
Chapter 2
Homology

Lecture 12 Main Definitions and Constructions

Besides the homotopy groups �n.X/, there are other series of groups corresponding
in a homotopy invariant way to a topological space X; the most notable are
homology and cohomology groups, Hn.X/ and Hn.X/. Compared with homotopy
groups, they have an important flaw—their accurate definition requires substantial
algebraic work—and important advantages: Their computation is much easier,
we will calculate them more or less immediately for the majority of topological
spaces known to us, and also they are geometrically better visualizable [there are
no counterintuitive phenomena like �3.S2/ Š Z]. The information of a simply
connected topological space contained in homology groups is comparable with that
contained in homotopy groups.

The main geometric idea of homology is as follows. Spheroids are replaced
by cycles; an n-dimensional cycle is, roughly, an n-dimensional surface, maybe
a sphere, but it may be something different, say, a torus. The relation of being
homotopic is replaced by a relation of being homological : Two n-dimensional
cycles are homological if they cobound a piece of surface of dimension nC 1. How
do we define cycles and those pieces of surfaces which they bound, the so-called
chains? One can try to present them as continuous maps of some standard objects,
spheres and something else (k-dimensional manifolds?). But this leads to severe
difficulties, especially in dimensions > 2. It is easier to define cycles and chains
as the union of standard “bricks.” The role of these bricks is assumed by “singular
simplices.”

Notice that the construction of homology (and cohomology) groups does not
require a fixation of a base point.
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144 2 Homology

12.1 Singular Simplices, Chains, and Homology

Let A0;A1; : : : ;Aq be points of the space R
n; n � q, not contained in one

.q � 1/-dimensional plane. The convex hull of these points is called the Euclidean
simplex with vertices A0;A1; : : : ;Aq (this notion is known to us from Lecture 5;
see Sect. 5.8). The convex hulls of (nonempty) subsets of the set of vertices are
called faces of the simplex; they are also Euclidean simplices. Euclidean simplices
of the same dimension are essentially the same, and this motivates us to choose one
standard Euclidean simplex. The usual choice of the standard simplex is the simplex
�n in R

nC1 with the ends of coordinate vectors taken for vertices. Thus,

�n D
n
.t0; t1; : : : ; tn/ 2 R

qC1 j t0 � 0; t1 � 0; : : : ; tn � 0;
Xn

iD0 ti D 1
o
:

Let X be an arbitrary topological space. We define an n-dimensional singular sim-
plex of X simply as a continuous map of �n into X. An n-dimensional singular
chain of X is a formal finite linear combination of n-dimensional singular simplices
with integral coefficients:

P
i kifi; fiW�n ! X. The set of all n-dimensional singular

chains of X is denoted as Cn.X/. The usual addition of linear combinations makes
Cn.X/ an Abelian group; thus, Cn.X/ is the free Abelian group generated by the set
of all n-dimensional singular simplices of X.

Next we describe the boundary homomorphism @ D @nWCn.X/ ! Cn�1.X/.
Since the group Cn.X/ is free, it is sufficient to define @ for the generators, that is,
for singular simplices. For a singular simplex f we put

@f D
nX

iD0
.�1/i�if ;

where �if is the ith face of f , which is defined as the restriction of f to the ith
face �i�

n,

�i�
n D f.t0; t1; : : : ; tn/ 2 �n j ti D 0g

[we identify �i�
n with �n�1 using the correspondence

.t0; : : : ; ti�1; 0; tiC1; : : : :tn/$ .t0; : : : ; ti�1; tiC1; : : : :tn/�:

Theorem. The composition

CnC1.X/
@nC1��!Cn.X/

@n��!Cn�1.X/

is trivial; in other words, Im.@nC1/ � Ker.@n/.

Proof. A direct verification is based on the equality

�i�jf D
�
�j�1�if ; if j > i;
�j�iC1f ; if j � i:



12.2 Chain Complexes, Map, and Homotopies 145

To make our upcoming life slightly easier, we assume that Cn.X/ D 0 for n < 0

and extend the definition of @ accordingly. The theorem is not affected.

Main Definition. The quotient group

Hn.X/ D Ker @n= Im @nC1

is called the nth homology group of X. In particular, H0.X/ D C0.X/= Im@1 and
Hn.X/ D 0 for n < 0.

There are also common notations Ker @n D Zn.X/ and Im @nC1 D Bn.X/.
Thus, Hn.X/ D Zn.X/=Bn.X/. Elements of the groups Zn.X/ and Bn.X/ are called,
respectively, cycles and boundaries. (Thus, every boundary is a cycle, but the
converse is, generally, false.) If the difference of two cycles is a boundary, then these
cycles are called homologous. Thus, the homology group is the group of classes of
homologous cycles (which may be called homology classes).

If the group Hn.X/ is finitely generated, then its rank is called the nth Betti
number of X.

12.2 Chain Complexes, Map, and Homotopies

A chain complex, or simply a complex, is an (infinite in both directions) sequence
of groups and homomorphisms

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

such that @n ı @nC1 D 0 for all n.
The group Hn D Ker @n= Im@nC1 is called the nth homology group of the

complex.

EXERCISE 1. Let

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

be a complex. Put eCn D Cn ˚ CnC1 and define e@nW eCn ! eCn�1 by the formula
e@n.c; c0/ D .@nc; @nC1c0 C .�1/nc/; c 2 Cn; c0 2 CnC1. Prove that

: : :
e@nC2��! eCnC1

e@nC1��! eCn
e@n��! eCn�1

e@n�1��! : : :

is a complex and that the homology of this complex is trivial (eHn D 0 for all n).

Our main example of a chain complex, so far, is the singular complex of a space
X: Cn D Cn.X/. This complex is positive, which means that Cn D 0 for n < 0.
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Mostly, we will consider positive complexes, but there will be exceptions, and the
first exception appears immediately: The augmented or reduced singular complex
of a space X,

: : :
@nC2��! eCnC1.X/

@nC1��! eCn.X/
@n��! eCn�1.X/

@n�1��! : : : ;

is defined by the formula

eCn.X/ D
�

Cn.X/; if n ¤ �1;
Z; if n D �1;

and @n are all as before, except @0WC0.X/ ! Z, more commonly denoted as � and
called an augmentation, which takes every zero-dimensional singular simplex of X
into 1 2 Z. Thus, the reduced complex of X looks like

: : :
@2��!C1.X/

@1��!C0.X/
���!Z��!: : : :

[Thus, for a zero-dimensional chain c D P
kifi; �.c/ D P

ki; the number �.c/
is sometimes called the index of the zero-dimensional chain c; it may be denoted
as ind.c/.] A natural question arises: Why is this complex called reduced? It looks
bigger than the unreduced complex. The answer is in the following proposition.

Proposition 1. The homology eHn.X/ of the reduced singular complex (called the
reduced homology of X) is related to the usual homology as follows. If X is not
empty, then

Hn.X/ D
� eHn.X/; if n ¤ 0;
eH0.X/˚ Z; if n D 0I

if X is empty, then the only nonzero reduced homology group of X is eH�1.X/ D Z.

Proof. Obvious.
Back to algebra. If C D fCn; @ng and C 0 D fC0

n; @
0
ng are two chain complexes,

then a chain map, or a homomorphism 'W C ! C 0, is defined as a sequence of group
homomorphisms 'nWCn ! C0

n which make the diagram

: : :
@nC2��! CnC1

@nC1��! Cn
@n��! Cn�1

@n�1��! : : :????y'nC1

????y'n

????y'n�1

: : :
@0

nC2��! C0
nC1

@0
nC1��! C0

n

@0
n��! C0

n�1
@0

n�1��! : : :

commutative.
From this commutativity, 'n.Ker @n/ � Ker.@0

n/ and 'n.Im @nC1/ � Im.@0
nC1/,

so there arise homomorphisms'� D '�nWHn.C/! Hn.C 0/ with obvious properties,
like . ı'/� D  �ı'�. For our main example, a continuous map hWX ! Y naturally
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induces homomorphisms h# D h#nWCn.X/ ! Cn.Y/; h#
�P

i kifi
� D P

i ki.h ı fi/
and also h#nW eCn.X/ ! eCn.Y/ (with h#;�1 D id) which comprise homomorphisms
between both unreduced and reduced singular complexes. Thus, there arise maps
f�WHn.X/! Hn.Y/ and eHn.X/! eHn.Y/ (with the same obvious properties).

Again back to algebra. Let C D fCn; @ng and C 0 D fC0
n; @

0
ng be two chain

complexes and ' D f'ng;  D f ngW C ! C 0 be two chain maps. A chain homotopy
between ' and  is a sequence D D fDnWCn ! C0

nC1g satisfying the identities

Dn�1 ı @n C @0
nC1 ı Dn D  n � 'n:

For the reader’s convenience (or inconvenience?) we show all the maps involved in
this definition in one diagram (which, certainly, is not commutative):

If chain maps '; can be connected by a chain homotopy, they are called (chain)
homotopic.

Proposition 2. If chain maps '; W C ! C 0 are homotopic, then the induced
homology maps '�;  �WHn.C/! Hn.C 0/ are equal.

Proof. Let D D fDng be a homotopy between ' and  . If c 2 Ker @n � Cn, then

 n.c/� 'n.c/ D Dn�1 ı @n.c/C @0
nC1 ı Dn.c/ D @0

nC1.Dn.c// 2 Im @0
nC1I

that is, 'n.c/ and  n.c/ are homologous for every cycle c 2 Cn. Thus, '�n D  �n.

EXERCISE 2. A complex .C/ is called contractible if the identity map idW C ! C is
homotopic to the zero map 0W C ! C. A complex .C/ is called acyclic if Hn.C/ D 0
for all n.

(Warmup) Prove that a contractible complex is acyclic.
(a) Prove that the complex feCn;e@ng from Exercise 1 is not only acyclic but also

contractible.
(b) Prove that the complex

� � �  0 0 Z2
onto ��Z

�2 ��Z 0 0 : : :

is acyclic but not contractible.
(c) Let .C/ D fCn; @ng be a positive (Cn D 0 for n < 0) free (all Cn are free Abelian

groups) complex. Prove that if .C/ is acyclic, then it is contractible.



148 2 Homology

Finally, we will establish a connection between chain homotopies considered
here with homotopies between continuous maps. (This connection is actually a
justification for the term “chain homotopy.”) Namely, we will show how a homotopy
between continuous maps f ; gWX ! Y determines a chain homotopy between the
maps f#; g# of singular complexes.

We begin with a geometric construction which presents a covering of a cylinder
�n�I by nC1 Euclidean simplices (in the language of Sect. 5.8, it is a triangulation
of �n � I). Recall that �n D f.t0; : : : ; tn/ 2 R

nC1 j ti � 0;P ti D 1g. The vertices
of �n are vi D .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 D ti. For 0 � i � n, put

Ai D f..t0; : : : ; tn/; t/ 2 �n � I j t0 C � � � C ti�1 � t � t0 C : : : tig

(where the empty sum is regarded as 0). It is easy to see that Ai is the convex
hull of .v0; 1/; : : : ; .vi; 1/; .vi; 0/; : : : ; .vn; 0/, that is, the Euclidean simplex with
the vertices .v0; 1/; : : : ; .vi; 1/; .vi; 0/; : : : ; .vn; 0/. Indeed, all these points belong to
Ai, and if y D ..t0; : : : ; tn/; t/, then y D t0.v0; 1/C � � � C ti�1.vi�1; 1/C t0i.vi; 1/C
t00i .vi; 0/ C tiC1.viC1; 0/ C � � � C tn.vn; 0/, where t0i D t � .t0 C � � � C ti�1/ and
t00i D ti � t0i D .t0 C � � � C ti/ � t, so if y 2 Ai, then the sum of the coefficients is 1
and all of them are between 0 and 1.

For n D 1 and 2, this triangulation is shown in Fig. 59 (familiar to the reader
from elementary geometry textbooks).

Let ˛i D ˛i.�
n/W�nC1 ! �n � I be the affine homeomorphism of�nC1 onto Ai

preserving the order of vertices. These ˛is are singular simplices of�n�I. Consider
the faces �j˛i .0 � i � n; 0 � j � n C 1/. First, �i˛i D �i˛i�1 .1 � i � n/; in
addition to that, �0˛0 D id�n �0; �nC1˛n D id�n �1. Second,

�j˛i.�
n/ D

�
˛i�1.�j�

n/; if j < i;
˛i.�j�1�n/; if j > iC 1:

Next, let us calculate the boundary of ˛.�n/ DPi.�1/i˛i.�
n/.

Fig. 59 Triangulations of cylinders over simplices
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@˛.�n/ DPnC1
jD0

Pn
iD0.�1/iCj�j˛i.�

n/ D id�n �0ChPnC1
jD2

Pj�2
iD0C

Pn�1
jD0

Pn
iDjC1

i
.�1/iCj�j˛i.�

n/� id�n �1
D id�n �0CPn�1

iD0
Pn

jD0.�1/iCjC1˛i.�j�
n/ � id�n �1

D id�n �0 � id�n �1 � ˛.@�n/:

Now let f ; gWX ! Y be two continuous maps and let HWX�I ! Y be a homotopy
connecting f with g. For an n-dimensional singular simplex bW�n ! X, define an
.nC1/-dimensional singular chain B of Y as .Hı.b�I//#˛.�n/; the correspondence
b 7! B is extended to a homomorphism Cn.X/ ! CnC1.Y/, which we take for Dn.
The previous computations show that for any chain c 2 Cn.X/,

@Dn.c/ D f#.c/� g#.c/�Dn�1.@c/;

which means that fDng is a chain homotopy between f# and g# (see Fig. 60).
We arrive at the following result.

Theorem. If continuous maps f ; gWX ! Y are homotopic, then the chain maps
f#; g# are chain homotopic.

Corollary 1. If continuous maps f ; gWX ! Y are homotopic, then for all n the
induced homology homomorphisms f�; g�WHn.X/! Hn.Y/ coincide.

Corollary 2. A homotopy equivalence f WX ! Y induces for all n isomorphisms
f�WHn.x/

Š��!Hn.Y/. In particular, homotopy equivalent spaces have isomorphic
homology groups.

(Question: And what about weak homotopy equivalence? The answer is in
Lecture 14.)

EXERCISE 3. Prove the last three statements for reduced homology.

Fig. 60 From a homotopy to a chain homotopy
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12.3 First Calculations

The groups of singular chains are usually huge and difficult to deal with; they are not
fit for systematic calculations of homology groups. There are some efficient indirect
methods of homology calculations which will be presented in the nearest future.
Still, some direct calculations are possible and, actually, necessary for developing
those indirect methods.

A: Homology of the One-Point Space

Let pt denote the one-point space. Then in every dimension n � 0 there is only
one singular simplex fnW�n ! pt. In particular, �ifn D fn�1 for all i, and @fn D
fn�1 � fn�1 C fn�1 � � � � C .�1/nfn�1, which is 0 if n is odd and fn�1 if n is even and
positive. Thus, the (unreduced) singular complex of pt has the form

: : :
id��!Z

0��!Z
id��!Z

0��!Z! 0! 0! : : : ;

and

Hn.pt/ D
�
Z; if n D 0;
0; if n ¤ 0:

Add to this that eH0.pt/ D 0; this shows that eHn.pt/ D 0 for all n.
A space whose homology is the same as that of pt is called acyclic.

Corollary (of homotopy invariance of homology). Contractible spaces are acyclic.

The converse is not true; fans of the function sin
1

x
will appreciate an example

in Fig. 61. There are more interesting examples, say, the Poincaré sphere with one
point deleted.
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Fig. 61 A noncontractible acyclic space
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B: Zero-Dimensional Homology

Theorem. If X is path connected, then H0.X/ D Z.

Proof. Zero-dimensional singular simplices of X are just points of X; one-
dimensional simplices are paths, and the boundary of a path joining x0 with x1
is x1 � x0. If X is connected, then every zero-dimensional chain

P
i kifi (which

is always a cycle) is homological to
�P

i ki
�

f0, where f0 is an arbitrarily fixed
zero-dimensional singular simplex; indeed, if si is a path joining f0 with fi, then
@
P

i kisi D P
i ki.fi � f0/ D P

i kifi �
�P

i ki
�

f0. We see that if
P

i ki D 0,
then the chain is homological to zero. The converse is also true: The sum of the
coefficients of the boundary of a one-dimensional singular simplex, and hence of
the boundary of every zero-dimensional singular chain, is zero. We see that the map
� W C0.X/ D Z0.x/! Z establishes an isomorphism H0.X/! Z.

Equivalent statement (for a path connected X): eH0.X/ D 0.

EXERCISE 4. Prove that if f WX ! Y is a continuous map between two path
connected spaces, then f�WH0.X/! H0.Y/ is an isomorphism.

C: Homology and Components

Standard simplices are connected. Hence, every singular simplex of a space belongs
to one of the path components of this space. This shows that Cn.X/ DL

˛ Cn.X˛/,
where the X˛s are path components of X, and also Zn.X/ D L

˛ Zn.X˛/; Bn.X/ DL
˛ Bn.X˛/; Hn.X/ D L

˛ Hn.X˛/. In particular, the two previous computations
imply the following. (1) For an arbitrary X, H0.X/ is a free Abelian group generated
by the path components of X; (2) If the space X is discrete, then Hn.X/ D 0 for
any n ¤ 0.

12.4 Relative Homology

Let .X;A/ be a topological pair; that is, A is a subset of a space X. Then Cn.A/ �
Cn.X/. The group Cn.X;A/ D Cn.X/=Cn.A/ is called the groups of (relative)
singular chains of the pair .X;A/ or of X modulo A. Obviously, Cn.X;A/ is a free
Abelian group generated by singular simplices f W�n ! X such that f .�n/ 6� A.
Since @.Cn.A// � Cn�1.A/, there arise a quotient homomorphism @WCn.X;A/ !
Cn�1.X;A/ and a complex

: : :
@��!CnC1.X;A/

@��!Cn.X;A/
@��!Cn�1.X;A/

@��! : : : :
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The homology groups of this complex are denoted Hn.X;A/ and are called relative
homology groups. One can say that Hn.X;A/ is the quotient Zn.X;A/=Bn.X;A/ of
the group of relative cycles over the group of relative boundaries. Here a relative
cycle is a singular chain of X whose boundary lies in A, and a relative boundary is
a chain of X which becomes a boundary after adding a chain from A. (Obviously,
relative boundaries are relative cycles.)

EXERCISE 5. Compute H0.X;A/ in the case when X and A are both connected and
in the general case.

EXERCISE 6. Construct for an arbitrary space X and an arbitrary point x0 2 X a
natural isomorphism eHn.X/ D Hn.X; x0/.

The boundary of a relative cycle is an absolute (that is, usual) cycle in A; the
correspondence c 7! @c determines (for every n) a boundary homomorphism

@�WHn.X;A/! Hn�1.A/

(indeed, if c� c0 is a relative boundary, then @c� @c0 is an absolute boundary in A).
The homomorphism @� is included in a homology sequence of a pair (similar to a
homotopy sequence of a pair; see Sect. 8.7; but it looks simpler than the homotopy
sequence, since it involves only Abelian groups):

: : :
@���!Hn.A/

i���!Hn.X/
j���!Hn.X;A/

@���!Hn�1.A/
i���! : : : ;

where i� is induced by the inclusion map iWA ! X and j� is induced by the
projection Cn.X/! Cn.X/=Cn.A/ D Cn.X;A/.

Theorem. The homology sequence of a pair is exact.

We prefer to have this theorem in a “more general” algebraic form. Let C D
fCn; @ng be a complex and let C 0 D fC0

n; @
0
ng be a subcomplex which means C0

n �
Cn; @n.C0

n/ � C0
n�1 for all n and @0

n.c/ D @n.c/ for all c 2 C0
n. There arise a quotient

complex C 00 D C=C 0 D fC00
n D Cn=C0

n; @
00
ng with a naturally defined @00

n , and also
inclusion and projection homomorphisms �W C 0 ! C and �W C ! C 00. There also
arise “connecting homomorphisms”

@�WHn.C 00/! Hn�1.C 0/:

Namely, let � 00 2 Hn.C 00/ be an arbitrary homology class and let c00 2 Ker @00
n �

C00
n D Cn=C0

n be a representative of � 00. Let c 2 Cn be a representative of (the
coset) c00. The equality @00

n c00 D 0 means precisely that c0 D @nc 2 C0
n�1. Moreover,

@0
n�1c0 D @n�1c0 D @n�1 ı @nc D 0. Thus, c0 2 Ker @0

n�1 and hence belongs to the
homology class in � 0 2 Hn�1.C 0/; we take this class for @�.� 00/.

EXERCISE 7. Prove that the correspondence � 00 7! � 0 provides a well-defined
homomorphism @�WHn.C 00/ ! Hn�1.C 0/: In particular, � 0 does not depend on
the choice of c00 in � 00 and of c in c00. Moreover, one needs to check that @� is a
homomorphism.
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Algebraic Theorem. The sequence

: : :
@���!Hn.C 0/

����!Hn.C/ ����!Hn.C 00/
@���!Hn�1.C 0/

����! : : :

is exact.

EXERCISE 8. Prove the algebraic theorem. (The proof has some resemblance to the
proof of exactness of the homotopy sequence of a pair in Sect. 8.7.)

The algebraic theorem implies the theorem above; it will be used many more
times in this book, including exercises later in this section.

Notice that a map f W .X;A/ ! .Y;B/ between topological pairs (that is, a
map f WX ! Y such that f .A/ � B) induces homomorphisms f�WHn.X;A/ !
Hn.Y;B/ and a homomorphism of the homology sequence of the pair .X;A/ into
the homology sequence of the pair .Y;B/, that is, a “commutative ladder”

� � � ! Hn.A/! Hn.X/! Hn.X;A/! Hn�1.A/! : : :
????y.f jA/�

????yf�

????yf�

????y.f jA/�

� � � ! Hn.B/! Hn.Y/ ! Hn.Y;B/ ! Hn�1.B/! : : :

with exact rows. Add to that Hn.X/ D Hn.X;;/ (in this sense relative homology
is a generalization of absolute homology) and that the mysterious homomorphism
j�WHn.X/! Hn.X;A/ is actually induced by the map j D idW .X;;/! .X;A/.

EXERCISE 9. Construct the homology sequence of a triple,

� � � ! Hn.A;B/! Hn.X;B/! Hn.X;A/! Hn�1.A;B/! : : :

(B � A � X) and prove its properties, including the exactness. (Compare to
Exercise 10 in Sect. 8.7.) (In the case when A is not empty, a combination of this
exercise with Exercise 5 gives rise to a reduced homology sequence of a pair, with
the absolute groups H replaced by eH).

The exactness of homology sequences of pairs and triples (combined with the
five-lemma; see Sect. 8.8) has a standard set of corollaries. Among them, there is a
homotopy invariance of relative homology: If f WX ! Y is a homotopy equivalence,
f .A/ � B, and the map A ! B arising is also a homotopy equivalence, then
f�WHn.X;A/! Hn.Y;B/ is an isomorphism for all n.

(We have to disappoint a reader who expects an exact “homology sequence of a
fibration” relating homology groups of the total space, the base, and the fiber of a
fibration. The relations between homology and fibrations are more complicated, and
we will thoroughly study them in the subsequent chapters of this book.)
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12.5 Relative Homology as Absolute

The results here provide the main technical tool to effectively compute homology.

Theorem. Let .X;A/ be a topological pair.

(1) The inclusion X ! X [ CA, where X [ CA is obtained from X by attaching the
cone over A, induces for every n an isomorphism

Hn.X;A/ Š Hn.X [ CA;CA/ D Hn.X [ CA; v/ D eHn.X [ CA/;

where v is the vertex of the cone CA.
(2) If .X;A/ is a Borsuk pair (see Sect. 5.6), for example, a CW pair (see again

Sect. 5.6), then

p�WHn.X;A/! Hn.X=A; a/ D eHn.X=A/

[where pWX ! X=A is the projection and a D p.A/] is an isomorphism for
all n.

COMMENTS. 1. Part (2) follows from part (1) because of the homotopy equivalence
X [ CA � X=A for Borsuk pairs (see Sect. 5.6 again). Thus, we need to prove
only part (1).

2. In Sect. 9.10, we showed how relative homotopy groups can be presented as
absolute homotopy groups of a certain space. Here we do the same for homology
groups, and it is obvious that for homology the construction is much simpler
than for homotopy. This may be regarded as a first illustration of a reason why
homology groups are way easier to compute than homotopy groups.

The proof of the theorem is based on the so-called refinement lemma, whose proof
is based on the so-called transformator lemma. Both lemmas (especially, the first)
have considerable independent value. We arrange the proof in the following order.
First, we state the refinement lemma. Then we state and prove the transformator
lemma. Then we prove the refinement lemma. And after that we prove our theorem.

Let X be a topological space and let U D fU˛g be an open covering of X. We say
that a singular simplex f W�n ! X is subordinated to the covering U if f .�n/ is
contained in U˛ for some ˛. Let CU

n .X/ be a subgroup of Cn.X/ generated by
singular simplices subordinated to U . It is obvious that @.CU

n .X// � CU
n�1.X/: If

a singular simplex is subordinated to U , then all its faces are subordinated to U .
Thus, the groups CU

n .X/ form a subcomplex of the singular complex of X.

Refinement Lemma. The inclusion of the complex fCU
n .X/g into the complex

fCn.X/g induces a homology isomorphism. In other words, (1) every singular cycle
of X is homologous to a cycle composed of singular simplices subordinated to U and
(2) if two such cycles are homologous in X, then their difference equals a boundary
of a chain composed of singular simplices subordinated to U .
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To prove this lemma, we need “transformators.”

