
CHAPTER 2

Primality Testing and Factoring

Chapter Goals

• To explain the basics of primality testing.
• To describe the most used primality-testing algorithm, namely Miller–Rabin.
• To examine the relationship between various mathematical problems based on factoring.
• To explain various factoring algorithms.
• To sketch how the most successful factoring algorithm works, namely the Number Field
Sieve.

2.1. Prime Numbers

The generation of prime numbers is needed for almost all public key algorithms, for example

• In the RSA encryption or the Rabin encryption system we need to find primes p and q to
compute the public key N = p · q.

• In ElGamal encryption we need to find primes p and q with q dividing p− 1.
• In the elliptic curve variant of ElGamal we require an elliptic curve over a finite field, such
that the order of the elliptic curve is divisible by a large prime q.

Luckily we shall see that testing a number for primality can be done very fast using very simple
code, but with an algorithm that has a probability of error. By repeating this algorithm we can
reduce the error probability to any value that we require.

Some of the more advanced primality-testing techniques will produce a certificate which can
be checked by a third party to prove that the number is indeed prime. Clearly one requirement
of such a certificate is that it should be quicker to verify than it is to generate. Such a primality-
testing routine will be called a primality-proving algorithm, and the certificate will be called a proof
of primality. However, the main primality-testing algorithm used in cryptographic systems only
produces certificates of compositeness and not certificates of primality.

For many years this was the best that we could do; i.e. either we could use a test which had a
small chance of error, or we spent a lot of time producing a proof of primality which could be checked
quickly. However, in 2002 Agrawal, Kayal and Saxena presented a deterministic polynomial-time
primality test thus showing that the problem of determining whether a number was prime was
in the complexity class P. However, the so-called AKS Algorithm is not used in practice as the
algorithms which have a small error are more efficient and the error can be made vanishingly small
at little extra cost.

2.1.1. The Prime Number Theorem: Before discussing these algorithms, we need to look at
some basic heuristics concerning prime numbers. A famous result in mathematics, conjectured by
Gauss after extensive calculation in the early 1800s, is the Prime Number Theorem:

27© Springer International Publishing Switzerland 2016
N.P. Smart, Cryptography Made Simple, Information Security and Cryptography, DOI 10.1007/978-3-319-21936-3_2

28 2. PRIMALITY TESTING AND FACTORING

Theorem 2.1 (Prime Number Theorem). The function π(X) counts the number of primes less
than X, where we have the approximation

π(X) ≈ X

logX
.

This means primes are quite common. For example, the number of primes less than 21024 is about
21014. The Prime Number Theorem also allows us to estimate the probability of a random number
being prime: if p is a number chosen at random then the probability it is prime is about

1

log p
.

So a random number p of 1024 bits in length will be a prime with probability

≈ 1

log p
≈ 1

709
.

So on average we need to select 354 odd numbers of size 21024 before we find one which is prime.
Hence, it is practical to generate large primes, as long as we can test primality efficiently.

2.1.2. Trial Division: The naive test for testing a number p to be prime is one of trial division.
We essentially take all numbers between 2 and

√
p and see whether one of them divides p, if not

then p is prime. If such a number does divide p then we obtain the added bonus of finding a factor
of the composite number p. Hence, trial division has the advantage (compared with more advanced
primality-testing/proving algorithms) that it either determines that p is a prime, or determines a
non-trivial factor of p.

However, primality testing by using trial division is a terrible strategy. In the worst case, when
p is a prime, the algorithm requires

√
p steps to run, which is an exponential function in terms of

the size of the input to the problem. Another drawback is that it does not produce a certificate
for the primality of p, in the case when the input p is prime. When p is not prime it produces a
certificate which can easily be checked to prove that p is composite, namely a non-trivial factor of
p. But when p is prime the only way we can verify this fact again (say to convince a third party)
is to repeat the algorithm once more.

Despite its drawbacks, however, trial division is the method of choice for numbers which are very
small. In addition, partial trial division up to a bound Y is able to eliminate all but a proportion∏

p<Y

(
1− 1

p

)

of all composites. This method of eliminating composites is very old and is called the Sieve of
Eratosthenes. Naively this is what we would always do, since we would never check an even
number greater than two for primality, since it is obviously composite. Hence, many primality-
testing algorithms first do trial division with all primes up to say 100, so as to eliminate all but the
proportion ∏

p<100

(
1− 1

p

)
≈ 0.12

of composites.

2.1.3. Fermat’s Test: Most advanced probabilistic algorithms for testing primality make use of
the converse to Fermat’s Little Theorem. Recall Lagrange’s Theorem from Chapter 1; this said
that if G is a multiplicative group of size #G then

a#G = 1

2.1. PRIME NUMBERS 29

for all values a ∈ G. So if G is the group of integers modulo n under multiplication then

aφ(n) = 1 (mod n)

for all a ∈ (Z/nZ)∗. Fermat’s Little Theorem is the case where n = p is prime, in which case the
above equality becomes

ap−1 = 1 (mod p).

So if n is prime we have that

an−1 = 1 (mod n)

always holds, whilst if n is not prime then we have that

an−1 = 1 (mod n)

is “unlikely” to hold.
Since computing an−1 (mod n) is a very fast operation (see Chapter 6) this gives us a very fast

test for compositeness called the Fermat Test to the base a. Running the Fermat Test can only
convince us of the compositeness of n. It can never prove to us that a number is prime, only that
it is not prime.

To see why it does not prove primality consider the case n = 11 · 31 = 341 and the base a = 2:
we have

an−1 = 2340 = 1 (mod 341).

but n is clearly not prime. In such a case we say that n is a (Fermat) pseudo-prime to the base 2.
There are infinitely many pseudo-primes to any given base. It can be shown that if n is composite
then, with probability greater than 1/2, we obtain

an−1 �= 1 (mod n).

This gives us Algorithm 2.1 to test n for primality. If Algorithm 2.1 outputs (Composite, a) then

Algorithm 2.1: Fermat’s test for primality

for i = 0 to k − 1 do
Pick a ∈ [2, ..., n− 1].

b ← an−1 mod n.

if b �= 1 then return (Composite, a).

return “Probably Prime”.

we know

• n is definitely a composite number,
• a is a witness for this compositeness, in that we can verify that n is composite by using
the value of a.

If the above algorithm outputs “Probably Prime” then

• n is a composite with probability at most 1/2k,
• n is either a prime or a so-called probable prime.

For example if we take

n = 43 040 357,

then n is a composite, with one witness given by a = 2 since

2n−1 (mod n) = 9 888 212.

As another example take

n = 2192 − 264 − 1,

30 2. PRIMALITY TESTING AND FACTORING

then the algorithm outputs “Probably Prime” since we cannot find a witness for compositeness.
Actually this n is a prime, so it is not surprising we did not find a witness for compositeness!

However, there are composite numbers for which the Fermat Test will always output

“Probably Prime”

for every a coprime to n. These numbers are called Carmichael numbers, and to make things worse
there are infinitely many of them. The first three are 561, 1105 and 1729. Carmichael numbers
have the following properties

• They are always odd.
• They have at least three prime factors.
• They are square free.
• If p divides a Carmichael number N , then p− 1 divides N − 1.

