Chapter 2
Modulo-Type Precoding for Networks
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Abstract In this chapter, we address scenarios where the tasks of (modulo-type)
precoding for the multiple-input/multiple-output (MIMO) broadcast channel, net-
work coding with its associated finite-field matrix channel, and channel coding meet
or complement each other. By enlightening dualities, similarities, and differences
between the areas and corresponding schemes, a deeper understanding of their mutual
interaction is gained. Moreover, this allows for a transfer of schemes and strategies
from one field to another one. Exemplarily, schemes operating at the intersection of
complex-valued and finite-field/modulo processing are addressed. First, an overview
on modulo-type precoding and its latest version via finite-field preprocessing is given;
the connections and specific restrictions of the different approaches are illustrated.
The advantages of modulo-type precoding are addressed when additional require-
ments, such as per-antenna power constraints and a reduced degree of coordination
in a network MIMO scenario, are imposed. Finally, the application of precoding to
finite-field channels is discussed, either as differential network coding or as selection
precoding.

2.1 Introduction

Since two decades, the interest in communication schemes with multiple input and
multiple output signals, forming a so-called multiple-input/multiple-output (MIMO)
channel, has grown enormously. Meanwhile, MIMO techniques are in the standard
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repertoire of each communication engineer. Not only multi-antenna point-to-point
systems can be treated under this umbrella term, but the joint consideration of sig-
nals is particularly useful in multi-user schemes. Via joint processing, interference
between users can be dealt with in a constructive way, rather than as unavoidable,
noise-like disturbance.

Interference and joint processing can occur/be performed on different layers in the
OSI communication model. In this chapter, we address the physical and the network
layer. Specifically, modulo-type precoding [19] and network coding [15] are con-
sidered, which have been subject of immense research activity over the last decade.
Even though these techniques pursue similar or dual purposes, up to now interdepen-
dencies between the areas have only rarely been investigated or even utilized. In this
chapter, we address scenarios where the tasks of (modulo-type) precoding, network
coding, and channel coding meet or complement each other. By enlightening dual-
ities, similarities, and differences between the fields and corresponding schemes, a
deeper understanding of their mutual interaction is gained. Moreover, this allows for
a transfer of schemes and strategies from one field to another one.

First, we present the broadcast channel and the finite-field matrix channel which
arises in network coding. Then, similarities and dualities are briefly discussed.
In Sect. 2.2, the connection between complex-valued and finite-field channels is
depicted for the situation of precoding for the broadcast channel. Even though the
channel is real-/complex-valued, the use of finite-field arithmetic for precoding is
an interesting new option. The optimization of wireless multi-base-station schemes
w.r.t. per-antenna power constraints is considered in Sect. 2.3. The possibility of
reducing the required (wired) backhaul traffic employing a decentralized processing
with hierarchical coordination among base stations and via finite-field precoding are
given. Finally, in Sect. 2.4, precoding is applied to finite-field channels. Differential
linear network coding and selection precoding are techniques transferring knowl-
edge from the continuous to the finite-field world, thereby enabling new degrees of
freedom in system design.

2.1.1 MIMO Broadcast Channel

A block diagram of the MIMO broadcast channel (BC), describing the downlink
transmission from a central base station (BS), equipped with B antennas, to K inde-
pendent, non-cooperating user equipments (UEs) is visualized in Fig.2.1. The fun-
damental input/output relation is given by

y=Hx+n, 2.1)

where x = [x1, ..., x5]" € C? is the vector of transmit symbols, y = [y, ..., vk ]
e CX the vector of receive symbols, n = [n1, .. ., ng]" € CK is the noise vector and
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Fig. 2.1 Broadcast channel, i.e., downlink transmission from a central base station with B antennas
(joint transmit vector x) to the K individual users (scaling gi, metric calculation Ly, and channel
decoding)

H = [hep Jims @2

is the K x B channel matrix collecting the channel gains 4 ;, when assuming flat
fading channels.' We stick to the standard assumption of a block-fading channel, i.e.,
it is randomly drawn according to some (known) distribution, but remains constant
over a transmission burst. The transmit symbols are expected to be zero-mean and
with variance o2 g E{|xp|?},b = 1, ..., B, and the zero-mean white Gaussian noise
has variance o> = E{|ne|?},k = 1, ..., K. Please note, since the channel is modeled
in the equivalent complex baseband, all signals and coefficients are complex-valued.
Unless otherwise stated, we assume perfect channel knowledge at the joint transmit-
ter.

