler’s
constant)

H HAB ,HX Hilbert spaces (for joint system AB and system X ) 2.2.1
〈·|, |·〉 Bra and ket

Tr(·) TrA Trace (partial trace) 2.3.1
⊗ (·)⊗n Tensor product (n-fold tensor product) 2.4.1
⊕ Direct sum for block diagonal operators 2.2.2
A � B A is dominated by B, i.e. kernel of A contains kernel of B

A ⊥ B A and B are orthogonal, i.e. AB = B A = 0

L L (A, B) Bounded linear operators (from HA to HB ) 2.2.1
L † L †(B) Self-adjoint operators (acting on HB )

P P(C D) Positive semi-definite operators (acting on HC D)

{A ≥ B} Projector on subspace where A − B is non-negative

‖ · ‖ Operator norm 2.2.1
L• L•(E) Contractions in L (acting on HE )

P• P•(A) Contractions in P (corresponding to events on A) 2.2.2
I IY Identity operator (acting on HY )

〈·, ·〉 Hilbert-Schmidt inner product 2.3.1
T T ≡ L ‡ Trace-class operators representing linear functionals

S S ≡ P ‡ Operators representing positive functionals

‖ · ‖∗ Tr | · | Trace norm on functionals 2.3.1
S• S•(A) Sub-normalized density operators (on A) 2.3.2
S◦ S◦(B) Normalized density operators, or states (on B)

π πA Fully mixed state (on A), in finite dimensions 2.3.2
ψ ψAB Maximally entangled state (between A and B), in finite

dimensions
2.4.2

CB CB(A, B) Completely bounded maps (from L (A) to L (B)) 2.6.1
CP Completely positive maps 2.6.2
CPTP CPTNI Completely positive trace-preserving

(trace-non-increasing) map

‖ · ‖+ ‖ · ‖p Positive cone dual norm (Schatten p-norm) 3.1

�(·, ·) Generalized trace distance for sub-normalized states 3.2

F(·, ·) F∗(·, ·) Fidelity (generalized fidelity for sub-normalized states) 3.3

P(·, ·) Purified distance for sub-normalized states 3.4
‡This equivalence only holds if the underlying Hilbert space is finite-dimensional

http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
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We do not specify a particular basis for the logarithm throughout this book, and
simply use exp to denote the inverse of log.2 The natural logarithm is denoted by ln.

We label different physical systems by capital Latin letters A, B, C , D, and E ,
as well as X , Y , and Z which are specifically reserved for classical systems. The
label thus always determines if a system is quantum or classical. We often use these
labels as subscripts to guide the reader by indicating which system a mathematical
object belongs to. We drop the subscripts when they are evident in the context of an
expression (or if we are not talking about a specific system). We also use the capital
Latin letters L , K , H , M , and N to denote linear operators, where the last two
are reserved for positive semi-definite operators. The identity operator is denoted I .
Density operators, on the other hand, are denoted by lowercase Greek letters ρ, τ ,
σ , and ω. We reserve π and ψ for the fully mixed state and the maximally entangled
state, respectively. Calligraphic letters are used to denote quantum channels and other
maps acting on operators.

2.2 Linear Operators and Events

For our purposes, a physical system is fully characterized by the set of events that
can be observed on it. For classical systems, these events are traditionally modeled
as a σ -algebra of subsets of the sample space, usually the power set in the discrete
case. For quantum systems the structure of events is necessarily more complex, even
in the discrete case. This is due to the non-commutative nature of quantum theory:
the union and intersection of events are generally ill-defined since it matters in which
order events are observed.

Let us first review the mathematical model used to describe events in quantum
mechanics (as positive semi-definite operators on a Hilbert space). Once this is done,
we discuss physical systems carrying quantum and classical information.

2.2.1 Hilbert Spaces and Linear Operators

For concreteness and to introduce the notation, we consider two physical systems
A and B as examples in the following. We associate to A a separable Hilbert space
HA over the field C, equipped with an inner product 〈·, ·〉 : HA ×HA → C. In the
finite-dimensional case, this is simply a complex inner product space, but we will
follow a tradition in quantum information theory and callHA a Hilbert space also in
this case. Analogously, we associate the Hilbert spaceHB to the physical system B.

2The reader is invited to think of log(x) as the binary logarithm of x and, consequently, exp(x) = 2x ,
as is customary in quantum information theory.
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Linear Operators

Our main object of study are linear operators acting on the system’s Hilbert space.
We consistently use upper-case Latin letters to denote such linear operators. More
precisely, we consider the set of bounded linear operators from HA to HB , which
we denote by L (A, B). Bounded here refers to the operator norm induced by the
Hilbert space’s inner product.

The operator norm on L (A, B) is defined as

‖ · ‖ : L �→ sup
{√〈Lv, Lv〉B : v ∈ HA, 〈v, v〉A ≤ 1

}
. (2.1)

For all L ∈ L (A, B), we have ‖L‖ < ∞ by definition. A linear operator is
continuous if and only if it is bounded.3 Let us now summarize some important
concepts and notation that we will frequently use throughout this book.

• The identity operator on HA is denoted IA.
• The adjoint of a linear operator L ∈ L (A, B) is the unique operator L† ∈
L (B, A) that satisfies 〈w, Lv〉B = 〈L†w, v〉A for all v ∈ HA, w ∈ HB . Clearly,
(L†)† = L .

• For scalars α ∈ C, the adjoint corresponds to the complex conjugate, α† = α.
• We find (L K )† = K †L† by applying the definition twice.
• The kernel of a linear operator L ∈ L (A, B) is the subspace of HA spanned by
vectors v ∈ HA satisfying Lv = 0. The support of L is its orthogonal complement
inHA and the rank is the cardinality of the support. Finally, the image of L is the
subspace ofHB spanned by vectors w ∈ HB such that w = Lv for some v ∈ HA.