To give you some idea of their density, if we look at all numbers less than 1016 then there are about
2.7 ·1014 primes in this region, but only 246 683 ≈ 2.4 ·105 Carmichael numbers. Hence, Carmichael
numbers are rare, but not rare enough to be ignored completely.

2.1.4. Miller–Rabin Test: Due to the existence of Carmichael numbers the Fermat Test is usu-
ally avoided. However, there is a modification of the Fermat Test, called the Miller–Rabin Test,
which avoids the problem of composites for which no witness exists. This does not mean it is easy
to find a witness for each composite, it only means that a witness must exist. In addition the
Miller–Rabin Test has probability of 1/4 of accepting a composite as prime for each random base
a, so again repeated application of the algorithm leads us to reduce the error probability down to
any value we care to mention.

The Miller–Rabin Test is given by the pseudo-code in Algorithm 2.2. We do not show that the
Miller–Rabin Test works. If you are interested in the reason see any book on algorithmic number
theory for the details, for example that by Cohen or Bach and Shallit mentioned in the Further
Reading section of this chapter. Just as with the Fermat Test, we repeat the method k times with
k different bases, to obtain an error probability of 1/4k if the algorithm always returns “Probably
Prime”. Hence, we expect that the Miller–Rabin Test will output “Probably Prime” for values of
k ≥ 20 only when n is actually a prime.

Algorithm 2.2: Miller–Rabin algorithm

Write n− 1 = 2s ·m, with m odd.

for j = 0 to k − 1 do
Pick a ∈ [2, ..., n− 2].

b ← am mod n.

if b �= 1 and b �= (n− 1) then
i ← 1.

while i < s and b �= (n− 1) do
b ← b2 mod n.

if b = 1 then return (Composite, a).

i ← i+ 1.

if b �= (n− 1) then return (Composite, a).

return “Probable Prime”.

If n is a composite then the value of a output by Algorithm 2.2 is called a Miller–Rabin witness
for the compositeness of n, and under the Generalized Riemann Hypothesis (GRH), a conjecture

2.1. PRIME NUMBERS 31

believed to be true by most mathematicians, there is always a Miller–Rabin witness a for the
compositeness of n with

a ≤ O((log n)2).

2.1.5. Primality Proofs: Up to now we have only output witnesses for compositeness, and we
can interpret such a witness as a proof of compositeness. In addition we have only obtained probable
primes, rather than numbers which are one hundred percent guaranteed to be prime. In practice
this seems to be all right, since the probability of a composite number passing the Miller–Rabin
Test for twenty bases is around 2−40 which should never really occur in practice. But theoretically
(and maybe in practice if we are totally paranoid) this could be a problem. In other words we may
want real primes and not just probable ones.

There are algorithms whose output is a witness for the primality of the number. Such a witness
is called a proof of primality. In practice such programs are only used when we are morally certain
that the number we are testing for primality is actually prime. In other words the number has
already passed the Miller–Rabin Test for a number of bases and all we now require is a proof of
the primality.

The most successful of these primality-proving algorithms is one based on elliptic curves called
ECPP (for Elliptic Curve Primality Prover). This itself is based on an older primality-proving
algorithm based on finite fields due to Pocklington and Lehmer; the elliptic curve variant is due
to Goldwasser and Kilian. The ECPP algorithm is a randomized algorithm which is not mathe-
matically guaranteed to always produce an output, i.e. a witness, even when the input is a prime
number. If the input is composite then the algorithm is not guaranteed to terminate at all. Al-
though ECPP runs in expected polynomial time, i.e. it is quite efficient, the proofs of primality it
produces can be deterministically verified even faster.

There is an algorithm due to Adleman and Huang which, unlike the ECPP method, is guar-
anteed to terminate with a proof of primality on input of a prime number. It is based on a
generalization of elliptic curves called hyperelliptic curves and has never (to my knowledge) been
implemented. The fact that it has never been implemented is not only due to the far more com-
plicated mathematics involved, but is also due to the fact that while the hyperelliptic variant is
mathematically guaranteed to produce a proof, the ECPP method will always do so in practice for
less work effort.

2.1.6. AKS Algorithm: The Miller–Rabin Test is a randomized primality-testing algorithm
which runs in polynomial time. It can be made into a deterministic polynomial-time algorithm, but
only on the assumption that the Generalized Riemann Hypothesis is true. The ECPP algorithm
and its variants are randomized algorithms and are expected to have polynomial-time run-bounds,
but we cannot prove they do so on all inputs. Thus for many years it was an open question whether
we could create a primality-testing algorithm which ran in deterministic polynomial time, and prov-
ably so on all inputs without needing to assume any conjectures. In other words, the question was
whether the problem PRIMES is in complexity class P?

In 2002 this was answered in the affirmative by Agrawal, Kayal, and Saxena. The test they
developed, now called the AKS Primality Test, makes use of the following generalization of Fermat’s
test. In the theorem we are asking whether two polynomials of degree n are the same. Taking this
basic theorem, which is relatively easy to prove, and turning it into a polynomial-time test was a
major breakthrough. The algorithm itself is given in Algorithm 2.3. In the algorithm we use the
notation F (X) (mod G(X), n) to denote taking the reduction of F (X) modulo both G(X) and n.

Theorem 2.2. An integer n ≥ 2 is prime if and only if the relation

(X − a)n = (Xn − a) (mod n)

holds for some integer a coprime to n; or indeed all integers a coprime to n.

32 2. PRIMALITY TESTING AND FACTORING

Algorithm 2.3: AKS primality-testing algorithm

if n = ab for some integers a and b then return “Composite”.

Find the smallest r such that the order of n modulo r is greater than (logn)2.

if ∃a ≤ r such that 1 < gcd(a, n) < n then return “Composite”.

if n ≤ r then return “Prime”.

for a = 1 to

√

φ(r) · log(n)� do
if (X + a)n �= Xn + a (mod Xr − 1, n) then return “Composite”

return Prime

2.2. The Factoring and Factoring-Related Problems

The most important one-way function used in public key cryptography is that of factoring integers.
By factoring an integer we mean finding its prime factors, for example

10 = 2 · 5,
60 = 22 · 3 · 5,

2113 − 1 = 3391 · 23 279 · 65 993 · 1 868 569 · 1 066 818 132 868 207.
There are a number of other hard problems related to factoring which can be used to produce
public key cryptosystems. Suppose you are given an integer N , which is known to be the product
of two large primes, but not its factors p and q. There are four main problems which we can try to
solve:

• FACTOR: Find p and q.
• RSA: Given e such that

gcd (e, (p− 1)(q − 1)) = 1

and c, find m such that

me = c (mod N).

• SQRROOT: Given a such that

a = x2 (mod N),

find x.
• QUADRES: Given a ∈ JN , determine whether a is a square modulo N .

A

p, q ← {v/2-bit primes}
N ← p · q �

p′, q′ �

Win if p′ · q′ = N

and p′, q′ �= N

Figure 2.1. Security game to define the FACTOR problem

In Chapter 11, we use so-called security games to define security for cryptographic components.
These are abstract games played between an adversary and a challenger. The idea is that the
adversary needs to achieve some objective given only the data provided by the challenger. Such
games tend to be best described using pictures, where the challenger (or environment) is listed
on the outside and the adversary is presented as a box. The reason for using such diagrams will

2.2. THE FACTORING AND FACTORING-RELATED PROBLEMS 33

become clearer later when we consider security proofs, but for now they are simply going to be
used to present security definitions.

