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Doing Science

“It is alleged to be found true by proof, that by the taking of Tobacco,
divers[e] and very many do find themselves cured of divers[e] dis-
eases; as on the other part, no man ever received harm thereby. In
this argument there is first a great mistaking, and next a monstrous
absurdity: . . .when a sick man has his disease at the height, he hath
at that instant taken Tobacco, and afterward his disease taking the
natural course of declining and consequently the patient of recover-
ing his health, O then the Tobacco forsooth, was the worker of that
miracle.”

— King James I, A Counterblaste to Tobacco.

The previous chapter was fairly theoretical – it’s time to get our hands dirty
and think about doing science. In practice, this means doing experiments; either
to explore new phenomena, or more often, to decide something. We define:

An experiment is a controlled, reproducible examination of nature
intended to arbitrate between competing hypotheses.

In spite of these intentions, an experiment can never settle an issue, it only adds
to the evidence supporting (or refuting) a theory or model (reread Chap. 1 if this
sounds odd). Of course, often the evidence becomes overwhelming and it be-
comes foolish to think that experiment has not proven a specific hypothesis (for
example, that the Earth is round or that atoms exist).

The majority of a person’s contact with science is through medicine. For that
reason, this chapter will concentrate on medical science and its peculiar experi-
mental methodology.
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2.1 The Beginnings of Science

The notion that experimentation is a tool to understand nature is relatively new.
Many of the ancient Greek philosophers, for example, distrusted earthly, fallible
senses.

“Did you ever reach [truth] with any bodily sense? and I speak not of
these alone, but of absolute greatness, and health, and strength, and,
in short, of the reality or true nature of everything.”

— Plato, Phaedra

It was the Scientific Revolution (1543–1727) that brought about a lasting
change of attitude. An English lawyer, court intriguer, co-founder of the colonies
of Virginia and Newfoundland, and member of parliament named Sir Francis Ba-
con (Fig. 2.1) was instrumental in bringing about this change. Although Bacon
had a classical education, he became disenchanted with the diversity of ancient
opinion and its search for teleological ultimate cause.

Figure 2.1: Sir Francis Bacon (1561–1626), 1st Viscount of St. Alban. English
philosopher, statesman, and essayist.

“For to what purpose are these brain-creations and idle displays of
power .. All these invented systems of the universe, each according
to his own fancy [are] like so many arguments of plays . . . every one
philosophises out of the cells of his own imagination, as out of Plato’s
cave.”

For Bacon the way out of the philosophical morass was clear: empty philos-
ophizing must be replaced by ruthless empiricism.1 Natural philosophers should

1Empiricism is the idea that all knowledge is derived from the senses.
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“cut nature to the quick” – only in this way could truth be obtained. Men should
not seek final cause, said Bacon, rather they should be satisfied with what is know-
able. He also stressed that science could be put to the use of the state, which of
course has been taken up with enthusiasm by many modern governments. The
reason is doubtlessly related to Bacon’s most famous aphorism, “knowledge is
power”.

Bacon expressed other decidedly modern concepts, stressing the importance
of the corpuscular theory,2 for example, in understanding heat; care in experimen-
tation, insisting that experimenters in different fields should communicate; and
that the results of experiments should be meticulously recorded. In spite of these
modern ideas, Bacon, like all men, was molded by his time and experiences: it
appears that he imagined a form of experimentation that was modelled after legal
proceedings.

The new methods of science soon made their way into medicine. One of
the first studies made was by naval officer James Lind (1716–1794), who sought
to alleviate the suffering of sailors due to scurvy. Lind thought that scurvy was
caused by “putrefaction of the body” and that this could be remedied with acidic
food. He tested his idea by giving six groups of sailors with scurvy identical diets
but with differing supplements (barley water, cider, oranges, etc.) and remarked
that those given citrus soon recovered.

In 1775, Sir Percivall Pott (1714–1788) found an association between scrotal
cancer in chimney sweeps and exposure to soot, thereby demonstrating a link
between occupation and cancer and the existence of environmental carcinogens.3

Another watershed moment in the development of epidemiology4 came during
an outbreak of cholera in London in 1854. John Snow, a local doctor, was skeptical
of the miasma theory of disease and sought another explanation for the outbreak.
By tracing the addresses of the sick he was able to identify a public water pump
as the source of the disease. Later he used statistical methods to show there was a
correlation between cholera incidence and water quality. Snow went on to become
a founding member of the Epidemiological Society of London.

Finally, we consider the study of childbed fever conducted by the Hungar-
ian physician, Ignaz Semmelweis (1818–1865). At the time, women contracted
childbed fever with alarming regularity in European maternity clinics. Semmel-
weis noted that women attended by physicians tended to contract the disease more
often than those attended by midwives. The death of a friend due to infection led
him to guess it was physician contact with cadavers that caused childbed fever.
Semmelweis tested his idea by requiring his doctors to wash their hands before
treating women. The result was an immediate and dramatic drop in the infec-
tion rate. Later Semmelweis showed that the opening of a nearby pathological

2A corpuscle is a particle, so this refers to the idea that matter is made of atoms.
3A carcinogen is something that causes cancer.
4Epidemiology is the study of causes and effects of disease and other factors that impact health.
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anatomy clinic was accompanied by an increase in fever rates – thereby establish-
ing a correlation between the handling of corpses with the incidence of fever.

As bacteria were unknown at the time, Semmelweiss could not explain his
findings. His results were ignored or derided by the medical establishment and he
lost his job. Semmelweis did not deal with the rejection well and was eventually
committed to an asylum, where he died of blood poisoning, probably as a result
of being severely beaten by guards.

Important studies continue to be conducted. In the past 60 years it has been
established that smoking is linked with lung cancer and that diet is associated
with heart disease. These days science is big business. The United States gov-
ernment spends about $143 billion per year on research and development (about
1/2 of this is on military applications). It is estimated that the government and
business spend $100 billion on medical studies every year, while world wide ex-
penditure on biomedical research is around $270 billion per year. These budgets
can be compared to the US Department of Energy outlay on particle physics of
$3/4 billion per year.