• For operators K , L ∈ L (A) we say that L is dominated by K if the kernel of K
is contained in the kernel of L . Namely, we write L � K if and only if

K |v〉A = 0 =⇒ L |v〉A = 0 for all v ∈ HA. (2.3)

• We say K , L ∈ L (A) are orthogonal (denoted K ⊥ L) if K L = L K = 0.
• We call a linear operator U ∈ L (A, B) an isometry if it preserves the inner
product, namely if 〈Uv, Uw〉B = 〈v, w〉A for all v, w ∈ HA. This holds if U †U =
IA.

3Relation to Operator Algebras: Let us note that L (A, B) with the norm ‖ · ‖ is a Banach space
over C. Furthermore, the operator norm satisfies

‖L‖2 = ‖L†‖2 = ‖L†L‖ and ‖L K‖ ≤ ‖L‖ · ‖K‖. (2.2)

for any L ∈ L (A, B) and K ∈ L (B, A). The inequality states that the norm is sub-multiplicative.
The above properties of the norm imply that the spaceL (A) is (weakly) closed under multipli-

cation and the adjoint operation. In fact, L (A) constitutes a (Type I factor) von Neumann algebra
or C∗ algebra. Alternatively, we could have started our considerations right here by postulating a
Type 1 von Neumann algebra as the fundamental object describing individual physical systems,
and then deriving the Hilbert space structure as a consequence.
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• An isometry is an example of a contraction, i.e. an operator L ∈ L (A, B) sat-
isfying ‖L‖ ≤ 1. The set of all such contractions is denoted L•(A, B). Here the
bullet ‘•’ in the subscript ofL•(A, B) simply illustrates that we restrictL (A, B)

to the unit ball for the norm ‖ · ‖.
For any L ∈ L (A), we denote by L−1 its Moore-Penrose generalized inverse

or pseudoinverse [130] (which always exists in finite dimensions). In particular, the
generalized inverse satisfies L L−1L = L and L−1L L−1 = L−1. If L = L†, the
generalized inverse is just the usual inverse evaluated on the operator’s support.

Bras, Kets and Orthonormal Bases

We use the bra-ket notation throughout this book. For any vector vA ∈ HA, we use
its ket, denoted |v〉A, to describe the embedding

|v〉A : C → HA, α �→ αvA. (2.4)

Similarly, we use its bra, denoted 〈v|A, to describe the functional

〈v|A : HA → C, wA �→ 〈v, w〉A. (2.5)

It is natural to view kets as linear operators from C to HA and bras as linear
operators fromHA to C. The above definitions then imply that

|Lv〉A = L |v〉A , 〈Lv|A = 〈v|A L†, and 〈v|A = |v〉†A . (2.6)

Moreover, the inner product can equivalently be written as 〈w, Lv〉B = 〈w|B L|v〉A.
Conjugate symmetry of the inner product then corresponds to the relation

〈w|B L|v〉A = 〈v|A L†|w〉B . (2.7)

As a further example, we note that |v〉A is an isometry if and only if 〈v|v〉A = 1.
In the following we will work exclusively with linear operators (including bras

and kets) and we will not use the underlying vectors (the elements of the Hilbert
space) or the inner product of the Hilbert space anymore.

We now restrict our attention to the space L (A) := L (A, A) of bounded linear
operators acting on HA. An operator U ∈ L (A) is unitary if U and U † are isome-
tries. An orthonormal basis (ONB) of the system A (or the Hilbert space HA) is a
set of vectors {ex }x , with ex ∈ HA, such that

〈
ex

∣∣ey
〉
A = δx,y :=

{
1 x = y

0 x �= y
and

∑
x

|ex 〉〈ex |A = IA. (2.8)

We denote the dimension ofHA by dA if it is finite and note that the index x ranges
over dA distinct values. For general separable Hilbert spaces x ranges over any
countable set. (We do not usually specify such index sets explicitly.) Various ONBs
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exist and are related by unitary operators: if {ex }x is an ONB then {Uex }x is too,
and, furthermore, given two ONBs there always exists a unitary operator mapping
one basis to the other, and vice versa.

Positive Semi-Definite Operators

A special role is played by operators that are self-adjoint and positive semi-definite.
We call an operator H ∈ L (A) self-adjoint if it satisfies H = H†, and the set of all
self-adjoint operators in L (A) is denoted L †(A). Such self-adjoint operators have
a spectral decomposition,

H =
∑

x

λx |ex 〉〈ex | (2.9)

where {λx }x ⊂ R are called eigenvalues and {|ex 〉}x is an orthonormal basis with
eigenvectors |ex 〉. The set {λx }x is also called the spectrum of H , and it is unique.

Finally we introduce the set P(A) of positive semi-definite operators in L (A).
An operator M ∈ L (A) is positive semi-definite if and only if M = L†L for some
L ∈ L (A), so in particular such operators are self-adjoint and have non-negative
eigenvalues. Let us summarize some important concepts and notation concerning
self-adjoint and positive semi-definite operators here.

• We call P ∈ P(A) a projector if it satisfies P2 = P , i.e. if it has only eigenvalues
0 and 1. The identity IA is a projector.

• For any K , L ∈ L †(A), we write K ≥ L if K − L ∈ P(A). Thus, the relation
‘≥’ constitutes a partial order on L (A).

• For anyG, H ∈ L †(A), we use {G ≥ H} to denote the projector onto the subspace
corresponding to non-negative eigenvalues of G − H . Analogously, {G < H} =
I − {G ≥ H} denotes the projector onto the subspace corresponding to negative
eigenvalues of G − H .