2.1.2 Finite-Field Matrix Channels

Meanwhile, finite-field matrix channels—i.e., MIMO channels where all quantities
are drawn from and the arithmetic is carried out over a finite field—emerged in
several situations, in particular in (random) linear network coding ((R)LNC) [40]
or in lattice-coded MIMO systems, where integer-forcing (IF) [25, 33] receivers
or transmitters are employed (cf. also Sect. 2.2.3). The most general form is the
multiplicative additive matrix channel (MAMC) [40], depicted in Fig.2.2. Its input-
output relation reads

Y=AX+E. (2.3)

Here, usually packets (or codewords, vectors) of length [ (equivalent to [ time steps
in the BC) are considered and n packets are fed to the network in parallel.> Thus,
the transmit signal is given as matrix X € F;Xl . The linear channel, modeled by the

channel matrix A € IE‘Z]V *", multiplicatively distorts X and superimposes an additive

11f, in addition to the multi-user interference, intersymbol interference (ISI) occurs, the usual way
is to apply orthogonal frequency-division multiplexing (OFDM) to deal with the ISI. The MIMO
model is then valid per subcarrier.

2In terms of RLNC, one channel usage, i.e., the transmission of one transmit and the reception of
one receive matrix, is called one generation. In terms of the BC, this is a transmission burst.
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Fig. 2.2 Multiplicative E

additive matrix channel X Y
a—> A

error, expressed by an error matrix E € IE‘;\' *!_The quantities n and N, with N > n,
denote the numbers of transmit and receive packets, respectively. In RLNC, A is
randomly chosen (typically uniformly over all full-column-rank (N x n) matrices
over I, [9] and may change after each packet [40].

For some applications it is reasonable to consider two types of degenerated finite-
field matrix channels, namely the multiplicative matrix channel (MMC) Y = AX,
and the additive matrix channel (AMC)Y =X + E.

2.1.3 Analogies and Dualities

In communications and information theory, analogies and dualities are very helpful
and powerful tools. A famous example is the duality between source coding and
channel coding [17, 24]. In source coding redundancy is eliminated, while in channel
coding redundancy is deliberately added. Via this duality, schemes from the one field
can be converted to the other one, cf. [16, 58].

Another prominent example is the uplink/downlink duality [28, 38, 46, 47, 56],
which states that the multiple-access channel and the broadcast channel are dual
to each other. This not only led to the derivation of the capacity region of the BC
[49] but also sparked the design of transmitter-side techniques which are dual to
receiver-side approaches, cf. Tomlinson-Harashima precoding (THP) as the dual
to decision-feedback equalization (DFE) (aka successive interference cancellation
[20]), or vector precoding [35] as the dual to maximum-likelihood detection.

Besides such dualities, analogies and similarities are of major importance. As
can be seen from Figs.2.1 and 2.2 or (2.1) and (2.3), respectively, the MIMO BC
and the MAMC are counterparts to each other, existing in two different worlds of
arithmetics. Moreover, precoding (PC) for the MIMO BC (see Sect. 2.2) and network
coding (NC) share some general principles, too. In both fields a number of incoming
signals are treated jointly, as can be seen in Fig. 2.3. Modulo-linear combinations of
the signals X, and X, (in NC) and of the signal a and the interference f (in PC),
respectively, are calculated and processed. However, due to the different fields IF,
and C the modulo operation is inherent (and given) in the one situation but has to be
forced (and can be designed [1]) in the other one. Moreover, the important parameter
of (transmit) power, obvious over C, is not existent over F, or has to be defined
explicitly as a cost (cf. Sect. 2.4).

In the following sections, we exemplarily address schemes operating at the inter-
section of complex-valued and finite-field/modulo processing. First, an overview
on modulo-type precoding and a recent proposal using finite-field preprocessing is
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Fig. 2.3 General principles of precoding for the BC (left) and (binary) network coding (right)

given; the connections and differences of the approaches are illustrated. The advan-
tage of precoding when additional constraints are imposed is addressed. Finally, the
application of precoding to finite-field channels is discussed.

2.2 Connection Between Complex-Valued and Finite-Field
Channels in Precoding

Precoding for the broadcast channel has now been studied since more than one
decade and has undergone significant developments. Still, one of the fundamental
bases for the treatment of this scenario is the uplink-downlink duality [38, 46, 47,
56]. As a result, schemes developed for the joint reception in a multipoint-to-point
scenario are transferred (dualized) to joint transmitter-side processing. However, very
recently, a new concept entered the scene: the connection between complex-valued
and finite-field calculations. In this section, we briefly review the different variants
of preprocessing for the broadcast channel and highlight the respective advantages.
In particular, we discuss the combination of channel coding with the respective
precoding scheme.

2.2.1 Conventional Schemes

The simplest version of precoding for the broadcast channel is linear preequalization
(LPE), cf. Fig.2.4, first row. If the preprocessing matrix W is chosen according to
the zero-forcing (ZF) criterion, it is simply the (right pseudo) inverse of the channel
matrix H. In MIMO communications, significant gains can be achieved optimizing
the processing according to the minimum mean-squared error (MMSE) criterion,
trading off transmit power enhancement (the dual to noise enhancement in receiver-
side equalization) and residual interference. Since decoupled AWGN channels for
the users are created, each user can employ any conventional channel coding scheme
(ENC;) and mapping to signal points (M) known from the AWGN channel.
Some improvements can be obtained if Tomlinson-Harashima Precoding (THP) is
used, see Fig. 2.4, second row. The main idea is to employ modulo arithmetics which
can be interpreted as representing data by a multiplicity of signal points and selecting
the most suited one in a symbol-by-symbol fashion [19]. Via the feedforward matrix
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Fig. 2.4 Visualization of the various precoding concepts for the broadcast channel. Top to bottom
linear preequalization; Tomlinson-Harashima precoding; lattice-reduction-aided linear preequal-
ization; lattice-reduction-aided precoding; integer-forcing (linear) preequalization