2.2 Studies

A clinical trial or study is an experiment that is typically performed on living
things (like people). Because of this, studies have a different complexion than
experiments in the physical sciences: people are not as reproducible as crystals or
lasers, and the outcomes of experiments are often random (for example, smoking
does not always cause cancer). Thus studies tend to seek average effects, require
large numbers of subjects, and are prone to human biases.

The competing hypotheses that experiments and studies examine are usually
of the type A causes B and A does not cause B. In the lingo, A is an exposure
and B is an outcome. Thus a typical study seeks to determine if there is a causal
link between an exposure and an outcome. For example, one might hypothesize
that smoking causes lung cancer in some way; here smoking is the exposure and
having cancer is the outcome.

In spite of these goals, studies cannot determine whether an outcome is caused
by an exposure – they can only measure the correlation between the exposure and
the outcome. For example noting that smokers tend to have more lung cancer does
not (necessarily) mean that smoking causes cancer. Perhaps the cancer is caused
by something else that is in turn correlated with smoking.

Correlation does not imply causation.

This difficulty is captured in the phrase, “correlation does not imply causa-
tion”. Consider a study that finds a correlation between hot dog sales and drown-
ing deaths. One might conclude that swimmers like hot dogs and when they eat
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too many they tend to get cramps and drown. But a simpler explanation involves
no causation at all: hot dog sales go up in the summer, which is when swimming
happens. Similarly, one might examine divorce rates over the past 50 years and
find a correlation with household television ownership. Maybe watching too much
tv leads to divorce, but the correlation is probably due to an increase in both tv
ownership and the divorce rate over the past few decades, presumably for inde-
pendent reasons. A similar observation can be made about the sales of organic
food and the rate of autism in the last decade (Fig. 2.2). Although the numbers
track together remarkably well, it seems unlikely that this correlation is causal.
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Figure 2.2: Autism rate in 8 year olds (per 2000) and sales of organic foods.

If experiment can never prove causality, how is one to make progress? The
answer is that eventually so many experiments find tight correlation between ex-
posure and outcome that it becomes nonsensical to assume a noncausal relation-
ship between them (think of Occam’s razor). In an effort to sharpen this, the
British epidemiologist Sir Austin Bradford Hill (1897–1991) established a set of
conditions necessary to argue for causality.

Bradford Hill Criteria

Analogy Factors similar to a suspected causal agent should be investigated as
possible causes.

Biological Gradient There should be a relationship between dose and patient
response.
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Coherence Controlled laboratory results should agree with epidemiological
experience.

Consistency Results of studies should be consistent across a range of factors,
such as who conducts the study, when it is conducted, or dosages employed.

Direct Evidence Direct controlled experimental demonstration of an outcome
under the influence of an exposure is strong indication of causality.

Plausibility The apparent cause and effect must make sense in the light of current
theories. If a causal relationship appears to be outside of current science
then significant further testing must be done.

Specificity A specific relationship between outcome and exposure increases the
likelihood of a causal relationship.

Strength and Association Strong correlation between outcome and exposure in-
creases the likelihood of a causal relationship.

Temporality The outcome should occur after the exposure.

It is evident that the more of these common sense criteria that hold, the more
likely it is that a true causal relationship has been established between exposure
and outcome.

2.3 Study Design

2.3.1 Types of Study

Studies can vary widely in their design, depending on goals, financing, and other
constraints. A fundamental distinction is between observational and randomized
studies.

observational a study in which the investigator observes rather than influences
exposure and disease among participants. Case-control and cohort studies
are observational studies.

case-control an observational study that enrolls one group of persons with
a certain disease, chronic condition, or type of injury (case-patients) and a
group of persons without the health problem (control subjects) and com-
pares differences in exposures, behaviors, and other characteristics to iden-
tify and quantify associations, test hypotheses, and identify causes.
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cohort an observational study in which enrollment is based on status of ex-
posure to a certain factor or membership in a certain group. Populations
are followed, and disease, death, or other health-related outcomes are doc-
umented and compared. Cohort studies can be either prospective or retro-
spective.

The terms prospective and retrospective refer to whether trial subjects have or
do not have the health outcome of interest at the beginning of a trial.

prospective a study in which participants are enrolled before the health outcome
of interest has occurred.

retrospective a study in which participants are enrolled after the health outcome
of interest has occurred. Case-control studies are inherently retrospective.

Ex. To test whether power lines cause cancer, researchers questioned
cancer patients about how close they lived to power lines.

Ex. To test whether power lines cause cancer, researchers followed
the health history of 1000 people living near power lines.

The first example is a case-control study, while the second is a prospective cohort
study.

The other study category mentioned was “randomized”, which refers to ran-
domized controlled studies. These are defined as

randomized controlled a study in which subjects are randomly placed in a two
or more groups that receive different treatments,

and are regarded as the most reliable form of study.5 The term control refers to a
group that does not receive the test treatment and serves as a basis of comparison
for the treatment group. The control group can receive treatment from a known
drug or can be given a placebo.

A placebo is a sham medicine (often a sugar pill) that is used to minimize the
difference between the control and test groups. Specifically, there is a powerful
psychological effect associated with the belief that one is being treated. It is there-
fore important that the control and the test groups both believe they are receiving
treatment.

2.3.2 Bias

Researchers give placebos to control groups because they are trying to eliminate
bias from their studies. There are many sources of bias in studies and researchers
go to great efforts to eliminate or reduce them. For example, randomly assigning

5Many other types of studies exist, including cross-sectional (a survey), screening, and diagnostic.



32 2 Doing Science

persons to control and test groups removes selection bias. To see the importance
of this, consider a researcher with an interest in proving the efficacy of a new
drug who selects members of the test group in a study. He could be tempted
(unconsciously or otherwise) to choose healthier persons to be in the test group,
thereby skewing the results of the study.