Matrix Representation and Transpose

Linear operators in L (A, B) can be conveniently represented as matrices in
C

dA × C
dB . Namely for any L ∈ L (A, B), we can write

L =
∑
x,y

| fy〉〈 fy |B L|ex 〉〈ex |A =
∑
x,y

〈 fy |L|ex 〉 · | fy〉〈ex |, (2.10)

where {ex }x is an ONB of A and { fy}y an ONB of B. This decomposes L into
elementary operators | fy〉〈ex | ∈ L•(A, B) and the matrix with entries [L]yx =
〈 fy |L|ex 〉.

Moreover, there always exists a choice of the two bases such that the resulting
matrix is diagonal. For such a choice of bases, we find the singular value decompo-
sition L = ∑

x sx | fx 〉〈ex |, where {sx }x with sx ≥ 0 are called the singular values
of L . In particular, for self-adjoint operators, we can choose | fx 〉 = |ex 〉 and recover
the eigenvalue decomposition with sx = |λx |.
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The transpose of L with regards to the bases {ex } and { fy} is defined as

LT :=
∑
x,y

〈 fy |L|ex 〉 · |ex 〉〈 fy |, LT ∈ L (B, A). (2.11)

Importantly, in contrast to the adjoint, the transpose is only defined with regards to
a particular basis. Also contrast (2.11) with the matrix representation of L†,

L† =
∑
x,y

(〈 fy |L|ex 〉
)† · |ex 〉〈 fy | =

∑
x,y

〈ex |L†| fy〉 · |ex 〉〈 fy | = L
T
. (2.12)

Here, L denotes the complex conjugate, which is also basis dependent.

2.2.2 Events and Measures

We are now ready to attach physical meaning to the concepts introduced in the
previous section, and apply them to physical systems carrying quantum information.

Observable events on a quantum system A correspond to operators in the unit
ball of P(A), namely the set

P•(A) := {M ∈ L (A) : 0 ≤ M ≤ I }. (2.13)

(The bullet ‘•’ indicates that we restrict to the unit ball of the norm ‖ · ‖.)

Two events M, N ∈ P•(A) are called exclusive if M + N is an event in P•(A)

as well. In this case, we call M + N the union of the events M and N . A complete set
of mutually exclusive events that sum up to the identity is called a positive operator
valued measure (POVM). More generally, for any measurable space (X ,Σ) with
Σ a σ -algebra, a POVM is a function

OA : Σ → P•(A) with OA(X ) = IA (2.14)

that is σ -additive, meaning that OA(
⋃

i Xi ) = ∑
i OA(Xi ) for mutually disjoint

subsets Xi ⊂ X . This definition is too general for our purposes here, and we will
restrict our attention to the case where X is discrete and Σ the power set of X . In
that case the POVM is fully determined if we associate mutually exclusive events to
each x ∈ X .
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A function x �→ MA(x) with MA(x) ∈ P•(A),
∑

x MA(x) = IA is called a
positive operator valued measure (POVM) on A.

We assume that x ranges over a countable set for this definition, and we will
in fact not discuss measurements with continuous outcomes in this book. We call
x �→ MA(x) a projectivemeasure if all MA(x) are projectors, and we call it rank-one
if all MA(x) have rank one.

Structure of Classical Systems

Classical systems have the distinguishing property that all events commute.
To model a classical system X in our quantum framework, we restrictP•(X) to

a set of events that commute. These are diagonalized by a common ONB, which we
call the classical basis of X . For simplicity, the classical basis is denoted {x}x and
the corresponding kets are |x〉X. (To avoid confusion, we will call the index y or z
instead of x if the systems Y and Z are considered instead.)

Every M ∈ P•(X) on a classical system can be written as

M =
∑

x

M(x) |x〉〈x |X =
⊕

x

M(x), where 0 ≤ M(x) ≤ 1. (2.15)

Instead of writing down the basis projectors, |x〉〈x |, we sometimes employ the
direct sum notation to illustrate the block-diagonal structure of such operators. In
the following, whenever we introduce a classical event M on X we also implicitly
introduce the function M(x), and vice versa.

This definition of “classical” events still goes beyond the usual classical formalism
of discrete probability theory. In the usual formalism, M represents a subset of the
sample space (an element of its σ -algebra), and thus corresponds to a projector in
our language, with M(x) ∈ {0, 1} indicating if x is in the set. Our formalism, in
contrast, allows to model probabilistic events, i.e. the event M occurs at most with
probability M(x) ∈ [0, 1] even if the state is deterministically x .4

2.3 Functionals and States

States of a physical system are functionals on the set of bounded linear operators
that map events to the probability that the respective event occurs.

4This generalization is quite useful as it, for example, allows us to see the optimal (probabilistic)
Neyman-Pearson test as an event.
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Continuous linear functionals can be represented as trace-class operators. This
then allows us to introduce states for quantum and classical systems.

2.3.1 Trace and Trace-Class Operators

The most fundamental linear functional is the trace. For any orthonormal basis {ex }x

of A, we define the trace over A as

TrA(·) : L (A) → C, L �→
∑

x

〈ex | L |ex 〉A . (2.16)

Note that Tr(L) is finite if dA < ∞ or more generally if L is trace-class, as we will
see below. The trace is cyclic, namely we have

TrA(K L) = TrB(L K ) (2.17)

for any two operators L ∈ L (A, B), K ∈ L (B, A) when K L and L K are trace-
class. Thus, in particular, for any L ∈ L (A), we have TrA(L) = TrB(ULU†) for
any isometry U ∈ L (A, B), which shows that the particular choice of basis used for
the definition of the trace in (2.16) is irrelevant. Finally, we have Tr(L†) = Tr(L).

Trace-Class Operators

Using the trace, continuous linear functionals can be conveniently represented as
elements of the dual Banach space of L (A), namely the space of linear operators
onHA with bounded trace norm.