F, the channel matrix is transformed to lower triangular (spatially causal) form. The
transmit symbols are generated successively via the feedback loop (lower triangular,
unit main diagonal feedback matrix B); the modulo device restricts the amplitude
and hence the transmit power. The optimization of the encoding order is described by
the permutation matrix P. Noteworthy, as in LPE, channel coding can be employed
on top of the equalization scheme. However, due to the inherent modulo congruence,
the set partition in the coded modulation scheme has to match with the multiple
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representation, i.e., the partitions also have to be modulo periodic and the receiver-
side decoding (metric calculation £; and DEC; in Fig.2.1) has to take the periodic
extension into account [19].

Using uncoded transmission, both schemes, LPE and THP (regardless whether
optimized according to the ZF or MMSE criterion), exhibit only a diversity order of
one.

2.2.2 Lattice-Reduction-Aided Schemes

In 2002/03 the concept of lattice-reduction-aided (LRA) equalization has been intro-
duced in [55] and then generalized and transferred to precoding in [41, 51, 52]. The
main idea is, not to equalize the channel itself, but to find a more suited description.

When using signal constellations drawn from a regular grid, the signal points at
the output of a MIMO channel form (a subset of) a lattice. However, each lattice can
be described by different bases—for equalization basis vectors as short and as close
to orthogonality as possible are highly preferable. The task of finding such a basis is
known as lattice (basis) reduction. Efficient algorithms for decomposing a matrix H
(whose rows span the lattice) according to H = Z - H g exist [3, 32, 54], where Z is
a change-of-basis matrix with integer entries and a unit-magnitude determinant—a
so-called unimodular matrix—and H (¢4 has desired properties (basically, H ;e(li should
cause least noise enhancement). Applying this representation in receiver-side equal-
ization, not the transmitted signal constellation is equalized but “only” the signal
grid. In other words, integer linear combinations of the signal points are detected.
These linear combinations are, in a final step, resolved by the inverse change-of-basis
matrix, which is unimodular, too.

Utilizing the uplink-downlink duality, LRA linear preequalization and LRA pre-
coding result, cf. third and fourth row in Fig.2.4. Integer linear combinations of
the (encoded and mapped) data symbols are calculated (unimodular matrix Z~") fol-
lowed by either linear preequalization or THP of the so-called reduced channel given
by Hieq = Z~' - H. Tt has been shown that LRA equalization/precoding achieves the
full diversity order offered by the MIMO channel [44]. Noteworthy, as in the case
of conventional schemes, LRA schemes can be optimized according to the ZF or the
MMSE criterion, see, e.g., [4, 5, 7, 53].

It is true that LRA equalization so far has been studied almost exclusively for
uncoded transmission. This is because channel coding can easily be applied inde-
pendently of/cascaded with the equalization part. The only restriction, as already
present in THP, is that the coded modulation fits to the periodic extension/modulo
reduction. Since all data streams are encoded and decoded individually (from gy to
vk, k =1, ..., K,basically independent parallel AWGN channels with periodic con-
tinuation of the signal constellation are present) each user may employ an individual
code.
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2.2.3 Integer-Forcing Schemes

Very recently, a new philosophy for equalization in MIMO schemes, named inte-
ger forcing (IF), has been proposed [59]. It originates from compute-and-forward
relaying schemes [33] and physical-layer network coding [18] and is closely related
to LRA equalization with subtile, however essential differences. A precoding ver-
sion of the integer-forcing strategy for distributed antenna systems, termed reverse
compute-and-forward (RCoF), has been presented in [25].

The main difference, when comparing the third (LRA LPE) and last (IF) row in
Fig. 2.4, is that the order of channel encoding and equalization of the integer part is
reversed. Not the encoded symbols are linearly combined but the information symbols
prior to encoding. In doing so, it has to be assumed that in IF the source symbols are
drawn from the finite field IF,, where p is a prime. In our view, the restriction to a prime
field is the much more important conceptional difference between LRA and IF than
that of studying uncoded and coded transmission, respectively; we cannot share the
view given in [59, BottomofPage7678]. Indeed, considering uncoded transmission, a
signal constellation whose cardinality M is a prime, and employing a so-called linear
mapping [18] (in its simplest case the natural mapping of the finite-field elements 0,
1,..., p — 1 totheintegers 0, 1, ..., p — 1), both versions are identical.