A

p, q ← {v/2-bit primes}
N ← p · q
e, d ← Z s.t. e · d = 1 (mod φ(N))

y ← (Z/NZ)∗

N, e, y �

x �

Win if xe = y (mod N)

Figure 2.2. Security game to define the RSA problem

So for example, we could imagine a game which defines the problem of an adversary A trying
to factor a challenge number N as in Figure 2.1. The challenger comes up with two secret prime
numbers, multiplies them together and sends the product to the adversary. The adversary’s goal
is to find the original prime numbers. Similarly we can define games for the RSA and SQRROOT
problems, which we give in Figures 2.2 and 2.3.

A

p, q ← {v/2-bit primes}
N ← p · q
a ← QN

N, a �

x �

Win if x2 (mod N) = a

Figure 2.3. Security game to define the SQRROOT problem

In all these games we define the advantage of a specific adversary A to be a function of the
time t which the adversary spends trying to solve the input problem. For the Factoring, RSA and
SQRROOT games it is defined as the probability (defined over the random choices made by A)
that the adversary wins the game given that it runs in time bounded by t (we are not precise on
what units t is measured in). We write

AdvXv (A, t) = Pr[A wins the game X for v = log2N in time less than t].

If the adversary is always successful then the advantage will be one, if the adversary is never
successful then the advantage will be zero.

In the next section we will see that there is a trivial algorithm which always factors a number
in time

√
N . So we know that there is an adversary A such that

AdvFACTOR
v (A, 2v/2) = 1.

However if t is any polynomial function p1 of v = log2N then we expect that there is no efficient
adversary A, and hence for such t we will have

AdvFACTOR
v (A, p1(v)) <

1

p2(v)
,

for any polynomial p2(x) and for all adversaries A. A function which grows less quickly than
1/p2(x) for any polynomial function of p2(x) is said to be negligible, so we say the advantage of

34 2. PRIMALITY TESTING AND FACTORING

solving the factoring problem is negligible. Note that, even if the game was played again and again
(but a polynomial in v number of times), the adversary would still obtain a negligible probability
of winning since a negligible function multiplied by a polynomial function is still negligible.

In the rest of this book we will drop the time parameter from the advantage statement and
implicitly assume that all adversaries run in polynomial time; thus we simply write AdvXY (A),

AdvFACTOR
v (A), AdvRSAv (A) and AdvSQRROOT

v (A). We call the subscript the problem class; in the
above this is the size v of the composite integers, in Chapter 3 it will be the underlying abelian
group. The superscript defines the precise game which the adversary A is playing.

A game X for a problem class Y is said to be hard if the advantage is a negligible function for
all polynomial-time adversaries A. The problem with this definition is that the notion of negligible
is asymptotic, and when we consider cryptosystems we usually talk about concrete parameters; for
example the fixed size of integers which are to be factored.

Thus, instead, we will deem a class of problems Y to be hard if for all polynomial-time ad-
versaries A, the advantage AdvXY (A) is a very small value ε; think of ε as being 1/2128 or some
such number. This means that even if the run time of the adversary was one time unit, and we
repeatedly ran the adversary a large number of times, the advantage that the adversary would gain
would still be very very small. In this chapter we leave aside the issue of how small “small” is, but
in later chapters we examine this in more detail.

The QUADRES problem is a little different as we need to define the probability distribution
from which the challenge numbers a come. The standard definition is for the challenger to pick a
to be a quadratic residue with probability 1/2. In this way the adversary has a fifty-fifty chance of
simply guessing whether a is a quadratic residue or not. We present the game in Figure 2.4.

A

p, q ← {v/2-bit primes}
N ← p · q
If b = 0 then a ← QN

If b = 1 then a ← JN \QN

N, a �

b′ �

Win if b = b′

Figure 2.4. Security game to define the QUADRES problem

When defining the advantage for the QUADRES problem we need to be a bit careful, as the
adversary can always win with probability one half by simply just guessing the bit b at random.
Instead of using the above definition of advantage (i.e. the probability that the adversary wins the
game), we use the definition

AdvQUADRES
v (A) = 2 ·

∣∣∣∣Pr[A wins the QUADRES game for v = log2N]− 1

2

∣∣∣∣ .
Notice that, with this definition, if the adversary just guesses the bit with probability 1/2 then its
advantage is zero as we would expect, since 2 · |1/2− 1/2| = 0. If however the adversary is always
right, or indeed always wrong, then the advantage is one, since 2 · |1−1/2| = 2 · |0−1/2| = 1. Thus
the advantage is normalized to lie between zero and one, like in the earlier games, with one being
always successful and zero being no better than random.

We call this type of game a decision game as the adversary needs to decide which situation it
is being placed in. We can formulate the advantage statement for decision games in another way,
as the following lemma explains.

2.2. THE FACTORING AND FACTORING-RELATED PROBLEMS 35

Lemma 2.3. Let A be an adversary in the QUADRES game. Then, if b′ is the bit chosen by A
and b is the bit chosen by the challenger in the game, we have

AdvQUADRES
v (A) =

∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣ .

Proof. The proof is a straightforward application of definitions of probabilities:

AdvQUADRES
v (A) = 2 ·

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[b′ = 1 and b = 1] + Pr[b′ = 0 and b = 0]− 1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[b′ = 1|b = 1] · Pr[b = 1] + Pr[b′ = 0|b = 0] · Pr[b = 0]− 1

2

∣∣∣∣
= 2 ·

∣∣∣∣Pr[b′ = 1|b = 1] · 1
2
+ Pr[b′ = 0|b = 0] · 1

2
− 1

2

∣∣∣∣
=

∣∣∣Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0]− 1
∣∣∣

=
∣∣∣Pr[b′ = 1|b = 1] +

(
1− Pr[b′ = 1|b = 0]

)
− 1

∣∣∣
=

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣.

�

To see how this Lemma works consider the case when A is a perfect adversary, i.e. it wins the
QUADRES game all the time. In this case we have Pr[A wins] = 1, and the advantage is equal
to 2 · |1 − 1/2| = 1 by definition. However, in this case we also have Pr[b′ = 1|b = 1] = 1 and
Pr[b′ = 1|b = 0] = 0. Hence, the formula from the Lemma holds. Now examine what happens
when A just returns a random result. We obtain Pr[A wins] = 1/2, and the advantage is equal to
2 · |1/2− 1/2| = 0. The Lemma gives the same result as Pr[b′ = 1|b = 1] = Pr[b′ = 1|b = 0] = 1/2.

When giving these problems it is important to know how they are related. We relate them by
giving complexity-theoretic reductions from one problem to another. This allows us to say that
“Problem B is no harder than Problem A”. Assuming an oracle (or efficient subroutine) to solve
Problem A, we create an efficient algorithm for Problem B. The algorithms which perform these
reductions should be efficient, in that they run in polynomial time, where we treat each oracle
query as a single time unit.

We can also show equivalence between two problems A and B, by showing an efficient reduction
from A to B and an efficient reduction from B to A. If the two reductions are both polynomial-time
reductions then we say that the two problems are polynomial-time equivalent. The most important
result of this form for our factoring related problems is the following.