The trace norm on L (A) is defined as

‖ · ‖∗ : ξ �→ Tr |ξ | = Tr
(√

ξ†ξ
)
. (2.18)

Operators ξ ∈ L (A) with ‖ξ‖∗ < ∞ are called trace-class operators.

We denote the subspace ofL (A) consisting of trace-class operators byT (A) and
we use lower-case Greek letters to denote elements of T (A). In infinite dimensions
T (A) is a proper subspace ofL (A). In finite dimensionsL (A) andT (A) coincide,
but we will use this convention to distinguish between linear operators and linear
operators representing functionals nonetheless.
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For every trace-class operator ξ ∈ T (A), we define the functional Fξ (L) :=
〈ξ, L〉 using the sesquilinear form

〈·, ·〉 : T (A) × L (A) → C, (ξ, L) �→ Tr(ξ†L). (2.19)

This form is continuous in bothL (A) andT (A)with regards to the respective norms
on these spaces, which is a direct consequence of Hölder’s inequality |Tr(ξ†L)| ≤
‖ξ‖∗ · ‖L‖.5 In finite dimensions it is also tempting to view L (A) = T (A) as
a Hilbert space with 〈·, ·〉 as its inner product, the Hilbert-Schmidt inner product.
Finally, positive functionals map P(A) onto the positive reals. Since Tr(ωM) ≥ 0
for all M ≥ 0 if and only if ω ≥ 0, we find that positive functionals correspond to
positive semi-definite operators in T (A), and we denote these by S (A).

2.3.2 States and Density Operators

A state of a physical system A is a functional that maps events M ∈ P•(A) to the
respective probability that M is observed.Wewant the probability of the union of two
mutually exclusive events to be additive, and thus such functionals must be linear.
Furthermore, we require them to be continuous with regards to small perturbations
of the events. Finally, they ought to map events into the interval [0, 1], hence they
must also be positive and normalized.

Based on the discussion in the previous section, we can conveniently parametrize
all functionals corresponding to states as follows.We define the set of sub-normalized
density operators as trace-class operators in the unit ball,

S•(A) := {ρA ∈ T (A) : ρA ≥ 0 ∧ Tr(ρA) ≤ 1}. (2.21)

Here the bullet ‘•’ refers to the unit ball in the norm ‖ · ‖∗. (This norm simply
corresponds to the trace for positive semi-definite operators.)

For any operator ρA ∈ S•(A), we define the functional

Pr
ρ

(·) : P•(A) → [0, 1], M �→ 〈ρA, M〉 = Tr(ρA M), (2.22)

which maps events to the probability that the event occurs.

5Note also that the norms ‖ · ‖ and ‖ · ‖∗ are dual with regards to this form, namely we have

‖ξ‖∗ = sup
{ |〈ξ, L〉| : L ∈ L•(A)

}
. (2.20)

The trace norm is thus sometimes also called the dual norm.
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This is an expression of Born’s rule, and often taken as an axiom of quantum
mechanics. Here it is just a natural way to map events to probabilities. We call such
operators ρA density operators.

It is often prudent to further require that the union of all events in a POVM, namely
the event I , has probability 1. This leads us to normalized density operators:

Quantum states are represented as normalized density operators in

S◦(A) := {ρA ∈ T (A) : ρA ≥ 0 ∧ Tr(ρA) = 1}, (2.23)

(The circle ‘◦’ indicates that we restrict to the unit sphere of the norm ‖ · ‖∗.)

In the followingwewill use the expressions state anddensity operator interchange-
ably. We also use the set S which contains all positive semi-definite operators, if
there is no need for normalization.

States form a convex set, and a state is called mixed if it lies in the interior of
this set. The fully mixed state (in finite dimensions) is denoted πA := IA/dA. On
the other hand, states on the boundary are called pure. Pure states are represented
by density operators with rank one, and can be written as φA = |φ〉〈φ|A for some
φ ∈ HA. With a slight abuse of nomenclature, we often call the corresponding ket,
|φ〉A, a state.

Probability Mass Functions

The structure of density operators simplifies considerably for classical systems. We
are interested in evaluating the probabilities for events of the form (2.15). Hence, for
any ρX ∈ S◦(X), we find

Pr
ρ

(M) = Tr(ρX M) =
∑

x

M(x) 〈x | ρX |x〉X =
∑

x

M(x)ρ(x), (2.24)

where we defined ρX (x) = 〈x | ρX |x〉X . We thus see that it suffices to consider states
of the following form:

States ρX ∈ S◦(X) on a classical system X have the form

ρX =
∑

x

ρ(x) |x〉〈x |X , where ρ(x) ≥ 0,
∑

x

ρ(x) = 1. (2.25)

where ρ(x) is called a probability mass function.

Moreover, if ρX ∈ S•(X) is a sub-normalized density operator, we require that∑
x ρ(x) ≤ 1 instead of the equality. Again, whenever we introduce a density oper-

ator ρX on X , we implicitly also introduce the function ρ(x), and vice versa.
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2.4 Multi-partite Systems

A joint system AB is modeled using bounded linear operators on a tensor product of
Hilbert spaces,HAB := HA ⊗ HB . The respective set of bounded linear operators
is denoted L (AB) and the events on the joint systems are thus the elements of
P•(AB). Analogously, all the other sets of operators defined in the previous sections
are defined analogously for the joint system.

2.4.1 Tensor Product Spaces

For every v ∈ HAB on the joint system AB, there exist two ONBs, {ex }x on A and
{ fy}y on B, as well as a unique set of positive reals, {λx }x , such that we can write

|v〉AB =
∑

x

√
λx |ex 〉A ⊗ | fx 〉B . (2.26)

This is called the Schmidt decomposition of v. The convention to use a square root is
motivated by the fact that the sequence {√λx }x is square summable, i.e.

∑
x λx < ∞.

Note also that {ex ⊗ fy}x,y can be extended to an ONB on the joint system AB.