In LRA equalization integer linear combinations of data symbols/code words
in the signal space are decoded. In order to resolve these linear combinations by
calculating only integer combinations (over R), the integer matrix (change-of-basis
matrix) Z has to be unimodular (see above). In IF this resolving is done over the finite
field—an inverse matrix has to exist over IF,, only. In turn, the finite-field equivalent
to the integer matrix, Zy, may have any determinant.

A comparison of the respective rows in Fig. 2.4 reveals that in LRA and IF modulo-
M integer linear combinations are calculated prior to the linear equalization of the
residual (reduced) part of the channel. First, the modulo reduction (equivalence mod-
ulo M) relaxes the constraints on the existence of Z~': not an inverse over R is
required but only over Z,,, the integers modulo M. If M = p is a prime we have
det(Z) € Z \ MZ; in this case (and assuming linear encoding) the operations in
LRA and IF, respectively, are completely equivalent as the arithmetic of the prime
field IF, is identical to that of calculating over Z mod p. Second, having a close
look at the operation of LRA LPE, it is revealed that Z may have any determinant
unequal to zero. Performing all operations over the integers preserves the discrete
nature of the signal constellation; inverting a non-unit determinant matrix Z over the
reals destroys the regular structure of the symbols prior to W’ but precoding still
works. Third, it can be shown that IF even works for the more practical case of M
not being a prime, in particular M = 2", m € N. Here, det(Z) € 2Z + 1 is required.
Numerical simulations do not show a clear advantage for one of the strategies.

Noteworthy, by replacing the preequalization matrix W” with a THP structure,
an integer-forcing precoding strategy would be possible as well (not shown here; cf.
also the receiver-side counterpart [34]).
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Dropping the unimodular constraint on Z in the IF strategy has two main disad-
vantages. First, up to now, no well-performing and efficient strategy on calculating
Z with arbitrary determinant is available; see the “full” search in [59], the distrib-
uted approach in [25], or again the lattice-reduction strategy in [37]. Despite channel
matrices can be constructed where IF provides an infinite gain over LRA equal-
ization (cf. [59, Appendix A]), no gains for i.i.d. Rayleigh fading channels could
be observed up to now. Second, IF precoding requires the employment of identical
channel codes for the users; in case of different desired rates, the lower-rate codes
have to be subcodes of the highest-rate code [25]. This gives less flexibility in the
system design than in an LRA scheme. However, in distributed antenna systems
(coordinated multipoint, network MIMO, see also Sect. 2.3) IF is of interest. If, as in
[25], the residual equalization via W’ ~ H r_ecll is not present, only finite-field symbols
have to be communicated from the central unit over the backhaul network to the base
stations, which perform the encoding of the precombined source words.

To conclude, the IF philosophy has changed the perspective on LRA schemes
and has sparked new research eliminating the unnecessary restrictions imposed up to
now. However, as LRA schemes are already diversity-optimum, no further immense
gains can be expected.

2.2.4 Summary

As a summary, Table 2.1 compares the discussed precoding schemes w.r.t. the equal-
ization task, the utilized degree of freedom, and the constraints on the signal con-
stellations and the codes.

Table 2.1 Comparison of linear preequalization (LPE), Tomlinson-Harashima precoding (THP),
LRA preequalization/precoding (LRA), and integer-forcing preequalization (IF) w.r.t. the equaliza-
tion task, the utilized degree of freedom, and the constraints on the signal constellations and the
codes

Equalization task Degree of freedom | Constraints on Constraints on codes
(ZF case) signal constellation
LPE |HW =1 - - Codes for AWGN
full equal channel can be used
THP |PHF =B Modulo-congruent | Periodic Have to work under
Lower triangular signal points continuation modulo reduction
required
LRA HW =2Z Integer linear Integer lin. comb. Have to work under
Integer unimodular | combinations and periodic modulo reduction
matrix continuation
required
IF HW' =Z Integer linear Integer lin. comb. Same code for UEs;
Integer matrix combinations and periodic Has to work under
continuation modulo reduction
required
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2.3 Precoding for Distributed MIMO

In distributed MIMO (also denoted as network MIMO or coordinated multipoint),
e.g., [29], a number of non-collocated base stations (BSs) are grouped and jointly
communicate with anumber of (non-cooperating) user equipments (UEs), distributed
over some service area. Assuming perfect coordination of the BSs, a variant of the
BC is present and hence all preequalization/precoding strategies (cf. Fig.2.4) for the
MIMO broadcast channel can be employed.

However, since the transmit antennas are not at the same location some important
extra considerations have to be taken into account. First, in addition to the usual
sum power constraint (SPC), here a per-antenna power constraint (APC) is of much
more interest; this problem is addressed in Sect. 2.3.1. Second, since the data has to
be communicated to/between the BSs, the coordination effort and the respectively
induced backhaul traffic has to be taken into account; see Sects. 2.3.2 and 2.3.3.