Theorem 2.4. The FACTOR and SQRROOT problems are polynomial-time equivalent.

The next two lemmas present reductions in both directions. By examing the proofs it is easy to see
that both of the reductions can be performed in expected polynomial time. Hence, the problems
FACTOR and SQRROOT are polynomial-time equivalent. First, in the next lemma, we show how
to reduce SQRROOT to FACTOR; if there is no algorithm which can solve SQRROOT then there
is no algorithm to solve FACTOR.

Lemma 2.5. If A is an algorithm which can factor integers of size v, then there is an efficient
algorithm B which can solve SQRROOT for integers of size v. In particular

AdvFACTOR
v (A) = AdvSQRROOT

v (B).

36 2. PRIMALITY TESTING AND FACTORING

Proof. Assume we are given a factoring algorithm A; we wish to show how to use this to extract
square roots modulo a composite number N . Namely, given

a = x2 (mod N)

we wish to compute x. First we factor N into its prime factors p1, p2, . . . , pk, using the factoring
oracle A. Then we compute

si ←
√
a (mod pi) for 1 ≤ i ≤ k.

This can be done in expected polynomial time using Shanks’ Algorithm (Algorithm 1.3 from Chap-
ter 1). Then we compute the value of x using the Chinese Remainder Theorem on the data

(s1, p1), . . . , (sk, pk).

We have to be a little careful if powers of pi greater than one divide N . However, this is easy to
deal with and will not concern us here, since we are mainly interested in integers N which are the
product of two primes. Hence, finding square roots modulo N is no harder than factoring.

The entire proof can be represented diagramatically in terms of our game diagrams as in Figure
2.5; where we have specialized the game to one of integers N which are the product of two prime
factors.

B

p, q ← {v/2-bit primes}
N ← p · q
a ← QN

N �

a �

x �

A

�

��

�

�

�

p, q

sp ←
√
a (mod p)

By Shanks’ Algorithm

sq ←
√
a (mod q)

By Shanks’ Algorithm

x ← CRT ({sp, p}, {sq, q})�

Figure 2.5. Constructing an algorithm B to solve SQRROOT from an algorithm
A to solve FACTOR

�

We now show how to reduce FACTOR to SQRROOT; if there is no algorithm which can solve
FACTOR then there is no algorithm to solve SQRROOT.

Lemma 2.6. Let A be an algorithm which can solve SQRROOT for integers of size v; then there
is an efficient algorithm B which can factor integers of size v. In particular for N a product of two
primes we have

AdvSQRROOT
v (A) = 2 ·AdvFACTOR

v (B).

The proof of this result contains an important tool used in the factoring algorithms of the next
section, namely the construction of a difference of two squares.

Proof. Assume we are given an algorithm A for extracting square roots modulo a composite
number N . We shall assume for simplicity that N is a product of two primes, which is the most
difficult case. The general case is only slightly more tricky mathematically, but it is computationally

2.2. THE FACTORING AND FACTORING-RELATED PROBLEMS 37

easier since factoring numbers with three or more prime factors is usually easier than factoring
numbers with two prime factors.

We wish to use our algorithm A for the problem SQRROOT to factor the integer N into its
prime factors, i.e. given N = p · q we wish to compute p. First we pick a random x ∈ (Z/NZ)∗ and
compute

a ← x2 (mod N).

Now we compute

y ←
√
a (mod N)

using the SQRROOT algorithm. There are four such square roots, since N is a product of two
primes. With fifty percent probability we obtain

y �= ±x (mod N).

If we do not obtain this inequality then we abort.
We now assume that the inequality holds, but we note that we have the equality x2 = y2

(mod N). It is then easy to see that N divides

x2 − y2 = (x− y)(x+ y).

But N does not divide either x− y or x+ y, since y �= ±x (mod N). So the factors of N must be
distributed over x− y and x+ y. This means we can obtain a non-trivial factor of N by computing
gcd(x− y,N)

It is because of the above fifty percent probability that we get a factor of two in our advantage
statement, since B is only successful if A is successful and we obtain y �= ±x (mod N). Thus
Pr[B wins] = Pr[A wins]/2. Diagrammatically we represent this reduction in Figure 2.6.

B

p, q ← {v/2-bit primes}
N ← p · q
N �

p �

A

�

x ← (Z/NZ)∗

a ← x2 (mod N) �

�y

If y = ±x (mod N) then abort

p ← gcd(x− y,N)�

Figure 2.6. Constructing an algorithm B to solve FACTOR from an algorithm A
to solve SQRROOT

�

Before leaving the problem SQRROOT, note that QUADRES is easier than SQRROOT, since
an algorithm to compute square roots modulo N can trivially be used to determine quadratic
residuosity.

Finally we end this section by showing that the RSA problem can be reduced to FACTOR.
Recall the RSA problem is given c = me (mod N), find m. There is some evidence, although slight,
that the RSA problem may actually be easier than FACTOR for some problem instances. It is a
major open question as to how much easier it is.

38 2. PRIMALITY TESTING AND FACTORING

Lemma 2.7. The RSA problem is no harder than the FACTOR problem. In particular, if A is
an algorithm which can solve FACTOR for integers of size v, then there is an efficient algorithm
B which can solve the RSA problem for integers of size v. In particular for N a product of two
primes we have

AdvFACTOR
v (A) = AdvRSAv (B).

Proof. Using the factoring algorithm A we first find the factorization of N . We can now compute
Φ = φ(N) and then compute

d ← 1/e (mod Φ).

Once d has been computed it is easy to recover m via

cd = me·d = m1 (mod Φ) = m (mod N),

with the last equality following by Lagrange’s Theorem, Theorem 1.4. Hence, the RSA problem is
no harder than FACTOR. We leave it to the reader to present a diagram of this reduction similar
to the ones above. �

2.3. Basic Factoring Algorithms

Finding factors is an expensive computational operation. To measure the complexity of algorithms
to factor an integer N we often use the function

LN (α, β) = exp
(
(β + o(1))(logN)α(log logN)1−α

)
.

Note that

• LN (0, β) = (logN)β+o(1), i.e. essentially polynomial time,

• LN (1, β) = Nβ+o(1), i.e. essentially exponential time.

So in some sense, the function LN (α, β) interpolates between polynomial and exponential time. An
algorithm with complexity O(LN (α, β)) for 0 < α < 1 is said to have sub-exponential behaviour.
Note that multiplication, which is the inverse algorithm to factoring, is a very simple operation
requiring time less than O(LN (0, 2)).

There are a number of methods to factor numbers of the form

N = p · q.
For now we just summarize the most well-known techniques.

• Trial Division: Try every prime number up to
√
N and see whether it is a factor of N .

This has complexity LN (1, 1), and is therefore an exponential algorithm.
• Elliptic Curve Method: This is a very good method if p < 250; its complexity is
Lp(1/2, c), for some constant c, which is a sub-exponential function. Note that the com-
plexity is given in terms of the size of the smallest unknown prime factor p. If the number
is a product of two primes of very unequal size then the elliptic curve method may be the
best at finding the factors.

• Quadratic Sieve: This is probably the fastest method for factoring integers that have
between 80 and 100 decimal digits. It has complexity LN (1/2, 1).