Definition. A transformator 	 is a rule which assigns to every topological space X
and every integer n a homomorphism 	X

n WCn.X/! Cn.X/ such that

(1) 	X
0 D id for every X.

(2) @n ı 	X
n D 	X

n�1 ı @n for every X and every n.
(3) If hWX ! Y is a continuous map, then h# ı 	X

n D 	Y
n ı h# for every n.

Example 1 (Barycentric Transformator). The barycentric subdivision of the stan-
dard simplex �n (see Fig. 21 in Sect. 5.8) consists of .n C 1/Š n-dimensional
Euclidean simplices corresponding to chains ı0 � ı1 � � � � � ın of faces of
dimensions 0; 1; : : : ; n; the vertices of the simplex corresponding to this chain are
centers of ı0; ı1; : : : ; ın. In other words, simplices of the subdivision correspond to
permutations 
 2 SnC1: The simplex ˇ
�n corresponding to a permutation 
 of
0; 1; : : : ; n has vertices

u
k D
v
.0/ C v
.1/ C � � � C v
.k/

kC 1 ; k D 0; 1; : : : ; n;

where v0; v1; : : : ; vn are the vertices of�n in their natural order. The correspondence
vi 7! u
i is extended to an affine map ˇ
 W�n ! �n, which may be regarded as an
n-dimensional singular simplex of �n. Put ˇ.�n/ D P


2SnC1
sgn.
/ˇ
 . A direct

computation shows that @.ˇ.�n// D Pn
iD0.�1/iˇ.�i�

n/ (the faces inside �n are
cancelled; there remain only simplices of barycentric subdivisions of faces of �n,
and they appear in @.ˇ.�n// with proper signs).

EXERCISE 10. Reconstruct the details of this direct computation.

Now to the transformator. For a chain c D P
i kifi 2 Cn.X/, we put ˇX

n .c/ DP
i ki.fi/#.ˇ.�n//. This is a transformator: Properties (1) and (3) are immediately

clear, and property (2) follows from the formula for @.ˇ.�n//.

Example 2 (Backward Transformator). Let !W�n ! �n be the affine homeo-
morphism reversing the order of vertices (!.vi/ D vn�1). For c D P

i kifi 2
Cn.X/, put !X

n .c/ D
P

i ki.�1/ n.nC1/
2 .fi ı !/. It is immediately clear that f!X

n g
satisfies conditions (1) and (3) from the definition of a transformator, and a direct
computation shows that condition (2) is also satisfied.

EXERCISE 11. Reconstruct the details of this direct computation.

We will use the backward transformator later, in Lecture 16.

Transformator Lemma. Let 	 D f	X
n g be a transformator. Then for every X

the chain map 	X D f	X
n WCn.X/ ! Cn.X/g is homotopic to the identity. Thus,

.	X/�nWHn.X/! Hn.X/ is idHn.X/.
Moreover, a homotopy DX

n WCn.X/! CnC1.X/ between 	X and id can be defined
in such a way that f#;nC1 ı DX

n D DY
n ı f#n for every continuous map f WX ! Y.

Proof of Transformator Lemma. We put DX
0 D 0 for all X. Let n > 0. Assume

that for all X and m < n we have already defined homomorphisms DX
mWCm.X/ !
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}{
Fig. 62 The two-set covering of X [ CA

CmC1.X/ which satisfy all the conditions required (including the condition @mC1 ı
DX

mCDX
m�1 ı @m D 	X

m � id). The construction of DX
n we begin with is D�n

n .id/. The
desired property is

@D�n

n .id/ D 	�n

n .id/� id�D�n

n�1.@ id/:

But @ıD�n

n�1.@ id/ D 	�n

n�1.@ id/�@ id�D�n

n�2.@@ id/ D @.	�n

n .id/� id/, which shows
that @.	�

n

n .id/ � id�D�n

n�1.@ id// D 0. Since Hn.�
n/ D 0 (�n is connected), the

cycle 	�
n

n .id/� id�D�n

n�1.@ id/ 2 Cn.�
n/ is a boundary of some chain in CnC1.�n/;

we choose such a chain and take it for D�n

n .id/. After that, for an arbitrary X and
arbitrary c D P

i kifi 2 Cn.X/, we put DX
n .c/ D

P
i ki.fi/#.D�n

n .id/. This DX
n

obviously satisfies the conditions in the “moreover” part of the lemma.

Proof of the Refinement Lemma. We use the barycentric transformator ˇ. We need
to prove that (1) every cycle from Cn.X/ is homologous to a cycle in CU

n .X/ and
(2) if a cycle from CU

n .X/ is a boundary of some chain from CnC1.X/, then it is
a boundary of some chain from CU

nC1.X/. This follows from the following three
facts. (A) For every chain c 2 Cn.X/ the chain .ˇX

n /
N.c/ with a sufficiently big N is

contained in CU
n .X/ (it is obvious). (B) A cycle c is homologous to ˇ.c/, and hence

to ˇN.c/ (the transformator lemma). (C) If a cycle c belongs to CU
n .X/, then the

difference c � ˇ.c/, and hence the difference c � ˇN.c/, is a boundary of a chain
from CU

nC1.X/ (the “moreover” part of the transformator lemma).

Proof of Theorem. We need to prove only part (1). Consider the covering U of C [
CA by two open sets: CA (without the base) and X [ C0A, where C0A is the lower
half of the cone (without the upper base): See Fig. 62.

It follows from the relative version of the transformator lemma (which, on one
side, can be proved precisely as the absolute version, and, on the other side, follows
from the absolute version and the five-lemma) that the homology of the pair .X [
CA;CA/ can be computed with the chain groups
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CU
n .X [ CA;CA/ D CU

n .X [ CA/=CU
n .CA/I

the covering of the cone CA, induced by the covering U , we denote again by U . But
obviously

CU
n .X [ CA/=CU

n .CA/ D Cn.X [ C0A/=Cn.C
0A/ D Cn.X [ C0A;C0A/:

Thus,

eHn.X [ CA/ D Hn.X [ CA; pt/ D Hn.X [ CA;CA/
D Hn.X [ C0A;C0A/ D Hn.X;A/

(the last equality follows from the homotopy invariance of homology).

12.6 Generalizations of the Refinement Lemma: Sufficient
Sets of Singular Simplices

The refinement lemma says that for computing homology groups of spaces and
pairs it is possible to consider only singular simplices satisfying some additional
condition. This additional condition (for the refinement lemma this is the condition
of being subordinated to an open covering) may be different.

Definition. A set S of singular simplices is called sufficient if all faces of a singular
simplex from S also belong to S, so the groups CS

n .X/ � Cn.X/ form a subcomplex
of the singular complex of X, and if the inclusion map of this subcomplex induces
a homology isomorphism. In other words, for every n, every cycle from Cn.X/ is
homologous to some cycle belonging to CS

n .X/, and if a cycle belonging to CS
n .X/

equals the boundary of some chain from CnC1.X/, then it is also a boundary of
a chain in CS

nC1.X/. The usual procedure of proving sufficiency of some set S of
singular simplices is to find some way of “approximating” singular simplices with
all faces in S by chains in CS

n .X/ with the same boundary. We will not prove any
general result of this kind but will list several sufficient sets in the form of exercises
(the statement in the last of these exercises will actually be proved quite soon).

EXERCISE 12. If X is a smooth manifold (say, a smooth surface of some dimension
in some Euclidean space), then smooth singular simplices form a sufficient set.

EXERCISE 13. If X is a domain in an Euclidean space, then affine singular simplices
form a sufficient set.

EXERCISE 14. If X is a triangulated space, then affine isomorphisms of standard
simplices onto the simplices of the triangulation form a sufficient set.
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12.7 More Applications of the Refinement Lemma

We will give here in the form of exercises two additional properties of homology
groups. In the next lecture we will prove similar statements in the CW context.

EXERCISE 15. Let .X;A/ be a topological pair, and let B � A. The inclusion map
.X � B;A � B/! .X;A/ induces a homomorphism

Hn.X � B;A � B/! Hn.X;A/

called an excision homomorphism. Prove that if B � Int A, then the excision
homomorphism is an isomorphism. (This statement is called the excision theorem,
or, within a certain axiomatic approach to homology theory, the excision axiom. The
conditions on X;A;B which imply the excision isomorphism may be different.)

EXERCISE 16. Let X D A[B; A\B D C. We suppose that the excision homomor-
phisms Hn.B;C/ ! Hn.X;A/ and Hn.A;C/ ! Hn.X;B/ are isomorphisms. Then
the homomorphisms

Hn.X/
j���!Hn.X;A/

exc:�1��!Hn.B;C/
@���!Hn�1.C/

Hn.X/
j���!Hn.X;B/

exc:�1��!Hn.A;C/
@���!Hn�1.C/

are the same, and we denote them as �n. The sequence

� � � ! Hn.C/
˛n��!Hn.A/˚ Hn.B/

ˇn��!Hn.X/
�n��!Hn�1.C/! : : : ;

where ˛n is the difference of the homomorphisms induced by the inclusions C! A
and C! B andˇn is the sum of the homomorphisms induced by the inclusions A!
X and B ! X, is called the Mayer–Vietoris homology sequence or the homology
sequence of the triad .XIA;B/. Prove that this sequence is exact.

Lecture 13 Homology of CW Complexes

In this lecture, we will see that it is possible to compute the homology groups of
CW complexes via a complex way narrower than the singular complex. We have to
begin with the homology of spheres and bouquets of spheres.
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13.1 Homology of Spheres: Suspension Isomorphism

Theorem 1. If n > 0, then

Hm.S
n/ D

�
Z; if m D 0; n;
0; if m ¤ 0; n:

The homology of the (two-point) sphere S0 looks different: H0.S0/ D Z ˚
Z; Hm.S0/ D 0, if m ¤ 0. To make the statement better looking, we may consider
the reduced homology.

Theoreme1. For all n,

eHm.S
n/ D

�
Z; if m D n;
0; if m ¤ n:

Proof of Theorem 1 Consider a portion of the reduced homology sequence of the
pair .Dn; Sn�1/:

eHm.Dn/! Hm.Dn; Sn�1/! eHm�1.Sn�1/! eHm�1.Sn�1/
k k k
0 eHm.Sn/ 0

[the equalities come from Sect. 12.3.A and Sect. 12.5 (part (2) of the theorem)].
From the exactness of the sequence, we have eHm.Sn/ D eHm�1.Sn�1/, which
completes the proof, since for n D 0 the statement is known to us.

The isomorphism eHm.Sn/ D eHm�1.Sn�1/ constructed in the proof is generalized
as the following suspension isomorphism.

Theorem 2. For any topological space X and any n,

eHn.†X/ D eHn�1.X/:

Proof. It follows from the reduced homology sequence of the pair .CX;X/, the
contractibility of CX, the equality †X D CX=X, and the (obvious) fact that .CX;X/
is a Borsuk pair.

Remark. From the point of view of the Eckmann–Hilton duality (Lecture 4), this
isomorphism is dual to �n.X/ D �n�1.�X/. Freudenthal’s theorem (Lecture 10) is
dual to a relation between the homology groups of X and �X which will be studied
in Chap. 3.

EXERCISE 1 (A more precise version of Theorem 2). Let f W�n�1 ! X be a
singular simplex of X. The composition

�n D C�n�1 Cf��!CX
proj:��!†X
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is a singular simplex of †X, which we denote as †f . Prove that the maps

†WCn�1.X/! Cn.†X/;
X

i

kifi 7!
X

i

ki.†fi/

commute with @ and induce the isomorphism eHn�1.X/
†��! eHn.†X/.

EXERCISE 2. Using Exercise 1, construct singular cycles representing the homol-
ogy of spheres.

EXERCISE 3. Prove that a generator of a group Hn.Dn; Sn�1/ Š Z is represented
by a one-simplex relative cycle f W�n ! Dn, where f is a homeomorphism.

EXERCISE 4. Construct a relative version of the isomorphism † of Exercise 1 and
prove that it commutes with maps f� and @�.

13.2 Homology of Bouquets of Spheres and Other Bouquets

Theorem 1. Let A be an arbitrary set and let Sn
˛; ˛ 2 A, be copies of the standard

n-dimensional sphere. Then

eHn

�_
˛2A

Sn
˛

�
D
� L

˛2A Z˛; if m D n;
0; if m ¤ n:

Here
L

˛2A Z˛ is the free Abelian group generated by the set A, that is, the sum of
groups Z corresponding to the spheres of the bouquet.

Proof. This follows from Theorem 2 of Sect. 13.1, since
W
˛2A Sn

˛ is homotopy
equivalent to the suspension of

W
˛2A Sn�1

˛ (and even is homeomorphic to this
suspension if the latter is understood in the base point version), and for the bouquet
of the zero-dimensional spheres the statement is true. Also, this follows from the
next theorem.

Theorem 2. If .X˛; x˛/ are base point spaces which are Borsuk pairs, then for
any m,

eHm

�_
˛2A

X˛
�
D
M
˛2A

eHm.X˛/:

Proof. A bouquet is the quotient space of a disjoint union under the union of the
base points.

EXERCISE 5. Construct the previous isomorphism at the level of cycles, establish
its relative version, and prove the compatibility with f� and @�.
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13.3 Maps of Spheres into Spheres and of Bouquets
of Spheres into Bouquets of Spheres

Recall that a continuous map of Sn into Sn has a degree, an integer which
characterizes its homotopy class (Sect. 10.3). A continuous map

gW
_

˛2A
Sn
˛ !

_
ˇ2B

Sn
ˇ

(where Sn
˛; S

n
ˇ are copies of the sphere Sn) has a whole matrix of degrees fd˛ˇ j ˛ 2

A; ˇ 2 Bg, where d˛ˇ is the degree of the map

Sn i˛��!
_

Sn
˛

g��!
_

Sn
ˇ

pˇ��! Sn;

where i˛ is the identity map of Sn onto Sn
˛ and pˇ is the identity map of Sn

ˇ of Sn and
the constant map on the other spheres of the bouquet.

EXERCISE 6. Do the degrees d˛ˇ determine the homotopy class of the map g?

Theorem. The matrix of the map

Hn
�W

˛2A Sn
˛

� g���! Hn

�W
ˇ2B Sn

ˇ

�

k kL
˛2A Z˛

L
ˇ2B Zˇ

coincides with fd˛ˇg. In particular, the map

Hn.Sn/
f���! Hn.Sn/

k k
Z Z

induced by the map f W Sn ! Sn of degree d is the multiplication by d.

Proof. Since † preserves the degrees, both for maps Sn ! Sn and homomorphisms
Hn.Sn/ ! Hn.Sn/, our statement for some dimension n and some matrix fd˛ˇg
implies our statement for dimension nC 1 and the same matrix. On the other side,
in dimension 0 everything is known (obvious). However, this does not resolve our
problem: The trouble is that a base point–preserving map S0 ! S0 can have only
degree 0 or 1. Thus, this suspension argumentation proves our theorem only for
maps gWW˛ Sn

˛ !
W
ˇ Sn

ˇ which are n-fold suspensions of maps
W
˛ S0˛ !

W
ˇ S0ˇ.

Still, there are such maps, in particular, i˛ and pˇ. Thus, .i˛/�WZ!L
˛ Z˛ takes a

c 2 Z into c˛ and .pˇ/�WLˇ Zˇ ! Z takes
P

cˇˇ into cˇ. We want to prove that
g� takes

P
˛ c˛˛ into

P
˛;ˇ d˛ˇc˛ˇ, which (because of the computation of .i˛/� and

.pˇ/� above) is the same as proving that .pˇ ı g ı i˛/�WZ! Z is the multiplication
by d˛ˇ. In other words, all we need is to prove that a map Sn ! Sn of degree d
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induces a homomorphism Hn.Sn/ ! Hn.Sn/ which is the multiplication by d. Let
us prove this (for d D 1, it is obvious).

Let B D Sn
1 _ � � � _ Sn

d, and let rW Sn ! B be a map whose composition with
each pkWB ! Sn.k D 1; : : : ; d/ has degree 1 (obviously, such a map exists). Let
sWB! Sn map every sphere of the bouquet onto Sn by the identity map. Then sı r is
a map of degree d. Since deg.pkır/ D 1, the homomorphism r�WZ! Z˚� � �˚Z (d
summands) takes a c 2 Z into .c; : : : ; c/. Since deg.s ı ik/ D 1, the homomorphism
s�WZ ˚ � � � ˚ Z ! Z takes .c1; : : : ; cd/ into c1 C � � � C cd. Hence, .s ı r/�.c/ D
cC � � � C c D dc, which is what we needed to prove.

13.4 Cellular Complex

Let X be a CW complex and let Xn D skn X .n D 0; 1; 2; : : : / be its skeletons. Let
fen
˛ j ˛ 2 Ang be the set of all n-dimensional cells of X.

Pre-lemma. The space Xn=Xn�1 is homeomorphic to the bouquet
W
˛2An

Sn
˛; if

characteristic maps f˛ W .Dn; Sn�1/ ! .Xn;Xn�1/ are fixed, then there arises a
canonical homeomorphism between Xn=Xn�1 and

W
˛2An

Sn
˛.

Indeed, the maps f˛ compose a continuous map
`
˛.D

n
˛; S

n�1
˛ /! .Xn;Xn�1/, and

it is obvious [follows from the properties of characteristic maps and Axiom (W)] that
the map .

`
˛ Dn

˛/=.
`
˛ Sn�1

˛ / DW˛ Sn
˛ ! Xn=Xn�1 is a homeomorphism.

Lemma.

Hm.X
n;Xn�1/ Š

8
<
:

free Abelian group generated by
n�dimensional cells of X; if m D n;

0; if m ¤ n:

Proof. Hm.Xn;Xn�1/ D eHm.Xn=Xn�1/ D eHm.
W
˛2An

Sn
˛/:

The group Cn.X/ D Hn.Xn;Xn�1/ is called the groups of cellular chains of X.
The cellular differential or cellular boundary operator @ D @nW Cn.X/! Cn�1.X/ is
defined as the connecting homomorphism

Hn.Xn;Xn�1/
@���! Hn�1.Xn�1;Xn�2/

k k
Cn.X/ Cn�1.X/

from the homology sequence of the triple .Xn;Xn�1;Xn�2/ (see Exercise 7 from
Sect. 12.4).

AN OBVIOUS FACT: @n�1 ı @nW Cn.X/ ! Cn�1.X/ is zero (follows from the
equality @ ı @ D 0 in the singular complex).
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We obtain a complex

: : :
@��! Cn.X/

@��! : : :
@��! C2.X/ @��! C1.X/ @��! C0.X/ @��! 0 : : : ;

which is called the cellular complex of X. If we add the term C�1.X/ D Z and
augmentation @0 D �W C0.X/ D H0.X0/! Z, and then replace the notation C byeC,
we will get a definition of a reduced or augmented cellular complex.

There are two important things concerning cellular complexes. First, it is far
from being as big as the singular complex; for example, for finite CW complexes
the cellular chain groups are finitely generated. Moreover, not only the cellular chain
groups, but also the cellular boundary operators have an explicit description that is
easy to deal with. Second, we will prove that the homology of the cellular complex
is the same as the homology of the singular complex. We will show how these results
can be applied to calculating the homology of many classical CW complexes.

We will begin with the second part of this program.

13.5 Cellular Homology

Theorem. For an arbitrary CW complex X, the homology of the cellular complex
fCn.X/; @g coincides with the singular homology Hn.X/.

Proof The proof consists of three steps.

Step 1. Hn.X/ D Hn.XnC1/. Let m > n. From the exactness of homology
sequence of the pair .XmC1;Xm/,

HnC1.XmC1;Xm/!Hn.Xm/!Hn.XmC1/!Hn.XmC1;Xm/
k
0

k
0

we see that all homomorphisms

Hn.X
nC1/! Hn.X

nC2/! Hn.X
nC3/! : : :

induced by the inclusion maps are isomorphisms. If X is finite dimensional, this
settles our statement. In the general case, consider the map Hn.XnC1/ ! Hn.X/.
Every ˛ 2 Hn.X/ is represented by a finite sum of singular simplices, and every
singular simplex is covered by a finite number of cells. This implies that ˛ is
represented by a cycle contained in some XN , that is, belongs to the image of the map
Hn.XN/ ! Hn.X/ (and we can assume that N > n). Since Hn.XnC1/ ! Hn.XN/ is
an isomorphism, ˛ also belongs to the image of the map Hn.XnC1/! Hn.X/, so the
latter is onto. Now let ˇ 2 Hn.XnC1/ be annihilated by the map Hn.XnC1/! Hn.X/.
Then a cycle representing ˇ is the boundary of some singular chain of X. But, as
before, this chain must be contained in some XN . Hence, ˇ is also annihilated by
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some map Hn.XnC1/ ! Hn.XN/, which is an isomorphism. Thus, ˇ D 0 and our
map Hn.XnC1/! Hn.X/ is one-to-one.

Step 2. Hn.XnC1/ D Hn.XnC1;Xn�2/. Let m < n � 1. From the exactness of the
homology sequence of the triple .XnC1;Xm;Xm�1/,

Hn.Xm;Xm�1/! Hn.Xn;Xm�1/! Hn.Xn;Xm/! Hn�1.Xm;Xm�1/
k
0

k
0

we see that all homomorphisms

Hn.XnC1;Xn�2/ Hn.XnC1;Xn�3/ � � �  Hn.XnC1;X�1/
k

Hn.Xn�1/

are isomorphisms. This proves our statement.

Step 3. Hn.XnC1;Xn�2/ D Ker.@nW Cn.X/! Cn�1.X//
Im.@nC1W CnC1.X/! Cn.X//

: Consider the diagram

where the row is a fragment of the homology sequence of the triple .XnC1;Xn;Xn�2/
and the column is a fragment of the homology sequence of the triple
.Xn;Xn�1;Xn�2/; in particular, both are exact. There are two zeroes in the diagram,
and they show that ˛ is an epimorphism, and ˇ is a monomorphism. From this (and
again the exactness of the sequences) we obtain

Hn.XnC1;Xn�2/ D Hn.Xn;Xn�2/=Ker˛ D Hn.Xn;Xn�2/= Im@�

D ˇ.Hn.Xn;Xn�2//=ˇ.Im @�/ D Imˇ= Im.ˇ ı @�/

D Ker @n= Im@nC1:

This completes step 3, and the combination of the three steps gives the isomorphism
we need.
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13.6 A Closer Look at the Cellular Complex

We already know that for a CW complex X, the group Cn.X/ is isomorphic to a free
Abelian group generated by n-dimensional cells of X. But the isomorphism is not
genuinely canonical: It depends on a choice of characteristic maps of cells, which
is not convenient because usually characteristic maps are not fixed—we know only
that they exist. Actually, what we need to fix for every cell is not a characteristic
map, but an orientation. A characteristic map of an n-dimensional cell establishes
an isomorphism between two groups isomorphic to Z: Hn.Dn; Sn � 1/ D eHn.Sn/

and Hn.Xn�1 [ e;Xn�1/ D eHn..Xn�1 [ e/=Xn�1/ or eHn.Xn=.Xn � e// (which is
the same group). One can say that the orientation of e is a choice of a generator
in eHn..Xn�1 [ e/=Xn�1/ Š Z. Geometrically this indeed is an orientation: Say, if
n D 1, then a choice of orientation is a choice of a direction of an arrow on e. In
other words, characteristic maps f and f ı r always determine opposite orientations.
(Zero-dimensional cells have canonical orientations.)

Thus, chains in Cn.X/ can be presented as finite integral linear combinations of
oriented n-dimensional cells,

P
kiei. An orientation change for ei results in a sign

change for ki.
There also exists a good description of the boundary homomorphism

@nC1W CnC1.X/! Cn.X/. Let e and f be cells of X of dimensions nC 1 and n. In the
homology sequence of the triple .Xn [ e;Xn;Xn � f /, there is a homomorphism
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Z Š HnC1.Xn [ e;Xn/
@���!Hn.X

n;Xn � f / Š Z:

The choice of the isomorphisms with Z corresponds to the orientations of the cells
e; f . Every homomorphism Z! Z is a multiplication by some integer. This integer
is called the incidence number of the oriented cells e and f and is denoted as Œe W f �
(certainly, if e and f are disjoint, then Œe W f � D 0). The orientation change for any of
the cells e and f results in the sign change for Œe W f �.
Theorem. Let e be an oriented .nC1/-dimensional cell of X regarded as an element
of CnC1.X/. Then

@nC1.e/ D
X

f

Œe W f �f ;

where the sum is taken over all n-dimensional cells of X with fixed orientations.
[This sum is always finite: The intersection e\ f may be nonempty for only finitely
many n-dimensional cells f —this is Axiom (C).]

EXERCISE 7. Prove this. Recommendation: It may be useful to consider the
commutative diagram

HnC1.Xn [ e;Xn/
@���! Hn.Xn;Xn � f /????y

x????
HnC1.XnC1;Xn/

@nC1��! Hn.Xn;Xn�1/;

where the vertical maps are induced by the inclusion maps between pairs.

(A clarification is needed and possible in the case when n D 0. An oriented
one-dimensional cell e is a path joining two zero-dimensional cells, f0 and f1. Then
@e D f1 � f0; in particular, if f0 D f1, then @e D 0.)