Embedding Linear Operators

We embed the bounded linear operators L (A) into L (AB) by taking a tensor
product with the identity on B. We often omit to write this identity explicitly and
instead use subscripts to indicate on which system an operator acts. For example, for
any L A ∈ L (A) and |v〉AB ∈ HAB as in (2.26), we write

L A |v〉AB = L A ⊗ IB |v〉AB =
∑

x

λx L A |ex 〉A ⊗ | fx 〉B (2.27)

Clearly, ‖L A ⊗ IB‖ = ‖L A‖, and in fact, more generally for all L A ∈ L (A) and
L B ∈ L (B), we have

‖L A ⊗ L B‖ = ‖L A‖ · ‖L B‖. (2.28)

We say that two operators K , L ∈ L (A) commute if [K , L] := K L − L K = 0.
Clearly, elements of L (A) and L (B) mutually commute as operators in L (AB),
i.e. for all L A ∈ L (A), K B ∈ L (B), we have [L A ⊗ IB, IA ⊗ K B] = 0.
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Finally, every linear operator L AB ∈ L (AB) has a decomposition

L AB =
∑

k

Lk
A ⊗ Lk

B, where Lk
A ∈ L (A), Lk

B ∈ L (B) (2.29)

Similarly, every self-adjoint operator L AB ∈ L †(AB) decomposes in the same
way but now Lk

A ∈ L †(A) and Lk
B ∈ L †(B) can be chosen self-adjoint as well.

However, crucially, it is not always possible to decompose a positive semi-definite
operator into products of positive semi-definite operators in this way.

Representing Traces of Matrix Products Using Tensor Spaces

Let us next consider trace terms of the form TrA(K A L A) where K A, L A ∈ L (A)

are general linear operators and HA is finite-dimensional. It is often convenient to
represent such traces as follows.

First, we introduce an auxiliary system A′ such thatHA andHA′ are isomorphic
(i.e. they have the same dimension). Furthermore, we fix a pair of bases {|ex 〉A}x

of A and {|ex 〉A′ }x of A′. (We can use the same index set here since these spaces
are isomorphic.) Clearly every linear operator on A has a natural embedding into A′
given by this isomorphism. Using these bases, we further define a rank one operator
Ψ ∈ S (AA′) in its Schmidt decomposition as

|Ψ 〉AA′ =
∑

x

|x〉A ⊗ |x〉A′ . (2.30)

(Note that this state has norm ‖Ψ ‖∗ = dA, which is why this discussion is restricted
to finite dimensions.) Using the matrix representation of the transpose in (2.11), we
now observe that L A ⊗ IA′ |Ψ 〉AA′ = IA ⊗ LT

A′ |Ψ 〉AA′ and, therefore,

Tr(K A L A) = 〈Ψ | K A L A |Ψ 〉 = 〈Ψ |AA′ K A ⊗ LT
A′ |Ψ 〉AA′ . (2.31)

We will encounter this representation many times and keep Ψ thus reserved for this
purpose, without going through the construction explicitly every time.6

Marginals of Functionals

Given a bipartite system AB that consists of two sets of operatorsL (A) andL (B),
we now want to specify how a trace-class operator ξAB ∈ T (AB) acts on L (A).
For any L A ∈ L (A), we have

FξAB (L A) = 〈ξAB, L A ⊗ IB〉 = Tr
(
ξ
†
AB L A ⊗ IB

) = TrA
(
TrB(ξ

†
AB) L A

)
,

(2.32)

where we simply used that TrAB(·) = TrA(TrB(·)) where TrB as defined in (2.16)
naturally embeds as a map from T (AB) into T (A), i.e.

6Note that Ψ is an (unnormalized) maximally entangled state, usually denoted ψ .
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TrB
(
ξ
†
AB

) =
∑

x

( 〈ex |A ⊗ IB
)
ξ
†
AB

( |ex 〉A ⊗ IB
) = TrB

(
ξAB

)†
.

(2.33)

This is also called the partial trace and will be discussed further in the context of
completely bounded maps in Sect. 2.6.2.

The above discussion allows us to define the marginal on A of the trace-class
operator ξAB ∈ T (A) as follows:

ξA := TrB
(
ξAB

)
such that FξAB (L A) = FξA(L A) = 〈ξA, L A〉. (2.34)

We usually do not introduce marginals explicitly. For example, if we introduce a
trace-class operator ξAB then its marginals ξA and ξB are implicitly defined as well.

2.4.2 Separable States and Entanglement

The occurrence of entangled states on two or more quantum systems is one of the
most intriguing features of the formalism of quantum mechanics.

We call a positive operator MAB ∈ P(AB) of a joint quantum system AB
separable if it can be written in the form

MAB =
∑

k∈K
L A(k) ⊗ K B(k), where L A(k) ∈ P(A), K B(k) ∈ P(B),

(2.35)

for some index setK . Otherwise, it is called entangled.

The prime example of an entangled state is the maximally entangled state. For
two quantum systems A and B of finite dimension, a maximally entangled state is a
state of the form

|ψ〉AB = 1√
d

∑
x

|ex 〉A ⊗ | fx 〉B, d = min{dA, dB} (2.36)

where {ex }x is an ONB of A and { fx }x is an ONB of B.
This state cannot be written in the form (2.35) as the following argument, due

to Peres [131] and Horodecki [89], shows. Consider the operation (·)TB of taking a
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partial transpose on the system B with regards to { fx }x on B. Applied to separable
states of the from (2.35), this always results in a state, i.e.