• Number Field Sieve: This is currently the most successful method for numbers with
more than 100 decimal digits. It has factored numbers of size 10155 ≈ 2512 and has
complexity LN (1/3, 1.923).

Factoring methods are usually divided into Dark Age methods such as

• Trial division,
• p− 1 method,
• p+ 1 method,
• Pollard rho method,

and modern methods such as

2.3. BASIC FACTORING ALGORITHMS 39

• Continued Fraction Method (CFRAC),
• Quadratic Sieve (QS),
• Elliptic Curve Method (ECM),
• Number Field Sieve (NFS).

We do not have space to discuss all of these in detail so we shall look at a couple of Dark Age
methods and explain the main ideas behind some of the modern methods.

2.3.1. Trial Division: The most elementary algorithm is trial division, which we have already
met in the context of testing primality. Suppose N is the number we wish to factor; we proceed as
described in Algorithm 2.4. A moment’s thought reveals that trial division takes time at worst

O(
√
N) = O

(
2(log2 N)/2

)
.

The input size to the algorithm is of size log2N , hence this complexity is exponential. But just
as in primality testing, we should not ignore trial division. It is usually the method of choice for
numbers less than 1012.

Algorithm 2.4: Factoring via trial division

for p = 2 to
√
N do

e ← 0.

if (N mod p) = 0 then
while (N mod p) = 0 do

e ← e+ 1.

N ← N/p.

output (p, e).

2.3.2. Smooth Numbers: For larger numbers we would like to improve on the trial division
algorithm. Almost all other factoring algorithms make use of other auxiliary numbers called smooth
numbers. Essentially a smooth number is one which is easy to factor using trial division; the
following definition makes this more precise.

Definition 2.8 (Smooth Number). Let B be an integer. An integer N is called B-smooth if every
prime factor p of N is less than B.

For example
N = 278 · 389 · 113

is 12-smooth. Sometimes we say that the number is just smooth if the bound B is small compared
with N . The number of y-smooth numbers which are less than x is given by the function ψ(x, y).
This is a rather complicated function which is approximated by

ψ(x, y) ≈ xρ(u)

where ρ is the Dickman–de Bruijn function and

u =
log x

log y
.

The Dickman–de Bruijn function ρ is defined as the function which satisfies the following differential-
delay equation

u · ρ′(u) + ρ(u− 1) = 0,

for u > 1. In practice we approximate ρ(u) via the expression

ρ(u) ≈ u−u,

40 2. PRIMALITY TESTING AND FACTORING

which holds as u → ∞. This leads to the following result, which is important in analysing advanced
factoring algorithms.

Theorem 2.9. The proportion of integers less than x which are x1/u-smooth is asymptotically
equal to u−u.

Now if we set y = LN (α, β) then

u =
logN

log y

=
1

β

(
logN

log logN

)1−α

.

Hence, we can show

1

N
ψ(N, y) ≈ u−u

= exp(−u · log u)

≈ 1

LN (1− α, γ)
,

for some constant γ.
Suppose we are looking for numbers less than N which are LN (α, β)-smooth. The probability

that any number less than N is actually LN (α, β)-smooth is, as we have seen, given by 1/LN (1−
α, γ). This explains intuitively why some of the modern method complexity estimates for factoring
are around LN (0.5, c), since to balance the smoothness bound against the probability estimate we
take α = 1

2 . The Number Field Sieve only obtains a better complexity estimate by using a more
mathematically complex algorithm.

We shall also require, in discussing our next factoring algorithm, the notion of a number being
B-power smooth:

Definition 2.10 (Power Smooth). A number is said to be B-power smooth if every prime power
dividing N is less than B.

For example N = 25 · 33 is 33-power smooth.

2.3.3. Pollard’s P − 1 Method: The most famous name in factoring algorithms in the late
twentieth century was John Pollard. Almost all the important advances in factoring were made by
him, for example

• The P − 1 method,
• The Rho-method,
• The Number Field Sieve.

In this section we discuss the P − 1 method and in a later section we consider the Number Field
Sieve method.

Suppose the number we wish to factor is given by N = p · q. In addition suppose we know (by
some pure guess) an integer B such that p − 1 is B-power smooth, but that q − 1 is not B-power
smooth. We can then hope that p− 1 divides B!, but q − 1 is unlikely to divide B!.

Suppose that we compute

a ← 2B! (mod N).

Imagine that we could compute this modulo p and modulo q, we would then have

a = 1 (mod p),

since

• p− 1 divides B!,
• ap−1 = 1 (mod p) by Fermat’s Little Theorem.

2.3. BASIC FACTORING ALGORITHMS 41

Algorithm 2.5: Pollard’s P − 1 factoring method

a ← 2.

for j = 2 to B do
a ← aj mod N .

p ← gcd(a− 1, N).

if p �= 1 and p �= N then return “p is a factor of N”.

else return “No Result”.

But it is unlikely that we would have a = 1 (mod q). Hence,

• p will divide a− 1,
• q will not divide a− 1.

We can then recover p by computing p = gcd(a− 1, N), as in Algorithm 2.5
As an example, suppose we wish to factor N = 15 770 708 441. We take B = 180 and running

the above algorithm we obtain

a = 2B! (mod N) = 1 162 022 425.

Then we obtain
p = gcd(a− 1, N) = 135 979.

To see why this works in this example we see that the prime factorization of N is given by

N = 135 979 · 115 979
and we have

p− 1 = 135 978− 1 = 2 · 3 · 131 · 173,
q − 1 = 115 978− 1 = 2 · 103 · 563.

Hence p− 1 is indeed B-power smooth, whilst q − 1 is not B-power smooth.
One can show that the complexity of the P − 1 method is given by

O(B · logB · (logN)2 + (logN)3).

So if we choose B = O((logN)i), for some integer i, then this is a polynomial-time factoring
algorithm, but it only works for numbers of a special form.

Due to the P − 1 method we often see it recommended that RSA primes are chosen to satisfy

p− 1 = 2 · p1 and q − 1 = 2 · q1,
where p1 and q1 are both primes. In this situation the primes p and q are called safe primes. For
a random 1024-bit prime p the probability that p − 1 is B-power smooth, for a small value of B,
is very small. Hence, choosing random 1024-bit primes would in all likelihood render the P − 1
method useless, and so choosing p to be a safe prime is not really needed.

2.3.4. Difference of Two Squares: A basic trick in factoring algorithms, known for many cen-
turies, is to produce two numbers x and y, of around the same size as N , such that

x2 = y2 (mod N).

Since then we have
x2 − y2 = (x− y) · (x+ y) = 0 (mod N).

If N = p · q then we have four possible cases

(1) p divides x− y and q divides x+ y.
(2) p divides x+ y and q divides x− y.
(3) p and q both divide x− y but neither divides x+ y.
(4) p and q both divide x+ y but neither divides x− y.

42 2. PRIMALITY TESTING AND FACTORING

All these cases can occur with equal probability, namely 1
4 . If we then compute

d = gcd(x− y,N),

our previous four cases then divide into the cases

(1) d = p.
(2) d = q.
(3) d = N .
(4) d = 1.

Since all these cases occur with equal probability, we see that with probability 1
2 we will obtain a

non-trivial factor of N . The only problem is, how do we find x and y such that x2 = y2 (mod N)?