The description of the boundary map in the preceding theorem motivates a better
understanding of the incidence numbers. They can be described as degrees of maps
Sn ! Sn. Namely, if 'W Sn ! Xn is an attaching map for e (determined by a certain
characteristic map for e) and  WXn=.Xn � f / D f=f ! Sn is a homeomorphism
determined by a certain characteristic map for F, then Œe W f � is nothing but the
degree of the map

Sn '��!Xn proj:��!Xn=.Xn � f /
 ��! Sn:

The description of the degree of a map Sn ! Sn given in Sect. 10.3 may be used as
a geometric description of incidence numbers. Namely, take a regular value x 2 f
of the attaching map 'W Sn ! Xn [rather of the map 'W'�1.f / ! f ] and compute
the “algebraic number” of inverse images of x (that is, the number of inverse images
where ' preserves the orientation minus the number of inverse images where '
reverses the orientation); this is Œe W f �.
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Having this in mind, we can give our theorem an aggressively tautological form:
The boundary of a cell is the sum of cells which appear in the boundary of this cell
with coefficients equal to the multiplicity of their appearance in this boundary.

13.7 First Applications

Theorem 1. If the number of n-dimensional cells of a CW complex X is N, then
the group Hn.X/ is generated by at most N generators; in particular, the nth Betti
number Bn.X/ does not exceed N. For example, if X does not have n-dimensional
cells at all, then Hn.X/ D 0; in particular, if X is finite dimensional, then Hn.X/ D 0
for all n > dim X. (Compare with homotopy groups!)

It follows directly from previous results.

Algebraic Lemma (Euler–Poincaré). Let

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

be a complex with the “total group”
L

n Cn finitely generated. Let cn be the rank of
the group Cn and hn be the rank of the homology group Hn. Then

X
n

.�1/ncn D
X

n

.�1/nhn:

EXERCISE 8. Prove this.

Corollary. Let X be a finite CW complex, and let cn be the number of n-dimensional
cells of X. Then

X
n

.�1/ncn D
X

n

.�1/nBn.X/:

Thus, the number
P

n.�1/ncn does not depend on the CW structure; it is determined
by the topology (actually, be the homotopy type) of X. This number is called the
Euler characteristic of X and is traditionally denoted by �.X/.

Historical Remark. This number is attributed to Euler because of the Euler polyhe-
dron theorem, which states that for every convex polyhedron in space, the numbers
V;E; and F of vertices, edges, and faces are connected by the relation V�ECF D 2.
Certainly, this is a computation of the Euler characteristic of the surface of the
polyhedron, that is, of the sphere. It is worth mentioning that Euler was not the
first to prove this theorem: It was proved, a century before Euler, by Descartes.

Now let us revisit the excision theorem and the Mayer–Vietoris sequence
(Exercises 13 and 14 of Lecture 12).
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Theorem 2 (Excision Theorem). Let X be a CW complex and let A;B be CW
subcomplexes of X such that A [ B D X. Then (for every n)

Hn.X;A/ D Hn.B;A \ B/:

Indeed, X=A and B=.A\ B/ are the same as CW complexes.

Theorem 3 (Mayer–Vietoris Sequence). Let X be a CW complex and let A;B be
CW subcomplexes of X such that A [ B D X. Then there exists an exact sequence

� � � ! Hn.A \ B/! Hn.A/˚ Hn.B/! Hn.X/! Hn�1.A \ B/! : : :

(see the description of maps in Exercise 14 of Lecture 12).

Proof. Let Y D .A � 0/ [ ..A \ B/ � I/ [ .B � 1/ � X � I and let C � Y be
.A\B/� I. Then Y=C and†.A\B/ (actually with the vertices merged; this slightly
affects the case of dimension 0) are the same CW complexes (see schematic picture
in Fig. 63).

Notice, in addition, that C D A
`

B and Y � X. The last homotopy equivalence
is established by the obvious map f WY ! X (the restriction of the projection
X � I ! X) and a map gWX ! Y which is defined in the following way. The
homotopy htWA \ B ! Y; ht.x/ D .x; 1 � t/ is extended, by Borsuk’s theorem, to
a homotopy HtWA ! Y of the map A ! Y; x ! .x; 1/. Then maps H1WA ! Y
and B ! Y; x 7! .x; 0/ agree on A \ B and hence compose a map X ! Y;
this is g; the relations f ı g � id; g ı f � id are obvious. Thus, Hn.Y/ D
Hn.X/;Hn.C/ D Hn.A/ ˚ Hn.B/; and Hn.Y;C/ D Hn�1.A \ B/ (with small
corrections in dimension 0), and the homology sequence of the pair .Y;C/ is the
Mayer–Vietoris sequence of the triad .XIA;B/.

Fig. 63 To the proof of the Mayer–Vietoris theorem
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13.8 Some Calculations

A: Spheres

We already know the homology of spheres, but let us calculate them again for
practice in the technique based on cellular complexes. The sphere Sn has a CW
structure with two cells, of dimensions 0 and n. Thus (if n > 0), C0.Sn/ D Cn.Sn/ D
Z, and all other cellular chain groups are trivial. The differential @ has to be 0 (if
n > 1, then this follows from the “dimension argumentations”; for n D 1, we use
the remark after Exercise 7); hence,

Hi.S
n/ D Ci.S

n/ D
�
Z; if i D 0; n;
0; if i ¤ 0; n:

EXERCISE 9. Prove this using another CW decomposition of Sn described
in Sect. 5.4.

B: Projective Spaces

The cases of complex, quaternionic, and Cayley projective spaces are not more
difficult than the cases of spheres: For the CW structures described in Sect. 5.4, there
are no cells of adjacent dimensions, the differential @ is trivial, and the homology
groups coincide with the cellular chain groups. Thus,

Hi.CPn/ D
�
Z; if i D 0; 2; 4; : : : ; Œ2n; if n is finite�;
0 for all other iI

Hi.HPn/ D
�
Z; if i D 0; 4; 8; : : : Œ; 4n; if n is finite�;
0 for all other iI

Hi.CaP2/ D
�
Z; if i D 0; 8; 16;
0 for all other i:

The real case is more complicated, since RPn has cells e0; e1; e2; : : : Œ; en if n is
finite].

Lemma. ŒeiC1 W ei� D
� ˙2; if n is odd;
0; if n is even:

Proof. The attaching map f W Si ! RPi is the standard twofold covering. The inverse
image of (actually, any) point of RPi consists of two points, and the restrictions
of f to neighborhoods of these points are related by the antipodal map Si ! Si.
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This antipodal map preserves the orientation if i is odd and reverses the orientation
if i is even. Thus, the contributions of these two points in ŒeiC1; ei� have the same
sign if i is odd and have different signs if i is even. This implies the formula of the
lemma.

Thus, the cellular complex of RPn is as shown below.

Since Im.
0��! / D 0; Ker.

0��! / D Z; Im.
2��! / D 2Z; and Ker.

2��! /

D 0, the factorization yields

Hi.RPn/ D
8
<
:
Z; if i D 0 or i D n and n is odd;
Z2; if i is odd and i < n;
0 in all other cases:

EXERCISE 10. Find the Euler characteristics of all finite-dimensional projective
spaces.

C: Grassmann Manifolds

Again, in the complex and quaternion cases, there are no cells of adjacent dimen-
sions, so the ith homology group is a free Abelian group of rank (= Betti number)
equal to the number of i-dimensional cells. The Betti numbers are as follows.
For i odd, Bi.G.n; k// D 0; for i even, this is the number of Young diagrams

of
i

2
cells contained in the k � .n � k/ rectangle. For quaternionic Grassmann

manifolds everything is doubled: Bi.HG.n; k// D Bi=2.CG.n; k//; in particular,
Bi.HG.n; k// D 0 if i is not divisible by 4.

In the real case the situation is more complicated.

EXERCISE 11. Let� and�0 be two Young diagrams with i and i�1 cells contained
in the k�.n�k/ rectangle. Prove that if�0 6� �, then Œe.�/ W e.�0/� D 0. If�0 � �
and the difference� ��0 consists of one cell with the coordinates .s; t/, then

Œe.�/ W e.�0/� D
� ˙2; if sC t is even;
0; if sC t iodd:

Use this for computation of the homology of G.n; k/ with reasonably small n; k.
Also, compute Hk.n�k/.G.n; k//.

EXERCISE 12. Find incidence numbers for the case of the manifold GC.n; k/. In
particular, find Hk.n�k/.GC.n; k//.
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D: Flag Manifolds

Again, the complex and quaternionic cases are relatively easy. The reader can try to
investigate the real case.

E: Classical Surfaces

Classical surfaces with holes are homotopy equivalent to bouquets of circles, so
we will consider classical surfaces without holes. The cellular complex for such a
surface has the form

Z
@2��! Z˚ � � � ˚ Z

@1��! Z

C2 C1 C0;
where the number of the summands Z in C1 is 2g; 2gC 1; or 2gC 2 if our surface
is a sphere with g handles, a projective plane with g handles, or a Klein bottle
with g handles, respectively. The differential @1 is zero (every one-dimensional
cell has equal endpoints). To find @2, we consider the construction of the classical
surface from a polygon (Sect. 1.10). Each of the 2g one-dimensional cells arising
from the handles is obtained by attaching differently oriented sides of the polygon,
so the incidence numbers of the two-dimensional cell with each of these 1-cells is 0.
On the other hand, the other one-dimensional cells (if there are any) are obtained by
attaching coherently oriented sides, and the incidence number with these cells is 2.
Thus,

@2.1/ D
8<
:
.0; : : : ; 0/ for a sphere with g handles;
.0; : : : ; 0; 2/ for a projective plane with g handles;
.0; : : : ; 0; 2; 2/ for the Klein bottle with g handles:

This leads to the results for homology:

H0.X/ D Z always;

H1.X/ D

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

Z˚ � � � ˚ Z„ ƒ‚ …
2g

; if X is a sphere with g handles;

Z˚ � � � ˚ Z„ ƒ‚ …
2g

˚Z2; if X is a projective plane
with g handles;

Z˚ � � � ˚ Z„ ƒ‚ …
2gC1

˚Z2; if X is a Klein bottle
with g handles;

H2.X/ D
�
Z; if X is a sphere with handles;
0 in all other cases

EXERCISE 13. Find the Euler characteristics of classical surfaces.



174 2 Homology

13.9 Chain Maps of Cellular Complexes

Let hWX ! Y be a cellular map of a CW complex into a CW complex. Then
h.Xn/ � Yn for all n, and hence h induces a map Hn.Xn;Xn�1/ ! Hn.Yn;Yn�1/,
that is, Cn.X/ ! Cn.Y/, which we denote as h# or h#n. Such maps induce a
homomorphism between cellular complexes of X and Y, and the induced homology
map is just h�WHn.X/! Hn.Y/. To prove this, we need to consider every step of the
proof of the theorem in Sect. 13.5, and to consider maps between the diagrams
in these steps for X into similar diagram for Y. The commutativity of (three-
dimensional) diagrams arising will imply our statement.

We can add that if c D P
i kiei 2 Cn.X/, where ei are n-dimensional cells of X,

then h#.c/ D P
i ki
�P

j dh.ei; fj/fj
�
, where the fj are n-dimensional cells of Y and

the number dh.e; f / is defined with the help of characteristic maps ' and  of e and
f as the degree of the map

Sn D Dn=Sn�1 '��!Xn=Xn�1 h��!Yn=Yn�1
proj:��!Yn=.Yn � f /

 �1

��!Dn=Sn�1 D Sn:

Using the description of the degree of a map Sn ! Sn in Sect. 10.3, we can say that
dh.e; f / is the algebraic number of inverse images of a regular value x 2 f of the
map hW e \ h�1.f /! f .

Certainly, this construction works only for cellular maps, but it is not a big deal,
since every continuous map is homotopic to a cellular map. (Not a big deal? We
will cast a doubt on this statement in Lecture 16.) Thus, one can say that the cellular
theory can be used as a substitute for the singular theory. But without the singular
theory (which is topologically invariant from the very beginning) we would have had
to prove that homeomorphic CW complexes have isomorphic homology groups.

13.10 Classical Complex

A cellular complex appears especially attractive when a CW structure is actually a
triangulation (see Sect. 5.8). We consider a triangulated space X with an additional
structure (a substitute for fixing characteristic maps): We suppose that the set of
vertices of X is ordered, or, at least, vertices of every simplex are ordered in such a
way that the ordering of vertices of a face of a simplex is always compatible with
the ordering of vertices of this simplex. We refer to such triangulations as ordered
triangulations. (For example, the barycentric subdivision of any triangulation is
naturally ordered: Vertices of simplices of a barycentric subdivisions are centers of
faces of simplices of the given triangulation and these are ordered by the dimensions
of the faces.)
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For a simplex with the vertices ordered, there is a canonical affine homeo-
morphism of the standard simplex onto this simplex; this homeomorphism can
be regarded as a singular simplex of an ordered triangulated space X. We obtain
a set of special singular simplices of X, and it is clear that faces of “special
singular simplices” are also special. By this reason, linear combinations of special
singular simplices form a subcomplex of the singular complex, and it is also clear
that this subcomplex is precisely the cellular complex of the triangulation.

Historically, the complex described above is the first chain complex of a
(orderly triangulated) topological space ever considered. It can be described very
directly: Chains are integral linear combinations of simplices (remember the
ordering!), and the boundary is given by the very familiar formula @

�P
i kisi

� DP
i ki
�P

j.�1/j�jsi
�
, where the si are simplices of our triangulation and the �jsi

are their faces. Obviously, the inclusion of the classical complex into the singular
complex induces the isomorphism of the homology groups [to show this, the only
thing we need to add to what we already know is that n-dimensional simplices
regarded as singular simplices are relative cycles of .Xn;Xn�1/, and their homology
classes form the usual basis in Cn.X/ D Hn.Xn;Xn�1/].

For the classical chain groups, the notation Cclass
n .X/ is often used.

Historical Remark. The classical definition of homology created the necessity of
proving a topological invariance theorem: Homeomorphic triangulated spaces have
isomorphic homology groups. The initial proof, due to J. Alexander, was long and
complicated (hundreds of pages in old topology textbooks). There was an attempt
to deduce the topological invariance of classical homology from the so-called
Hauptvermutung (German for main conjecture) of combinatorial topology: Any
two triangulations of a topological space have simplicially equivalent subdivisions.
But the Hauptvermutung turns out to be false: The first counterexample was
found by J. Milnor in 1961, and many other counterexamples were constructed
later, in particular for simply connected smooth manifolds. The whole problem
of topological invariance disappeared mysteriously when singular homology was
defined. The first definition of singular homology was given by O. Veblen in the late
1920s but became broadly known some 10 years later.

EXERCISE 14. Using the classical complex, find the Betti numbers of the skeletons
of the standard simplex. (Make your computations as explicit as possible.)

EXERCISE 15. (An algebraic lemma) Let fCn; @ng; fC0
n; @

0
ng be two positive Cn D

C0
n D 0 (for n < 0) complexes of free Abelian groups, and let f be a homomorphism

of the first complex into the second one. Prove that if f�n is an isomorphism for all,
then f is a homotopy equivalence. Deduce that the classical complex is homotopy
equivalent to the singular complex.
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EXERCISE 16. Prove that the cellular complex of a CW complex is homotopy
equivalent to its singular complex. (There are several different ways of proving that,
so we refrain from giving any hint.)

13.11 The Singular Complex as a CW Complex

We finish this lecture with a construction which may seem amusing to some readers
but actually is quite useful (we will use it in the beginning of the next lecture).
Let X be a topological space, and let Singn.X/ be the set of all n-dimensional
singular simplices of X. Consider a (monstrous, we agree) topological space

Y D
1̀

nD0
`
˛2Singn.X/

�n
˛ (where�n

˛ is a copy of the standard simplex�n) and make,

for every n and every ˛, the identification �i�
n
˛ D �n�1

�i˛
(both are copies of

�n�1 contained in Y). We denote the resulting space as Sing.X/. This space has
a natural CW structure (images of Int�n

˛ � Y are cells of Sing.X/ and the maps
�n D��!�n

˛

���! Y
proj;��!Sing.X/ can be taken for characteristic maps. [Notice

that although the cells of Sing.X/ look like simplices, its CW structure is not a
triangulation: The intersection of closed simplices is not a face.] There is also a
natural map Sing.X/! X, which induces the identity homomorphism in homology
[just take ˛W�n ! X on �n

˛ � Sing.X/].
It is immediately obvious that the cellular complex of Sing.X/ is the same as the

singular complex of X; in particular, Hn.Sing.X// D Hn.X/ for all X. Actually, the
spaces Sing.X/ and X are weakly homotopy equivalent (and homotopy equivalent
if X is a CW complex). We will see that later.

Let us add that the Sing construction is natural in the sense that a continuous map
X ! Y gives rise to a cellular map Sing.X/! Sing.Y/ with the same induced map
in homology. Also, if A � X, then Sing.A/ � Sing.X/ and there arises a continuous
map

.Sing.X/;Sing.A//! .X;A/

which induces isomorphisms

Hn.Sing.X/;Sing.A//! Hn.X;A/:
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Lecture 14 Homology and Homotopy Groups

The connection between homology and homotopy groups is seen always from the
preliminary description of homology in the beginning of Lecture 12: Spheroids
are cycles and homotopical spheroids are homological cycles. This suggests that
there must be a natural map from homotopy groups into homology groups. This
map, called the Hurewicz homomorphism, is the main subject of this lecture. We
will see that the connection between homotopy and homology groups is deeper than
it may seem at the beginning, but we also will show examples which should serve
as a warning to a reader who expects too much of this connection.

14.1 Homology and Weak Homotopy Equivalences

Theorem. If f WX ! Y is a weak homotopy equivalence, then f�WHn.X/ ! Hn.Y/
is an isomorphism for all n.

Proof. Since both weak homotopy equivalences and homology homomorphisms are
homotopy equivalent, we can replace the map f by the inclusion map X ! Cyl.f /
of X into the mapping cylinder of f (see Sects. 2.3 and 3.3). Because of this, we can
assume that the given map f is an inclusion, so we have a pair .Y;X/. Also, we have
a pair .Sing.Y/; .Sing.X// and a continuous map hW .Sing.Y/;Sing.X// ! .Y;X/
which induces isomorphisms

h�WHn.Sing.Y/;Sing.X//! Hn.Y;X/

(see Sect. 13.11).
On the other hand, since f is a weak homotopy equivalence, the map

f�W�.Sing.Y/;X/ ! �.Sing.Y/;Y/ is a bijection, which means that the map
hWSing.Y/ ! Y is homotopic to a map whose image is contained in X. Hence, the
map h�WHn.Sing.Y/;Sing.X//! Hn.Y;X/ is zero, which shows that Hn.Y;X/ D 0
for all n. By exactness of the homology sequence of the pair .Y;X/, this shows that
all the homomorphisms f�WHn.X/! Hn.Y/ are isomorphisms.

Recall that according to another result from Sect. 11.4, a map is a weak homotopy
equivalence if and only if it induces an isomorphism in homotopy groups. Because
of this, our theorem assumes the following memorable form.

Corollary. If a continuous map induces an isomorphism between homotopy groups,
then it also induces an isomorphism between homology groups.

This will be further developed in the last section of this lecture.
To finish this section, we will formulate some exercises which will show that

some statements looking similar to the preceding theorem and corollary are actually
false.
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EXERCISE 1. Prove that the spaces S2 and S3 � CP1 have isomorphic homotopy
groups but nonisomorphic homology groups. Same for the spaces Sm�RPn and Sn�
RPm with m ¤ n;m ¤ 1; n ¤ 1. (Compare with Exercises 5 and 6 in Lecture 11.)

EXERCISE 2. Prove that the spaces S1 � S1 and S1 _ S1 _ S2 have isomorphic
homology groups but nonisomorphic homotopy groups.

EXERCISE 3. Prove that the Hopf map S3 ! S2 induces a trivial homomorphism
in reduced homology groups but a nontrivial homomorphism in homotopy groups.

EXERCISE 4. Prove that the projection map S1 � S1 ! .S1 � S1/=.S1 _ S1/ D S2

induces a trivial homomorphism in homotopy groups but a nontrivial homomor-
phism in reduced homology groups.

14.2 The Hurewicz Homomorphism

Let X be a topological space with a base point X0. Let sn be the canonical generator
of the group Hn.Sn/ D Z; n D 1; 2; : : : . For a ' 2 �n.X; x0/ put

h.'/ D f�.sn/ 2 Hn.X/;

where f W Sn ! X is a spheroid of the class ' [obviously, h.'/ does not depend on
the choice of the spheroid f ]. The function ' 7! h.'/ is a homomorphism

hW�n.X; x0/! Hn.X/:

Indeed, let the spheroid f be the sum of spheroids f 0; f 00W Sn ! X, that is, f is the
composition

Sn 
�! Sn _ Sn f 0_f 00

���! X

(see Fig. 37). Then 
�.s/ D s0 C s00 where s0; s00 2 Hn.Sn _ Sn/ are generators
corresponding to the two spheres of the bouquet, and f�.s/ D .f 0 _ f 00/�.s0 C s00/ D
f 0�.s/C f 00� .s/.

This homomorphism is called the Hurewicz homomorphism; it is natural with
respect to continuous maps (taking a base point into a base point).

EXERCISE 5. Prove that the diagram

is commutative for any path u joining x0 with x1.
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Theorem (Hurewicz). Let �0.X; x0/ D � � � D �n�1.X; x0/ D 0, where n � 2. Then
H1.X/ D � � � D Hn�1.X; x0/ D 0 and hW�n.X; x0/! Hn.X; x0/ is an isomorphism.

Proof. By the theorem of Sect. 11.6, there exists a CW complex weakly homotopy
equivalent to X. Since a weak homotopy equivalence induces isomorphisms both in
homotopy groups and in homology groups (the first by Sect. 13.11, the second by
Sect. 14.1), we can assume that X itself is a CW complex. Then Sect. 5.9 allows us
to make an additional assumption that X has one vertex and no cells of dimensions
1; : : : ; n � 1. This already shows that H1.X/ D � � � D Hn�1.X/ D 0 (Theorem 1 in
Sect. 13.7), and Hn.X/ D Cn.X/= Im@n�1 is not different from �n.X/ according to
the theorem in Sect. 11.3.

Corollary (The Inverse Hurewicz Theorem). If X is simply connected and
H2.X/ D � � � D Hn�1.X/ D 0 .n � 2/, then �2.X/ D � � � D �n�1.X/ D 0 and
hW�n.X/! Hn.X/ is an isomorphism.

Together these theorems mean that the first nontrivial homotopy and homology
groups of a simply connected space occur in the same dimension and are isomor-
phic.

EXERCISE 6. Prove that a simply connected CW complex with the same homology
groups as Sn is homotopy equivalent to Sn. [Hint: Apply Whitehead’s theorem to a
spheroid Sn ! X representing a generator of the group �n.X/ Š Z.] Do the same
for the bouquet of spheres of the same dimensions.

Remark. Thus, we see that the triviality of the homotopy groups, as well as the
triviality of the homology groups, implies the homotopy triviality (contractibility)
of a simply connected CW complex. At the same time, we have the examples which
show that neither the triviality of induced homotopy groups homomorphisms nor
the triviality of induced homology homomorphisms secures homotopy triviality of
a continuous map. It turns out that even these two trivialities together do not imply
the homotopy triviality of a continuous map.

EXERCISE 7. Prove that the composition

S1 � S1 � S1
proj:��! .S1 � S1 � S1/= sk2.S1 � S1 � S1/ D S3

Hopf��! S2

induces a trivial map of both homotopy and homology groups but is not homotopic
to a constant map.

EXERCISE 8. Do the same for the map

S2n�2 � S3
proj:��! .S2n�2 � S3/=.S2n�2 _ S3/ D S2nC1 Hopf��!CPn:
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14.3 The Case n D 1

Theorem (Poincaré). For an arbitrary path connected space X, the Hurewicz
homomorphism hW�1.X/ ! H1.X/ is an epimorphism whose kernel is the com-
mutator subgroup Œ�1.X/; �1.X/� of the group �1.X/. Thus,

H1.X/ Š �1.X/=Œ�1.X/; �1.X/�:

(Recall that the commutator subgroup ŒG;G� of a group G is its subgroup
generated by commutators Œg1; g2� D g1g2g�1

1 g�1
2 for all g1; g2 2 G. The com-

mutator subgroup is always normal. The group G=ŒG;G� is obtained from g
by Abelianization, that is, by imposing additional relations: Any two generators
commute with each other.)

Proof of Theorem is a copy of the proof of the theorem in Sect. 14.2: We can assume
that X is a CW complex with only one vertex, and for such spaces, it is sufficient to
compare the procedures of computing the groups �1 and H1; see Sects. 7.6 and 13.5.

EXERCISE 9. Show that a loop f W S1 ! X determines an element of the kernel of
the map hW�1.X/! H1.X/ (“homologous to zero”) if and only if it can be extended
to the map into X of the disk (with the boundary S1) with handles. Moreover, the
minimal number of these handles is equal to the minimal number of commutators
in �1.X/ whose product is Œf �.

EXERCISE 10. The space XAb is called an Abelianization, or Quillenization, of a
path connected space X if the fundamental group of XAb is Abelian and there exists a
continuous map X ! XAb inducing an isomorphism Hn.X/! Hn.XAb/ for every n.
Prove that X possesses an Abelianization if and only if

Œ�1.X/; �1.X/� D Œ�1.X/; Œ�1.X/; �1.X/� �;

that is, if every element of Œ�1.X/; �1.X/� can be presented as a product of
commutators of elements of �1.X/ with elements of Œ�1.X/; �1.X/�.