The most obvious network MIMO downlink scenario, used, e.g., in [6, 11, 12,
42], is illustrated in the left part of Fig.2.5 (denomination of the symbols as in
Fig.2.4). In our example, B = 3 BSs (with sectorized antennas and taken from a
larger arrangement of BSs; distance rgg) serve the shaded area, where K = 3 single-
antenna UEs are located. Since network MIMO is particularly suited for supplying
cell-edge regions, UEs close to BSs (distance smaller than ry,,) may be excluded
from joint processing, cf. [6, 11]. The channel matrix H for this scenario can be
derived from the geometry and includes the antenna pattern, attenuation, path loss,
and shadowing as well as fast fading effects. Details can be found in [6, 13, 14, 42].

In network MIMO, the BSs are usually connected to a central unit (CU) via wired
backhaul links enabling the coordinated transmission.

i

TUE 1

Toes [ue2

aww\&/V\KQ
~——
'fZ

Fig. 2.5 Geometrical network MIMO system model for B = 3 and K = 3. Left full coordination
via a central unit (CU); Right hierarchical scheme without central instances

B
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2.3.1 Optimization Under Per-Antenna Power Constraints

In the literature, the optimization of LPE subject to a per-antenna power constraint
has been given in [45, 57]. Recently, such an additional constraint has been applied
to the more advanced precoding versions, cf. [6].

The performance is preferably expressed in terms of the signal-to-interference-
plus-noise ratio (SINR) of the users. Let the users be renumbered according an
optimized processing order (obtained, e.g., from conventional THP and described
by a permutation matrix P). Then, the SINR of user « in case of THP, cf. Fig.2.4,
second row, is given by

def lck k|2
SINR; = Uz’— s 2.4)
=4 > el
a 1, 1>k

where C = [ci,;] = HF denotes the end-to-end cascade from data to receive sym-
bols. Due to successive encoding in THP, users with lower index (processed first) do
not contribute to the interference. This main advantage over linear schemes can be
used to “shape” the interference [6].

Knowing the actual channel realization, it is appropriate to adjust the precoding
scheme such that the minimum SINR over all users is maximized. Hence, the opti-
mization task (minSINR criterion) for finding the optimum feedforward matrix F
reads

argmax minSINR = argmax min SINRg, (2.5)
F F k=1,..., K

taking the SPC E{xHx} < Pgm and the APC E{|x,|?} < Poer, b =1,..., B, into
account. After the determination of the feedforward matrix F, the gain matrix G =
diag(gy, - .., gk), cf. Fig. 2.1, is adjusted such that GHF has unit main diagonal, and
the feedback matrix B is given as the lower triangular part thereof.

This resulting optimization task may be solved by resorting to a second-order
cone program, cf. [45, Algorithm 2]. The sorting according to the BLAST algorithm
[21, 23] almost always provides the optimum ordering (permutation matrix P) [50].

Figure 2.6 shows the bit error rate (BER) curves® assuming uncoded transmission
(16-ary QAM constellation with Gray labeling and variance aaz) forthe K x B = 3x3
network MIMO system model. The channel parameters are taken from [6, 13, 14].
Either no (gray curves) or a per-antenna power constraint of Py, = 1.502 (black
curves) is imposed. In each case a sum power constraint Py, = 3 aaz is active.
LPE and THP are optimized according to the minSINR criterion, see also [45].
However, in case of LPE this optimization does not provide substantial gains over
the conventional sum-MSE solution, where, in case of an APC, the feedforward
matrix is simply scaled to meet the constraint, cf. [6].

3 All results in this section are displayed over the ratio of transmitted energy per information bit Ey,
and one-sided noise power spectral density N, where the average channel attenuation is eliminated.
For details on the normalization, see [6].
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Fig. 2.6 Bit error rate over the ratio of transmitted energy per information bit E}, and equivalent
noise power spectral density N). Geometrical channel model with rin = 125 m. Dotted minSINR
LPE; Dashed MMSE THP; Dashed-dotted MMSE LRA precoding. Solid minSINR THP. Gray only
SPC Pym = 302 active; black additional APC Pper = 1.502. Inter-site distance rgs = 500 m

As can be seen from the figure, the APC Ppe; = 1.5 aaz causes a loss of about
2.5 dB for LPE. Performance can significantly be improved if conventional MMSE
THP is employed, which provides a gain of up to 15 dB over LPE. However, the
curves for THP and LPE flatten out to diversity order one. Very good performance can
also be obtained using LRA precoding, where the feedforward matrix is also simply
scaled to meet the APC [6]. This scheme has full diversity order 3; no flattening
of the BER curves occur. In the low BER regime, THP optimized according to the
minSINR criterion gives even better results as both power constraints are explicitly
taken into account in the optimization. An APC of Py, = 1.5 aaz does almost not
lead to a performance degradation.

In summary, it can be stated that compared to LPE non-linear precoding is
much more attractive in the network MIMO scenario with per-antenna power con-
straint. The individual powers at the antennas can even be restricted down to
Pper = 02 ... 202 without too much loss in performance.

