
Preface

Welcome to the world of High Performance Computing! Welcome to the world of
high performance Data Science!

In this textbook, we give an introduction to high performance computing (HPC
for short) for data science (DS). Therefore, this textbook is organized into two
parts: The first part (six chapters) covers the fundamentals of HPC while the second
part (five chapters) describes the basics of DS and shows how to write distributed
programs for the basic sequential algorithms in order to cope with large size
datasets. Nowadays, many large-scale datasets are publicly available, and these
datasets offer potentially a rich source of information that need to be purposely
extracted.

We mainly distinguish two ways to design parallel algorithms: (1) Parallelizing
algorithms on single multi-core shared memory machines using multi-threading, or
(2) Parallelizing algorithms on a cluster of machines with distributed memory.

On the one hand, when parallelizing algorithms on shared memory architectures
(like your smartphones, tablets, and very soon your smartwatches and other Internet
of Things, IoTs, too!), computing hardware units (cores) are located on the same
chip, and we can easily parallelize for example video decoding or rendering tasks
using multi-threading. This kind of parallelism is said fine-grained but it is limited
by the physical number of cores one can put on a chip (typically eight cores on a
high-end smartphone in 2015). On the other hand, clusters of machines (that are
distributed memory architectures) allow one to scale up resources on-the-fly
according to the dataset size. There is a lot of flexibility when building a cluster of
machines such as choosing heterogeneous computer nodes and deciding which
topology is best for interconnecting those nodes. This kind of parallelism is called
coarse-grained since bulks of local computations are performed independently on
the machines before communications take place between them.

This undergraduate textbook focuses on designing parallel algorithms on dis-
tributed memory by using the standard interface called Message passing interface
(MPI). MPI is the de facto standard to operate communications and global col-
laborative calculations between nodes of a cluster of machines. There exist several
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vendor implementations of MPI that can themselves be binded with several
programming languages such as C, C++, Fortran, Python, etc. We chose to use the
C++ oriented-object language for implementing data science algorithms and use the
C binding application programming interface (API) of OpenMPI to write parallel
programs.

The two parts of this book are described concisely as follows:

Part I Introduction to HPC with MPI. We start by giving a quick introduction to
the HPC world in Chap. 1, and describe both Amdalh’s law and
Gustafson’s law that characterize the theoretical optimal speed-up and
scaled speed-up.
Then we describe the main concepts of MPI and its programming
interface: We introduce the notions of blocking/non-blocking communi-
cations, deadlocks, and the various global communication routines (like
broadcast, scatter, gather, all-to-all, reduce, parallel prefix, etc.).
In Chap. 3, we emphasize on the role of the topology of the intercon-
nection network. We shall distinguish between the physical topology and
the virtual topology (or logical topology) that is considered when
designing parallel algorithms. In particular, we describe communication
procedures on the ring (including the optimized pipeline broadcasting)
and on the hypercube. The latter one relies on a particular numbering
of the nodes, called the Gray code.
In Chap. 4, we describe the main parallel algorithms for sorting on dis-
tributed memory. First, we naively parallelize the renowned Quicksort
algorithm, and then introduce HyperQuicksort and the PSRS procedure
(stands for parallel sorting by regular sampling) that is widely used in
practice.
In Chap. 5, we study a few algorithms for multiplying matrices and
vectors. We concisely explain the various techniques for computing
matrix products on the topologies of the ring and of the torus.
In Chap. 6, we introduce the hot paradigm of parallel programming called
“MapReduce” (that is often used with its open source counterpart called
Hadoop). MapReduce allows to handle a very large number of networked
computers (say, several thousands) by using programs that are built with
two main user-defined functions called map and reduce. But
MapReduce is also a full framework that includes a master–slave archi-
tecture that is able to take into consideration various hardware failures, or
to re-route parallel computation tasks (jobs) on other machines when some
machines become too slow (the so-called stragglers). We explain how to
program those types of MapReduce algorithms in MPI (MPI has
zero-fault tolerance) using a dedicated software library called MR-MPI.

Part II Introduction to Data Science. This part gives both a concise introduction
to data science and furthermore explains how to parallelize those
algorithms using MPI.
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First, we start by describing the two most fundamental data clustering
techniques that are flat partition-based clustering (in Chap. 7) and hier-
archical tree-like clustering (in Chap. 8). Clustering is a very fundamental
notion in exploratory data science for discovering classes in datasets,
groups of homogeneous data.
Then we consider supervised classification using the k-nearest neighbor
rule in Chap. 9 and make the connection with k-means.
In Chap. 10, we present yet another recent paradigm in computer science
that allows one to solve optimization problems approximately on large
datasets (potentially high-dimensional too!): That is, we seek core-sets
that are subsets of data that guarantee an overall good approximation on
the full datasets. This technique has become recently popular, and allows
us to scale down Big Data to Tiny Data! Since data are usually given in
high-dimension spaces, we also briefly explain a powerful technique to
perform effective linear dimension reduction by stating the Johnson–
Lindenstrauss’ theorem, and giving a short recipe to compute a
low-distortion embedding of data into a lower dimensional space that
preserves distances within a prescribed approximation factor.
Interestingly, the dimension of the embedding is independent of the
original extrinsic dimension but depends on logarithmically on the dataset
size and the approximation factor.
In the last Chap. 11, we cover a few algorithms on graphs. Graphs are
commonly encountered when performing social network analysis and in
other application fields. We introduce both a sequential heuristic and a
parallel heuristic to find a dense subgraph in a graph that is closed to the
“densest” subgraph. Finally, we explain the simple task of testing graph
isomorphism by branch-and-bound techniques on computer cluster.
Testing graph isomorphism is a remarkable problem since its theoretical
complexity is not yet settled (although some polynomial algorithms exist
for some specific subclasses of graphs).

At the end of each chapter, we summarize the essential points to remember. The
reader is invited to skim through these summaries for a first quick reading. Over 40+
exercises are given at the end of some of the chapters: These exercises are labeled
with various difficulty degrees and allow the reader to test his/her understanding
of the material covered. Sections that begin with an asterisk may be skipped and read
later on.

The main goal of this textbook is to allow you to design parallel algorithms and
then program your parallel algorithm using C++ with the C binding of MPI. The
second goal is to expose you to the richness of the fields of HPC and DS, and
hopefully to foster their interactions.

This undergraduate textbook has been written to be an introductory text on HPC
and DS. Only basic knowledge of algorithmics and programming abilities are
assumed. Therefore advanced notions in both HPC and DS fields are not covered
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nor mentioned. For example, task scheduling problems and automatic paralleliza-
tion of nested loops although important in HPC are not covered. Similarly,
regression techniques and kernel machine learning methods for the data science
field are omitted.

Happy Reading!

December 2015 Frank Nielsen
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