Remark. Our definition of an Abelianization is a simplified version of a more
common definition in which the space XAb is assumed simple (see Sect. 8.2), or
even an H-space (see Exercise 2 in Sect. 8.2) or even a loop space (see Lecture 4).
This enhanced definition of an Abelianization plays an important technical role in
one of the versions of constructing an algebraic K-functor. The problem of the
existence of an Abelianization in this sense is much more complicated, and there
are no general theorems about it. But there are several remarkable examples of
the Abelianization, two of which we will mention. The first was discovered in
1971 by M. Barratt, D. Kahn, and S. Priddy: The Abelianization of the space
X D K.S1; 1/, where S1 D [nSn is the group of finite permutations of the set
Z>0, is XAb D .�1S1/0 D [n.�

nSn/0 (the subscript 0 indicates that we consider
only one component of the set). Another example belongs to G. Segal (1973) and
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states that if X D K.B.1/; 1/ where B.1/ is the infinite braid group and hence
X is the set of (unordered) countable subsets of the plane consisting, for some N
(depending on the subset), of points .n C 1; 0/; .n C 2; 0/; : : : and n more points
different from each other and from the points listed above, then XAb is�2S3. In both
cases, the space X has a complicated fundamental group and trivial higher homotopy
groups, and the space XAb has a simple fundamental group (Z2 in the first case and Z

in the second case) and complicated, so far unknown, homotopy groups. For further
details, see Barratt and Priddy [20], Segal [74], and Fuchs [37].

EXERCISE 11. Prove that any two-dimensional homology class of an arbitrary
space X can be represented by a sphere with handles; that is, for every ˛ 2 H2.X/,
there exist a sphere with handles S and a continuous map f W S ! X such that the
map f�WH2.S/! H2.X/ takes the canonical generator of H2.S/ D Z into ˛.

14.4 The Relative Hurewicz Theorem

The relative Hurewicz homomorphism hW�n.X;A/! Hn.X;A/ is defined similarly
to the absolute one. If f W .Dn; Sn�1/! .X;A/ is a relative spheroid representing the
class ' 2 �n.X;A/, then h.'/ is the image of the canonical generator if the group
Hn.Dn; Sn�1/ D Z with respect to the homomorphism f�WHn.Dn; Sn�1/! Hn.X;A/.

Theorem. Let .X;A/ be a topological pair such that the space X is path connected
and A is simply connected. Let n � 3.

(1) Suppose that �2.X;A/ D � � � D �n�1.X;A/ D 0. Then H1.X;A/ D H2.X;A/ D
� � � D Hn�1.X;A/ D 0 and hW�n.X;A/! Hn.X;A/ is an isomorphism.

(2) Suppose that H2.X;A/ D � � � D Hn�1.X;A/ D 0. Then �2.X;A/ D � � � D
�n�1.X;A/ D 0 and hW�n.X;A/! Hn.X;A/ is an isomorphism.

Proof The proof can be obtained from the proof of the theorem in Sect. 14.2 by
modifications characteristic for a transition from the absolute case to a relative case.

We begin by constructing a cellular approximation of the pair .X;A/. For this
purpose, we first find a cellular approximation .B; g/ of A (see Sect. 11.6). Then we
attach additional cells to B and successively expand the map iıgWB! X (where i is
the inclusion map of A into X) to the new cells in such a way that B is expanded to
a CW complex Y and i ı g is expanded to a weak homotopy equivalence f WY ! X
(this is a replica of the construction in the proof of the theorem in Sect. 11.6). Since
f jB D g, the maps f and g compose a map .Y;B/ ! .X;A/. We already know that
f and g induce isomorphisms in both homotopy and homology groups, and the five-
lemma implies that the map between the pairs induces isomorphisms for relative
homotopy and homology groups. After this, we can assume that the pair .X;A/ in
the theorem is actually a CW pair.

According to Exercise 22 in Sect. 5.9, there exists a CW pair .X0;A0/ homotopy
equivalent to .X;A/ and such that A0 contains all cells of X0 of dimension less than
n. We can assume that the pair .X;A/ itself has these properties. Then the relative
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version of the theorem in Sect. 11.3 (see Exercise 2, or, even better, Exercise 4 in
Sect. 11.3) describes the group �n.X;A/, and this description is not different from
the description of Hn.X;A/.

EXERCISE 12. If A is not simply connected, then part (1) of the theorem remains
true with the following modification: Hn.X;A/ is isomorphic to �n.X;A/ factorized
over the natural action of �1.A/.

14.5 Whitehead’s Theorem

(Not to be confused with a different theorem of the same Whitehead, in Sect. 11.5.)

Theorem. Let X and Y be simply connected spaces, and let f WX ! Y be a
continuous map such that f�W�2.X/! �2.Y/ is an epimorphism.

(1) If the homomorphism f�W�m.X/! �m.Y/ is an isomorphism for m < n and an
epimorphism for m D n, then the same is true for f�WHm.X/! Hm.Y/.

(2) The same with � and H swapped.

Proof. We may assume that f is an embedding, so .Y;X/ is a topological pair. The
exactness of homotopy and homology sequences of this pair yields a translation of
conditions and claims of the theorem into the language of relative homotopy and
homology groups. Namely, the condition “f�W�2.X/ ! �2.Y/ is an epimorphism”
means precisely that �2.Y;X/ D 0; the condition “f�W�m.X/ ! �m.Y/ is an
isomorphism for m < n and an epimorphism for m D n” means that �m.Y;X/ D 0

for m � n; the same for homology groups. Thus, the theorem is equivalent to the
relative Hurewicz theorem in Sect. 14.4.

Corollary. If a continuous map f WX ! Y between simply connected topological
spaces induces an epimorphism f�W�2.X/! �2.Y/ and isomorphisms f�WHm.X/!
Hm.Y/ for all m, then f is a weak homotopy equivalence (a homotopy equivalence,
if X and Y are CW complexes).

Lecture 15 Homology with Coefficients and Cohomology

One can apply to the singular or cellular complex of a topological space the
standard algebraic operations � ˝ G and Hom.�;G/. In this way, we obtain new
complexes which also have homologies; these homologies are called homology and
cohomology of the space with coefficients (values) in G. Certainly, the transition to
these homology and cohomology may be regarded as a purely algebraic operation,
but the experience shows that a too frankly algebraic presentation of this subject
may scare a geometrically oriented reader off. To avoid hurting the feelings of such
a reader, we will refer to tensor products, Homs, and other such things only when it
is absolutely necessary. Still, we will have numerous such necessities.
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15.1 Definitions

Let G be an Abelian group. A singular n-dimensional chain of a space X with
coefficients in G is a formal linear combination of the form

P
i gifi where gi 2 G and

fiW�n ! X are singular simplices. The group of n-dimensional singular chains of X
with coefficients in G is denoted as Cn.XIG/; obviously, Cn.XIG/ D Cn.X/ ˝ G.
Our previous group of chains, Cn.X/, is, in this notation, Cn.XIZ/. A singular n-
dimensional cochain of X with coefficients (values) in G is defined as a function on
the set of all n-dimensional singular simplices of X with values in G (no conditions
like continuity are imposed). The group of n-dimensional cochains of X with
coefficients in G is denoted as Cn.XIG/; obviously, Cn.XIG/ D Hom.Cn.X/;G/.
The value of a cochain c on a chain a is denoted as hc; ai; thus,

˝
c;
P

i gifi
˛ DP

i c.fi/gi. A generalization: if a bilinear multiplication (pairing) G1 � G2 ! G3

is given, then for c 2 Cn.XIG1/ and a 2 Cn.XIG2/ there arises the “value”
hc; ai 2 G3.

Boundary and coboundary operators

@ D @nW Cn.XIG/! Cn�1.XIG/;
ı D ınW Cn.XIG/! CnC1.XIG/

are defined by the formulas

@
X

i

gifi D
X

i

gi

nX
jD0
.�1/j�jfi; .ıc/.f / D

nX
jD0
.�1/jc.�jf /:

Obviously, for every c 2 Cn.XIG/ and a 2 CnC1.XIG/,

hc; @ai D hıc; ai:

A simple computation shows that @@ D 0 and ıı D 0 (the second follows from the
first and the formula for h�;�i above), and we set

Hn.XIG/ D KerŒ@nWCn.XIG/! Cn�1.XIG/�
ImŒ@nC1WCnC1.XIG/! Cn.XIG/� ;

Hn.XIG/ D KerŒınWCn.XIG/! CnC1.XIG/�
ImŒın�1WCn�1.XIG/! Cn.XIG/� :

The related terminology is homology, cohomology, cycles, cocycles, boundaries.
coboundaries, homological cycles, cohomological cocycles.

Chain and cochain complexes may be augmented by maps

�WC0.XIG/! G; ��WG! C0.XIG/
�
P

i gifi DPi gi and Œ��.g/�.f / D g:
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The reduced homology and cohomology, eHn.XIG/; eHn.XIG/, are the same as
unreduced ones with obvious exceptions: H0.XIG/ D eH0.XIG/ ˚G; H0.XIG/ D
eH0.XIG/˚ G, if X is nonempty, and eH�1.XIG/ D G D eH�1.XIG/ if X is empty.

15.2 Transfer of the Known Results

All major results of Lectures 12 and 13 and some results of Lecture 14 can be
transferred to the new context without serious changes, either in statements or in
proofs (for the proofs, we have an option to deduce new results from the old results
using simple algebraic means; we will not do this, at least now).

A continuous map hWX ! Y induces homology and cohomology homomor-
phisms, the latter of which acts in the “opposite direction”:

h�WHn.XIG/! Hn.YIG/; h�WHn.YIG/! Hn.XIG/

[the cochain map h#WCn.Y;G/ ! Cn.XIG/ is defined by the formula Œh#.c/�.f / D
c.h ı f /, where f is a singular simplex of X].

Homology with coefficients and cohomology are homotopy invariant: If g � h,
then g� D h� and g� D h�; in particular, homology with coefficients and
cohomology of homotopy equivalent spaces are the same.

For a disjoint union X D X1 t � � � t XN ,

Hn.XIG/ D
M

i
Hn.XiIG/; Hn.XIG/ D

M
i
Hn.XIG/:

For infinite disjoint unions, a difference appears between homology and cohomol-
ogy: Hn.XIG/ is the direct sum of the groups Hn.XiIG/, while Hn.XIG/ is the direct
product of the groups Hn.XiIG/.

For the one-point space pt,

H0.ptIG/ D G D H0.ptIG/;
Hn.ptIG/ D 0 D Hn.ptIG/ for n ¤ 0;
eHn.ptIG/ D 0 D eHn.ptIG/ for all n:

Relative homology with coefficients is defined precisely as usual (integral)
relative homology, while in the definition of relative cohomology there arises a
small (and expectable) new feature: The group Cn.X;AIG/ is a subgroup, not a
quotient group, of Cn.XIG/; it consists of cochains from Cn.XIG/ which have zero
restriction to Cn.A/ � Cn.X/ (or, equivalently, assume zero value at every singular
simplex in A).

The homology sequence of a pair .X;A/ with coefficients in G looks the same as
in the integral case (just insert “IG” where necessary). The cohomology sequence
has all the arrows reversed:
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� � � ! Hn�1.AIG/ ı
�

!Hn.X;AIG/! Hn.XIG/! Hn.AIG/! : : : :

The homomorphism ı�WHn�1.AIG/ ! Hn.XIA/ is defined in the following
(expectable) way. For a class � 2 H.AIG/, choose a representing cocycle c 2
Cn�1.AIG/. Then expand the function c [on .n� 1/-dimensional singular simplices
of A] to all .n � 1/-dimensional singular simplices of X (for example, set it
equal to 0 on simplices not contained in A) and take the coboundary of the chain
c0 2 Cn�1.XIG/ arising. Then ıc0 is zero on Cn.AIG/ (since c is a cocycle). Thus,
ıc0 2 Cn.X;A/. It is a (relative) cocycle (since ıı D 0), and its cohomology class
ˇ 2 Hn.X;AIG/ does not depend on the arbitrary choices of the construction (c in
� and the extension c0 of c; it is similar to Exercise 7 in Lecture 12). The function
� 7! ˇ is ı�.

Both homology with coefficients and cohomology sequences of a pair are exact.
There are also exact reduced homology with coefficients and cohomology sequences
of pairs (no reducing for relative homology and cohomology groups) and exact
homology with coefficients and cohomology sequences of triples.

For a Borsuk pair .X;A/, there are isomorphisms

Hn.X;AIG/ D eHn.X=AIG/; Hn.X;AIG/ D eHn.X=AIG/

established by the projection X ! X=A. For an arbitrary pair there are similar
isomorphisms with X=A replaced by X [ CA. Under the same assumptions as in
Sect. 12.7, there are excision isomorphisms Hn.X � B;A � BIG/ D Hn.X;AIG/
and Hn.X � B;A � BIG/ D Hn.X;AIG/ and exact Mayer–Vietoris sequences; the
cohomology Mayer–Vietoris sequences assume the form

� � � ! Hn�1.A \ BIG/! Hn.XIG/
! Hn.AIG/˚ Hn.BIG/! Hn.A \ BIG/! : : : :

For a CW complex, homology with coefficients and cohomology can be calcu-
lated through the cellular complex. Namely, for a CW complex X, Cn.XIG/ is the
group of linear combinations

P
i giei, where ei are oriented n-dimensional cells (an

orientation change for a cell ei results in a replacement of gi by �gi). Furthermore,
Cn.XIG/ is the group of G-valued functions on the set of oriented n-dimensional
cells of X, where the orientation change for ei leads to a sign change for the value at
ei. The boundary and coboundary operations act by the formulas

@

 X
i

giei

!
D
X

i

gi

X
f

Œei W f �f ; Œıc�.e/ D
X

f

Œe W f �c.f /;

where the inner summation on the right-hand side of the first formula is spread to all
.n� 1/-dimensional cells f of X and the summation in the second formula is spread
to all n-dimensional cells of X.
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Let us now show the results of calculating homology with coefficients and
cohomology for the most important CW complexes. For spheres,

eHm.S
nIG/ D eHm.SnIG/ D

�
G; if m D n;
0; if m ¤ n

(this fact certainly can be obtained with the cellular complexes, but the reader
who wants to reconstruct all the proofs will have to do it at an earlier stage, as
in Sect. 13.1). For complex, quaternion, and Cayley projective spaces, as well as for
complex and quaternion Grassmann manifolds and flag manifolds, the homology
with coefficients and cohomology are not different from the corresponding cellular
chains and cochains. For example,

Hm.CPnIG/ D Hm.CPnIG/ D
8
<
:

G; if m D 0; 2; 4; : : : Œ; 2n;
if n is finite�;

0 for all other m:

In the real case, the computation may be more complicated (compare Sect. 13.8),
but it becomes much simpler if G D Z2, since in this case all the boundary
and coboundary operators (in cellular complexes) are zero and homology with
coefficients and cohomology again do not differ from the corresponding cellular
chain and cochain groups. For example,

Hm.RPnIZ2/ D Hm.RPnIZ2/ D
�
Z2; for 0 � m � n;
0 for all other m:

Notice in addition that for a classical surface X (without holes),

H0.XIZ2/ D H0.XIZ2/ D H2.XIZ2/ D H2.XIZ2/ D Z2;

H1.XIZ2/ D H1.XIZ2/ D Z2 ˚ � � � ˚ Z2„ ƒ‚ …
r

;

where

r D
8
<
:
2g; if Xis a sphere with g handles;
2gC 1; if X is a projective plane with g handles;
2gC 2; if X is a Klein bottle with g handles:

EXERCISE 1. Find the homology and cohomology of real projective spaces and real
Grassmann manifolds with coefficients in Zm where m is odd.

To finish the section, let us notice that if f WX ! Y is a weak homotopy
equivalence, then

f�WHn.XIG/! Hn.YIG/ and f �WHn.YIG/! Hn.XIG/
are isomorphisms for all G and n.
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15.3 Coefficient Sequences

We begin studying relations between homologies and cohomologies with different
coefficients. There is an obvious fact that any homomorphism 'WG1 ! G2 between
Abelian groups induces, for every X and n, homomorphisms

'�WHn.XIG1/! Hn.XIG2/ and '�WHn.XIG1/! Hn.XIG2/

(in the same direction). However, as many examples (including some known to us)
show, the homomorphism ' being a monomorphism, or an epimorphism, or just
nontrivial, does not imply similar properties for any of the '�s. For a deeper
understanding of the subject, let us consider the following situation. Let G be an
Abelian group, H be a subgroup of G, and F be the quotient group G=H. Usually,
all of this is presented as a short exact sequence,

0! H ! G! F ! 0:

Besides the homomorphisms Hn.XIH/ ! Hn.XIG/ ! Hn.XIF/ and Hn.XIH/
! Hn.XIG/! Hn.XIF/, there arise “connecting homomorphisms”

ı�WHn.XIF/! Hn�1.XIH/ and ı�WHn.XIF/! HnC1.XIH/:

Here is the construction of the first of them. For an ˛ 2 Hn.XIF/, choose a
representative a 2 Cn.XIF/. Since G ! F is an epimorphism, a possesses an
inverse imageea 2 Cn.XIG/. The projection Cn�1.XIG/! Cn�1.XIF/ takes @ea into
@a D 0; hence, @ea actually belongs to Cn�1.XIH/. This is a cycle, and its homology
class in Hn�1.XIH/ is taken for @�.˛/. The construction of the homomorphism ı�
is similar Œ.� 2 Hn.XIF// 7! .c 2 Cn.XIF// 7! .ec 2 Cn.XIG// 7! .ıec 2
CnC1.XIH// 7! .ı�.�/ 2 HnC1.XIH//�:
EXERCISE 2. Check that the preceding constructions provide well-defined homo-
morphisms @� and ı�.

EXERCISE 3. Prove that the coefficient sequences

� � � ! Hn.XIH/! Hn.XIG/! Hn.XIF/! Hn�1.XIH/! : : : ;

� � � ! Hn.XIH/! Hn.XIG/! Hn.XIF/! HnC1.XIH/! : : :

are exact.

HISTORICAL AND TERMINOLOGICAL REFERENCE. The homomorphisms @�
and ı� were discovered, in a particular case, by M. Bockstein long before exact
sequences became commonplace in algebraic topology. Here is how the Bockstein
homomorphism was first described. Let ˛ 2 Hn.XIZm/. Take a representative a
of ˛. All the coefficients involved in a are residues modulo m; we can regard them
as integers 0; 1; : : : ;m � 1. Then the cycle a becomes an integral chain ea. The
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boundary @ea is divisible by m; let us divide. The result,
1

m
@ea, is an integral cycle.

It represents some class Bm.˛/ 2 Hn�1.XIZ/ [by the way, mBm.˛/ D 0]; after
reducing modulo m, it becomes a class bm.˛/ 2 Hn�1.XIZm/. We have constructed
“Bockstein homomorphisms”

BmWHn.XIZm/! Hn�1.XIZ/ and bmWHn.XIZm/! Hn�1.XIZm/:

In a very similar way, cohomological Bockstein homomorphisms

BmWHn.XIZm/! HnC1.XIZ/ and bmWHn.XIZm/! HnC1.XIZm/

are defined.
Actually, all of these Bockstein homomorphisms are connecting homomor-

phisms @� and ı� of coefficient sequences induced by the short exact sequences

0! Z
�m��!Z! Zm ! 0 and 0! Zm ! Zm2 ! Zm ! 0:

From the exactness of the coefficient sequences, it follows then that (1) an element
of Hn.XIZm/ belongs to the kernel of Bm if and only if it is “integral,” that is,
belongs to the image of the reducing homomorphism Hn.XIZ/ ! Hn.XIZm/; an
element of Hn.XIZ/ belongs to the image of Bm if and only if it is annihilated by the
multiplication by m; similarly for the cohomological Bockstein homomorphisms.

15.4 Algebraic Preparation to Universal
Coefficients Formulas

Let A and B be Abelian groups. Then let B D F1=F2, where F1 is a free Abelian
group and F2 is a subgroup of F1 which must also be free (such a presentation exists
for any Abelian group). What are the interrelations between A ˝ F1; A ˝ F2; and
A ˝ B? To answer this question, we need a lemma which can be regarded as the
most fundamental property of tensor products.

Lemma 1. The tensor product operation is right exact. This means that if the
sequence

A
˛��!B

ˇ��!C��! 0

is exact, then the sequence

G˝ A
G˝˛��!G˝ B

G˝ˇ��!G˝ C��! 0

is exact.
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Proof. Recall that, by definition, the tensor product K ˝ L is F.K � L/=R.K;L/,
where F.K � L/ is the free Abelian group generated by the set K � L and R.K;L/ is
the subgroup of F.K�L/ generated by elements of the form .k; `/C.k0; `/�.kCk0; `/
and .k; `/C .k; `0/ � .k; `C `0/. The image of .k; `/ in K ˝ L is denoted as k˝ `.

It is obvious that G˝ˇ is onto:
P

i.gi˝ ci/ D ŒG˝ˇ�
�P

i.gi ˝ bi/
�
, where the

bi are chosen to satisfy the condition ˇ.bi/ D ci. It is also obvious that .G ˝ ˇ/ ı
.G˝ ˛/ D 0. It remains to prove that Ker.G˝ ˇ/ � Im.G˝ ˛/.

Let ŒG˝ˇ� �Pi.gi ˝ bi/
� D 0. This means that

P
i.gi; ˇ.bi// 2 R.G;C/; that is,P

i.gi; ˇ.bi// is a linear combination of elements of F.G � C/ of the form .g; c/C
.g0; c/ � .g C g0; c/ and .g; c/ C .g; c0/ � .g; c C c0/. For all c; c0 involved, find
b; b0 2 B whose ˇ-images are c; c0, and the subtract from

P
i.gi; ˇ.bi// the same

linear combination with c; c0 replaced by the corresponding b; b0. We get an element
of F.G � B/ which also represents

P
i.gi ˝ bi/ but also belongs to the kernel of

the map F.G � ˇ/WF.G � B/! F.G � C/. This kernel is generated by differences
.g; b0/ � .g; b00/ with ˇ.b0 � b00/ D 0, that is, b0 � b00 22 ˛. Thus,

P
i.gi ˝ bi/ DP

j.g
0/j ˝ .b0

j � b00
j // and hence

P
i.gi ˝ bi/ D ŒG ˝ ˛�

�P
j.g

0
j ˝ aj/

�
, where

˛.aj/ D b0
j � b00

j .

Lemma 1 shows that the sequence

A˝ F2 ! A˝ F1 ! A˝ B! 0

is exact; that is, A ˝ B is a quotient of A ˝ F1 over the image of the natural map
A˝ F2 ! A˝ F1, but this map is not necessarily a monomorphism.

Lemma 2. The kernel Ker.A ˝ F2 ! A ˝ F1/ does not depend on the choice of
presentation B D F2=F1.

Proof The proof consists in constructing a canonical isomorphism

Ker.A˝ F0
2 ! A˝ F0

1/ Š Ker.A˝ F2 ! A˝ F1/

for an arbitrary other presentation B D F0
1=F0

2. First, we construct homomorphisms
˛1WF0

1 ! F1; ˛2WF0
2 ! F2, making the diagram

(where the i; i0 are inclusion maps and the p; p0 are projections) commutative.
Here ˛1 takes a generator x of F0

1 into y 2 F1 such that p.y/ D p0.x/ (which exists,
since p is an epimorphism). This ˛1 takes Ker p0 D F0

2 into Ker p D F2, thus giving
rise to an ˛2WF0

2 ! F2. Since y in the previous construction is determined (by x) up
to an element of Ker p D F2, any other choice of ˛1 has the form ˛1 C i0 ı ˇ, where
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ˇ is a homomorphism F0
1 ! F2, and then the new ˛2 is ˛2 C ˇ ı i. Take the tensor

product of (the square part of) this diagram with A:

The map A˝ ˛2 takes Ker.A˝ i0 into Ker.A˝ i/. This map does not depend on the
choice of ˛1 and ˛2, since A˝.ˇı i0/ D .A˝ˇ/ı.A˝i0/ is zero on Ker.A˝i0/. The
map Ker.A˝ i0/! Ker.A˝ i/ is constructed in the same way, and the composition
of these maps in any order is the identity, because of the same uniqueness (this time,
applied to F0

1 D F1; F0
2 D F2).

Definition. The kernel Ker.A˝ F2 ! A˝ F1/ is called the periodic product of A
and B and is denoted as Tor.A;B/.

EXERCISE 4. Show that the operation Tor is natural with respect to both arguments;
that is, homomorphisms A ! A0;B ! B0 induce a homomorphism Tor.A;B/ !
Tor.A0;B0/ with all expectable properties (for A it is obvious, while for B this
requires a construction like the one in the beginning of the proof of the lemma).

EXERCISE 5. Prove a natural isomorphism Tor.A;B/ ! Tor.B;A/. (This might
be harder than one can expect. The most common idea of proving that is the
following. Consider two presentations A D F1=F2; B D G1=G2 with free Abelian
F1;F2;G1;G2, form the complex

0! F2 ˝ G2 ! Œ.F1 ˝ G2/˚ .F2 ˝G1/�! F1 ˝ G1 ! 0;

and prove that the homology groups H2;H1; and H0 of this complex are 0;Tor.A;B/;
and Hom.A;B/. This provides a definition of Tor symmetric in A;B.)

EXERCISE 6. Prove that if A (or B) is a free Abelian group, then Tor.A;B/ D 0.

EXERCISE 7. Prove that Tor.Zm;Zn/ Š Zm ˝ Zn ŒD Zgcd.m;n/� [this isomorphism
is not canonical; it depends on the choice of generators in Zm and Zn]. Thus, for
finitely generated Abelian groups A;B,

Tor.A;B/ Š Tors A˝ Tors B

(Tors A D torsion of A, the group of elements of finite order).

EXERCISE 8. For infinitely generated A;B, the last isomorphism, in general, does
not hold: Construct an example.