2.3.2 Coordination Effort and Hierarchical Precoding

In network MIMO using TH-type precoding, one has to distinguish between two
different coordination/joint processing tasks: (i) the precoding matrices B and F
together with the optimum permutation P have to be computed, and (ii) given the
data symbols (i.e., the data vector a), the vector x of transmit symbols has to be
calculated.
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Assuming a block-fading channel (constant channel matrix H over a transmission
burst), the calculation of the matrices has only to be done once per channel realization.
In contrast, the calculation of x has to be carried out at each time step. To this end,
all data may be communicated to a CU (cf. Fig.2.5), processed, and then transferred
back to the BSs. Assuming that the symbols are initially available at the BSs, this
procedure requires the transmission of six complex numbers per time step. The same
amount is also required for the decentralized coordination described in [11, 12],
where each BS passes its knowledge to the other BSs.

Conceptually, the main part of THP is the successive encoding (feedback
structure) of the data symbols. However, due to the feedforward matrix F, for the
calculation of each transmit symbol x; all precoded symbols x; are required. The
exchange of these symbols causes the huge backhaul traffic in decentralized coordi-
nation. Let 8 denote the number of complex symbols communicated per time step,
we have 8 = 6 for the example at hand.

To overcome this problem, in [11, 12] a hierarchical distribution of knowledge
among the BSs has been proposed. The thereby required backhaul transmission is
indicated in the right part of Fig.2.5 and amounts to only 8 = 3. As can be seen,
the level of knowledge on the data of the other users increases from BS to BS. Such
a successive procedure is only possible if the (usually joint) feedforward processing
is modified; it is easy to see that such a structure is reflected in the fact that F has
lower triangular structure.

Basically, the minSINR optimization briefly discussed above can (with slight
modifications) be applied to this setting, too [11]. However, in addition to the K! = 6
possible permutations of the users (as in conventional THP), here also the BSs are
non-equivalent and an optimized ordering (relabeling) of them has to be done. In
[11], a greedy strategy has been presented to preselect a set of suited sortings among
all K!B! = 36 options. The minSINR optimization is then carried out for these
candidates and the sorting leading to the best performance (largest minSINR) is
chosen for transmission.

In Fig.2.7, the BER obtained by numerical simulation is shown for the mentioned
hierarchical scheme. Both the results for full search (all sortings tested) and the
greedy preselection (six candidates) are shown. For comparison, the results for fully-
coordinated schemes are repeated from Fig. 2.6 (APC Py, = 1.5 aaz). As can be seen,
employing hierarchical precoding (full search), there is only a loss of about 2.5 dB in
the low BER regime (BER ~ 10~*) when compared to fully joint preprocessing via
THP (minSINR criterion). However, compared to LPE, which also requires § = 6
backhaul transmissions, hierarchical THP shows significantly better results. Hierar-
chical THP even outperforms fully-coordinated THP optimized according to the sum
MSE when considering the very-low-BER range (BER < 10~*). The greedy pres-
election does not cost too much in performance but lowers the initial computation
effort significantly.
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Fig. 2.7 Bit error rate over the ratio of transmitted energy per information bit E}, and equivalent
noise power spectral density M. Geometrical channel model with rmi, = 125 m. Black solid
hierarchical THP with full search; all sortings tested. Black dashed-dotted hierarchical THP with
greedy strategy; six candidates. Gray curves from Fig. 2.6 for comparison. SPC Py, = 3 Uaz; APC
Pper = 1.5 aaz. Inter-site distance rgs = 500 m

2.3.3 Selection of the Coordination Strategy

In many applications, a maximum tolerable BER is defined, corresponding to a mini-
mum requirement on the SINR. If a “good” channel realization is present, the required
performance may already be achieved without any precoding, hence requiring no
backhaul traffic (8 = 0). For “medium” channel instances, hierarchical precoding is
often sufficient (8 = 3); only in case of “bad” channel conditions, fully coordinated
THP (B8 = 6) may have to be used. In other words, the desired performance should be
achieved with the smallest amount of joint processing/backhaul traffic as possible.

In [12], a selection algorithm has been proposed, which either selects hierarchical
or full THP. To this end, a minimally required SINR, denoted as minSINR,, is
specified, e.g., based on system requirements or on the statistical distribution of
minSINR (cf. (2.5)). As long as the hierarchical scheme achieves this SINR, it is
used; otherwise fully coordinated THP is chosen. Additionally, “very bad” channels
for which even full THP gives minSINR < minSINR,, may be excluded from
transmission at all (e.g., via higher protocol layers) and an outage may be declared.