ρ
TB
AB =

∑
k

σA(k) ⊗ (
τB(k)

)TB ≥ 0. (2.37)

Is positive semi-definite. Applied to ψAB , however, we get

ψ
TB
AB = 1

d

∑
x,x ′

|ex 〉〈ex ′ | ⊗ (| fx 〉〈 fx ′ |)TB = 1

d

∑
x,x ′

|ex 〉〈ex ′ | ⊗ | fx ′ 〉〈 fx |. (2.38)

This operator is not positive semi-definite. For example, we have

〈
φ
∣∣ψTB

AB

∣∣φ〉 = − 2

d
, where |φ〉 = |e1〉 ⊗ |e2〉 − |e2〉 ⊗ |e1〉. (2.39)

Generally, we have seen that a bipartite state is separable only if it remains positive
semi-definite under the partial transpose. The converse is not true in general.

2.4.3 Purification

Consider any state ρAB ∈ S (AB), and its marginals ρA and ρB . Then we say that
ρAB is an extension of ρA and ρB . Moreover, if ρAB is pure, we call it a purification
of ρA and ρB . Moreover, we can always construct a purification of a given state
ρA ∈ S (A). Let us say that ρA has eigenvalue decomposition

ρA =
∑

x

λx |ex 〉〈ex |A, then the state |ρ〉AA′ =
∑

x

√
λx |ex 〉A ⊗ |ex 〉A′ (2.40)

is a purification of ρA. Here, A′ is an auxiliary system of the same dimension as A
and {|ex 〉A′ }x is any ONB of A′. Clearly, TrA′(ρAA′) = ρA.

2.4.4 Classical-Quantum Systems

An important special case are joint systems where one part consists of a classical
system. Events M ∈ P•(X A) on such joint systems can be decomposed as

MX A =
∑

x

|x〉〈x |X ⊗ MA(x) =
⊕

x

MA(x), where MA(x) ∈ P•(A). (2.41)
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Moreover, we call states of such systems classical-quantum states. For example,
consistent with our notation for classical systems in (2.25), a state ρX A ∈ S•(X A)

can be decomposed as

ρX A =
∑

x

|x〉〈x |X ⊗ ρA(x), where ρA(x) ≥ 0,
∑

x

Tr
(
ρA(x)

) ≤ 1. (2.42)

Clearly, ρA(x) ∈ S•(A) is a sub-normalized density operator on A. Furthermore,
comparing with (2.35), it is evident that such states are always separable.

If ρX A ∈ S◦(X A), it is sometimes more convenient to instead further decompose

ρA(x) = ρ(x)ρ̂A(x), (2.43)

where ρ(x) is a probability mass function and ρ̂A(x) ∈ S◦(A) normalized as well.

2.5 Functions on Positive Operators

Besides the inverse, we often need to lift other continuous real-valued functions to
positive semi-definite operators. For any continuous function f : R+ \ {0} → R and
M ∈ P(A), we use the convention

f (M) =
∑

x :λx �=0

f (λx ) |ex 〉〈ex |. (2.44)

If the resulting operator is bounded (e.g. if the spectrum of M is compact). That is,
as for the generalized inverse, we simply ignore the kernel of M .7 By definition, we
thus have f (U M U†) = U f (M)U † for any unitary U . Moreover, we have

L f (L†L) = f (L L†)L , (2.45)

which can be verified using the polar decomposition, stating that we can always write
L = U |L| for some unitary operator U . An important example is the logarithm,
defined as log M = ∑

x :λx �=0 log λx |ex 〉〈ex |.
Let us in the following restrict our attention to thefinite-dimensional case.Notably,

trace functionals of the form M �→ Tr( f (M)) inherit continuity, monotonicity,
concavity and convexity from f (see, e.g., [34]). For example, for any monotonically
increasing continuous function f , we have

Tr( f (M)) ≤ Tr( f (N )) for all M, N ∈ P(A) with M ≤ N . (2.46)

7This convention is very useful to keep the presentation in the following chapters concise, but some
care is required. If limε→0 f (ε) �= 0, then M �→ f (M) is not necessarily continuous even if f is
continuous on its support.
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Table 2.2 Examples of operator monotone, concave and convex functions

Function Range Op. monotone Op. anti-monotone Op. convex Op. concave√
t [0,∞) Yes No No Yes

t2 [0,∞) No No Yes No
1
t (0,∞) No Yes Yes No

tα α ∈ [0, 1] α ∈ [−1, 0) α ∈ [−1, 0) ∪ [1, 2] α ∈ (0, 1]
log t (0,∞) Yes No No Yes

t log t [0,∞) No No Yes No

Note in particular that tα is neither operator monotone, convex nor concave for α < −1 and α > 2

Operator Monotone and Concave Functions

Here we discuss classes of functions that, when lifted to positive semi-definite oper-
ators, retain their defining properties. A function f : R+ → R is called operator
monotone if

M ≤ N =⇒ f (M) ≤ f (N ) for all M, N ≥ 0. (2.47)

If f is operator monotone then − f is operator anti-monotone. Furthermore, f is
called operator convex if

λ f (M) + (1 − λ) f (N ) ≥ f
(
λM + (1 − λ)N

)
for all M, N ≥ 0 (2.48)

and λ ∈ [0, 1]. If this holds with the inequality reversed, then the function is called
operator concave. These definitions naturally extend to functions f : (0,∞) → R,
where we consequently choose M, N > 0.

There exists a rich theory concerning such functions and their properties (see, for
example, Bhatia’s book [26]), but we will only mention a few prominent examples
in Table2.2 that will be of use later.