EXERCISE 9. Prove that is A D Q;R, or C, then Tor.A;B/ D 0 for any B.
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The “dual” operation Ext is defined in a similar way. First, we dualize Lemma 1:

Lemma 3. If the sequence

A
˛��!B

ˇ��!C��! 0

is exact, then the sequence

Hom.A;G/
Hom.˛;G/ �� Hom.B;G/

Hom.ˇ;G/ �� Hom.C;G/ �� 0

is exact.

Proof The proof is left to the reader; it is easier than the proof of the Lemma 1.

EXERCISE 10. Prove that the operation Hom.G;�/ is left exact. This means that if
the sequence

0��!A
˛��!B

ˇ��!C

is exact, then the sequence

0��! Hom.G;A/
Hom.G;˛/��! Hom.G;B/

Hom.G;ˇ/��! Hom.G;C/

is exact.

Let A;B be Abelian groups, and let A D F1=F2, where F1 and F2 are free Abelian
groups. Lemma 3 says that the kernel of the map Hom.F1;B/! Hom.F2;B/; f 7!
f jF2 is Hom.A;B/, but this map is not onto. The cokernel of this map, which is the
quotient of Hom.F2;B/ over the image of this map, is taken for Ext.A;B/.

EXERCISE 11. Prove that Ext is well defined (this is a dualization of Lemma 2).

EXERCISE 12. Show that the operation Ext is natural with respect to both argu-
ments; that is, homomorphisms A ! A0;B ! B0 induce a homomorphism
Ext.A0;B/ ! Ext.A;B0/ with all expectable properties. (Notice the reversion of
the arrow A! A0.)

EXERCISE 13. Prove that Ext.Z;B/ D 0 for any B; prove also that Ext.Zm;Zn/

Š Hom.Zm;Zn/ Š Zm ˝ Zn Š Z.m;n/ (not canonically!), and Ext.Zm;Z/ Š Zm

(unlike Tor.Zm;Z/ D 0).

EXERCISE 14. The set Ext.A;B/ has another definition (due to Yoneda) as the set
of equivalence classes of “extensions” of A by B, that is, short exact sequences

0! B! C! A! 0

where C is an Abelian group. Prove the equivalence of the two definitions of Ext
and make up a direct definition of a group structure in the set Ext.A;B/ described as
the set of extensions.
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EXERCISE 15. Prove that if one of the groups A;B is Q;R; or C, then
Ext.A;B/ D 0.

15.5 The Universal Coefficients Formula

Now we will show that the usual (integral) homology of X (actually, of any complex
consisting of free Abelian groups) determine homology and cohomology of X with
arbitrary coefficients.

Theorem. For any X; n; and G,

Hn.XIG/ Š .Hn.X/˝ G/˚ Tor.Hn�1.X/;G/

Hn.XIG/ Š .Hn.X/˝ G/˚ Tor.HnC1.XIZ/;G/
Hn.XIG/ Š Hom.Hn.X/;G/˚ Ext.Hn�1.X/;G/:

IMPORTANT ADDITION. The isomorphisms of the theorem are not canonical.
What is canonical are the following three exact sequences:

0! Hn.X/˝ G! Hn.XIG/! Tor.Hn�1.X/;G/! 0;

0! Hn.XIZ/˝ G! Hn.XIG/! Tor.HnC1.XIZ/;G/! 0;

0 Hom.Hn.X/;G/ Hn.XIG/ Ext.Hn�1.X/;G/ 0:

Proof. The first two exact sequences are easily obtained from coefficient sequences.
The first sequence is obtained in the following way. Let G D F1=F2, where F1 and
F2 are free Abelian groups. Then F1 D Z˚ Z˚ : : : ;, and hence

Hn.XIF1/ D Hn.XIZ˚ Z˚ : : : / D Hn.X/˚ Hn.X/˚ � � � D Hn.X/˝ F1;

and, similarly, Hn.XIF2/ D Hn.X/˝ F2. Hence, the fragment

Hn.XIF2/! Hn.XIF1/! Hn.XIG/! Hn�1.XIF2/! Hn�1.XIF2/
of the coefficient sequence takes the form

Hn.X/˝ F2 ! Hn.X/˝ F1 ! Hn.XIG/
! Hn�1.X/˝ F2 ! Hn�1.X/˝ F2:

A five-term exact sequence A
'��!B ! C ! D

 ��!E can be transformed into
a short exact sequence 0 ! Coker' ! C ! Ker ! 0 (where Coker is the
quotient over the image, Coker' D B= Im'). This transformation converts the
last sequence into the first of the three exact sequences in the theorem. The second
sequence is obtained in the way from the cohomological coefficient sequence (and
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the isomorphisms Hn.XIFi/ D Hn.XIZ/ ˝ Fi). The last sequence can hardly be
obtained in a similar way, because it contains both homology and cohomology. But
there exists a different approach which yields isomorphisms from the theorem rather
than the exact sequences.

Since for every n; Bn.X/ D ImŒ@nC1WCnC1.X/! Cn.X/� is a free Abelian group,
there exists a (nonunique) homomorphism snWBn.X/ ! CnC1.X/ such that @nC1 ı
sn D id. Thus,

CnC1.X/ D Ker @nC1 ˚ Im sn D ZnC1.X/˚ Bn.X/:

The boundary operator looks like this:

CnC1.X/ D ZnC1.X/ ˚ Bn.X/????y@nC1

????yinclusion

Cn.X/ D Zn.X/ ˚ Bn�1.X/ :

This shows that the whole singular complex C D fCn.X/; @ng is isomorphic (not
canonically) to the direct sum of very short complexes C.n/,

: : : 0! 0! Bn.X/
.nC 1/

incl:��! Zn.X/
.n/
! 0! 0 : : :

[for this complex, the n-dimensional homology is Hn.X/; all the other homology
groups are zero]. Since the tensor product has the distributivity property, the
complex C ˝ G D fCn.XIG/ D Cn.X/ ˝ G; @n ˝ Gg is the sum of complexes
C.n/˝ G,

: : : 0! 0! Bn�1 ˝ G! Zn�1 ˝ G! 0! 0 : : : :

Since Bn.X/ and Zn.X/ are free Abelian groups and Zn.X/=Bn.X/ D Hn.X/, the
homology groups of the complex C ˝G are

dimension nC 1W Tor.Hn.X/;G/I
dimension nW Hn.X/˝ G:

The summation over n gives the first formula of the theorem: Hn.XIG/ Š .Hn.X/˝
G/˚ Tor.Hn�1.X/;G/. The second formula is obtained in the same way; we leave
this job to the reader.

To prove the last part of the theorem, consider again the decomposition of the
singular complex C of X into the sum of “very short complexes” C.n/:
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We see that although the decomposition C D L C.n/ is not canonical, and hence
there is neither a canonical projection C ! C.n/ or a canonical embedding
C.n/ ! C, there are still the canonical projection CnC1.X/ ! Bn.X/ and the
canonical embedding Zn.X/ ! Cn.X/, as shown in the diagram. Now apply to
this diagram the operation Hom.�;G/. We obtain the diagram

For the (co)homology Hm.CIG/ of the complex Hom.C;G/, we have

Hn.C.n/IG/ D KerŒHom.Zn.X/;G/! Hom.Bn.X/;G/�
D Hom.Hn.X/;G/;

HnC1.C.n/IG/ D CokerŒHom.Zn.X/;G/! Hom.Bn.X/;G/�
D Ext.Hn.X/;G/

and Hm.C.n// D 0 for m ¤ n; nC 1. From this,

Hn.XIG/ Š
M

k

Hn.CIG/ D Hom.Hn.X/;G/˚ Ext.Hn�1.X/;G/;

as stated. Moreover, as we have seen, there are canonical homomorphisms

Hn.XIG/! Hom.Hn.X/;G/; Ext.Hn�1.X/;G/! Hn.XIG/;
which form the exact sequence

0 Hom.Hn.X/;G/ Hn.XIG/ Ext.Hn�1.X/;G/ 0:

This completes the proof of the theorem.
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We can add that the map

Cn.XIG/ D Hom.Cn.X/;G/! Hom.Zn.X/;G/

considered above is simply the restriction to Zn.X/; moreover, if c 2 Cn.XIG/ is
a cocycle, then the restriction of c to Bn.X/ is zero, which provides an element
of Hom.Hn.X/;G/ depending only on the cohomology class of c; this is how
our homomorphism Hn.XIG/ ! Hom.Hn.X/;G/ acts. In other words, this
homomorphism sends a cohomology class � 2 Hn.XIG/ to a homomorphism
˛ 7! h�; ˛i of Hn.X/ into G. The fact that this homomorphism is onto yields the
following important proposition.

Corollary 1. For every homomorphism f WHn.X/ ! G, there exists a cohomology
class � 2 Hn.XIG/ such that f .˛/ D h�; ˛i for every ˛ 2 Hn.G/.

Remark also that this � is defined up to an element of Ext.Hn.X/;G/; in
particular, if Hn.X/ and G are finitely generated, then this Ext group is finite, so
� is defined by f up to adding an element of finite order.

Before the final exercises of this section, we will mention one more interesting
corollary.

Corollary 2. If the groups Hn.X/ are finitely generated, then

Hn.XIZ/ Š Free part of Hn.X/˚ Torsion part of Hn�1.X/:

In particular, H1.XIZ/ is a free Abelian group.

EXERCISE 16. If K D Q;R, or C, then

Hn.XIK/ D Hn.X/˝K and Hn.XIK/ D Hom.Hn.X/;K/:

Thus, the transition from the integral coefficients to the rational, real, or complex
coefficients kills the torsion. On the other hand, the Betti numbers of X become the
dimension of homology or cohomology with coefficients in Q;R or C. (Actually,
the same is true for any field of characteristic zero.)

EXERCISE 17. If K is a field, then homology and cohomology with coefficients in
K possess a natural structure of vector spaces over K. Prove that

Hn.XIK/ D HomK.Hn.XIK/;K/:
[It is better not to deduce this formula from the universal coefficients formula, but
rather to prove it directly using the equality Cn.XIK/ D HomK.Cn.XIK/;K/.]
EXERCISE 18. Prove that if X is a finite CW complex and K is a field, then

X
.�1/m dimK Hm.XIK/

does not depend on K and is equal to the Euler characteristic of X (see Sect. 13.7).
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15.6 Künneth’s Formula

By its contents, Künneth’s formula is closer to the next lecture than to the
current one. But by sight, this formula has so strong resemblance to the universal
coefficients formulas (actually, these formulas can be deduced from the same
general algebraic result; thus, they have a common ancestor) that it would be unfair
to try to separate them.

Theorem 1. Let X1;X2 be topological spaces. Then for any n,

(1) There is a (noncanonical) isomorphism

Hn.X1 � X2/ ŠL
iCjDn

.Hi.X1/˝ Hj.X2//
L L

iCjDn�1
Tor.Hi.X1/;Hj.X2//:

(2) There is a canonically defined exact sequence

0!L
iCjDn.Hi.X1/˝ Hj.X2//! Hn.X1 � X2/

!L
iCjDn�1 Tor.Hi.X1/;Hj.X2//! 0:

We will deduce Theorem 1 from an algebraic result related to the tensor product
of complexes.

Definition. Let

.C/ : : :
@nC1��!Cn

@n��!Cn�1
@n�1��! : : : ;

.C 0/ : : :
@0

nC1��!C0
n

@0
n��!C0

n�1
@0

n�1��! : : :

be two positive complexes. Let

Tn D
M

iCjDn
.Ci ˝ C0

j/

and let 	nWTn ! Tn�1 take c˝ c0 2 Ci ˝ Cj � Tn into

	n.c˝ c0/ D .@ic˝ c0/C .�1/i.c˝ @0
jc

0/ 2 .Ci�1 ˝ Cj/˚ .Ci ˝ Cj�1/ � Tn�1:

A direct verification (see below) shows that 	n�1 ı 	n D 0. The complex arising,

: : :
	nC1��! Tn

	n��! Tn�1
	n�1��! : : : ;

is called the tensor product of the complexes C and C 0 and is denoted as C ˝ C 0.

VERIFICATION OF 	n�1 ı 	n D 0. Let c 2 Ci; c0 2 C0
j . Then
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	n�1 ı 	n.c˝ c0/ D 	n�1.@ic˝ c0/C .�1/i	n�1.c˝ @0
jc

0/
D .@i�1 ı @i.c/˝ c0/C .�1/i�1.@ic˝ @0

jc
0/

C.�1/i..@ic˝ @0
jc

0/C .�1/j�1.c˝ @0
j�1 ı @0

j.c
0///

D .�1/i�1.@ic˝ @0
jc

0/C .�1/i.@ic˝ @0
jc

0/ D 0:

Our next goal is to express the homology of the tensor product of two complexes
in terms of homologies of these complexes.

Theorem 2. If the complexes C; and C 0 are free (that is, all Cn;C0
n are free Abelian

groups), then, for every n,

(1) There is a (noncanonical) isomorphism

Hn.C ˝ C 0/ ŠL
iCjDn

.Hi.C/˝Hj.C 0/
L L

iCjDn�1
Tor.Hi.C/;Hj.C 0//:

(2) There is a canonically defined exact sequence

0!L
iCjDn.Hi.C/˝ Hj.C 0//! Hn.C ˝ C 0/

!L
iCjDn�1 Tor.Hi.C/;Hj.C 0//! 0:

Proof. Begin with part (2). Let Zn D Ker @n;Bn�1 D Im @n. Consider the diagram

0

#
0

#
0

#
: : :

0��! ZnC1
0��! Zn

0��! Zn�1
0��! : : :

????y�
????y�

????y�

: : :
@��! CnC1

@��! Cn
@��! Cn�1

@��! : : :
????y@

????y@
????y@

: : :
0��! Bn

0��! Bn�1
0��! Bn�2

0��! : : :

#
0

#
0

#
0
:

The rows of this diagram are complexes, the columns are exact sequences, and
the diagram is commutative. Thus, this diagram can be regarded as a short exact
sequence of complexes:

0! Z ! C ! B! 0;



15.6 Künneth’s Formula 201

where Z and B are complexes with trivial differential composed of groups Zn and
Bn [but the nth group of the complex B is Bn�1]. Since the complex C 0 is free, the
sequence remains exact after tensoring with C 0:

0! Z ˝ C 0 ! C ˝ C 0 ! B ˝ C 0 ! 0:

Since Z and B have trivial differentials and consist of free Abelian groups,

Hn.Z ˝ C 0/ D
M

iCjDn

.Zi ˝ Hj.C 0//; Hn.B ˝ C 0/ D
M

iCjDn�1
.Bi ˝ Hj.C 0//:

Thus, the homology sequence corresponding to the last short exact sequence of
complexes takes the form

L
iCjDn

.Bi ˝ Hj.C 0//
'��! L

iCjDn
.Zi ˝ Hj.C 0//! Hn.C ˝ C 0/

! L
iCjDn�1

.Bi ˝ Hj.C 0//
 ��! L

iCjDn�1
.Zi ˝Hj.C 0//:

It is easy to see also that the connecting homomorphisms' and are induced by the
inclusion maps Bi ! Zi [before tensoring with C 0, they consist first in applying @�1
and then @; tensoring with C 0 does not change anything]. Since the Abelian groups
Bi and Zi are free and Hi.C/ D Zi=Bi, the exact sequence 0! Coker' ! Hn.C ˝
C 0/! Ker ! 0 is precisely the exact sequence from part (2) of Theorem 2.

To prove part (1), first notice that if Hn.C/ D 0 for n ¤ i and Hn.C 0/ D 0 for
n ¤ j, then part (2) shows that the homology of C ˝ C 0 is zero, except

HiCj.C ˝ C 0/ D Hi.C/˝ Hj.C 0/;
HiCj�1.C ˝ C 0/ D Tor.Hi.C/;Hj.C 0//;

so the isomorphism of part (1) holds. In general,

C ŠL C.i/; where C.i/ is : : : 0! 0! Bi
.iC1/

incl:��! Zi
.i/
! 0! 0 : : : ;

C 0 ŠL C 0.j/; where C 0.j/ is : : : 0! 0! B0
j

.jC1/

incl:��! Z0
j
.j/

! 0! 0 : : :

(noncanonical isomorphisms; compare with Sect. 15.5), and all the homology
groups of C.i/ and C 0.j/ are zero besides Hi.C.i// D Hi.C/ and Hj.C 0.j// D Hj.C 0/.
This implies part (1) in full generality.

Proof of Theorem 1. In the case when X1 and X2 are CW complexes, it is sufficient
to remark that the cellular chain complex of X1 � X2 is the tensor product of the
cellular complexes of X1 and X2 (e � e0 $ e˝ e0). To extend the result to arbitrary
topological spaces, we use two previous results: (1) Every topological space is
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weakly homotopy equivalent to a CW complex (Sect. 11.6); and (2) homology is
weakly homotopy invariant (Sect. 14.1).

Remarks. (1) It is not true, in general, that the singular complex of the product
X1 � X2 of two topological spaces is isomorphic the tensor product of the singular
complexes of X1 and X2. But these complexes are homotopy equivalent (there exists
a homotopy equivalence canonically defined up to a homotopy between them).
This fact, known as the Eilenberg–Zilber theorem, is proved in many textbooks in
topology.

(2) A comparison of the universal coefficients formula with Künneth’s formula
gives the following result (which may be useful in Chap. 3):

Hn.X1 � X2/ D
M

iCjDn
Hi.X1IHj.X2//:

EXERCISE 19. The last equality can be modified to the case of homology and
cohomology with coefficients:

Hn.X1 � X2IG/ DLiCjDn Hi.X1IHj.X2IG//
Hn.X1 � X2IG/ DLiCjDn Hi.X1IHj.X2IG//:

(These equalities, as well as the equality in the preceding remark, can be proven
without any references to the universal coefficients and Künneth’s formulas: They
hold, actually, at the level of cellular chains. This provides a direct way to deduce
the noncanonical part of Künneth’s formula from the similar part of the universal
coefficients formulas.)

Here is a small but significant application of Künneth’s formula.

EXERCISE 20. Find the homology of RP2 � RP2. (If the result seems unexpected
to you, check it using a direct cellular computation.)

Like the universal coefficients formula, Künneth’s formula simplifies a lot in the
case of coefficients in a field.

EXERCISE 21. Prove that if K is a field, then

Hn.X1 � X2IK/ DLiCjDn Hi.X1IK/˝K Hj.X2IK/;
Hn.X1 � X2IK/ DLiCjDn Hi.X1IK/˝K Hj.X2IK/:

In conclusion, here are two more formulas.

EXERCISE 22. Bn.X1 � B2/ DPiCjDn Bi.X1/Bj.X2/.

EXERCISE 23. �.X1 � X2/ D �.X1/�.X2/: (In both exercises, we assume that the
right-hand sides of the formulas are defined.)
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Lecture 16 Multiplications

16.1 Introduction

Although homology is geometrically much more transparent than cohomology,
cohomology is immensely more useful because it possesses many naturally defined
additional structures. The first of these structures is a multiplication: If G is a
ring, then for ˛ 2 Hn1 .XIG/ and ˇ 2 Hn2 .XIG/ there exists a naturally defined
“product” ˛ˇ 2 Hn1Cn2 .XIG/ which has good algebraic properties. Nothing like
this is possible for homology (see Exercise 14 ahead). We will discuss these products
(and some other products) in this lecture and will describe many other structures in
later chapters (starting with Chap. 4).

The simplest way to introduce the cohomological multiplication is as follows.
Let G be a commutative ring, and let X1;X2 be two CW complexes. For cellular
cochains c1 2 Cn1 .X1IG/; c2 2 Cn2 .X2IG/, we define a cellular cochain c1 � c2 2
Cn1Cn2 .X1 � X2IG/ in the most natural way: For the oriented cells e1 � X1; e2 � X2
of dimensions n1; n2, the value of c1�c2 on e1�e2 is c1.e1/c2.e2/ (product in G). It is
easy to check that ı.c1�c2/ D .ıc1/�c2C.�1/n1c1�ıc2; thus, if c1; c2 are cocycles,
then c1 � c2 is also a cocycle. The same formula shows that the cohomology class
of the cocycle c1 � c2 depends only on the cohomology classes of cocycles c1; c2,
so we get a valid (bilinear, associative) multiplication

Œ�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/� 7! �1 � �2 2 Hn1Cn2 .X1 � X2IG/:
A similar construction exists for homology. Namely, if a1 D P

i gie1i 2
Cn1 .X1IG/; a2 D

P
j gje2j 2 Cn2 .X2IG/, then we put

a1 � a2 D
X

i;j

.gigj/.e1i � e2j/ 2 Cn1Cn2 .X1 � X2IG/:

A check shows that @.a1 � a2/ D .@a1/ � a2 C .�1/n1a1 � @a2, which gives rise to
a homological multiplication

Œ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/� 7! ˛1 � ˛2 2 Hn1Cn2 .X1 � X2IG/:

The two�-products (usually called cross-products) are connected by the formula

h�1 � �2; ˛1 � ˛2i D .�1/n1n2h�1; ˛1ih�2; ˛2i:

EXERCISE 1. Another definition of the homological �-product can be obtained
from Künneth’s formula: This formula yields a canonical map Hn1 .X1/˝Hn2 .X2/!
Hn1Cn2 .X1 � X2/, and the image of ˛1 ˝ ˛2 with respect to this map is taken for
˛1 � ˛2. Prove the equivalence of the two definitions.
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At this moment, however, the difference between homology and cohomology
becomes important. For any topological space X, there exists the diagonal map
�WX ! X � X; �.x/ D .x; x/. This maps induces homomorphisms

��W Hn.XIG/! Hn.X � XIG/;
��W Hn.X � XIG/! Hn.XIG/I

of these homomorphisms; the first one is useless for us now, but the second one
provides cohomological multiplication: For �1 2 Hn1 .XIG/; �2 2 Hn2 .XIG/, we
put

�1 ^ �2 D ��.�1 ˝ �2/ 2 Hn1Cn2 .XIG/:

(The classical notation^, “cup,” is not very convenient, so often instead of �1 ^ �2
we will simply write �1�2.)

However, this way of defining the cohomological product has two important
disadvantages. First, we must still prove the independence of the CW structure.
Second, the diagonal map is not cellular, and to apply it to a cellular cochain we
need to choose a cellular approximation, which cannot be done in a canonical way,
at least, in the context of arbitrary CW complexes. To avoid these difficulties we will
use the opposite order of the definition. First, we will define a ^-product (usually
called the cup-product) by a singular, topologically invariant, construction, and then
we will use it to define the cross-product.

Terminological Remark. The cup-product was initially called the Kolmogorov–
Alexander product, after the two remarkable mathematicians who (independently
of each other) conceived of this operation in the mid-1930s. Unfortunately, the next
generation of topologists found this term too long.

16.2 The Cup-Product: A Direct Construction

In the standard simplex �n; n D n1 C n2 with the vertices v0; : : : ; vn, consider two
faces of dimensions n1 and n2: �n1� �n with the vertices v0; : : : ; vn1 and �n2C�n with
vertices vn1 ; : : : ; vn. These faces have dimensions n1 and n2 and have one common
vertex, vn1 . Accordingly, for an n-dimensional singular simplex f W�n ! X, we will
consider faces �n1� f D f j�n1

� �n and �n2C f D f j�n2
C
�n , which are singular simplices

of dimensions n1 and n2.
Let X be an arbitrary topological space and let G be a commutative ring. Then let

c1 2 Cn1 .XIG/ and c2 2 Cn2 .XIG/. We define a cochain c1 ^ c2 2 Cn1Cn2 .XIG/
by the formula

Œc1 ^ c2�.f / D c1.�
n1� f /c2.�

n2C f /;

where f is .n1 C n2/-dimensional singular simplex of X.
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Proposition (Properties of the Cochain Cup-Product). Let c1 2 Cn1 .XIG/; c2 2
Cn2 .XIG/. Then

(0) ı.c1 ^ c2/ D .ıc1/ ^ c2 C .�1/n1c1 ^ ıc2:
(1) c1 ^ .c2 ^ c3/ D .c1 ^ c2/ ^ c3 Œc3 2 Cn3 .XIG/�.
(2) Let ! be the backward transformator (Example 2 in Sect. 12.5). Then for any

.n1 C n2/-dimensional singular chain a,

Œc1 ^ c2�.a/ D .�1/n1n2 Œc2 ^ c1�.!
X
n1Cn2a/:

(3) For a continuous map gWX ! Y,

g#.c1 ^ c2/ D .g#c1/ ^ .g#c2/:

(4) For a ring homomorphism hWG! H,

h�.c1 ^ c2/ D .h�c1/ ^ .h�c2/:

Proof The proof is obvious [only property (0) requires a simple calculation] and is
left to the reader.

Remark. The noncommutativity (even the non-plus-minus-commutativity) of the
chain cup-product is an unavoidable property which has important consequences
(which will show themselves in Chap. 4).