In a similar way, a researcher who assesses health outcomes during a trial
could be tempted to be generous with people who he knows are in the test group.
This is called interviewer bias. There is a simple method to control for assessment
bias called blinding. A blinded study eliminates this bias by not revealing group
membership to researchers. It can even be important to blind the study subjects so
that they do not know if they are receiving treatment or a placebo. Such studies
are called double blind.

There are dozens of kinds of bias that can confound the most well intentioned
research. Some of these are listed here.

Study Biases

pre-study

study design clear goals and criteria must be decided before a study is un-
dertaken.

selection bias patients are not randomized or are not selected according to
clear pre-set criteria.

channeling bias patients are not added to cohorts with clear pre-set criteria.

in-study

interviewer bias researcher interaction with subjects should be standard-
ized and the researcher should be blinded to the exposure status of the sub-
ject.

recall bias patients who are asked to recount experience or results can in-
troduce bias. It is preferable to find impartial methods to rate results.

transfer bias sometimes studies must follow-up with patients to obtain study
results. A policy to deal with patients who cannot be found must be estab-
lished before the study is made.

dropout bias people who leave studies can introduce bias if there is a com-
mon reason for withdrawal (such as being too sick to carry on).

performance bias studies that depend on procedures (such as surgery) can
introduce bias due to time-dependence of ability (for example the surgeon
gains experience, or the surgeon has a bad day).
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exposure misclassification unclearly defined exposures can introduce bias.

outcome misclassification unclearly defined outcomes can introduce bias.

post-study

citation bias researchers who choose to refer to certain publications, but
ignore others, introduce citation bias in their studies.

salami slicing researchers take the results from one study and slice the re-
sults into several reports without making clear that the reports are not in-
dependent. In this way a single positive trial can appear as many positive
trials, giving a false impression.

publication bias researchers who decide not to publish results can skew the
public record, leading to bias.

Let’s consider examples of these biases.

Ex. one common example is the perceived association between autism
and the MMR vaccine. This vaccine is given to children during a
prominent period of language and social development. As a result,
parents of children with autism are more likely to recall immunization
administration during this developmental regression, and a causal re-
lationship may be perceived.

Ex. in research on the effectiveness of batterers treatment programs,
some researchers use conflictual couples seeking marriage counsel-
ing, and exclude court referred batterers, batterers with co-existing
mental disorders, batterers who are severely violent, and batterers
who are substance abusers . . . and then conduct the research in subur-
ban university settings.

Ex. using psychology students in studies.

Ex. the Interphone study on cancer and cell phones determined usage
by asking participants to estimate how many hours they used their
phones per week.

Ex. paying subjects (procedural bias).

Ex. most medical studies have been done on white or black men
(sampling bias).
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Although these are just some of the ways that studies can be skewed, it is still a
daunting list and illustrates just how careful an assiduous researcher must be. It is
also the responsibility of readers to be aware of the limitations of any studies they
are considering. To assist, a simple test called the Jadad scale has been devised
by Alejandro Jadad Bechara (1963–) to assess the reliability of studies. Each
affirmative answer earns one point: good studies should score 4 or 5, whereas
studies scoring 0, 1, or 2 should not be relied on in forming opinion or courses of
action.

The Jadad Scale

1. Is the study randomized?

2. Is the study double blind?

3. Were dropouts and withdrawals described?

4. Was the method of randomization described?

5. Was the method of blinding described?

Not all problems are associated with bias; simple methodology can lead to
issues in interpreting studies.

Ex. Members of the same research group went on to publish a com-
prehensive survey of the content and quality of randomized trials rel-
evant to the treatment of schizophrenia in general. They looked at
2,000 trials and were disappointed in what they found. Over the
years, drugs have certainly improved the prospects for people with
schizophrenia in some respects. For example, most patients can now
live at home or in the community. Yet, even in the 1990s (and still
today), most drugs were tested on patients in hospital, so their rel-
evance to outpatient treatment is uncertain. On top of that, the in-
consistent way in which outcomes of treatment were assessed was
astonishing. The researchers discovered that over 600 treatments –
mainly drugs but also psychotherapy, for example – were tested in
the trials, yet 640 different scales were used to rate the results and
369 of these were used only once. Comparing outcomes of different
trials was therefore severely hampered and the results were virtually
uninterpretable by doctors or patients. Among a catalogue of other
problems, the researchers identified many studies that were too small
or short term to give useful results. And new drug treatments were
often compared with inappropriately large doses of a drug that was
well known for its side-effects, even when better tolerated treatments
were available –an obviously unfair test.

I. Evans et al., Testing Treatments.
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2.4 Statistics and Studies

People are complex physical systems and do not respond in identical ways to ex-
ternal factors. Thus studies necessarily have an element of randomness to them
and conclusions can only be expressed in terms of probabilities. For example, if
100 people are given an experimental drug, 20 may respond well, 30 may expe-
rience some benefits, 40 may remain indifferent, and 10 may have serious side
effects. Doing the study again will yield different numbers. How is one to inter-
pret the study data?

2.4.1 The Normal Distribution

The way to deal with randomness is with statistics. This can be an intimidating
subject, so we are fortunate that a lot can be understood fairly simply.

You are probably familiar with the most basic and famous statistical quantity
called the Gaussian or normal distribution.

If one were to make a histogram of heights or IQ scores or weights of the
American population they would look like normal distributions (Fig. 2.3). The av-
erage height for men is about 70 inches, which coincides with the peak of the
distribution. The average is called the mean and is denoted μ. The shape of the
normal distribution (how narrow or fat it is) is given by another quantity called
the standard deviation, denoted σ. The standard deviation for height is about 3
inches.
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Figure 2.3: Height and weight distributions, US men and women, ages 20–29.
Source: CDC NHANES survey.

These experimental distributions are well approximated by the mathematical
normal distribution,6 shown in Fig. 2.4. The figure illustrates how the standard
deviation is related to the shape of the curve. By definition the fraction of the
curve between the mean (μ) and the mean plus one standard deviation (μ + σ) is
34.1 %. An additional 13.6 % is picked up between μ+ σ and μ+ 2σ, and 2.1 %
between 2σ and 3σ. A final 0.1 % remains above μ+ 3σ.