We say that a two-parameter function is jointly concave (jointly convex) if it is
concave (convex) when we take convex combinations of input tuples. Lieb [106] and
Ando [4] established the following extremely powerful result. The map

P(A) × P(B) → P(AB), (MA, NB) �→ f
(
MA ⊗ N−1

B

)
MA ⊗ IB (2.49)

is jointly convex on strictly positive operators if f : (0,∞) → R is operator
monotone. This is Ando’s convexity theorem [4]. In particular, we find that the
functional

(MA, NB) �→ 〈Ψ | K · (
MA ⊗ N−T

B′
)α−1

MA · K † |Ψ 〉B B′ = TrA(Mα
A K †N 1−α

B K )

(2.50)

for any K ∈ L (A, B) is jointly concave for α ∈ (0, 1) and jointly convex for
α ∈ (1, 2). The former is known as Lieb’s concavity theorem. Since this will be used
extensively, we include a derivation of this particular result in Appendix.
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2.6 Quantum Channels

Quantum channels are used to model the time evolution of physical systems. There
are two equivalent ways to model a quantum channel, and we will see that they are
intimately related. In the Schrödinger picture, the events are fixed and the state of a
system is time dependent. Consequently, we model evolutions as quantum channels
acting on the space of density operators. In the Heisenberg picture, the observable
events are time dependent and the state of a system is fixed, and we thus model
evolutions as adjoint quantum channels acting on events.

2.6.1 Completely Bounded Maps

Here, we introduce linear maps between bounded linear operators on different sys-
tems, and their adjoints, which map between functionals on different systems. For
later convenience, we use calligraphic letters to denote the latter maps, for example
E andF and use the adjoint notation for maps between bounded linear operators. The
action of a linear map on an operator in a tensor space is well-defined by linearity
via the decomposition in (2.29), and as for linear operators, we usually omit to make
this embedding explicit.

The set of completely bounded (CB) linear maps fromL (A) toL (B) is denoted
by CB(A, B). Completely bounded maps E† ∈ CB(A, B) have the defining prop-
erty that for any operator L AC ∈ L (AC) and any auxiliary system C , we have
‖E†(L AC )‖ < ∞.8 We then define the linear map E from T (A) to T (B) as the
adjoint map for some E† ∈ CB(B, A) via the sesquilinear form. Namely, E is defined
as the unique linear map satisfying

〈E(ξ), L〉 = 〈ξ,E†(L)〉 for all ξ ∈ T (A), L ∈ L (B). (2.51)

Clearly, E maps T (A) into T (B). Moreover, for any ξAC in T (AC), we have

‖E(ξAC )‖∗ = sup
{∣∣∣

〈
ξAC ,E†(L BC )

〉∣∣∣ : L BC ∈ L•(BC)
}

< ∞. (2.52)

So thesemaps are in fact completely bounded in the trace norm andwe collect them in
the set CB∗(A, B). Again, in finite dimensions CB(A, B) and CB∗(A, B) coincide.

8It is noteworthy that the weaker condition that the map be bounded, i.e. ‖E†(L A)‖ < ∞, is not
sufficient here and in particular does not imply that the map is completely bounded. In contrast,
bounded linear operators in L (A) are in fact also completely bounded in the above sense.



2.6 Quantum Channels 29

2.6.2 Quantum Channels

Physical channels necessarily map positive functionals onto positive functionals. A
map E ∈ CB∗(A, B) is called completely positive (CP) if it mapsS (AC) toS (BC)

for any auxiliary system C , namely if

〈E(ωAC ), MBC 〉 ≥ 0 for all ω ∈ S (AC), M ∈ P(BC). (2.53)

A map E is CP if and only if E† is CP, in the respective sense. The set of all CP maps
from T (A) to T (B) is denoted CP(A, B).

Physical channels in the Schrödinger picture are modeled by completely positive
trace-preserving maps, or quantum channels.

A quantum channel is a map E ∈ CP(A, B) that is trace-preserving, namely
a map that satisfies

Tr(E(ξ)) = Tr(ξ) for all ξ ∈ T (A). (2.54)

Naturally, such maps take states to states, more precisely, they map S◦(A) to
S◦(B) and S•(A) to S•(B). The corresponding adjoint quantum channel E† from
L (B) to L (A) in the Heisenberg picture is a completely positive and unital map,
namely it satisfies E†(IA) = IB . In fact, a map E is trace-preserving if and only if E†

is unital. Unital maps takeP•(B) toP•(A) and thus map events to events. Clearly,

Pr
E(ρ)

(M) = 〈E(ρ), M〉 =
〈
ρ,E†(M)

〉
= Pr

ρ

(
E†(M)

)
. (2.55)

Let us summarize some further notation:

• We denote the set of all completely positive trace-preserving (CPTP) maps from
T (A) to T (B) by CPTP(A, B).

• The set of all CP unital maps from L (A) toL (B) is denoted CPU(A, B).
• Finally, a map E ∈ CP(A, B) is called trace-non-increasing if Tr(E(ω)) ≤ Tr(ω)

for all ω ∈ S (A). A CP map is trace-non-increasing if and only if its adjoint is
sub-unital, i.e. it satisfies E†(IB) ≤ IA.

Some Examples of Channels

The simplest example of such a CP map is the conjugation with an operator L ∈
L (A, B), that is the map L : ξ �→ Lξ L†. We will often use the following basic
property of completely positive maps. Let E ∈ CP(A, B), then

ξ ≥ ζ =⇒ E(ξ) ≥ E(ζ ) for all ξ, ζ ∈ T (A). (2.56)
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As a consequence, we take note of the following property of positive semi-definite
operators. For any M ∈ P(A), ξ ∈ S (A), we have

Tr(ξ M) = Tr
(√

Mξ
√

M
) ≥ 0, (2.57)

where the last inequality follows from the fact that the conjugation with
√

M is a
completely positive map. In particular, if L , K ∈ L (A) satisfy L ≥ K , we find
Tr(ξ L) ≥ Tr(ξ K ).