Property (0) shows that the cup-product of two cocycles is a cocycle whose
cohomology class depends only on the cohomology classes of the factors. This gives
rise to the cohomological cup-product

Œ�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/� 7! �1 � �2 2 Hn1Cn2 .X1 � X2IG/:

Theorem (Properties of the Cohomology Cup-Product). Let �1 2 Hn1.XIG/; �2 2
Hn2 .XIG/. Then

(1) �1 ^ .�2 ^ �3/ D .�1 ^ �2/ ^ �3 Œ�3 2 Hn3 .XIG/�.
(2) �1 ^ �2 D .�1/n1n2�2 ^ �1.
(3) For a continuous map gWX ! Y,

g�.�1 ^ �2/ D .g��1/ ^ .g��2/:

(4) For a ring homomorphism hWG! H,

h�.�1 ^ �2/ D .h��1/ ^ .h��2/:

This follows from the proposition [the proof of property (2) uses the transforma-
tor lemma; see Sect. 12.5].
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Notice that there is an obvious generalization of the previous construction: If
�1 2 Hn1 .XIG1/; �2 2 Hn2 .XIG2/ and there is a pairing 
WG1 � G2 2 G, then
there arises a cup-product �1 ^
 �2 D �1 ^ �2 2 Hn1Cn2 .XIG/. For example, if
�1 2 Hn1 .XIG/ (where G is just an Abelian group) and �2 2 Hn2 .XIZ/, then there
is a cup-product �1 ^ �2 2 Hn1Cn2 .XIG/.
EXERCISE 2. Prove that if X is connected and � 2 H0.XIG/ D G, then � ^ �1 D
��1 for any �1 2 Hn.XIG/. In particular, if 1 2 G is the unity of the ring G, then
1 2 G D H0.XIG/ is the unity of the cohomological multiplication.

EXERCISE 3. Construct a relative version of cup-product: If �1 2 Hn1.X;AIG/
and � 2 Hn2 .X;BIG/, then �1 ^ �2 2 Hn1Cn2 .X;A [ BIG/. [To prove this,
it is convenient to regard Hn.X;A [ B/ not as the homology of the complex
consisting of the groups Cn.X/=Cn.A [ B/, but rather as the complex of groups
Cn.X/=.Cn.A/ ˚ Cn.B//; the homology remains the same (for sufficiently good A
and B) by the refinement lemma.]

16.3 The Cross-Product: A Construction via
the Cup-Product

As before, let X1;X2 be topological spaces, let G be a commutative ring, and let
�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/ be cohomology classes. Put

�1 � �2 D .p�
1 �1/ ^ .p�

2 �2/ 2 Hn1Cn2 .X1 � X2IG/;

where p1 and p2 are projections of X1 � X2 onto X1 and X2.

EXERCISE 4. Make up a definition of the relative cross-product,

Œ�1 2 Hn1 .X1;A1IG/; �2 2 Hn2 .X2;A2IG/�
7! �1 � �2 2 Hn1Cn2 .X1 � X2; .A1 � X2/ [ .X1 � A2/IG/:

EXERCISE 5. Check all kinds of naturalness for the cross-product.

Theorem. This definition of the cross-product is equivalent to that in Sect. 16.1.

Proof. It turns out to be sufficient to compute explicitly the cross-product in one
particular case. Since standard simplices and their products are homeomorphic
to balls,

Hn1 .�n1 ; @�n1 IZ/ D Z; Hn2 .�n2 ; @�n2 IZ/ D ZI
Hn1Cn2 .�n1 ��n2 ; @.�n1 ��n2 /IZ/ D Z:

Similar formulas hold for homology.
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v0 v1 v2 v3 v4
w0

w1

w2

w3

(v0, w0), (v1, w0), (v1, w1), (v2, w1),

(v3, w1), (v3, w2), (v3, w3), (v4, w3).

vertices:

Fig. 64 Triangulation of a product of simplices

What we want to check is that the cross-product of the generators of the groups
Hn1 .�n1 ; @�n1 IZ/ D Z; Hn2 .�n2 ; @�n2 IZ/ D Z is, up to a sign, the generator of
Hn1Cn2.�n1 ��n2 ; @.�n1 ��n2 /IZ/ D Z:

Obviously, the singular simplex idW�n1 ! �n1 is a relative cycle representing the
generator of Z D Hn1 .�

n1 ; @�n1 /, and similarly for �n2 . As to Z D Hn1Cn2 .�n1 �
�n2 ; @.�n1 � �n2 /IZ/, to describe the generator, we will construct a triangulation
(actually, quite standard) of the product�n1 ��n2 , generalizing the triangulation of
the product�n � I constructed in Sect. 12.2; see Fig. 59.

Let v0; v1; : : : ; vn1 be the vertices of �n1 , and let w0;w1; : : : ;wn2 be the vertices
of �n2 . In �n1 � �n2 , take .n1 C n2/-dimensional affine simplices whose vertices
make a sequence of the form

.vi0 ;wj0 /; .vi1 ;wj1 /; .vi2 ;wj2 /; : : : ; .vin1Cn2
;wjn1Cn2

/;

where

0 D i0 � i1 � i2 � � � � � in1Cn2 D n1I
0 D j0 � j1 � j2 � � � � � jn1Cn2 D n2I

is C js D s:

In other words, in an .n1 C 1/ � .n2 C 1/ grid with horizontal bars labeled by
w0; : : : ;wn2 and vertical bars labeled by v0; : : : ; vn1 , we choose a path from .v0;w0/
to .vn1 ;wn2 / and take the sequence of crossings of the bars on this path (see an
example in Fig. 64).

There are

 
n1 C n2 C 2

n1 C 1

!
such paths, and accordingly �n1 � �n2 falls into

the union of this amount of .n1 C n2/-dimensional simplices. These simplices
can be described in terms of barycentric coordinates: to which of them the point
..t0; : : : ; tn1 /; .u0; : : : ; un2 / 2 �n1��n2 belongs depends on the ordering of numbers

t0; t0 C t1; : : : ; t0 C t1 C � � � C tn1�1I u0; u0 C u1; : : : ; u0 C u1 C � � � C un2�1:

For example, the seven-dimensional simplex corresponding to the path in Fig. 64 is
described in �3 ��4 by the inequalities
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0 � t0 � u0 � t0 C t1 � t0 C t1 C t2 � u0 C u1
� u0 C u1 C u2 � t0 C t1 C t2 C t3 � 1

(the rule is as follows: We move along the path and after a horizontal edge we place
the sum of ts, and after a vertical edge we place the sum of us). Since the vertices
of each simplex of the subdivision are ordered, there arise canonical maps of the
standard simplex onto the simplices of the subdivision, that is, singular simplices of
�n1��n2 . Let c.n1; n2/ 2 Cn1Cn2 .�

n1��n2 / be the sum of these singular simplices
with the coefficients ˙1 where the sign is determined by the parity of the number
of squares of grid below the chosen path (left unshadowed in Fig. 64; for the path
shown there this number is 5 and the sign is minus). It is obvious that c.n1; n2/
is a relative cycle modulo @.�n1 � �n2 /: Two of our simplices have a common
.n1 C n2 � 1/-dimensional face in the interior of �n1 � �n2 if and only if the two
paths have precisely one square between them; then they appear in c.n1; n2/ with
opposite signs, and the faces have the same number in them; so the faces cancel. To
prove that ˛1�˛2 is plus–minus the standard generator of Hn1Cn2 .�n1��n2 ; @.�n1�
�n2 /IZ/ D Z, it is sufficient to check that h˛1 � ˛2; c.n1; n2/i D ˙1. For an .n1 C
n2� 1/-dimensional singular simplex f of�n1 ��n2 , the value of ˛1 �˛2 of f (here
by ˛1; ˛2 we mean rather cochains than cohomology classes) is ˛1.p1 ı�n1� f /˛2.p2 ı
�

n2C f /. But for a simplex f with vertices

.vi0 ;wj0 /; .vi1 ;wj1 /; .vi2 ;wj2 /; : : : ; .vin1Cn2
;wjn1Cn2

/;

the simplex p1.�n1� f / has the vertices vi0 ; : : : ; vin1
and the simplex p2.�

n2C f / has the
vertices wjn1

; : : : ;wjn1Cn2
. The only case when these two simplices are not contained

in @�n1 and @�n1 is when

i0 D 0; : : : ; in1�1 D n1 � 1; in1 D in1C1 D � � � D in1Cn2 D n1I
j0 D j1 D � � � D jn1 D 0; jn1C1 D 1; : : : ; jn1Cn2 D n2:

Thus, only one summand in c.n1; n2/ makes a contribution into h˛1 � ˛2; c.n1; n2/i,
and this contribution is˙1.

The rest of the proof uses only the naturalness of the cross-product. It consists of
six steps.

Step 1. The cross-product

Hn1.Sn1 ; ptIZ/ � Hn2 .Sn2 ; ptIZ/! Hn1Cn2 .Sn1 � Sn2 ; Sn1 _ Sn2 IZ/

is, up to a sign, the standard multiplication Z � Z ! Z. Indeed, the projections
.�n1 ; @�n1 / ! .Sn1 ; pt/; .�n2 ; @�n2 / ! .Sn2 ; pt/; .�n1 � �n2 ; @.�n1 � �n2 // !
.Sn1 � Sn2 ; Sn1 _ Sn2/ induce isomorphisms in the cohomology of dimensions
n1; n2; n1 C n2.

Step 2. The cross-product

Hn1 .Sn1 IZ/ �Hn2 .Sn2 IZ/! Hn1Cn2 .Sn1 � Sn2 IZ/
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is, up to a sign, the standard multiplicationZ�Z! Z. Indeed, the maps .Sn1 ; pt/!
.Sn1 ;;/; : : : induce isomorphisms in the cohomology of appropriate dimensions.

Step 3. Similar statements for the bouquets of spheres (we leave precise
statements to the reader).

Step 4. The ring Z can be replaced by an arbitrary ring G. This follows from the
naturalness of the cross-product with respect to ring homomorphisms Z! G.

Step 5. X1;X2 are CW complexes of the respective dimensions n1; n2, and
cohomology classes �1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/ are represented by cellular
cocycles c1; c2; then �1 � �2 2 Hn1Cn2 .X1 � X2IG/ is represented by the cellular
cocycle

Œc1 � c2�.e1 � e2/ D ˙c1.e1/c2.e2/:

For the proof we can consider the projections X1 ! X1= skn1�1 X1;X2 !
X2= skn2�1 X2; the induced cohomology homomorphisms are epimorphisms.

Step 6. The general case. For the transition to this case we consider the inclusion
maps skn1 X1 ! X1; skn2 X2 ! X2; skn1 X1 � skn2 X2 ! X1 � X2; the induced
cohomology homomorphisms in the appropriate dimensions are monomorphisms.

This completes the proof.

16.4 Cup-Product and Diagonal Map

Now let us briefly investigate the connection between the definition of the
cup-product in Sect. 16.2 and the preliminary definition from the introduction
(Sect. 16.1). The first statement is almost obvious.

Theorem. For any X;G; and �1 2 Hn1.XIG/; �2 2 Hn2 .XIG/,

�1 ^ �2 D ��.�1 � �2/;

where �WX ! X � X is the diagonal map.

Proof. Obviously, p1 ı� D p2 ı� D id. Hence,

��.�1 � �2/ D ��.p�
1 �1 ^ p�

2 �2/ D .p1 ı�/��1 ^ .p2 ı�/��2 D �1 ^ �2:

In addition to that, we remark that actually the definition of cup-product in
Sect. 16.2 can be regarded as a combination of the definition in Sect. 16.1 and a
particular choice of a cellular approximation of the diagonal map. Let us describe
the latter, first in the case when X is a triangulated space. First, in the product
�n � �n, let us consider the CW subcomplex

S
pCqDn.�

p��n � �q
C�n/; for n1 D

n2 D 2, it is shown in Fig. 65 (surely, a picture of a four-dimensional figure on
a two-dimensional paper sheet cannot be awfully clear). The dashed triangle is
the diagonal image of �2; it is not a cellular subspace of �2 � �2. The cellular
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Δ2

Δ2

Γ1
−Δ2 × Γ1

+Δ2

Γ0
−Δ2 × Γ2

+Δ2

Γ2
−Δ2 × Γ0

+Δ2

w0

w1

w2

v0

v1

v2

(v0, w2)

(v2, w2)

(v1, w1)

(v0, w0)

(v0, w1)

(v1, w2)

Fig. 65 A cellular approximation of the diagonal in�2 ��2

approximations of the diagonal edges Œ.v0;w0/; .v1;w1/�; Œ.v1;w1/; .v2;w2/�; and
Œ.v2;w2/; .v0;w0/� are broken lines Œ.v0;w0/; .v0;w1/; .v1;w1/�; Œ.v1;w1/; .v1;w2/;
.v2;w2/�; and Œ.v2;w2/; .v2;w0/; .v0;w0/�; the diagonal triangle is approximated by
the union of three pieces: two triangles and one parallelogram, as shown in Fig. 65.

In general, the approximation�0W�n Š��! S
pCqDn.�

p��n��q
C�n/� �n��n

is defined by the formula

.t0; : : : ; tn/ 7! ..2t0; : : : ; 2tp�1; 2.tp C � � � C tn/� 1; 0 : : : ; 0/;
.0; : : : ; 0; 2.t0 C � � � C tp/ � 1; 2tpC1; : : : ; 2tn///;

if t0 C � � � C tp � 1
2
; tp C � � � C tn � 1

2
:

It is clear that the restriction of�0 to any face of �n (of any dimension) is a similar
map for this face.

If X is an ordered triangulated space (see Sect. 13.10), then this construction can
be applied to each simplex of the triangulation, and we obtain a canonical cellular
approximation�0WX ! X�X of the diagonal map (here we mean the CW structure
of X � X which is obtained as the product of two copies of the triangulation of X
regarded as a CW structure; thus, the cells of X �X are products of simplices). Now
it is clear that for the two cochains c1 2 Cn1 .XIG/; c2 2 Cn2 .XIG/, the cochain
c1 ^ c2 2 Cn1Cn2 .X � XIG/ is nothing but .�0/#.c1 � c2/; this sheds light on the
connection between the definitions of cup-product given in Sects. 16.1 and 16.2. We
can add that the construction above can be applied not only to triangulated spaces;
for example, it works perfectly well for the cellular realization Sing.X/ of the
singular complex of an arbitrary topological space, and hence gives an explanation
for the construction of the ^-product of singular cochains.
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16.5 First Application: The Hopf Invariant

To demonstrate at once the power of the cohomological multiplication, we will
immediately, before any serious computations of this multiplication, prove a highly
nontrivial statement concerning the homotopy groups of spheres.

Theorem. The group �4n�1.S2n/ is infinite for any n � 1. Moreover, the Whitehead
square Œ�2n; �2n� of the generator of �2n.S2n/ has an infinite order in �4n�1.S2n/.
(Compare this theorem with the results of Sects. 9.9 and 10.5.)

The proof of this theorem is based on the Hopf invariant, which is an integer
assigned to every element of ' 2 �4n�1.S2n/. Its definition is as follows. Consider
a spheroid f W S4n�1 ! S2n and form the space X' D S2n [f D4n (aka the cone of f ).
The space X' depends, up to a homotopy equivalence, only on ' (which justifies the
notation). It has a natural CW structure with three cells of dimensions 0; 2n; and 4n.
Thus,

Hq.X' IZ/ D
�
Z for q D 0; 2n; 4n;
0 for q ¤ 0; 2n; 4n:

The groups H2n.X' IZ/;H4n.X' IZ/ (isomorphic to Z) have natural generators
(determined by the canonical orientations of S2n and D4n), and we denote these
generators by a and b. Since the cup-square a2 D a ^ a has dimension 4n, we have
a2 D hb, where h 2 Z. The number h D h.'/ is, by definition, the Hopf invariant
of '. 1 Our theorem is covered by the following two lemmas.

Lemma 1. The Hopf invariant is additive: h.' C  / D h.'/C h. /.

Lemma 2. The Hopf invariant is nontrivial; in particular,

h.Œ�2n; �2n� D 2:

Proof of Lemma 1. In addition to the spaces X';X ;X'C (constructed using the
spheroids f ; g; f C gW S4n�1 ! S2n), we will consider the space

Y'; D .S2n [f D4n/ [g D4n D S2n [f _g .D
4n _D4n/:

This space has a CW structure with four cells of dimensions 0; 2n; 4n; 4n and has
the following cohomology:

Hq.Y'; IZ/ D
8
<
:
Z˚ Z for q D 4n;
Z for q D 0; 2n;
0 for q ¤ 0; 2n; 4n:

1In the homotopy theory, there are interesting generalizations of the Hopf invariant; see Whitehead
[88] and Hilton [44].
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Denote the canonical generators of the cohomology groups H2n.Y'; IZ/ and
H4n.Y'; IZ/ by a0 and b0

1; b
0
2. There are natural CW embeddings X' ! Y'; and

X ! Y'; . There is also a natural map X'C ! Y'; ; it consists of the identity
map S2n ! S2n and the map D4n ! D4n _ D4n which collapses the equatorial
plane to a point (these maps compose a continuous map X'C ! Y'; because the
diagram

is commutative by the definition of the sum of spheroids). The induced cellular chain
maps for all three maps described above are obvious; the cohomology maps act like
this:

X' ! Y'; W a0 7! a; b0
1 7! b; b0

2 7! 0

X ! Y'; W a0 7! a; b0
1 7! 0; b0

2 7! b
X'C ! Y'; W a0 7! a; b0

1 7! b; b0
2 7! b:

We must have .a1/2 D h1b0
1 C h2b0

2, where h1; h2 2 Z. By the naturalness of the
cup-product,

a2 D h1b in X'; a2 D h2b in X ; a2 D .h1 C h2/b in X'C :

On the other hand,

a2 D h.'/b in X'; a2 D h. /b in X ; a2 D h.' C  /b in X'C :

Hence, h1 D h.'/; h2 D h. /; h1 C h2 D h.' C  /, from which h.' C  / D
h.'/C h. /.

Proof of Lemma 2. Consider the product S2n � S2n. Its cohomology is H2n.S2n �
S2nIZ/ D Z˚Z (the generators c1; c2) and H4n.S2n�S2nIZ/ D Z (the generator d).
The multiplication: c21 D c22 D 0 (proof: Consider the projections S2n � S2n ! S2n/

and c1c2 D d (follows from step 2 of the proof in Sect. 16.3 plus the definition of
the cup-product in Sect. 16.2).

Make a factorization of S2n � S2n using the relation .x0; x/ � .x; x0/ for all
x 2 S2n, where x0 is the zero-dimensional cell of S2n. That is, we glue to each
other the two two-dimensional cells of S2n � S2n. The resulting space X has three
cells, of dimensions 0; 2n, and 4n; that is, it has the form S2n [f D4n, where f is
a certain map S4n�1 ! S2n. Moreover, if we compare this construction with the
definition of the Whitehead product in Sect. 10.5, we notice that this f is nothing
but the canonical spheroid representing the Whitehead product Œ�2n; �2n�. Thus,
X D XŒ�2n;�2n �. The cohomology of X is H2n.XIZ/ D H4n.XIZ/ D Z, and if a; b are
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canonical generators of these cohomology groups, then a2 D h.Œ�2n; �2n�/b. But the
cohomology homomorphism induced by the projection S2n�S2n ! X takes a and b
into c1C c2 and d. Thus, in the cohomology of S2n� S2n, .c1C c2/2 D h.Œ�2n; �2n�/d,
and, since .c1 C c2/2 D c21 C 2c1c2 C c22 D 2d, we have h.Œ�2n; �2n�/ D 2.

Remark 4. As we will see in Chap. 3,�4n�1.S2n/ D Z˚ a finite group. In particular,
�3.S2/ D Z (we already know this), �7.S4/ D Z ˚ Z12; �11.S6/ D Z; �15.S8/ D
Z ˚ Z120. It is also true that all the homotopy groups of spheres are finite besides
�n.Sn/ D Z and �4n�1.S2n/.

Remark 5. Lemma 2 shows that the image of the Hopf homomorphism
hW�4n�1.S2n/ ! Z is either the whole group Z or the group of even integers.
The choice between these two options is reduced to the question: Does �4n�1.S2n/

contain an element with the Hopf invariant one? This question has several
remarkable equivalent statements. For example, it is possible to show that Sm

possesses an H-space structure if and only if m is odd, that is, m D 2n � 1, and
�4n�1.S2n/ contains an element with the Hopf invariant one. The same condition is
necessary and sufficient for the existence in R

mC1 of a bilinear multiplication with a
unique division. The combination of Lemma 2 and Exercise 7 in Lecture 10 shows
that the Hopf invariant of the Hopf class �2 2 �3.S2/ equals 1 (this corresponds to
the complex number multiplication in R

2 or to the natural group structure in S1).
In 1960, J. Adams showed that elements with the Hopf invariant one are contained
only in �3.S2/; �7.S4/, and �15.S8/ (we mentioned his results in Sect. 1.4; we will
discuss two proofs of it: in Chaps. 5 and 6).

16.6 An Addendum: Other Multiplications

A: Homological �-Product

We already mentioned this in the introduction. Its definition corresponds to the
general spirit of this lecture: Singular simplices f1W�n1 ! X1; f2W�n2 ! X2 give
rise to a map f1 � f2W�n1 � �n2 ! X1 � X2; then we triangulate the product
�n1 ��n2 as in the proof of the theorem in Sect. 16.3. Then we define the product
of the singular simplices f1 and f2 the singular chain of X1 � X2, which is the sum
with the coefficients˙1 (the same as in Sect. 16.3) of the singular simplices which
are restrictions of the map f1 � f2 to the .n1 C n2/-dimensional simplices of the
triangulation. This chain is also denoted as f1 � f2. By bilinearity, this �-product

is extended to singular chains:
�P

i g1if1i
� �

�P
j g2jf2j

�
D P

i;j g1ig2j
�
f1i � f2j

�
(where g1i; g2j are elements of the coefficient ring G). A verification shows that
@.c1 � c2/ D .@c1/ � c2 C .�1/n1c1 � @c2 (where n1 D dim c1). Thus, there arises
a homology multiplication: For ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/, there is the
product ˛1 � ˛2 2 Hn1Cn2 .X1 � X2IG/. The proof of coincidence of this product
with the homological cross-product described in Sect. 16.1 is a replica of the proof
of the similar cohomological result in Sect. 16.3.
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EXERCISE 6. Prove that for ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/; �1 2 Hn1.X1IG/;
�2 2 Hn2 .X2IG/;

h�1 � �2; ˛1 � ˛2i D .�1/n1n2h�1; ˛1ih�2; ˛2i:

B: Cap-Product

This is a mixed operation involving both homology and cohomology. Let a DP
i gifi 2 Cn1 .XIG/; c 2 Cn2 .XIG/, where n1 � n2. Put

a _ c D
X

i

gic
�
�n2�

�
�

n1�n2C 2 Cn1�n2 .XIG/

(we use the notation introduced in Sect. 16.2).

EXERCISE 7. Prove the formula

.@a/ _ c D a _ ıcC .�1/n2@.a _ c/:

EXERCISE 8. Deduce from this that if a is a cycle representing a homology class
˛ 2 Hn1 .XIG/ and c is a cocycle representing a cohomology class � 2 Hn2 .XIG/,
then a _ c is a cycle whose homology class is fully determined by ˛ and � .

In the notation of Exercise 9, the homology class of a _ c is denoted as ˛ _ � .
Thus, we get the cap-product

Œ˛ 2 Hn1 .XIG/; � 2 Hn2 .XIG/� 7! ˛ _ � 2 Hn1�n2 .XIG/:

EXERCISE 9. Prove that if n1 D n2 and X is connected, then ˛ _ � D h�; ˛i 2
G D H0.XIG/.
EXERCISE 10. Prove the “mixed associativity”: ˛ _ .�1 ^ �2/ D .˛ _ �1/

_ �2.

EXERCISE 11. Prove the naturalness of the cap-product: If ˛ 2 Hn1 .XIG/; � 2
Hn2 .YIG/, and f WX ! Y is a continuous map, then .f�˛/ _ � D f�.˛ _ f ��/.

C: Pontryagin–Samelson Multiplication

EXERCISE 12. Prove that if n1; n2 are positive integers, then there is no way to
introduce for all X a nonzero bilinear multiplication

Hn1 .XIG/ �Hn2 .XIG/! Hn1Cn2 .XIG/
natural with respect to continuous maps.
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However, it is possible to define a multiplication in homology groups of X if X
itself possesses a multiplication making it a topological group or, at least, an H-
space. The definition is obvious: If 
WX � X ! X is the multiplication in X and
˛1 2 Hn1 .XIG/; ˛2 2 Hn2 .XIG/ where G is a ring, then ˛1˛2 D 
�.˛1 � ˛2/.
This product is called the Pontryagin–Samelson product. We have no opportunity
to discuss this product in detail, but we recommend to the reader, after reading
Chap. 3, to return to this product and to calculate it for the homology groups of
major topological groups and H-spaces.

Final Remark. All multiplications considered in this lecture can be generalized, in
an obvious way, from the case of ring coefficients to the case when there is a pairing
G1 � G2 ! G, the factors lie in the homology/cohomology with coefficients in
G1 and G2, and the product belongs to the homology/cohomology with coefficients
in G.

Lecture 17 Homology and Manifolds

Among the natural computational tools used by homology theory, the most efficient
ones are delivered by the topology of smooth manifolds, and we cannot help
considering this subject. However, the foundations of the theory of manifolds, rooted
in geometry and analysis, require a thick volume by themselves. The most common
way to overcome this difficulty is to replace the notion of a smooth manifold by
various combinatorial substitutes like homology manifolds or pseudomanifolds (see
Sects. 17.2 and 17.3 ahead). By doing this, we can achieve a rigor of the proofs at
the expense of geometric visuality. To compensate for the latter, we will sometimes
provide geometric explanations based on statements which are easy to believe, but
not always easy to prove.

We begin with a short sightseeing tour in the theory of smooth manifolds.