6The formula for the normal distribution is N(x) = exp[−(x− μ)2/(2σ2)]/(σ
√
2π).
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Figure 2.4: The normal distribution.

Standard Cumulative
deviations fraction (%)
μ 50.0
μ+ σ 84.1
μ+ 2σ 97.7
μ+ 3σ 99.9
μ+ 4σ 1− 3.1 · 10−5

μ+ 5σ 1− 2.9 · 10−7

μ+ 6σ 1− 9.9 · 10−10

Ex. The probability of landing within one standard deviation of the
mean is 34.1% + 34.1% = 64.2%.

Ex. The mean for IQ tests is defined to be 100 and the standard
deviation is about 15. If you have an IQ of 130, 97.7% people have a
score lower than you. This is because a score of 130 is 2σ above the
mean and the area under the normal curve up to 2σ is 50% + 34.1%
+ 13.6%.

The normal distribution seems to be everywhere and there is a good reason
for this, called the central limit theorem. The theorem states that the sum of
many random numbers, no matter how they are distributed, approaches a normal
distribution (Fig. 2.5). The theorem provides a clue about the pervasiveness of the
normal distribution: it must be that height, IQ, etc. are net attributes due to many
genetic and environmental factors, each one of them random.
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Figure 2.5: The central limit theorem. Clockwise from top left: the sum of 1, 2,
3, and 4 random variables.

2.4.2 Error Bars

A main use of the normal distribution is in estimating the reliability of conclu-
sions. Say, for example, that you wish to determine how many Americans are in
favor of capital punishment. In principle you could ask everyone in the country,
but this would be expensive, and probably impossible to arrange. In practice, poll-
sters ask a random group of people, called a sample. Say 1000 people are asked
and the responses are 58 % in favor, 37 % not in favor, and 5 % have no opinion.
How reliable is this result?

If you had a lot of money and time, you could ask another 1000 people and
check. If you did this 47 times you could make a histogram of the results (Fig. 2.6).
As usual, the histogram looks like a normal distribution and we can ask what the
mean and standard deviation of the data is. The curve that best reproduces the
survey results is shown as a dashed line and tells us that the mean is 59.2 % and
the standard deviation (σ) is 0.9 %. This means that our best estimate is that
59.2 % of people agree with the survey question. Also, if we repeat the survey
many times, we will find a result between 58.3 % and 60.1 % (59.2 % ± 0.9 %)
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68.4 % of the time. People often say, the average is 59.2 % with an error bar of
0.9 % or the average is 59.2 % with 68 % confidence interval of 0.9 %.

There is no reason to run 47 different opinion surveys, we could simply make
one survey of 47,000 different people and obtain the same agreement rate of
59.2 %. Then we can divide the results into 47 groups, recalculate the averages
and make the histogram of Fig. 2.6. In fact this is the way statisticians obtain the
confidence intervals that are reported in the media and in studies.

 0

 5

 10

 15

 20

 25

 50  55  60  65  70

fr
eq

ue
nc

y

percent agreeing

Figure 2.6: Results from your opinion survey.

Ex. “The AP-GfK poll was conducted March 20–24, 2014. It in-
volved online interviews with 1,012 adults and has a margin of sam-
pling error of plus or minus 3.4 percentage points for all respondents.”

What if your bosses wanted really accurate results? You might guess that
the more people you ask, the more accurate the results. This is correct. The
mathematics says that if the number of survey respondents is N then the error bar
goes like some number divided by

√
N . This means that if the error with N = 15

is σ = 45 then the error with N = 1500 is σ = 4.5 (an increase of a factor of 100
in survey size means a decrease in the error of a factor of 10).

Data need error bars.

It must be stressed that an experimental number without an error bar is mean-
ingless. What do you care if a survey reports 80 % of people agree with you if you
cannot estimate how reliable that number is? A result of 80 % with an error bar
of 4 % is much more significant than one with an error bar of 60 %. As we have
seen, the way to achieve this is to have a large sample size, N . As a rough rule of
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thumb N = 1000 corresponds to error bars of a few percent, while samples with
10s of subjects give errors of tens of percent.

Ex. A survey of 400 people reveals that 32% prefer vanilla ice cream.
The 68% confidence interval is 24%–40%. How many people would
have to be interviewed to obtain a confidence interval of 28%–36%?

A. The old error bar was 8%; the new one should be 4%, which means
the sample size should go up by a factor of 4, so 1600 people are
required.

While a sufficiently large sample is required to draw reliable conclusions, a
researcher (and people who consult studies) must also pay attention to the quality
of the sample. For example a survey of the popularity of dub step among 1000
college students would yield quite different results from a survey of 1000 retired
people. This is an example of selection bias.

Ex. Your grandmother and uncle both developed bunions while wear-
ing Converse sneakers. You do not conclude that wearing Converses
causes bunions because you realize that this is a survey of size N = 2
with strong selection bias.

Anecdote is not data.

2.4.3 Hypothesis Testing

The concepts of standard deviation and confidence intervals are central to hy-
pothesis testing. Recall that an experiment is an attempt to arbitrate between
competing hypotheses. It is traditional to call one of these hypotheses the null
hypothesis. A null hypothesis is usually a statement that the thing being studied
produces no effect or makes no difference. An example is “This diet has no effect
on people’s weight.” Normally an experimenter frames a null hypothesis with the
intent of rejecting it: that is, he seeks to show that the thing under study does make
a difference.

Possible experimental outcomes are traditionally represented in a 2 × 2 grid
as shown in Table 2.1.

The check marks indicate correct conclusions – either rejecting a false state-
ment or accepting a true one.7 A type I error is also called a false positive and
means that a false statement has been accepted as true. A type II error implies that
a true statement has been rejected as being false.

7The entry “accept null hypothesis” should more properly be called “fail to reject the null hypoth-
esis”. We stick with the first because it is less wordy.
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Table 2.1: Experimental outcomes.