2.4. Modern Factoring Algorithms

Most modern factoring methods use the following strategy based on the difference-of-two-squares
method described at the end of the last section.

• Take a smoothness bound B.
• Compute a factorbase F of all prime numbers p less than B.
• Find a large number of values of x and y such that x and y are B-smooth and

x = y (mod N).

These are called relations on the factorbase.
• Using linear algebra modulo 2, find a combination of the relations to give an X and Y
with

X2 = Y 2 (mod N).

• Attempt to factor N by computing gcd(X − Y,N).

The trick in all algorithms of this form is how to find the relations. All the other details of the
algorithms are basically the same. Such a strategy can be used to solve discrete logarithm problems
as well, which we shall discuss in Chapter 3. In this section, we explain the parts of the modern
factoring algorithms which are common and justify why they work.

One way of looking at such algorithms is in the context of computational group theory. The
factorbase is essentially a set of generators of the group (Z/NZ)∗, whilst the relations are relations
between the generators of this group. Once a sufficiently large number of relations have been
found, since the group is a finite abelian group, standard group-theoretic algorithms will compute
the group structure and hence the group order. From the group order φ(N) = (p − 1)(q − 1), we
are able to factor the integer N . These general group-theoretic algorithms could include computing
the Smith Normal Form of the associated matrix. Hence, it should not be surprising that linear
algebra is used on the relations to factor the integer N .

Combining Relations: The Smith Normal Form algorithm is far too complicated for factoring
algorithms where a more elementary approach can be used, still based on linear algebra, as we shall
now explain. Suppose we have the relations

p2 · q5 · r2 = p3 · q4 · r3 (mod N),

p · q3 · r5 = p · q · r2 (mod N),

p3 · q5 · r3 = p · q3 · r2 (mod N),

2.4. MODERN FACTORING ALGORITHMS 43

where p, q and r are primes in our factorbase, F = {p, q, r}. Dividing one side by the other in each
of our relations we obtain

p−1 · q · r−1 = 1 (mod N),

q2 · r3 = 1 (mod N),

p2 · q2 · r = 1 (mod N).

Multiplying the last two equations together we obtain

p0+2 · q2+2 · r3+1 = 1 (mod N).

In other words

p2 · q4 · r4 = 1 (mod N).

Hence if X = p · q2 · r2 and Y = 1 then we obtain

X2 = Y 2 (mod N)

as required and computing

gcd(X − Y,N)

will give us a fifty percent chance of factoring N .
Whilst it was easy to see by inspection in the previous example how to combine the relations

to obtain a square, in a real-life example our factorbase could consist of hundreds of thousands of
primes and we would have hundreds of thousands of relations. We basically need a technique to
automate this process of finding out how to combine relations into squares. This is where linear
algebra can come to our aid.

We explain how to automate the process using linear algebra by referring to our previous simple
example. Recall that our relations were equivalent to

p−1 · q · r−1 = 1 (mod N),

q2 · r3 = 1 (mod N),

p2 · q2 · r = 1 (mod N).

To find which equations to multiply together to obtain a square, we take a matrix A with #F
columns and number of rows equal to the number of relations. Each relation is coded into the
matrix as a row, modulo two, which in our example becomes

A =

⎛
⎜⎝ −1 1 1

0 2 3

2 2 1

⎞
⎟⎠ =

⎛
⎜⎝ 1 1 1

0 0 1

0 0 1

⎞
⎟⎠ (mod 2).

We now try to find a (non-zero) binary vector z such that

z ·A = 0 (mod 2).

In our example we can take

z = (0, 1, 1)

since (
0 1 1

)⎛
⎜⎝ 1 1 1

0 0 1

0 0 1

⎞
⎟⎠ =

(
0 0 0

)
(mod 2).

This solution vector z = (0, 1, 1) tells us that multiplying the last two equations together will
produce a square modulo N .

44 2. PRIMALITY TESTING AND FACTORING

Finding the vector z is done using a variant of Gaussian Elimination. Hence in general this
means that we require more equations (i.e. relations) than elements in the factorbase. This relation-
combining stage of factoring algorithms is usually the hardest part since the matrices involved tend
to be rather large. For example using the Number Field Sieve to factor a 100-decimal-digit number
may require a matrix of dimension over 100 000. This results in huge memory problems and requires
the writing of specialist matrix code and often the use of specialized super computers.

The matrix will have around 500 000 rows and as many columns, for cryptographically inter-
esting numbers. As this is nothing but a matrix modulo 2 each entry could be represented by a
single bit. If we used a dense matrix representation then the matrix alone would occupy around 29
gigabytes of storage. Luckily the matrix is very, very sparse and so the storage will not be so large.

As we said above, we can compute the vector z such that z ·A = 0 using a variant of Gaussian
Elimination over Z/2Z. But standard Gaussian Elimination would start with a sparse matrix and
end up with an upper triangular dense matrix, so we would be back with the huge memory problem
again. To overcome this problem very advanced matrix algorithms are deployed that try not to
alter the matrix at all. We do not discuss these here but refer the interested reader to the book of
Lenstra and Lenstra mentioned in the Further Reading section of this chapter. The only thing we
have not sketched is how to find the relations, a topic which we shall discuss in the next section.

2.5. Number Field Sieve

The Number Field Sieve is the fastest known factoring algorithm. The basic idea is to factor a
number N by finding two integers x and y such that

x2 = y2 (mod N);

we then expect (hope) that gcd(x−y,N) will give us a non-trivial factor of N . To explain the basic
method we shall start with the linear sieve and then show how this is generalized to the Number
Field Sieve. The linear sieve is not a very good algorithm but it does show the rough method.

2.5.1. The Linear Sieve: We let F denote a set of “small” prime numbers which form the
factorbase:

F = {p : p ≤ B}.
A number which factorizes with all its factors in F is therefore B-smooth. The idea of the linear
sieve is to find many pairs of integers a and λ such that

b = a+N · λ
is B-smooth. If in addition we only select values of a which are “small”, then we would expect that
a will also be B-smooth and we could write

a =
∏
p∈F

pap

and
b = a+N · λ =

∏
p∈F

pbp .

We would then have a relation in Z/NZ∏
p∈F

pap =
∏
p∈F

pbp (mod N).

So the main question is how do we find such values of a and λ?

(1) Fix a value of λ to consider.
(2) Initialize an array of length A+ 1 indexed by 0 to A with zeros, for some value of A.
(3) For each prime p ∈ F add log2 p to every array location whose position is congruent to

−λ ·N (mod p).

2.5. NUMBER FIELD SIEVE 45

(4) Choose the candidates for a to be the positions of those elements that exceed some thresh-
old bound.

The reasoning behind this method is that a position of the array that has an entry exceeding some
bound will have a good chance of being B-smooth, when added to λN , as it is likely to be divisible
by many primes in F . This is yet another application of the Sieve of Eratosthenes.

Linear Sieve Example: For example suppose we take N = 1159, F = {2, 3, 5, 7, 11} and λ = −2.
So we wish to find a smooth value of

a− 2N.