17.1 Smooth Manifolds

A Hausdorff topological space with a countable base of open sets (these topological
assumptions are not in the spirit of this book, but we have to impose them, since
without them many statements that follow would be plainly wrong) is called an n-
dimensional (topological) manifold if every point of it possesses a neighborhood
homeomorphic to the space R

n or the half-space R
n� D f.x1; : : : ; xn/ 2 R

n j
xn � 0g. A point of an n-dimensional manifold X which has no neighborhood
homeomorphic to R

n is called a boundary point. Boundary points of X form an
.n � 1/-dimensional manifold @X called the boundary of X. Obviously, @X is a
manifold without boundary: @@X D ;.
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Examples of manifolds: Euclidean spaces, spheres, balls, classical surfaces, pro-
jective spaces, Grassmann manifolds, flag manifolds, Lie groups, Stiefel manifolds,
products of the spaces listed above, open sets in these spaces, closed domains with
smooth boundaries in these spaces, and so on.

A homeomorphism between R
n or Rn� (or an open set in one of these spaces) and

an open set U in a manifold X determines coordinates in U which are called local
coordinates. If the domains U;V of local coordinate systems f WU ! R

n
.�/; gWV !

R
n
.�/ (also called charts) overlap, then there arises a transition map

f .U \ V/
f �1

��! U \ V
g��! g.U \ V/

\ \
R

n
R

n;

which is described by usual functions of n variables. These functions can be smooth
(as usual in topology, we understand the word smooth as belonging to the class
C1), analytic, algebraic, etc. A set of charts which cover the manifold is called
an atlas. An atlas is called smooth (analytic) if such functions are all transition
functions between charts of this atlas. Two smooth (analytic) atlases are called
smoothly (analytically) equivalent if their union is smooth (analytic) atlas. A class
of equivalent smooth (analytic) atlases is called a smooth (analytic) structure on
a manifold. A manifold with a smooth (analytic) structure is called a smooth
(analytic) manifold. The boundary of a smooth (analytic) manifold is, in a natural
way, a smooth (analytic) manifold. In the following, we will not consider analytic
manifolds any seriously.

All manifolds listed above possess a natural smooth structure. Add one more
example: Smooth surfaces in a Euclidean space, that is, closed subsets of Rm locally
determined by systems of equations

fi.x1; : : : ; xm/ D 0; i D 1; : : : ; k

and, possibly, one inequality

fkC1.x1; : : : ; xm/ � 0;

where f1; : : : ; fk .; fkC1/ are smooth functions whose gradients in their common
domain are linearly independent.

There are two fundamental theorems in the theory of smooth manifolds (also
called differential topology).

Theorem 1. Every smooth manifold is diffeomorphic (that is, homeomorphic with
preserving the smooth structure) to a smooth surface in an Euclidean space.

Theorem 2. Every compact smooth manifold is homeomorphic to a triangulated
subset of an Euclidean space, and the homeomorphism can be made smooth on
every simplex of the triangulation.
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Remarks. (1) In both theorems, the dimension of the Euclidean space can be as
small as twice the dimension of the manifold.

(2) Theorem 2 also holds for noncompact manifolds, but the triangulation in this
case has to be infinite.

We do not prove these theorems. Theorem 1 is proved in many textbooks in
differential topology. Its proof is not hard. The situation with Theorem 2 is worse.
Since the 1920s, the topologist regarded this fact as obvious. There are many
geometric approaches to this result which look promising. For example, take a
compact smooth surface in an Euclidean space and decompose this space into a
union of small cubes. If the decomposition satisfies some general position condition
with respect to the surface, we can expect that the intersections of the surface
with the cubes will be close to convex polyhedra and we can easily triangulate
these polyhedra. Or, choose a random finite subset of the smooth surface which is
sufficiently dense, and take the Dirichlet domain; again we should get a subdivision
of the surface into smooth polyhedra. However, numerous attempts to make this
proof rigorous turned out to be unsuccessful. The first flawless proof of this theorem
(actually, of a stronger relative result) was given in the 1930s by H. Whitney. This
proof was based on entirely different ideas and did not look easy. We know two
textbook presentations of this proof, in the books Whitney [89] and Munkres [64].

EXERCISE 1. Construct a realization as smooth surfaces in Euclidean spaces of
projective spaces, Grassmann manifolds, flag manifolds, and Stiefel manifolds.

EXERCISE 2. Prove that all classical surfaces can be presented as smooth surfaces
in R

n with n � 4.

EXERCISE 3. Construct smooth triangulations of classical surfaces; try to minimize
the number of simplices needed.

EXERCISE 4. Prove that the number of n-dimensional simplices adjacent to an
.n� 1/-dimensional simplex of a smooth triangulation of an n-dimensional smooth
manifold is 2 if this .n � 1/-dimensional simplex is not contained in the boundary,
and is 1 otherwise.

EXERCISE 5 (a generalization of Exercise 4). Let s be a k-dimensional simplex of a
smooth triangulation of an n-dimensional smooth manifold. Consider the simplices
of the triangulation which contain s, and in each of these simplices take the face
opposite s (that is, spanned by the vertices not belonging to s). Prove that the union
of these faces (which is called the link of the simplex s) is homeomorphic to Sn�k�1
if s is not contained in the boundary and is homeomorphic to Dn�k�1 otherwise. (For
a warmup, begin with the case when n D 3 and k D 1.)

Remark. The notion of a link will be used later, so the reader who is not interested
in this exercise still has to understand the definition of a link.

An atlas of a smooth manifold is called oriented if for every two overlapping
charts the transition map has a positive determinant at every point. Two oriented
atlases determine (belong to) the same orientation if their union is an oriented atlas.
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A manifold is called orientable (oriented) if it possesses (is furnished by) an
oriented atlas, that is, an orientation.

EXERCISE 6. Which projective spaces and Grassmann manifolds are orientable?
(Answer: Only real projective spaces and Grassmann manifolds can be nonori-
entable. Namely, RPn is orientable if and only if n is odd, and G.n; k/ is orientable
if and only if n is even.)

EXERCISE 7. Prove that spheres with handles are orientable and projective planes
and Klein bottles are nonorientable; drilling holes does not affect the orientability.

EXERCISE 8. Prove that a connected orientable manifold of positive dimension has
precisely two orientations.

EXERCISE 9. Prove that every connected chart of an orientable manifold can be
included in an oriented atlas; thus, if an orientable manifold is connected, then every
connected chart determines an orientation.

EXERCISE 10. Prove that a manifold is orientable if and only if a neighborhood of
every closed curve on this manifold is orientable.

EXERCISE 11. Prove that every simply connected manifold is orientable.

EXERCISE 12. Prove that every connected nonorientable manifold possesses an
orientable twofold covering.

EXERCISE 13. Prove that the boundary of an orientable manifold is orientable.

It is also possible to define orientations using the language of triangulations. An
orientation of an n-dimensional simplex is the order of its vertices given up to an
even permutation. An orientation of an n-dimensional simplex induces orientations
of its .n� 1/-dimensional faces (using an even permutation of the order of vertices,
we make the number of the vertex complementary to the face to be n, after which
we orient the face by the order of remaining vertices). (Some modification is needed
in the cases of n D 0; 1: An orientation of a zero-dimensional simplex is just
C or �, the orientation of faces v0 and v1 of a one-dimensional simplex Œv0; v1�
are � and C.) If two n-dimensional simplices share an .n � 1/-dimensional face,
then their orientations are coherent if they induce opposite orientations on this
face. A triangulated n-dimensional manifold is orientable if all its n-dimensional
simplices can be coherently oriented.

EXERCISE 14. An orientation of a connected orientable n-dimensional manifold
is determined by an orientation of any of its n-dimensional simplices. [It may be
reasonable to do this exercise after reading (the beginning of) the next section.]
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17.2 Pseudomanifolds and Fundamental Classes

Definition. A triangulated space X is called an n-dimensional pseudomanifold if it
satisfies the following three axioms.

1 (Dimensional homogeneity). X is the union of its n-dimensional simplices.
2 (Strong connectedness). For any two n-dimensional simplices s; s0 of X, there

exists a finite chain of n-dimensional simplices, s0; s1; : : : ; sk, such that s0 D
s; sk D s0, and for every i D 1; : : : ; k, the simplices si�1; si share an .n � 1/-
dimensional face.

3 (Nonbranching property). Every .n � 1/-dimensional simplex of X is a face of
precisely two n-dimensional simplices of X.

If X is a connected smooth n-dimensional manifold without boundary furnished
with a smooth triangulation, then the triangulation obviously satisfies Axiom 1,
satisfies Axiom 3 as stated in Exercise 4, and satisfies Axiom 2 as stated in Exercise
below.

EXERCISE 15. Prove that a smoothly triangulated smooth connected manifold
without boundary is strongly connected (see Axiom 2). [All we need to establish is
that two interior points of n-dimensional simplices can be joined by a path avoiding
an .n � 2/-dimensional skeleton.]

Thus, a smoothly triangulated connected smooth manifold without boundary
is a pseudomanifold. The converse is wrong: A pseudomanifold is not always a
manifold. See the simplest example in Fig. 66.

There are fewer artificial examples of pseudomanifolds topologically different
from manifolds: complex algebraic varieties, and Thom spaces of vector bundles
(these will be extensively studied later, in Lecture 31 and further lectures).

Fig. 66 A pseudomanifold which is not a manifold (a pinched torus)
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An orientation of a pseudomanifold is defined as in the end of the previous
section (Exercise 14 is also applied to this case). If a pseudomanifold is a manifold,
then an orientation of this pseudomanifold is the same as an orientation of the
manifold (in the sense of Sect. 17.1).

Theorem. Let X be an n-dimensional pseudomanifold. Then

Hn.X/ D
�
Z; if X is compact and orientable;
0 otherwiseI

Hn.XIZ2/ D
�
Z2; if X is compact;
0 otherwise:

Proof. We consider the classical complex fCn.X/; @ng, corresponding to an arbitrary
ordering of vertices (see Sect. 13.10). Since CnC1.X/ D 0, Hn.X/ D Zn.X/, the
group of n-dimensional cycles of the classical complex. Let c D P

i kisi be such a
cycle (ki are integers, si are n-dimensional simplices). If the simplices si and sj share
an .n�1/-dimensional face, then this face does not belong to any other simplex, and
@c D 0 implies ki D ˙kj (the sign depends on the orientations). Since X is strongly
connected, this shows that c involves all n-dimensional simplices of X, with all the
coefficients of the form ˙k, where k is a nonnegative integer, the same for all the
simplices. From this we immediately see that if the number of simplices is infinite,
then there are no nonzero cycles, and Hn.X/ D 0. If the number of simplices is
finite, then let us reverse the orientations of simplices with a negative value of the
coefficient. Since c is a cycle, these new orientations induce opposite orientations
on every .n � 1/-dimensional face; that is, they are coherent. We see that a nonzero
cycle exists if and only if X is orientable. This proves our result for Hn.X/. The
case of Z2-coefficients is similar, but it does not involve signs, and hence does not
involve orientations.

This proof provides a canonical generator for the group Hn.X/ for a compact
oriented pseudomanifold X: This is the homology class of the cycle, which is the
sum of all n-dimensional simplices of X with orientations compatible with the
orientation of X and with the coefficients all equal to 1. This homology class is
called the fundamental class of X (and the cycle is called the fundamental cycle).
In the orientation-free case, we have fundamental classes and fundamental cycles
with coefficients in Z2 (certainly, only for compact pseudomanifolds). Notation:
ŒX� 2 Hn.X/ or Hn.XIZ2/.

Since connected smooth manifolds without boundary are pseudomanifolds, the
preceding theorem holds for them. In particular, for compact connected smooth
manifolds without boundary there are fundamental classes. (It is time to mention
a broadly used term: A compact manifold without boundary is called closed.) This
has an obvious generalization to the disconnected case: For a closed oriented n-
dimensional manifold X; Hn.X/ D L

˛ Hn.X˛/, where X˛ are components of X,
and ŒX� is simply fŒX˛�g.
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EXERCISE 16. Prove that if X is a connected n-dimensional manifold with
nonempty boundary, then Hn.X/ D Hn.XIZ2/ D 0.

EXERCISE 17. Prove that if X has a boundary, then the same construction as above
gives a class ŒX; @X� 2 Hn.X; @X/ or Hn.X; @XIZ2/ and @�ŒX; @X� D Œ@X�.

EXERCISE 18. Prove the relation ŒX1 � X2� D ŒX1� � ŒX2� in all possible versions
(including the boundary one).

EXERCISE 19. Prove that for any homology class ˛ 2 Hn.Y/ of an arbitrary
topological space Y there exists a compact oriented (not necessarily connected)
pseudomanifold X and a continuous map f WX ! Y such that f�ŒX� D ˛. Prove
a similar statement for an ˛ 2 Hn.YIZ2/ and nonoriented pseudomanifolds.
(Actually, the Z2-case is easier, and so it may be advisable to begin with it;
a construction in Sect. 13.11 may serve as a pattern for both the oriented and
nonoriented cases.)

There arises a natural question regarding the possibility to present a homology
class of a topological space as an image of the fundamental class of a manifold. The
answer is negative, for homology classes with coefficients in Z as well as for those
with coefficients in Z2. We will return to the discussion of this in the last lecture of
this book.

A more popular question arises in the topology of manifolds: If Y is a manifold
and ˛ 2 Hn.Y/, then when is it possible to find a closed oriented n-dimensional
submanifold X of Y (we assume that the reader understands what it is) such that
the homomorphism induced by the inclusion map sends ŒX� into ˛ (as people say,
X realizes ˛)? Again, a similar question exists for the Z2 homology classes and
nonoriented submanifolds. There are many remarkable results regarding submani-
fold realizations; for example, for any homology class ˛ of a manifold, there exists a
number N such that N˛ can be realized by a submanifold. (For this result and other
results, see the classical paper by Thom [84].)

EXERCISE 20. Prove that the generators of groups

Hm.RPnIZ2/; Hm.RPn/; H2m.CPn/; H4m.HPn/

are realized by projective subspaces of RPn; CPn; HPn. (Compare also to Exer-
cise 11 in Lecture 14.)

Mention in conclusion that if X;Y are oriented pseudomanifolds of the same
dimension, and f WX ! Y is a continuous map, then f�ŒX� D k � ŒY�, where k is an
integer. This k is called the degree of f and is denoted as deg f ; it is a homotopy
invariant. In the nonoriented case, the degree deg f may be defined as an element
of Z2. We have already had this notion in the particular case X D Y D Sn (see
Sects. 10.3 and 13.3). In the manifold case, there exists a description of the degree
similar to the description given in Sect. 10.3 for spheres; we formulate the result in
the form of an exercise.
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EXERCISE 21. Let f WX ! Y be a (piecewise) smooth map between two closed
oriented n-dimensional manifolds, and let yWY be a regular value of this map. Then
there is a neighborhood U of y such that f �1.U/ is a disjoint union of a finite
collection of sets Ui with all restrictions f jUi

being homeomorphisms Ui ! U.
Prove that deg f is the number of i for which this homeomorphism preserves the
orientation minus the number of i for which it reverses the orientation.

17.3 Homology Manifolds

The most general definition of a homology manifold is formulated in terms of local
homology: For a topological space X, its mth local homology at the point x0 2 X is
defined as Hloc

m;x0 .X/ D Hm.X;X � x0/.

Definition. A space X is called an n-dimensional homology manifold if, for any m,
Hloc

m;x0
.X/ D eHm.Sn/, that is,

Hloc
m;x0 .X/ D

�
Z; if m D n;
0; if m ¤ n:

:

For us, the most important will be the case when X is triangulated. Recall that the
star St.s/ of a simplex s of triangulation is the union of simplices that contain s. The
link Lk.s/ is the union of faces of simplices that contain s opposite to s. Figure 67
shows examples of stars and links of a vertex and a one-dimensional simplex of the
standard triangulation of the plane.

Proposition 1. (1) A triangulated space X is an n-dimensional homology manifold
if and only if for every vertex v of X, the link Lk.v/ is a homological .n � 1/-
dimensional sphere (that is, has the same homology groups as Sn�1).

(2) A triangulated space X is an n-dimensional homology manifold if and only if
for every simplex s of X, the link Lk.s/ is a homological .n�k�1/-dimensional
sphere where k D dim s.

Star

Star

Link

Link

Fig. 67 Stars and links
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Proof. Open stars of vertices, st.v/ D St.v/� Lk.v/, for an open cover of X. Also,
St.v/ is a cone over Lk.v/ with the vertex v. Thus, if x0 2 st.v/, then

Hloc
m;x0
.X/ D Hm.X;X � x0/ D Hm.X;X � st.v//

D Hm.St.v/;Lk.v// D eHm�1.Lk.v//

[the four equalities follow from the definition of local homology, homotopy
invariance of homology, excision theorem, and reduced homology sequence of the
pair .St.v/;Lk.v//]. This proves (1).

To prove (2), notice that for a simplex s, St.s/ D s 	 Lk.s/. Hence, for every
interior point x0 of s,

Hloc
m;x0 .X/ D Hm.X;X � x0/ D Hm.s 	 Lk.s/; .@s/ 	 Lk.s//

D eHm�1..@s/ 	 Lk.s// D eHm�1.†k Lk.s// D eHm�k�1.Lk.s//;

where k D dim s. This proves (2).

Proposition 2. Every connected n-dimensional homology manifold is an
n-dimensional pseudomanifold.

Proof. Let X be an n-dimensional homology manifold. Since the link of every
vertex of X is an .n � 1/-dimensional homological sphere, this link contains
simplices of dimension� n� 1; hence, every vertex is a vertex of an n-dimensional
simplex. There cannot be simplices of dimension > n, because the link of every n-
dimensional simplex must be empty (homological S�1). Every simplex of dimension
< n must have a nonempty link, so it must be a face of a simplex of a bigger
dimension. Hence, X must be the union of n-dimensional simplices (dimensional
homogeneity axiom holds). The link of an .n�1/-dimensional simplex s consists of
isolated points, one for every n-dimensional simplex containing s; since the link is a
homological S0, this number is 2 (unbranching axiom holds). A path connecting two
points of X can be made straight within every simplex; since the links of simplices
of dimension � n � 2 are connected, the path can be pushed from every point of a
simplex of dimension � n � 2 to simplices of bigger dimensions. Hence, there is a
path disjoint from the .n � 2/nd skeleton of X (the strong connectedness holds).

Remark 1. Proposition 2 shows that everything said in Sect. 17.2 about pseudomani-
folds can be applied to homological manifolds. In particular, homological manifolds
can be orientable or nonorientable, there are fundamental cycles and classes, and the
theorem of Sect. 17.2 holds for a connected homology manifold.

Remark 2. This argumentation shows a difference between pseudomanifolds and
homology manifolds. While in homology manifolds all links are homological
spheres of appropriate dimensions, in n-dimensional pseudomanifolds this holds
for links of simplices of dimensions n and n� 1. Add to that that a pseudomanifold
in Fig. 66 is not a homology manifold.



17.4 Poincaré Isomorphism 225

Remark 3. A smooth manifold without boundary is a homology manifold (and in the
smooth case, links are homeomorphic to spheres, not just are homological spheres).

Remark 4. A homology manifold is not always a topological manifold. For example,
there are manifolds with the same homology as a sphere, but not simply connected
(the best known example is the Poincaré sphere defined in S5 D f.z1; z2; z3/ 2 C

3 j
jz1j2 C jz2j2 C jz3j2 D 1g by the equation z51 C z32 C z23 D 0). The suspension
over such a manifold is a homology manifold, but no neighborhoods of vertices are
homeomorphic to a Euclidean space.

17.4 Poincaré Isomorphism

The main result of the homological theory of manifolds is the following:

Theorem. Let X be a compact n-dimensional homology manifold, and let
0 � m � n. If X is orientable, then for any G,

Hm.XIG/ Š Hn�m.XIG/:

In the general case,

Hm.XIZ2/ Š Hn�m.XIZ2/:

In both cases, there are canonical isomorphisms

DWHn�m.XIG/! Hm.XIG/

which act by the formula D.˛/ D ŒX� _ ˛, where ŒX� is the fundamental class (see
Sect. 17.2) and _ denotes the cap-product (see Sect. 16.6).

Remarks. (1) The isomorphism D is usually referred to as the Poincaré isomor-
phism.

(2) By Remark (3) in Sect. 17.3, the theorem holds for closed (compact and
boundary-less) smooth manifold.

The proof of the theorem will consist of two parts: First we will give (the
most classical) construction of Poincaré isomorphism, and then we will prove
the formula involving the cap-product. This formula will show, in particular, that
the isomorphism provided by the classical construction does not depend on the
triangulation.

For a simplex s of the triangulation of X, denote as Bast.s/ the union of all
simplices of the barycentric triangulation whose intersection with s is the center
of s. Using the fact that the simplices of the barycentric triangulation correspond to
the increasing chains s0 � � � � � sj of the initial triangulation, we can describe
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Fig. 68 Barycentric stars

Bast.s/ as the union of simplices of barycentric triangulation corresponding to
chains as above with s0 D s. Obviously, Bast.s/ is the union of its simplices of
the maximal dimension, n � k (where k D dim s), that is, simplices corresponding
to chains s D s0 � s1 � � � � sn�k with dim si D k C i. This important that
dim Bast.s/ D n � dim.s/.

The reader may see in Fig. 68 (where n D 2) what barycentric stars look like.
Barycentric stars of vertices are polyhedra of dimension 2 (“centered” at these
vertices), barycentric stars of one-dimensional simplices have dimension 1, and
barycentric stars of two-dimensional simplices are centers of these simplices (this
is true for any dimension n: The barycentric star of an n-dimensional simplex is
its center).

Besides barycentric stars, there are barycentric links: For a simplex s, Balk.s/
is the union of faces of barycentric simplices in Bast.s/ opposite the center of s.
Obviously, Bast.s/ is the cone over Balk.s/ and Balk.s/ is homeomorphic to Lk.s/
(the reader who has any doubt can observe all this in Fig. 68). Also, there are open
barycentric stars, bast.s/ D Bast.s/ � Balk.s/: Obviously, X is a disjoint union of
open barycentric stars of all its simplices.

If X is a homology manifold, then

Hm.Bast.s/;Balk.s// D Hm.C.Balk.s//;Balk.s//
D eHm�1.Balk.s// D eHm�1.Lk.s//

D
�
Z; if m D n � dim.s/;
0 otherwise

In other words, although the decomposition of X into open barycentric cells is not
necessarily a CW structure, still it can be used for computing homology in the
same way. We can define “skeletons” skm

bast.X/ as unions of barycentric stars of
dimensions� m (that is, barycentric stars of simplices of dimensions� n�m), and
the complex fCbast

m .X/; @mg, where
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Cbast
m .X/ D Hm.skm

bast.X/; skm�1
bast .X//;

@m D @�WHm.skm
bast.X/; skm�1

bast .X//! Hm�1.skm�1
bast .X/; skm�2

bast .X//;

has homology equal to that of X.
Our next remark is that if the homology manifold X is oriented, then there exists

a natural way to establish a correspondence between orientations of a simplex s and
of the barycentric star Bast.s/. Namely, let the orientation of s be determined by an
order of its vertices, v0; v1; : : : ; vk. Consider an .n � k/-dimensional (barycentric)
simplex u belonging to Bast.s/; it corresponds to a sequence s D s0 � � � � � sn�k

with dim si D k C i. For i D 1; : : : ; n � k, let vkCi be the vertex of si not belonging
to si�1. Then v0; : : : ; vk; vkC1; : : : ; vn is the full set of vertices of the n-dimensional
simplex sn�k, and we assign to u the orientation determined by the order vk; : : : ; vn

of its vertices if the order v0; : : : ; vn of vertices of the simplex vn�k determines the
orientation of vn�k compatible with the orientation of X, and we assign the opposite
orientation otherwise. If the simplex u shares an .n � k � 1/-dimensional face with
another simplex u0 � Bast.s/, then u0 corresponds to a sequence s D s0 � : : : sj�1 �
s0

j � sjC1 � � � � sn�k with s0
j ¤ sj. If j < n � k, then the simplex sn�k stays the

same, but the vertices vj; vjC1 are swapped; thus, the orientation of u0 is determined
by the order of vertices v0; : : : ; vjC1; vj; : : : ; vn�k only if the orientation of u is not
determined by the order of vertices v0; : : : ; vj; vjC1; : : : ; vn�k; their common .n �
k � 1/-dimensional face has the vertices v0; : : : ; vj�1; vjC1; : : : ; vn�k, and it obtains
opposite orientations from u and u0. The case j D n � k is similar: In this case
s0

n�k ¤ sn�k, the simplices s0
n�k and sn�k have a common .n � 1/-dimensional face,

let it be t, and t obtains opposite orientations from sn�k and s0
n�k. The orientations of

the common face of u and u0 are determined by the orientations of s and t (precisely
as the orientation of u is determined by the orientations of s and sn�k) and thus they
are also opposite each other.