Null hypothesis true Null hypothesis false
(no effect) (effect exists)

Reject null hypothesis Type I error �
(false positive)

Accept null hypothesis � Type II error
(false negative)

Ex. Type I error: a fire alarm goes off, yet there is no fire.

Ex. Type II error: you are pregnant but your test does not turn blue.

The probability of a type I error is called alpha (α), while the probability for a
type II error is called beta (β). Clearly one wants to minimize these probabilities
so that the chance of making a correct conclusion is maximized. An example will
illustrate the importance of these numbers.

Ex. About 1 in 10000 people have hepatitis C. An accurate test
promises a false positive rate of 1.5%. What do you tell your cousin
who tests positive? The actual probability for having the disease is
0.01%, which means that the odds of the test giving a false result is
150 times higher than the odds of actually having hepatitis C. Your
cousin should not worry, although seeking another test is advisable.

Power is defined as the probability of rejecting the null hypothesis given that
the null hypothesis is false. Since beta is the probability of accepting a null hy-
pothesis given that it is false, we derive

power = 1− β. (2.1)

It is desirable to have power as close as possible to 1.0 (values around 0.8 are a
typical goal). Power depends on two quantities the researcher cannot control: the
size of the effect being measured and the standard deviation of the sample data. In
general, the larger the effect and the lower the standard deviation, the higher the
power. It also depends on two quantities the researcher can control: the sample
size and the desired statistical significance of the study. The higher the sample
size and the lower the statistical significance, the higher the power.

Ex. With a power of 0.7, if 10 true hypotheses are examined 3 will
be incorrectly rejected.

We have introduced the idea of statistical significance. Informally, this is a
measure of the chance of obtaining a given effect. It can be defined formally as a
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p-value, which is the probability of getting the result you did (or a more extreme
result) given that the null hypothesis is true. This is also known as a significance
criterion. It is desirable to have a low p-value so that one can be reasonably sure
that the null hypothesis should be rejected. In practice, the researcher selects a de-
sired value for alpha (recall this is the probability of accepting the null hypothesis
if it false), computes the p-value, and rejects the null hypothesis if the p-value is
less than alpha. A typical value for alpha is 0.05.

Unfortunately the interpretation of a p-value is regularly mangled in the media
and by scientists themselves. Let us state clearly:

There is no simple relationship between a p-value and the probability of a
hypothesis.

Specifically, the p-value is a probability of observing something given a hypothe-
sis (i.e., the null hypothesis). You are not allowed to turn it around and say that it
is related to the probability of a hypothesis given your observation. To illustrate,
consider the statements (a) the probability of being a woman given that you are
in the House of Representatives8 is 18 % (b) the probability of being in the House
of Representatives given that you are a woman is 18 %. Clearly (a) makes sense
while (b) is nonsense9

Making statements about beliefs in hypotheses is not the only way things can
go wrong. A list of common mistakes includes:10

Mistakes with p-value

1. The p-value is not the probability that the null hypothesis is true.

2. The p-value is not the probability that a finding is a fluke (this error is very
common).

3. The p-value is not the probability of falsely rejecting the null hypothesis.

4. The p-value is not the probability that a replicating experiment would not
yield the same conclusion.

5. The (1-p)-value is not the probability of the alternative hypothesis being
true.

8As of the 113th Congress there are 79 women out of 435 representatives.
9There is a way to calculate (b) called Bayes’ Theorem.

10Source: M.J. Schervish, P Values: What They Are and What They Are Not, The American
Statistician 50, 203–206 (1996).
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6. The significance level of the test is not determined by the p-value.

7. The p-value does not indicate the size or importance of the observed effect.

It is common for a study to seek to find a statistically significant difference
between two outcomes. For example, drug A may be more effective than drug B,
or women may score higher in IQ tests than men. Some mathematics that we need
not go into allow us to apply the ideas of this section to this situation.

Assume that we have two data sets, one with average Ā and standard deviation
σA, and the other with average B̄ and standard deviation σB . We want to know
how likely it is that the actual (as opposed to the measured) averages are equal.
If these values are Ā = 1, σA = 0.1 and B̄ = 2.8, σB = 0.03, then it is very
unlikely that the actual averages are equal since the measured averages differ by
1.8 and the errors are quite small (Fig. 2.7 left). Alternatively, if σA = 0.9 and
σB = 2.2 then it is much more likely that the actual averages are in fact equal
(Fig. 2.7 right).
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Figure 2.7: Two measured distributions.

The situation can be quantified with the following result: the probability distri-
bution of the sum of two normal distributions is another normal distribution with
mean Ā+ B̄ and standard deviation

√
σ2
A + σ2

B .11

Since this result applies to the difference of two normal distributions as well
as to the sum, we can use it to quantify our example problems. In the first
case the difference of the means is 1.8 while the new standard deviation is σ =√
0.12 + 0.032 = 0.104. In the second case the difference is still 1.8 but the stan-

dard deviation is σ =
√
0.92 + 2.22 = 2.38. In the first case 1.8 is 17.3σ removed

from zero, while in the second it is 0.76σ removed. Thus the probability that the
first difference is consistent with zero is tiny (about 10−64), while the second is
about 44 %.

11This result actually applies for the exact means and standard deviations. We will use it with the
measured means and standard deviations, which are the best approximations we have to the (unknown)
actual values.
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If one assumes a null hypothesis that the two actual averages are identical,
then the probability of obtaining a difference of means greater than 1.8 is 10−64

in the first case and 44 % in the second. Thus the p-value for the first experiment
is tiny and for the second experiment is 0.44.

Assigning probabilities like this is called a hypothesis test. More general hy-
pothesis testing is possible. Consider, for example, the data in Fig. 2.8. The data
are live birth sex odds (boys/girls) in the Russian Federation. The authors of the
study from which these graphs were constructed hypothesized that the Chernobyl
nuclear disaster in 1986 is the cause of the increase in the ratio seen in the figures.
As proof they offered the right hand figure which shows a jump in the ratio in
1986. Their hypothesis is a step function like

sex odds =

{
a if year < y

b if year > y
, (2.2)

which is a three parameter model (a, b, y) of the data. A fit yields y = 1986.9±
0.4, which agrees with their contention about Chernobyl.
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Figure 2.8: Live birth sex odds in the Russian Federation with two model fits.
Source: H. Scherb and K. Voigt, Environmental Science and Pollution Research, 18, 697–707 (2011).