We initialize the sieving array as follows:

0 1 2 3 4 5 6 7 8 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We now take the first prime in F , namely p = 2, and we compute −λ ·N (mod p) = 0. So we add
log2(2) = 1 to every array location with index equal to 0 modulo 2. This results in our sieve array
becoming:

0 1 2 3 4 5 6 7 8 9

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

We now take the next prime in F , namely p = 3, and compute −λ · N (mod p) = 2. So we add
log2(3) = 1.6 to every array location with index equal to 2 modulo 3. Our sieve array then becomes:

0 1 2 3 4 5 6 7 8 9

1.0 0.0 2.6 0.0 1.0 1.6 1.0 0.0 2.6 0.0

Continuing in this way with p = 5, 7 and 11, eventually the sieve array becomes:

0 1 2 3 4 5 6 7 8 9

1.0 2.8 2.6 2.3 1.0 1.6 1.0 0.0 11.2 0.0

Hence, the value a = 8 looks like it should correspond to a smooth value, and indeed it does, since
we find

a− λ ·N = 8− 2 · 1159 = −2310 = −2 · 3 · 5 · 7 · 11.
So using the linear sieve we obtain a large collection of numbers, ai and bi, such that

ai =
∏
pj∈F

p
ai,j
j =

∏
pj∈F

p
bi,j
j = bi (mod N).

We assume that we have at least |B|+1 such relations with which we then form a matrix with the
ith row being

(ai,1, . . . , ai,t, bi,1, . . . , bi,t) (mod 2).

We then find elements of the kernel of this matrix modulo 2. This will tell us how to multiply the
ai and the bi together to obtain elements x2 and y2 such that x, y ∈ Z are easily calculated and

x2 = y2 (mod N).

We can then try to factor N , but if these values of x and y do not provide a factor we just find a
new element in the kernel of the matrix and continue.

The basic linear sieve gives a very small yield of relations. There is a variant called the large
prime variation which relaxes the sieving condition to allow through pairs a and b which are almost
B-smooth, bar say a single “large” prime in a and a single “large” prime in b. These large primes
then have to be combined in some way so that the linear algebra step can proceed as above. This is
done by constructing a graph and using an algorithm which computes a basis for the set of cycles
in the graph. The basic idea for the large prime variation originally arose in the context of the
quadratic sieve algorithm, but it can be applied to any of the sieving algorithms used in factoring.

46 2. PRIMALITY TESTING AND FACTORING

It is clear that the sieving could be carried out in parallel, hence the sieving can be parcelled out
to lots of slave computers around the world. The slaves then communicate any relations they find
to the central master computer which performs the linear algebra step. In such a way the Internet
can be turned into a large parallel computer dedicated to factoring numbers. As we have already
remarked, the final (linear algebra) step often needs to be performed on specialized equipment with
large amounts of disk space and RAM, so this final computation cannot be distributed over the
Internet.

2.5.2. Higher-Degree Sieving: The linear sieve is simply not good enough to factor large num-
bers. Indeed, the linear sieve was never proposed as a real factoring algorithm, but its operation
is instructive for other algorithms of this type. The Number Field Sieve (NFS) uses the arithmetic
of algebraic number fields to construct the desired relations between the elements of the factor-
base. All that changes is the way the relations are found. The linear algebra step, the large prime
variations and the slave/master approach all go over to NFS virtually unchanged. We now explain
the NFS, but in a much simpler form than is actually used in real life so as to aid the exposition.
Those readers who do not know any algebraic number theory may wish to skip this section.

First we construct two monic, irreducible polynomials with integer coefficients f1 and f2, of
degree d1 and d2 respectively, such that there exists an m ∈ Z such that

f1(m) = f2(m) = 0 (mod N).

The Number Field Sieve will make use of arithmetic in the number fields K1 and K2 given by

K1 = Q(θ1) and K2 = Q(θ2),

where θ1 and θ2 are defined by f1(θ1) = f2(θ2) = 0. We then have two homomorphisms φ1 and φ2

given by

φi :

{
Z[θi] −→ Z/NZ

θi �−→ m.

We aim to use a sieve, just as in the linear sieve, to find a set

S ⊂ {(a, b) ∈ Z2 : gcd(a, b) = 1}

such that ∏
S

(a− b · θ1) = β2

and ∏
S

(a− b · θ2) = γ2,

where β ∈ K1 and γ ∈ K2. If we found two such values of β and γ then we would have

φ1(β)
2 = φ2(γ)

2 (mod N)

and we hope

gcd(N,φ1(β)− φ2(γ))

would be a factor of N .
This leads to three obvious problems, which we address in the following three sub-sections:

• How do we find the set S?
• Given β2 ∈ Q[θ1], how do we compute β?
• How do we find the polynomials f1 and f2 in the first place?

2.5. NUMBER FIELD SIEVE 47

How do we find the set S?: Similar to the linear sieve we can find such a set S using linear
algebra provided we can find lots of a and b such that

a− b · θ1 and a− b · θ2
are both “smooth”. But what does it mean for these two objects to be smooth? This is rather
complicated, and for the rest of this section we will assume the reader has a basic acquaintance
with algebraic number theory. It is here that the theory of algebraic number fields comes in: by
generalizing our earlier definition of smooth integers to algebraic integers we obtain the following
definition:

Definition 2.11. An algebraic integer is “smooth” if and only if the ideal it generates is only
divisible by “small” prime ideals.

Define Fi(X,Y) = Y di · fi(X/Y), then

NQ(θi)/Q(a− b · θi) = Fi(a, b).

We define two factorbases, one for each of the polynomials

Fi = {(p, r) : p a prime, r ∈ Z such that fi(r) = 0 (mod p)} .
Each element of Fi corresponds to a degree-one prime ideal of Z[θi], which is a sub-order of the
ring of integers of OQ(θi), given by

〈p, θi − r〉 := pZ[θi] + (θi − r)Z[θi].

Given values of a and b we can easily determine whether the ideal 〈a− θi · b〉 “factorizes” over our
factorbase. Note factorizes is in quotes as unique factorization of ideals may not hold in Z[θi],
whilst it will hold in OQ(θi). It will turn out that this is not really a problem. To see why this is
not a problem you should consult the book by Lenstra and Lenstra.

If Z[θi] = OQ(θi) then the following method does indeed give the unique prime ideal factorization
of 〈a− θi · b〉.

• Write

Fi(a, b) =
∏

(pj ,r)∈Fi

p
s
(i)
j

j .

• We have (a : b) = (r : 1) (mod p), as an element in the projective space of dimension
one over Fp (i.e. a/b = r (mod p)), if the ideal corresponding to (p, r) is included in a
non-trivial way in the ideal factorization of a− θib.

• We have

〈a− θi · b〉 =
∏

(pj ,r)∈Fi

〈pj , θi − r〉s
(i)
j .

This leads to the following algorithm to sieve for values of a and b, such that 〈a− θi · b〉 is an ideal
which factorizes over the factorbase. Just as with the linear sieve, the use of sieving allows us to
avoid lots of expensive trial divisions when trying to determine smooth ideals. We end up only
performing factorizations where we already know we have a good chance of being successful.

• Fix a.
• Initialize the sieve array for −B ≤ b ≤ B by

S[b] = log2(F1(a, b) · F2(a, b)).

• For every (p, r) ∈ Fi subtract log2 p from every array element S[b] where b is such that

a− r · b = 0 (mod p).