Via the choice of minSINRy,, and minSINR; a trade-off between performance
and backhaul traffic is enabled. When lowering minSINR g, the hierarchical scheme is
more often sufficient and the backhaul signaling is reduced. Since the SINR depends
on the channel SNR, a trade-off between minimally required SNR (e.g., to guarantee
BER < 10~*) and backhaul traffic E{8} is possible, see Fig.2.8.
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Fig. 2.8 Trade-off between minimum required SNR and average backhaul traffic to obtain a BER
of 1074, 16QAM constellation; APC Pg = 1.5 aaz. Curves go over into a horizontal branch when
minSINRy, < minSINR oy (marked by circles)

When setting minSINRy,, = oo, the selection is disabled and conventional THP
(with APC) is chosen leading to 8 = 6 but the lowest required SNR. If minSINR,,
is lowered, the hierarchical scheme is selected more often and E{8} decreases but
the required SNR increases slightly. Only if minSINRy,, is very low, the hierarchical
scheme is almost always active and E{8} — 3. Allowing outage (0.1, 1, and 10 % in
Fig.2.8), the required SNR can significantly be lowered as the worst-case channels
are eliminated. All curves go over into a horizontal branch when minSINRy,, <
minSINR . For more details see [12].

2.3.4 Quantization of Precoded Symbols

The schemes discussed so far need to communicate complex-valued symbols via
the backhaul. In practice, a quantization of these symbols is indispensable. Hence,
another degree of freedom—the tradeoff between quantization error/performance
and the required data rate (number of bits per symbol)—is enabled.

In this context, precoding based on integer forcing (cf. Sect. 2.2), specifically the
reverse compute-and-forward (RCoF) scheme in [25] is of special interest. Since
precoding is purely done over the finite field, only a few bits are required to com-
municate such symbols. However, in RCoF further joint preequalization via W” (cf.
Fig.2.4 last row) or via a lower triangular F (cf. Sect. 2.3.2) is not possible. Hence,
performance is degraded for lowering the backhaul traffic.
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2.4 Precoding for Finite-Field Channels

In Sect. 2.1.3 we discussed the usefulness of dualities and analogies in communica-
tions and pointed out that PC and NC are related in some sense. We now substantiate
this point of view by presenting two precoding approaches for finite-field matrix
channels, which can be seen as counterparts of conventional approaches for real (or
complex) valued channels: differential linear network coding (DLNC) related to dif-
ferential encoding, and selection precoding (SP) as a counterpart to vector precoding.
All definitions of Sect. 2.1.2 apply here again.

2.4.1 Differential Linear Network Coding

The common approach for communicating over the MAMC is the usage of lifted rank
metric codes [30, 39], which results in a rate loss L En /1, where [ is the packet
length and n is the number of simultaneously transmitted packets (cf. Sect. 2.1.2).
This loss arises due to the lifting operation, i.e., transmitting the identity matrix at
the beginning of each generation, which can be seen as pilot symbols for channel
sounding. In the following, we present an approach that overcomes this drawback.

In case of differential phase-shift keying (DPSK) [36], information is transmitted
in the phase transition between two consecutive transmit symbols, rather than in the
absolute phase. Thus, any constant phase offset caused by the channel (and not known
to the receiver) can be eliminated, at the cost of a (slightly) degraded performance
compared to coherent transmission. We adopt this idea to the RLNC scenario, which
is described by the MAMC (cf. Sect. 2.1.2, working over F))

Y=AX+E. (2.6)

Information is not represented directly in the matrix X, but in the transition between
two consecutive transmit matrices. Such an idea was also present in the field of differ-
ential space-time codes [26, 27, 31, 43]. As a consequence, a constant multiplicative
distortion A is irrelevant to the receiver. To obtain a constant network channel matrix,
we force the intermediate nodes to keep their linear coding coefficients constant dur-
ing the transmission. However, changes in the network channel matrix can occur
when intermediate nodes leave or join the network, e.g., due to system failures, low
battery, or system reboots.

If nodes leave or join the network between generations, the change of the network
channel matrix can be expressed as

A, =A, |+ AA,, 2.7)

where A; denotes the network channel matrix in generation i and AA; the channel
deviation. In [8], it has been shown that the rank of the channel deviation is upper
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bounded by the sum of the node weights of the leaving/joining nodes. The node
weight of a node v is defined as w(v) = min{zn, In{v}, Out{v}}, where In{v} and
Out{v} denote the numbers of v’s incoming and outgoing edges, respectively. We
call networks with a very small probability of leaving/joining nodes as slowly-varying
networks.

For brevity let us restrict to square matrices, i.e., n = N = [; the generalization to
non-square matrices can be found in [8, 10]. For differential modulation, we assume
to have a sequence of full rank source words S;. The DLNC transmit symbol in
generation i is generated as

X, =X,_,-S;, (2.8)
where X, = I, (I,,: identity matrix of dimension 1) is the initialization word.

Differential demodulation at the destination node is done by calculating the prod-
uctY; | -Y,, where Y;" | is the pseudoinverse of the previously received matrix. This
results in the demodulated symbol Si [8]

def

S, =Y , Y, =S8, +E;, (2.9)

where E ; is the effective error matrix. Thus, the application of differential modulation
and demodulation transforms the MAMC into an AMC with additive error E,-, as
visualized in Fig.2.9. The effective error comprises the effects of the differential
demodulation process and of the slowly varying network. The former causes the
additive error to have (approximately) doubled rank compared to the underlying
channel, cf. noncoherent demodulation of DPSK where the error variance is doubled.
The latter causes a rarely occurring impulsive rank error, which is equal to the rank
of AA.