But there are problems: (i) the data have no error bars so it is difficult to see if
the rise in sex odds is due to chance, (ii) even if there is a jump in 1986, there is no
reason to associate this with Chernobyl; after all this was the year that Walk like
an Egyptian was released by the Bangles, (iii) one should compare the model to
alternative models to assess how reliable it is. To illustrate the last point I fitted the
data to a straight line (left figure). The resulting quality of fit is nearly identical to
the step function, and is achieved with one fewer adjustable parameter. Although
there is an interesting question about the change seen in the sex odds, one cannot
conclude that the Chernobyl disaster has anything to do with it.

Figure 2.9 illustrates another way in which data analysis can go wrong. In this
case, the data have error bars and are fit nicely by a straight line. But something is
wrong. Recall that an error bar usually represents the one-σ variation in the data.
Thus if the data really do follow the line indicated in the figure, 32 % of the data
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points should lie more than an error bar away from the line. But all of the data lie
closer (substantially closer) to the line than their error bars warrant.
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Figure 2.9: Outcome vs. exposure in a study.

2.4.4 The Statistics of Bias

In the past two sections we have examined statistical methods as applied to studies
and a rather long list of the ways studies can go wrong. In this section we will use
statistics to gain a quantitative understanding of how studies fail.

The simplest statistical concern is a sample size that is too small. The sample
size refers to the number of subjects in the study – too few subjects means that
conclusions are not statistically significant (we have already seen this in the dis-
cussion of the p-value). This is a serious, but common, problem, typically brought
on by practical constraints, such as lack of funding or time.

The subtlest issue concerns psychological pressures on researchers. Scientists
are under institutional and personal pressure to make important discoveries. When
this is combined with financial pressure to publish frequently, it is easy for biases
to subvert the accuracy of a study.

“Simulations show that for most study designs and settings, it is more
likely for a research claim to be false than true. Moreover, for many
current scientific fields, claimed research findings may often be sim-
ply accurate measures of the prevailing bias.”

— John Ioannides.
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John Ioannides (1965–), who studies clinical trial methodology has noted the
following general features that carry negative impact on study fidelity12:

1. The smaller the studies conducted in a scientific field, the less likely the
research findings are to be true.

2. The smaller the effect sizes in a scientific field, the less likely the research
findings are to be true.

3. The greater the number and the lesser the selection of tested relationships
in a scientific field, the less likely the research findings are to be true.

4. The greater the flexibility in designs, definitions, outcomes, and analytical
modes in a scientific field, the less likely the research findings are to be true.

5. The greater the financial and other interests and prejudices in a scientific
field, the less likely the research findings are to be true.

6. The hotter a scientific field (with more scientific teams involved), the less
likely the research findings are to be true.

Much of what goes wrong is a simple consequence of false positives. To see
this, consider a list of 1000 hypotheses that are deemed interesting enough to test.
We will assume that 100 of these are actually true. We also assume that alpha
= 0.05 and beta = 0.2. Thus when the 1000 studies are completed there will be
0.05× 900 = 45 false positive results and 0.2× 100 = 20 false negative results.
This leaves 80 true hypotheses that have been confirmed (the power is 0.8). The
net result is that the researcher believes she has 45 + 80 = 125 true results, but
45/125 = 36% of these are in fact false. Although the false positive probability is
relatively small, it still skews the understanding of the scientific landscape because
so few of the hypotheses are actually true (or so many are actually false).

Yet another simple statistical effect can confound the interpretation of large tri-
als. Consider a study with alpha set to 0.05, so that the researcher seeks a p-value
of 0.05 or less. Assume further that no effect exists, so that the null hypothesis
is true. Since the p-value is the probability of obtaining the experimental result
if the null hypothesis is true, on average one experiment in 20 will not find the
result; i.e., will reject the null hypothesis and claim a discovery. This is called the
multiple comparisons problem or the look elsewhere effect.

If you look often enough you will find something.

Quite simply, if an experiment examines enough different outcomes for a given
exposure, it is bound to observe a statistical fluctuation that will be interpreted

12PLoS Medicine, 2, e124 (2005).
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as a real rejection of the null hypothesis. The physicist Robert Adair (1924 –)
has called studies that examine many possible outcomes hypothesis generating
experiments because they can used to identify outcomes to be tested with subse-
quent studies. They cannot be used to claim real outcomes because of the look
elsewhere effect.

Ex. A 1992 Swedish study tried to determine whether power lines
caused poor health effects. The researchers surveyed everyone liv-
ing within 300 meters of high-voltage power lines over a 25-year pe-
riod and looked for statistically significant increases in rates of over
800 (!) ailments. The study found that the incidence of childhood
leukemia was four times higher among those that lived closest to the
power lines, and it spurred calls to action by the Swedish govern-
ment. The problem with the conclusion, however, was that they failed
to compensate for the look-elsewhere effect; in any collection of 800
random samples, it is likely that at least one will be at least 3 standard
deviations above the expected value, by chance alone. Subsequent
studies failed to show any links between power lines and childhood
leukemia.

A careful researcher can account for the look elsewhere effect. A simple, but
approximate, way to do this is to replace the condition for significance, p < α
with p < α/n, where n is the number of tested outcomes. This will make a
dramatic difference in large-scale studies such as the Swedish study.

Notice that the look elsewhere effect applies equally well to a great many
studies that consider the same exposure. Thus 800 studies with α = 0.05 will
find (on average) 40 false results just as surely as one large study. A current
popular health concern and subject of many studies is the effect of electromagnetic
radiation on health.13 The look elsewhere effect requires that some of these studies
will find an effect. Of course, subsequent studies (if they exist) will not find the
same health outcome, but will “discover” a different, and random, outcome. How
do you think that these findings will be reported in the media?