• The values of b we want are the ones such that S[b] lies below some tolerance level.

48 2. PRIMALITY TESTING AND FACTORING

If the tolerance level is set in a sensible way then we have a good chance that both F1(a, b) and
F2(a, b) factor over the prime ideals in the factorbase, with the possibility of some large prime ideals
creeping in. We keep these factorizations as a relation, just as we did with the linear sieve.

Then, after some linear algebra, we can find a subset S of all the pairs (a, b) we have found
such that ∏

(a,b)∈S
〈a− bθi〉 = square of an ideal in Z[θi].

However, this is not good enough. Recall that we want the product
∏
(a− b · θi) to be the square

of an element of Z[θi]. To overcome this problem we need to add information from the “infinite”
places. This is done by adding in some quadratic characters, an idea introduced by Adleman. Let
q be a rational prime (in neither F1 nor F2) such that there is an sq with fi(sq) = 0 (mod q) and
f ′
i(sq) �= 0 (mod q) for either i = 1 or i = 2. Then our extra condition is that we require∏

(a,b)∈S

(
a− b · sq

q

)
= 1,

where (.q) denotes the Legendre symbol. As the Legendre symbol is multiplicative this gives us an

extra condition to put into our matrix. We need to add this condition for a number of primes q,
hence we choose a set of such primes q and put the associated characters into our matrix as an
extra column of 0s or 1s corresponding to:

if

(
a− b · sq

q

)
=

{
1 then enter 0,

−1 then enter 1.

After finding enough relations we hope to be able to find a subset S such that∏
S

(a− b · θ1) = β2 and
∏
S

(a− b · θ2) = γ2.

How do we take the square roots?: We then need to be able to take the square root of β2 to
recover β, and similarly for γ2. Each β2 is given in the form

β2 =

d1−1∑
j=0

aj · θj1

where the aj are huge integers. We want to be able to determine the solutions bj ∈ Z to the
equation ⎛

⎝d1−1∑
j=0

bj · θj1

⎞
⎠2

=

d1−1∑
j=0

aj · θj1.

One way this is overcome, due to Couveignes, is by computing such a square root modulo a large
number of very, very large primes p. We then perform Hensel lifting and Chinese remaindering
to hopefully recover our square root. This is the easiest method to understand although more
advanced methods are available.

Choosing the initial polynomials: This is the part of the method that is a black art at the
moment. We require only the following conditions to be met

f1(m) = f2(m) = 0 (mod N).

However there are good heuristic reasons why it also might be desirable to construct polynomials
with additional properties such as

• The polynomials have small coefficients.

2.5. NUMBER FIELD SIEVE 49

• f1 and f2 have “many” real roots. Note, a random polynomial probably would have no
real roots on average.

• f1 and f2 have “many” roots modulo lots of small prime numbers.
• The Galois groups of f1 and f2 are “small”.

It is often worth spending a few weeks trying to find a good couple of polynomials before we start to
attempt the factorization algorithm proper. There are a number of search strategies used for finding
these polynomials. Once a few candidates are found, some experimental sieving is performed to
see which appear to be the most successful, in that they yield the most relations. Then, once a
decision has been made we can launch the sieving stage “for real”.

Example: I am grateful to Richard Pinch for allowing me to include the following example. It
is taken from his lecture notes from a course at Cambridge in the mid-1990s. Suppose we wish
to factor the number N = 2902 + 1 = 84 101. We take f1(x) = x2 + 1 and f2(x) = x − 290 with
m = 290. Then

f1(m) = f2(m) = 0 (mod N).

On one side we have the order Z[i] which is the ring of integers of Q(i) and on the other side we
have the order Z. We obtain the following factorizations:

x y N(x− i · y) Factors x−m · y Factors

−38 −1 1445 5 · 172 252 22 · 32 · 7
−22 −19 845 5 · 132 5488 24 · 73

We then obtain the two factorizations, which are real factorizations of elements, as Z[i] is a unique
factorization domain,

−38 + i = −(2 + i) · (4− i)2 and − 22 + 19 · i = −(2 + i) · (3− 2 · i)2.

Hence, after a trivial bit of linear algebra, we obtain the following “squares”

(−38 + i) · (−22 + 19 · i) = (2 + i)2 · (3− 2 · i)2 · (4− i)2 = (31− 12 · i)2

and

(−38 +m) · (−22 + 19 ·m) = 26 · 32 · 74 = 11762.

We then apply the map φ1 to 31− 12 · i to obtain

φ1(31− 12 · i) = 31− 12 ·m = −3449.

But then we have

(−3449)2 = φ1(31− 12 · i)2

= φ1((31− 12 · i)2)
= φ1((−38 + i) · (−22 + 19 · i))
= φ1(−38 + i) · φ1(−22 + 19 · i)
= (−38 +m) · (−22 + 19 ·m) (mod N)

= 11762.

So we compute

gcd(N,−3449 + 1176) = 2273

and

gcd(N,−3449− 1176) = 37.

Hence 37 and 2273 are factors of N = 84 101.

50 2. PRIMALITY TESTING AND FACTORING

Chapter Summary

• Prime numbers are very common and the probability that a random n-bit number is prime
is around 1/n.

• Numbers can be tested for primality using a probable prime test such as the Fermat
or Miller–Rabin algorithms. The Fermat Test has a problem in that certain composite
numbers will always pass the Fermat Test, no matter how we choose the possible witnesses.

• If we really need to be certain that a number is prime then there are primality-proving
algorithms which run in polynomial time.

• We introduced the problems FACTOR, SQRROOT and RSA, and the relations between
them.

• Factoring algorithms are often based on the problem of finding the difference of two
squares.

• Modern factoring algorithms run in two stages: In the first stage we collect many relations
on a factorbase by using a process called sieving, which can be done using thousands of
computers on the Internet. In the second stage these relations are processed using linear
algebra on a big central server. The final factorization is obtained by finding a difference
of two squares.

Further Reading

The definitive reference work on computational number theory which deals with many algorithms
for factoring and primality proving is the book by Cohen. The book by Bach and Shallit also
provides a good reference for primality testing. The main book explaining the Number Field Sieve
is the book by Lenstra and Lenstra.

E. Bach and J. Shallit. Algorithmic Number Theory. Volume 1: Efficient Algorithms. MIT Press,
1996.

H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.

A. Lenstra and H. Lenstra. The Development of the Number Field Sieve. Springer, 1993.

http://www.springer.com/978-3-319-21935-6

	CHAPTER 2 Primality Testing and Factoring
	Chapter Goals
	2.1. Prime Numbers
	2.1.1. The Prime Number Theorem
	2.1.2. Trial Division
	2.1.3. Fermat’s Test
	2.1.4. Miller–Rabin Test
	2.1.5. Primality Proofs
	2.1.6. AKS Algorithm

	2.2. The Factoring and Factoring-Related Problems
	2.3. Basic Factoring Algorithms
	2.3.1. Trial Division
	2.3.2. Smooth Numbers
	2.3.3. Pollard’s P 1 Method
	2.3.4. Difference of Two Squares

	2.4. Modern Factoring Algorithms
	Combining Relations

	2.5. Number Field Sieve
	2.5.1. The Linear Sieve
	2.5.2. Higher-Degree Sieving

	Chapter Summary
	Further Reading