When applying the differential approach, we are restricted to full-rank transmit
matrices S;, and thus, suffer a rate loss, well approximated by Lg, = 1/¢, cf. [30].
This loss is negligible as long as g is large, which is a prerequisite in RLNC. More
challenging are the circumstances that the additive errors occur in pairs, and that the
scheme is sensitive to network topology variations. Due to the resulting effective error
structure in DLNC—the doubled additive error, plus the rarely occurring impulsive

E;
S; X; Y; 5,
A, ©) P> ?
X AT _ LL> T =0 Y
S; 5,
Q ©) P>}

Fig. 2.9 Block diagram of a DLNC scheme, converting the MAMC into an AMC. The “T”-block
depicts a unit delay element
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error peaks caused by leaving/joining nodes—the commonly applied rank-metric
Gabidulin block codes [22] are no longer the best choice. Instead of these block
codes, convolutional-type codes are preferable. In [8], it was shown that in particular
partial unit memory Gabidulin codes [48] match to the present situation. Using them,
higher reliabilities and/or higher rates are possible via DLNC compared to the lifting
approach in slowly varying network coding applications.

2.4.2 Selection Precoding

In Sect. 2.2 the concept of modulo-type precoding for the MIMO broadcast channel
was explained. The main idea in such schemes—THP and its generalization—is that
each data symbol is represented by multiple, modulo congruent signal points; from
this set the most suited one is selected for transmission. In doing so, the channel
may not only be equalized but, additionally, desired properties of the transmit signal
can be achieved, i.e., some kind of signal shaping is performed [19]. This principle
can be transferred to finite-field channels, leading to a scheme denoted as selection
precoding (SP) [2].

A prerequisite is the definition of modulo-congruent signal points in finite fields
Fom. This can be done in terms of cosets and the respective coset decomposition.
Given an additive subgroup G, in Fon, i < m, the respective cosets are defined as

CO = (e, +alaeGu}, e €Fu. (2.10)

The coset leaders e, are then used as data-carrying symbols; all elements within
the coset are modulo congruent and represent the same information. Given the data
symbols e, any element from G« can be added without change of information.
Conversely, given any element x € Fon a finite field modulo operation can be defined
such that the coset leader e, of the corresponding coset, i.e., x € C @, is returned.
The structure of the selection precoding scheme is depicted in Fig.2.10. For
brevity, we restrict ourselves to the MMC and square network channel matrices A;
the generalization is easily possible. The elements of the source matrix .S are drawn
from the set of coset leaders e;. A precoding matrix U, whose elements are drawn
from the subgroup G, is added to obtain the effective data matrix V.= S 4+ U.

Algorithm

Al o A g —|F modulo

Operation

Fig. 2.10 Selection precoding for the multiplicative matrix channel
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Fig.2.11 Average cost per symbol over the number of tested candidates for the selection precoding
scheme with n = 2, 3, and 4. F»s and G6,i.e., m =8 and u =4

This matrix is precoded via* A™!, thus, the SP transmit matrix, which is injected into
the network, is given as X = A7V, Assuming error-free transmission, the receive
matrix is Y = V. After an (element-wise) finite-field modulo operation (recovery of
the coset leader), the source symbols are perfectly recovered, i.e., §=S8.

In [2], we have shown how to adapt the optimization to the current situation, i.e.,
how to find the optimum precoding matrix U o,. To this end, an optimization criterion
has to be defined. This can be done in terms of a cost function C(X), which assigns
a non-negative, real-valued cost to each finite-field matrix X € ]ng” In [2], two
examples are given, namely the number of ones (i.e., the Hamming weight) and the
number of signal changes in the binary vector representation of the Fo» elements.?

Then, the optimization problem reads

Uy = argmin C(A7' (S +U)) . (2.11)
UeGy*

This search may be accomplished in a random fashion, i.e., by randomly generating
ncand candidate precoding matrices U, and selecting the one, which leads to the lowest
transmit cost. Via n,ng a performance/complexity trade-off is enabled.

In Fig. 2.11 the average cost E{C} per symbol is plotted over the number ryyq of
tested candidates per transmission block forn = 2, 3, and 4. The coset decomposition
of s is generated with respect to Gi¢. The solid lines represent the analytically
derived average cost per symbol, cf. [2]. From the simulations results, which perfectly

4Again, we assume the network channel matrix to be a full rank matrix. However, it is known from
the conventional setting that non-linear schemes (e.g., THP) can even be used on singular channels
where linear schemes fail. This stabilization due to the multiple representation of symbols and the
degree of freedom to choose from them is an additional advantage of the present scheme.

5Both cost functions have the same distribution for the cost and, thus, lead to the same performance.
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match with the analytic solution, we can conclude that employing selection precoding
is able to achieve a lower average cost than the reference scheme (dashed lines) at
the same rate.
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