Ex. In 2007 the BBC reported that the president of Lakehead Univer-
sity refused to install wifi on campus because he believes that “mi-
crowave radiation in the frequency range of wi-fi has been shown
to increase permeability of the blood-brain barrier, cause behavioral
changes, alter cognitive functions, activate a stress response, inter-
fere with brain waves, cell growth, cell communication, calcium ion
balance, etc., and cause single and double strand DNA breaks.”

Ex. A web site devoted to spreading alarm about electromagnetic
radiation reports, “dozens of published papers have found links be-
tween living near power line electromagnetic radiation and a range of

13This topic will be revisited in Chap. 5.
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health woes including brain cancer and leukemia, breast cancer, birth
defects and reproductive problems, decreased libido, fatigue, depres-
sion, blood diseases, hormonal imbalances, heart disease, sleeping
disorders, and many others.”

Yes, the media report all the random and false discoveries as real. Perhaps it
goes without saying that when a single exposure can lead to so many deleterious
outcomes one should immediately suspect the look elsewhere effect.

The net effect of all of these issues can be studied by examining published
results and seeing how often they are confirmed by follow-up studies. The re-
sults are not encouraging. When the pharmaceutical firm Amgen attempted to
replicate 53 landmark studies it was only able to reproduce 6 of them. Similarly,
researchers at Bayer HealthCare were only able to reproduce one quarter of 67
seminal studies.

A less direct way to test study reliability is to check results as a function of
who obtains them. The following table summarizes the results of trials testing the
efficacy of acupuncture by country. It is not sensible that trials in North America
find a favorable effect in 49 % of studies, while those in Asia find a favorable result
100 % of the time. Some difference, presumably cultural and historical, must be
leading to significant bias in the Asian or North American trials (Table 2.2).

Table 2.2: Controlled clinical trials of acupuncture by country of research.

Country Trials Trials favoring
USA 47 25
Canada 11 3
China 36 36
Taiwan 6 6
Japan 5 5
Hong Kong 3 3

Source: A. Vickers et al., Controlled Clinical Trials 19 159 (1998).

Finally, studies reveal that 80 % of nonrandomized studies turn out to be
wrong, along with 25 % of randomized studies, and 10 % of large scale random-
ized studies. These are not encouraging numbers and indicate the power of the
forces arrayed against producing quality research and the difficulty in teasing re-
sults out of extraordinarily complex systems such as the human body.

2.5 Improving Study Reliability

Increasing awareness of the problem of unreliable studies has led to several ef-
forts to improve methodology. One outcome of this effort was the CONSORT
statement of minimum requirements for reporting randomized trials that was for-
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mulated by an international group of medical journal editors, clinical researchers,
and epidemiologists. The statement provides a standard way for authors to prepare
reports of trial findings, facilitates complete and transparent reporting, and aids
critical appraisal. You can find out more at www.consort-statement.org.

In 2000 the US National Institutes of Health (NIH) instituted a web site called
ClinicalTrials.gov for tracking publicly funded clinical studies. The site
is a Web-based resource that provides patients, their family members, health care
professionals, researchers, and the public with access to information on publicly
and privately supported clinical studies on a wide range of diseases and conditions.
Of course, it also addresses issues with publication bias and salami slicing.

The CONSORT and NIH web sites are tools meant for professionals. Fortu-
nately, the Cochrane Collaboration was created to look after the rest of us. The
collaboration is a non-profit global organization of independent health practition-
ers, researchers, and patient advocates that is dedicated to producing credible,
accessible health care information that is free from conflict of interest. The chief
product is a series of systematic reviews that address specific health care ques-
tions. These reviews are available online at summaries.cochrane.org.

Ex: Entering “fish oils for the prevention of dementia in the elderly”
into the Cochrane Summary search field yields a report with the fol-
lowing statement.

“The results of the available studies show no benefit for cognitive
function with omega-3 PUFA supplementation among cognitively
healthy older people.”

REVIEW

Important terminology:

biases: publication, recall, citation, sampling, procedural [pg. 31]

blinding [pg. 32]

control group [pg. 31]

study types: cohort, randomized, observational, case controlled [pg. 31]

exposure and outcome [pg. 28]

mean and standard deviation [pg. 35]

placebo [pg. 31]
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type I and type II errors [pg. 40]

alpha: the probability of rejecting the null hypothesis given that it is true. [pg. 40]

beta: the probability of accepting the null hypothesis given that it is false. [pg. 40]

p-value: the probability of getting the results found given that the null hypothesis
is true. [pg. 41]

power: 1 - beta, or the probability of rejecting the null hypothesis given that it is
false. [pg. 40]

Important concepts:

Correlation is not causation.

Anecdote is not data.

The Jadad scale.

The Bradford Hill criteria.

The Central Limit Theorem.

An experiment is a controlled, reproducible examination of nature intended to
arbitrate between competing hypotheses.

The normal distribution is common because it is equivalent to the sum of many
random variables.

Error bars permit assessing the reliability of conclusions.

There is no simple relationship between a p-value and the probability of a hypoth-
esis.

When many hypotheses are false, truth can be overwhelmed by false positives.

The look elsewhere effect can give rise to false positives.

FURTHER READING

Imogene Evans, Hazel Thornton, Iain Chalmers, and Paul Glasziou, Testing Treat-
ments, Pinter and Martin, 2011.

Ben Goldacre, Bad Science, Faber and Faber, 2010.
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EXERCISES

1. It is common to hear that children at a birthday party are running wild be-
cause they are on a “sugar high”. Suggest a causal mechanism for this.
Suggest a noncausal mechanism. Suggest a way to test both ideas.

2. It is common to hear that someone caught a cold because they were cold.
Suggest a causal mechanism for this. Suggest a noncausal mechanism.

3. In an effort to examine whether exposure to electromagnetic radiation is
associated with cancer, a study examined cancer rates in power line workers
and found significantly higher incidence of skin cancer. Suggest a causal
link for this correlation. Suggest a noncausal link.