An instructive example is the embedding map L A �→ L A ⊗ IB , which is com-
pletely bounded, CP and unital. Its adjoint map is the CPTP map TrB , the partial
trace, as we have seen in Sect. 2.4.1. Finally, for a POVM x �→ MA(x), we consider
the measurement map M ∈ CPTP(A, X) given by

M : ρA �→
∑

x

|x〉〈x | Tr(ρA MA(x)). (2.58)

This maps a quantum system into a classical system with a state corresponding to
the probability mass function ρ(x) = Tr(ρA MA(x)) that arises from Born’s rule. If
the events {MA(x)}x are rank-one projectors, then this map is also unital.

2.6.3 Pinching and Dephasing Channels

Pinching maps (or channels) constitute a particularly important class of quantum
channels that we will use extensively in our technical derivations. A pinching map
is a channel of the form P : L �→ ∑

x Px L Px where {Px }x , x ∈ [m] are orthogonal
projectors that sum up to the identity. Such maps are CPTP, unital and equal to their
own adjoints. Alternatively, we can see them as dephasing operations that remove
off-diagonal blocks of a matrix. They have two equivalent representations:

P(L) =
∑

x∈[m]
Px L Px = 1

m

∑
y∈[m]

Uy LU †
y , where Uy =

∑
x∈[m]

e
2π iyx

m Px (2.59)

are unitary operators. Note also that Um = I .
For any self-adjoint operator H ∈ L †(A) with eigenvalue decomposition H =∑
x λx |ex 〉〈ex |, we define the set spec(H) = {λx }x and its cardinality, | spec(H)|,

is the number of distinct eigenvalues of H . For each λ ∈ spec(H), we also define
Pλ = ∑

x :λx =λ |ex 〉〈ex | such that H = ∑
λ λPλ is its spectral decomposition. Then,

the pinching map for this spectral decomposition is denoted

PH : L �→
∑

λ∈spec(H)

Pλ L Pλ. (2.60)
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Clearly, PH (H) = H , PH (L) commutes with H , and Tr(PH (L)H) = Tr(L H).
For any M ∈ P(A), using the second expression in (2.59) and the fact that

Ux MU †
x ≥ 0, we immediately arrive at

PH (M) = 1

| spec(H)|
∑

y∈[m]
Uy MU †

y ≥ 1

| spec(H)| M. (2.61)

This is Hayashi’s pinching inequality [74].
Finally, if f is operator concave, then for every pinching P, we have

f (P(M)) = f

(
1

m

∑
x∈[m]

Ux MU †
x

)
≥ 1

m

∑
x∈[m]

f
(
Ux MU †

x

)
(2.62)

= 1

m

∑
x∈[m]

Ux f (M)U †
x = P( f (M)). (2.63)

This is a special case of the operator Jensen inequality established by Hansen and
Pedersen [71]. For all H ∈ L †(A), every operator concave function f defined on
the spectrum of H , and all unital maps E ∈ CPU(A, B), we have

f (E(H)) ≥ E( f (H)). (2.64)

2.6.4 Channel Representations

The following representations for trace non-increasing and trace preserving CPmaps
are of crucial importance in quantum information theory.

Kraus Operators

Every CP map can be represented as a sum of conjugations of the input [82, 83].
More precisely, E ∈ CP(A, B) if and only if there exists a set of linear operators
{Ek}k , Ek ∈ L (A, B) such that

E(ξ) =
∑

k

Ekξ Ek
† for all ξ ∈ T (A). (2.65)

Furthermore, such a channel is trace-preserving if and only if
∑

k Ek
†Ek = I , and

trace-non-increasing if and only if
∑

k Ek
†Ek ≤ I . The operators {Ek} are called

Kraus operators. Moreover, the adjoint E† of E is completely positive and has Kraus
operators {Ek

†} since

Tr
(
ξE†(L)

) = Tr
(
E(ξ)L

) = Tr
(
ξ

∑
k

Ek
†L Ek

)
. (2.66)
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Stinespring Dilation

Moreover, every CP map can be decomposed into its Stinespring dilation [147].
That is, E ∈ CP(A, B) if and only if there exists a system C and an operator L ∈
L (A, BC) such that

E(ξ) = TrC (Lξ L†) for all ξ ∈ T (A). (2.67)

Moreover, if E is trace-preserving then L = U , where U ∈ L•(A, BC) is an
isometry. If E is trace-non-increasing, then L = PU is an isometry followed by a
projection P ∈ P•(C).

Choi-Jamiolkowski Isomorphism

For finite-dimensional Hilbert spaces, the Choi-Jamiolkowski isomorphism [96]
between bounded linear maps from A to B and linear functionals on A′B is given by

Γ : T (T (A),T (B)) → T (A′B), E �→ γE
A′ B = E

( |Ψ 〉〈Ψ |A′ A
)
, (2.68)

where the stateγE
A′ B is called theChoi-Jamiolkowski state ofE. The inverse operation,

Γ −1, maps linear functionals to bounded linear maps

Γ −1 : γA′ B �→
{
Eγ : ρA �→ TrA′

(
γA′ B(IB ⊗ ρT

A′)
)}

, (2.69)

where the transpose is taken with regards to the Schmidt basis of Ψ .
There are various relations between properties of bounded linear maps and prop-

erties of the corresponding Choi-Jamiolkowski functionals, for example:

E is completely positive ⇔ γE
A′ B ≥ 0 (2.70)

E is trace-preserving ⇔ TrB(γE
A′ B) = IA′ (2.71)

E is unital ⇔ TrA′(γE
A′ B) = IB . (2.72)

2.7 Background and Further Reading

Nielsen and Chuang’s book [125] offers a good introduction to the quantum formal-
ism. Hayashi’s [75] and Wilde’s [174] books both also carefully treat the concepts
relevant for quantum information theory in finite dimensions. Finally,Holevo’s recent
book [88] offers a comprehensivemathematical introduction to quantum information
processing in finite and infinite dimensions.

Operator monotone functions and other aspects of matrix analysis are covered in
Bhatia’s books [26, 27], and Hiai and Petz’ book [87].
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