4. You wish to test the hypothesis that a coin is fair (i.e., the odds of coming
up heads is 1/2). You flip the coin six times and obtain 5 heads.

(a) Compute the probability of obtaining at least 5 heads.

(b) Take the null hypothesis to be that the coin is fair. If your test criterion
is alpha < 0.05, do you accept or reject the null hypothesis?

(c) What p-value would you assign to the statement that the coin is fair?

5. Re-read the quotation at the beginning of this chapter. What point is King
James making?

6. Suspicious Data.

Look at Fig. 2.9 again. If the error bars represent a 90 % confidence interval,
how many points do you expect (on average) to lie further from the fit line
than their error bar?

7. A sample of crime-scene DNA is compared against a database of 10,000
people. A match is found and the accused person is brought to trial where
it is stated that the odds of two DNA samples match is 1 in 5000. The
prosecutor, judge, and jury all interpret this to means the odds the suspect
is guilty is 4999 out of 5000. What do you say?

8. In 2006 the Times of London reported that “Cocaine floods the playground”.
The story noted that a government school-yard survey found that cocaine
use in London schools had risen from 1 % in 2004 to 2 % in 2005, which
they reported as “cocaine use doubles”. The survey asked school children
about their use of dozens of illegal substances. Why didn’t government
statisticians break this story?
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9. To study the dangers of cellphones, researchers question 100 people with
brain cancer to determine their rate of cellphone usage. What type of study
is this?

10. Patients in a case controlled study on stomach cancer and antacid consump-
tion are asked how many antacids they eat on average per month. What type
of bias does this introduce to the study?

11. An experiment claims to find an effect with a p value of 0.04. If the exper-
iment is repeated 100 times, about how many times will the effect not be
seen?

12. A December 13, 2011 New York Times article, “Tantalizing Hints but No
Direct Proof in Particle Search”, reported

“The Atlas result has a chance of less than one part in 5000 of
being due to lucky background noise, which is impressive but far
short of the standard for a ‘discovery’, which requires one in 3.5
million odds of being a random fluctuation.”

What is wrong with this statement?

13. Combining Results. A manufacturer says that the length of his widgets is
1.3 m with an error of 1 mm, as measured by a sample of size N = 10,000.
You buy 1000 widgets and measure an average length of 1.32 m with an
error of 3 mm. Do you believe the manufacturer?

14. Consider the 1000 hypotheses scenario of Sect. 2.4.4 again, but this time
assume alpha = 0.05 and beta = 0.79 (this corresponds to a power of 0.21,
which is typical of neuroscience studies). What fraction of “true” hypothe-
ses are actually true?

15. Height.

You are 73 inches tall. What percentage of American men are taller than
you?

16. Identify the types of studies mentioned in Sect. 2.1.

(a) Lind’s scurvy study

(b) Snow’s cholera study

(c) Semmelweis’s childbed fever study.

17. Mammograms and Cancer.

Consider the following 2× 2 table for a mammograms and cancer

(a) What is the null hypothesis?
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Cancer (1 %) No cancer (99 %)
Test pos 80 % 9.6 %
Test neg 20 % 90.4 %

(b) What are alpha and beta?

(c) Assume 1 % of people actually have cancer, what is the probability that
you have cancer if you get a positive test result?

18. Weight distribution.

Look again at the distribution of weights in Fig. 2.3. It does not look very
much like a normal distribution. Come up with possible reasons for this.

19. Scientists conducting the European Union INTERPHONE study of can-
cer and cellphone use disagreed about the validity of their study because
patients were asked about their typical cellphone usage. What were the
researchers worried about? How could the problem be circumvented?

20. Daniel in Babylon.

Read Daniel 1.5–15. What Jadad score do you give Daniel’s study?

21. The following quotation is from an article by Jonah Lehrer which was pub-
lished in the Dec 16, 2011 issue of Wired. Comment on his observations in
light of what you have read in this chapter.

“When doctors began encountering a surge in patients with lower back pain
in the mid-20th century, as I reported for my 2009 book How We Decide,
they had few explanations. The lower back is an exquisitely complicated
area of the body, full of small bones, ligaments, spinal discs, and minor
muscles. Then there’s the spinal cord itself, a thick cable of nerves that can
be easily disturbed. There are so many moving parts in the back that doctors
had difficulty figuring out what, exactly, was causing a person’s pain. As a
result, patients were typically sent home with a prescription for bed rest.”

“This treatment plan, though simple, was still extremely effective. Even
when nothing was done to the lower back, about 90 percent of people with
back pain got better within six weeks. The body healed itself, the inflam-
mation subsided, the nerve relaxed.”

“Over the next few decades, this hands-off approach to back pain remained
the standard medical treatment. That all changed, however, with the intro-
duction of magnetic resonance imaging in the late 1970s. These diagnostic
machines use powerful magnets to generate stunningly detailed images of
the body’s interior. Within a few years, the MRI machine became a crucial
diagnostic tool.”
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“The view afforded by MRI led to a new causal story: Back pain was the
result of abnormalities in the spinal discs, those supple buffers between
the vertebrae. The MRIs certainly supplied bleak evidence: Back pain
was strongly correlated with seriously degenerated discs, which were in
turn thought to cause inflammation of the local nerves. Consequently, doc-
tors began administering epidurals to quiet the pain, and if it persisted they
would surgically remove the damaged disc tissue.”

“But the vivid images were misleading. It turns out that disc abnormali-
ties are typically not the cause of chronic back pain. The presence of such
abnormalities is just as likely to be correlated with the absence of back prob-
lems, as a 1994 study published in The New England Journal of Medicine
showed. The researchers imaged the spinal regions of 98 people with no
back pain. The results were shocking: Two-thirds of normal patients ex-
hibited ‘serious problems’ like bulging or protruding tissue. In 38 percent
of these patients, the MRI revealed multiple damaged discs. Nevertheless,
none of these people were in pain. The study concluded that, in most cases,
‘the discovery of a bulge or protrusion on an MRI scan in a patient with low
back pain may frequently be coincidental.”’
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