Cbast
n�k.XIG/ is the group of linear combinations

P
i gi Bast.si/ where the summa-

tion is taken over oriented k-dimensional simplices si and gi 2 G. If X is a compact
oriented n-dimensional homology manifold, consider an isomorphism

DWCk
class.XIG/! Cbast

n�k.XIG/; D.s�/ D Bast.s/;

where s� is a k-dimensional cochain of the classical complex of X which takes value
1 on s and value 0 on every other k-dimensional simplex, and the orientations of s
and Bast.s/ are compatible as above. Fact: For a cochain c 2 Ck

class.XIG/,

D.ıc/ D .�1/k@D.c/ (	)

(see ahead). This shows that D established a dimension-reversing isomorphism
between cohomology and homology of X; this is Poincaré isomorphism (also
denoted by D).
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It remains to establish two facts: the relation (	) and the relation D.˛/ D
ŒX� _ ˛. Begin with the first. The boundary of Bast.s/ 2 Cbast

n�k.X/ consists of
barycentric simplices lying in Balk.s/ [faces inside Bast.s/ are cancelled as follows
from the preceding argumentations regarding the orientations]. The face of the
barycentric simplex corresponding to the sequence s D s0; s1; : : : ; sn�k lying in
Balk.s/ corresponds to the sequence s1; : : : ; sn�k and thus is contained in Bast.s1/.
In this way, we see that Bast.s1/ is contained in the boundary of Bast.s/ if and
only if s is a face of s1. The coefficient is .�1/k (this requires comparing the
orientations, which we leave to the reader). Now, go to the second relation. Let
bX be the barycentric subdivision of X with the ordering of vertices described in
Sect. 13.10, and let c 2 Ck

class.bXIG/ and ŒX� be the fundamental cycle of bX. The
cellular map idWX ! bX induces a map

id#WCk
class.bXIG/! Ck

class.XIG/;

and the cochain id# c takes on a k-dimensional simplex s of X on s, the value equal
to the sum of the values, with appropriate signs, of c of k-dimensional simplices of
bX contained in s. On the other hand, the chain ŒbX� _ c is the sum of faces of
n-dimensional simplices of bX spanned by the last vertices (see the definition of _
in Sect. 16.6). These are simplices in barycentric stars of k-dimensional simplices of
X; each barycentric star of s appears in ŒX� _ c with the coefficient equal to the sum
of values of c on the barycentric parts of s, that is, to id# c.s/. Thus, id#.D.id# c// D
ŒbX� _ c, where the last id# is

id#WCbast
n�k.bXIG/! Cclass

n�k .XIG/:

This finishes the proof in the oriented case. In the nonoriented case everything is the
same with the usual simplification—we do not need to care about orientations and
signs (since the coefficient group is Z2).

Corollary. The Euler characteristic of a closed homology manifold of odd dimen-
sion equals 0.

For the proof, it is more convenient to use Poincaré isomorphism with coeffi-
cients in Z2, since it also holds in the nonorientable case. If n D dim X, then

�.X/ DPm.�1/m dimZ2 Hm.XIZ2/ DPm.�1/m dimZ2 Hn�m.XIZ2/
DPm.�1/m dimZ2 Hn�m.XIZ2/ DPm.�1/n�m dimZ2 Hm.XIZ2/
D .�1/nPm.�1/m dimZ2 Hm.XIZ2/ D ��.X/:
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17.5 Intersection Numbers and Poincaré Duality

The results of Sect. 15.5 give the possibility to restate Poincaré isomorphisms
between homology and cohomology as (noncanonical) isomorphisms between
homology and homology. Namely,

Hm.XIZ2/ Š Hn�m.XIZ2/
for an arbitrary n-dimensional homology manifold X and

Free Part of Hm.X/ Š Free Part of Hn�m.X/

Torsion Part of Hm.X/ Š Torsion Part of Hn�m�1.X/

in the oriented case. It turns out that these noncanonical isomorphisms reflect a
very canonical duality called Poincaré duality which is much more classical than
Poincaré isomorphisms. We will postpone (until Sect. 17.7) a discussion of torsion
parts and concentrate our attention on the free parts of homology groups.

Poincaré duality is based on the notion of the intersection number. Let c1 DP
i ki Bast.si/ be some m-dimensional chain of the barycentric star complex of some

compact triangulated oriented n-dimensional homology manifold X, and let c2 DP
j `jsj be some .n � m/-dimensional chain of the classical complex of X. Thus,

both summations are taken over the set of .n�m/-dimensional simplices of X. The
integer

�.c1; c2/ D
X

i

ki`i D hD�1c1; c2i

is called the intersection number of c1 and c2. It follows from the last formula
and the properties of Poincaré isomorphism that the intersection number of two
cycles depends only on the homology classes of these cycles, and we can speak of
intersection numbers of homology classes: If ˛1 2 Hm.X/ and ˛2 2 Hn�m.X/,
then �.˛1; ˛2/ D hD�1˛1; ˛2i; or �.˛1; ˛2/ D ˛2 _ D�1˛1 2 H0.X/ D Z

(see Exercise 10 in Sect. 16.6). Differently, the homology invariance of intersection
numbers can be deduced from the formula �.@c1; c2/ D �.c1; @c2/, which follows,
in turn, from relation (	) in Sect. 17.4:

�.@c1; c2/ D hD�1@c1; c2i D hıD�1c1; c2i D hD�1c1; @c2i D �.c1; @c2/:

Another interesting relation arises from the “mixed associativity” of cup- and cap-
products (see Exercise 11 in Sect. 16.6):

�.˛1; ˛2/ D ˛2 _ D�1˛1 D .ŒX� _ D�1˛2/ _ D�1˛1
D ŒX� _ .D�1˛2 ^ D�1˛1/ D D.D�1˛2 ^ D�1˛1/:
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This provides a more symmetric definition of the intersection number, which
implies, in particular [in view of commutativity relation for the cup-product; see
the theorem in Sect. 16.2, part (2)], the commutativity relation

�.˛1; ˛2/ D .�1/m.n�m/�.˛2; ˛1/ .˛1 2 Hm.X/; ˛2 2 Hm�k.X//:

In the nonoriented case, the intersection number can be defined for cycles and
homology classes modulo 2; they take values in Z2. It is also possible to define
“intersection numbers” corresponding to an arbitrary pairing G1 �G2 ! G.

A remarkable property of the intersection numbers is their geometric visualiz-
ability. A simplex and its barycentric star transversely intersect each other at one
point, so the intersection number of two cycles may be regarded as the number of
their intersection points taken with the signs determined by their orientations. This
statement has a convenient differential statement.

Theorem 1. Let X be a smooth closed oriented n-dimensional manifold, and let
˛1 2 Hm.X/; ˛2 2 Hn�m.X/. Let Y1 and Y2 be closed oriented submanifolds of
X of dimensions m and n � m which realize ˛1 and ˛2 in the sense that ˛1 D
.i1/�ŒY1� and ˛2 D .i2/�ŒY2� where i1; i2 are inclusion maps. We assume also that
Y1;Y2 are in general position (which means that they intersect in finitely many points
and transverse to each other at each of these points). We assign a sign to every
intersection point: plus if the orientations of Y1 and Y2 (in this order) compose the
orientation of X at this point, and minus otherwise. Then the intersection number
�.˛1; ˛2/ equals to the number of the intersection points of Y1 and Y2 counted with
the signs described above.

Similar statements hold for homology classes modulo 2 (in which case no
orientation is needed) and for manifolds with pseudomanifold-like singularities
(away from the intersection points).

As usual (see the warning in the beginning of this lecture), we do not give a
rigorous proof of these statements; but from the point of view of common sense
they are obvious. We can make the simplices of a triangulation of X much smaller
than the distances between the intersection points of Y1 and Y2 and then approximate
Y1 and Y2 by cycles of, respectively, classical and barycentric star complexes. Then
the statements become obvious.

Notice that the general position condition is not really harmful: We can make the
position of Y1 and Y2 general by a small perturbation of one of those.

Example. Natural generators yr; yn�r of the groups H2r.CPn/; H2.n�r/.CPn/ have
the intersection number 1. Indeed, they are realized by projective subspaces
CPr;CPn�r of CPn which (in the general position) intersect in one point. Regarding
the sign, we will make an important remark. If X is a complex manifold, that
is, its charts are maps into C

n and the transition maps are holomorphic, then
X possesses a natural, “complex,” orientation. The matter is that the Jacobian
of a holomorphic map C

n ! C
n regarded as a smooth map R

2n ! R
2n is

equal to the square of the absolute value of the complex Jacobian and, hence,
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Δ

Δ∗

Fig. 69 Dual Young diagrams

is always positive. Moreover, if Y1;Y2 are complex (that is, locally determined
by holomorphic equations) submanifolds of X of complementary dimensions in
a general position, then every point in Y1;Y2 contributes C1 into the intersection
number of the homology classes. Thus, �.yr; yn�r/ D 1, not �1.

EXERCISE 22. Let � be a Young diagram inscribed into a rectangle k � .n � k/,
and let �� be the “dual” Young diagram obtained from the complement of � in
the rectangle by the reflection in the center of the rectangle (see Fig. 69). Then
the intersection number of the homology classes of CG.n; k/ corresponding to the
Young diagrams �;�0 (see Sects. 5.4.C and 13.8.C) is 1 if �0 D �� and is 0
otherwise. (The same is true for modulo 2 intersection numbers for real Grassmann
manifolds; the proof is the same).

The fact that the intersection number of two cycles depends only on the
homology classes of these cycles is often used in solving geometric problems. Of a
huge set of problems of this kind we give two.

EXERCISE 23. Prove that on any smooth closed orientable surface in R
4 D C

2,
there exist at least two different points for which the tangent planes are complex
lines. (Hint: The orientation takes care of the existence of more than one such point.)

EXERCISE 24. Prove that if X1;X2 are two closed orientable surfaces in R
4, then

there are at least four pairs of points .x1 2 X1; x2 2 X2/ such that the tangent planes
to X1m; x2 at x1; x2 are parallel.

Return to our definition of the intersection number. Together with Corollary 1 in
Sect. 15.5, it implies the following statement.

Theorem 2. Let X be compact oriented homology manifold. .1/ For every homo-
morphism f WHm.X/ ! Z, there exists a homology class ˛ 2 Hn�m.X/ such that
f .˛/ D �.˛; ˇ/ for every ˇ 2 Hm.X/. .2/ The class ˇ is determined by f uniquely,
up to adding an element of finite order.

A similar result holds in the nonoriented case for homology and intersection
numbers modulo 2; moreover, in this case ˇ, for a given f , is genuinely unique.
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Thus, the intersection numbers determine a nondegenerate duality between the
free parts of the groups Hm.X/ and Hn�m.X/ in the oriented case and between the
vector spaces Hm.XIZ2/ and Hn�m.XIZ2/ in general. This duality is called Poincaré
duality. (One can notice that in the topological literature confusion exists between
the terms “Poincaré isomorphism” and “Poincaré duality.” It is especially surprising,
since in other cases mathematicians have a tendency to be supersensitive to the
difference between a vector space and a dual vector space.)

Notice that in the middle-dimensional homology of an even-dimensional mani-
fold, Theorem 2 has the following, more algebraic restatement.

Theorem 3. Let X be a connected closed orientable manifold of even dimension
2k, and let H0

k .X/ be the free part of Hk.X/. Then the integral bilinear form � (the
intersection index) on H0

k .X/ is unimodular [that is, the matrix k�.˛i; ˛j/k where
˛1; ˛2; : : : is a system of generators in H0

k .X/ has determinant˙1].

This matrix is symmetric if k is even and is skew-symmetric if k is odd. Since
any skew-symmetric matrix of odd order is degenerate, we have the following:

Corollary. The middle Betti number of any closed orientable manifold of dimension

 2 mod 4 is even; hence, the Euler characteristic of such a manifold is even.

For nonorientable manifolds neither is true; examples: the first Betti number of
the Klein bottle is 1, and the Euler characteristic of the real projective plane is 1.

Proof of Theorem 3. Consider the homomorphism !iWH0
k .X/ ! Z; !i.˛j/ D ıij:

By part (2) of Theorem 2, there exists a ˇi 2 Hk.XIZ/ such that hˇi; ˛i D !i.˛/, in
particular, hˇi; ˛ji D �.Dˇi; ˛j/ D ıij. Let Dˇi DPk bik˛kC a finite order element
(where bki are integers). Then

�.Dˇi; ˛j/ D
X

k

bik�.˛k; ˛j/ D ıij:

That is, the product of integer matrices kbijk and k�.˛i; ˛j/k is the identity matrix;
hence, each of them has the determinant˙1.

Theorem 3 demonstrates the importance of the theory of integral unimodular
(det D ˙1) forms in topology of manifolds, especially of dimensions divisible by
4: For an oriented closed manifold of such dimension, there arises a unimodular
integral quadratic form as the intersection form in the middle dimension. For
example, the famous Pontryagin theorem states that a homotopy type of a simply
connected closed four-dimensional manifold is fully determined by this form. A lot
is known about the classification of such forms (the best source is Milnor and
Husemoller [58]), but the question of which forms can be intersection forms for
smooth closed four-dimensional simply connected manifolds is very far from being
resolved.

In conclusion, let us prove a useful statement on Poincaré duality in products of
manifolds.
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Theorem 4. Let X1;X2 be a compact oriented homology manifold of dimensions
n1; n2, and let �1 2 Hq1 .X1IG/; �2 2 Hq2 .X2IG/. Then

DX1�X2 .�1 � �2/ D .�1/.n1�q1/q2DX1�1 � DX2�2:

(Here DX denotes Poincaré isomorphism in X.)

Proof. We use the obvious relation .˛1 � ˛2/ _ p�
1 � D .a _ �/ � ˇ/, where

˛1 2 Hq1 .X1/; ˛2 2 Hq2 .X2/; � 2 Hr.X1IG/; piWX1 � X2 ! Xi is the projection
(this relation holds at the chain–cochain level), and the relation .˛1 � ˛2/ _ p�

2 � D
.�1/q1r˛1� .˛2 _ �/, which is obtained from the previous relation by applying the
swapping homeomorphism X1 � X2 $ X2 � X1.

Back to the theorem:

ŒX1 � X2� _ .�1 � �2/ D ŒX1 � X2� _ .p�
1 �1 ^ p�

2 �2/

D .ŒX1 � X2� _ p�
1 �1/ _ p�

2 �2

D ..ŒX1� � ŒX2�/ _ p�
1 �1/ _ p�

2 �2
D ..ŒX1� _ �1// � ŒX2�/ _ p�

2 �2
D .�1/.n1�q1/q2 .ŒX1� _ �1/ � .ŒX2� _ �2/:

17.6 Application: The Lefschetz Formula

Let X be a compact topological space with finitely generated homology
L

n Hn.X/,
and let f WX ! X be a continuous map. The number

L.f / D
X

n

.�1/n Tr f� n

is called the Lefschetz number of f [here Tr f� n denotes the trace of the lattice
homomorphism

f� nWHn.X/=Tors Hn.X/! Hn.X/=Tors Hn.X/�:

Obviously, L.f / is a homotopy invariant of f . The goal of this section is to establish
a relation between the Lefschetz number of f and the behavior of fixed points of f .

Algebraic Lemma. Let

.C/ : : : ��!CnC1
@nC1��!Cn

@n��!Cn�1 ��! : : :
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be a complex with finitely generated
L

n Cn, and let f D ffnWCn ! Cng
be an endomorphism of C. Let f� nWHn.C/ ! Hn.C/ be the induced homology
endomorphism. Then

X
n

.�1/n Tr fn D
X

n

.�1/n Tr f� n:

EXERCISE 25. Prove the algebraic lemma.
For example, if X is a finite CW complex, then the Lefschetz number of a

continuous map f WX ! X can be calculated as the alternated sum of traces of
homomorphisms g#W Cn.X/ ! Cn.X/ induced by a cellular approximation g of f .
This observation alone yields the first, and maybe the most important, application
of Lefschetz numbers (not related to manifolds, the more so to Poincaré duality).

Theorem 1. Let X be a finitely triangulated space, and let f WX ! X be a
continuous map. If f has no fixed points, then L.f / D 0.

Proof. We assume that X is furnished with a metric in which every simplex is iso-
metric to the standard simplex. Then there is a positive ı such that dist.x; f .x// > ı
for every x 2 X. By applying to X the barycentric subdivision sufficiently many
times, we can make the diameters of the simplices much less than ı. After this, a
simplicial approximation g of f will be such that g.s/ \ s D ; for every simplex s
of X. In this case, the simplicial chain g#.s/ will not involve s, so all the diagonal
entries of the matrix of g# n will be zero. Hence, all the traces are zero, and the
Lefschetz number is 0.

Let us return to manifolds (but, for now, not to Poincaré duality).

Theorem 2. Let X be a compact smooth manifold (not necessarily orientable, and
maybe with a nonempty boundary), and let � be a vector field on X. Suppose that �
has no zeroes and that on the boundary @X it is directed inside X. Then �.X/ D 0.

This result implied the immensely popular “hairy ball theorem”: There is no
nowhere vanishing vector field on S2 (one cannot comb a hairy ball).

Proof of Theorem 2. A vector field � on X (with or without zeroes) determines a
“flow” ftWX ! X, and for a sufficiently small positive " the fixed points of f" are
zeroes of �. Since f" is homotopic to the identity, L.f"/ D L.id/ D �.X/, and if �
has no zeroes, then �.X/ D 0.

(We will see in Lecture 18 that the converse is also true: If a closed manifold,
orientable or not, has zero Euler characteristic, then it possesses a nowhere vanishing
vector field.)

So far, regarding Lefschetz numbers, we were interested only in their being zero
or not zero. But in reality, in the case of manifolds, the Lefschetz number gives some
count of fixed points. This can be expressed by the following proposition.

Theorem 3. Let X be a triangulated compact orientable n-dimensional homology
manifold (we will discuss later how much the orientability is really needed) and let
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f WX ! X be a continuous map. Let FWX ! X � X; F.x/ D .x; f .x// be the graph
of f , and let �WX ! X � X be the diagonal map, �.x/ D .x; x/. Then

�.F�ŒX�; ��ŒX�/ D L.f /:

Before proving this theorem, let us briefly discuss its meaning. The intersection
points of F.X/ and �.X/ correspond precisely to fixed points of f . In the smooth
case, the intersection number is described in Theorem 1 of Sect. 17.5. First, we need
to assume that all the intersections of the graph and the diagonal are transverse. This
condition may be formulated in the language of calculus. If x0 is a fixed point of a
smooth map f WX ! X, then there arises the differential, dx0 f WTx0X ! Tx0X. The
graph and the diagonal are transverse at x0 if the matrix of dx0 f�id is nondegenerate,
that is, if fx0 f has no eigenvalues equal to 1. If this condition holds, then every
intersection point acquires some sign, and the intersection number, equal to the
Lefschetz number by Theorem 3, is the “algebraic number of fixed points.” The
sign can be described as the parity of the number of real eigenvalues of dx0 f less
than 1.

A very similar thing can be said about the vector fields. A nondegenerate zero
of a vector field can be assign a sign, and then the algebraic number of zeroes of a
vector field must be equal to the Euler characteristic of the manifold.

Now, let us turn to proving Theorem 3. We will need a couple of lemmas.

Lemma 1. �.f�˛1; ˛2/ D .�1/dim˛1�.F�ŒX�; ˛1 � ˛2/.
(On the left-hand side the intersection number is taken in X, while on the right-

hand side it is taken in X � X.)

Proof of Lemma 1. Let ˛1 D D�1; ˛2 D D�2. Then

�.F�ŒX�; ˛1 � ˛2/ D �..id�f /� ı��ŒX�; ˛1 � ˛2/
D hD�1.˛1 � ˛2/; .id�f /� ı��ŒX�i
D ˙h�1 � �2; .id�f /� ı��ŒX�i D ˙h��.�1 � f ��2/; ŒX�i
D ˙h�1 ^ f ��2; ŒX�i D ˙ŒX� _ .�1 ^ f ��2/
D ˙.ŒX� _ �1/ _ f ��2 D ˙˛1 _ f ��2 D ˙hf ��2; ˛1i

D ˙h�2; f�˛1i D ˙�.f�˛1; ˛2/

(the signs are determined in Theorem 3 of Sect. 17.5).

Lemma 2. Let ˛1; : : : ; ˛N be a basis in the free part of the full homology group of
a compact oriented homology manifold X [first, the basis in H0.X/, then H1.X/, and
so on], and let ˛�

1 ; : : : ; ˛
�
N be the dual basis [that is, �.˛�

i ; ˛j/ D ıij]. Then, up to a
summand of finite order, ��ŒX� DPi.˛

�
i � ˛i/.

Proof. By part (2) of Theorem 2 in Sect. 17.5, it is sufficient to prove that

�.��ŒX�; ˛p � ˛q/ D �
�X

i
.˛�

i � ˛i/; ˛p � ˛q

�
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for every p; q. But

�.��ŒX�; ˛p � ˛q/ D .�1/dim˛p�.˛p; ˛q/

by the lemma, and

�
�P

i.˛
�
i � ˛i/; ˛p � ˛q

� DPi �..˛
�
i � ˛i/; .˛p � ˛q//

DPi.�1/dim˛i dim˛p�..˛�
i ; ˛p/�.˛i; ˛q//

D .�1/.dim˛p/
2
�.˛p; ˛q/

by Exercise 7 in Sect. 16.6. This proves Lemma 2.

Proof of Theorem 3. Since the intersection numbers are not sensitive to terms of
finite order, we can replace in Theorem 3��ŒX� by

P
i ˛

�
i �˛i and F�ŒX� D .id�f /	

ı��ŒX� by
P

j ˛
�
j � f�˛j. Also, since the diagonal� is invariant with respect to the

coordinate swapping map X�X ! X�X, we have
P

i ˛
�
i �˛i DPi.�1/di.n�di/˛i�

˛�
i where di D dim˛i. Put f�˛j DPk ajk˛k and perform the calculations:

�.F�ŒX�; ��ŒX�/ D �
�P

j;k ˛
�
j � ajk˛k;

P
i
.�1/di.n�di/˛i � ˛�

i

�

DP
i;j;k
.�1/di.n�di/.�1/didk ajk�.a�

j ; ai/.�1/.n�di/dk�.˛�
i ; ˛k/

DP
i;j;k
.�1/di.n�di/CdidkC.n�di/dk ajkıjiıik DP

i
.�1/d2i aii D L.f /:

Let us now briefly discuss the applicability of the Lefschetz theory to the
nonorientable and boundary cases. We begin with vector fields. For a nonoriented
(even nonorientable) closed manifold the equality between the algebraic number
of zeroes of a vector field and the Euler characteristic obviously holds modulo
2. But in reality, mod 2 reduction is not needed. First, the definition of signs
attributed to zeroes of vector fields does not require orientation. Second, a connected
nonorientable manifold X has an orientable twofold covering,bX, and a vector field
� on X can be lifted to a vector field b� on bX. It is clear also that �.bX/ D 2�.X/
(follows from Corollary in Sect. 13.7) and the (algebraic) number of zeroes ofb� is
twice the same number for �. This implies the statement.

EXERCISE 26. Let X be a connected closed nonorientable manifold, and let f WX !
X be a smooth map which takes orientation preserving loops into orientation
preserving loops and orientation reversing loops into orientation reversing loops.
Prove that if all fixed points of f are nondegenerate, then the algebraic number of
these points is L.f /.

Another extension of the Lefschetz theory may be obtained by admitting, for a
manifold considered, a nonempty boundary. Namely, if X is a compact manifold
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Fig. 70 Doubling a manifold with boundary

with the boundary @X, then we can double X by attaching to it a second copy of X
to the common boundary of the two copies (see Fig. 70).

Let f WX ! X be a continuous map without fixed points on @X, and let XX be the
double of X. We can extend f to a map ff WXX ! X � XX defining this map on the
second half to be the same as on the first half [thus ff .XX/ is contained in the first
half of XX]. It is obvious that ff has the same fixed points as f and L.f / D L.ff /;
hence, the statement of the relation of Lefschetz numbers with fixed points holds
for compact manifolds with boundary (orientable or not). Also, we can state that the
algebraic number of zeroes of a vector field � on a manifold X with boundary such
that � has no zeroes and directed inside X on @X is equal to �.X/.

EXERCISE 27. There exists a different approach to the Lefschetz theory. First we
prove Theorem 1: The Lefschetz number of a fixed-point–free map is zero. Then we
consider a map f WX ! X with a nondegenerate fixed point, and, at a neighborhood
of this point, we modify both X and f in such a way that the fixed point disappears
and the Lefschetz number is changed in a controllable way. Try to recover the
details.

In conclusion, let us give one of countless applications of the Lefschetz theory.

EXERCISE 28. The n-dimensional torus Tn can be regarded as R
n=Zn. Hence, a

linear map R
n ! R

n determined by an integral matrix A can be factorized to
some continuous map Tn ! Tn; denote it as fA. (Certainly, every continuous map
Tn ! Tn is homotopic to a unique map of the form fA; you may try to prove
this.) Calculate the Lefschetz number for fA (the best possible answer expresses
this Lefschetz number in terms of the eigenvalues of A).

EXERCISE 29. Denote the Lefschetz number from Exercise 28 as LA. Prove that a
map homotopic to fA has at least jLAj different fixed points.

EXERCISE 30. Prove that a map f WTn ! Tn homotopic to fA with A D
�
2 1

1 1

�
has

infinitely many periodic points. [A point y 2 Y is called a periodic point of a map
gWY ! Y if gn.y/ D y for some n.]

[The last two statements are taken from the note by Ginzburg [43] (Russian).]
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17.7 Secondary Intersection Numbers and Secondary
Poincaré Duality

Let us return to Poincaré duality. The duality between

Tors Hm.X/ and Tors Hn�m�1.X/

is based on secondary intersection numbers, which are defined ahead. (We need to
warn the reader that the main results of this section will be given in the form of
exercises.)

Let X be a compact oriented n-dimensional homology manifold, and let ˛ 2
Hm.X/ and ˇ 2 Hn�m�1.X/ be homology classes of finite order. Let a and b be
cycles representing ˛ and ˇ in the barycentric star and classical complexes of X,

and assume that Na D @c. We define !.˛; ˇ/ to be the rational number
1

N
�.c; b/

reduced modulo 1 [thus !.˛; ˇ/ 2 Q=Z].

EXERCISE 31. Check that !.˛; ˇ/ is well defined. (It is this statement that requires
the assumption that ˇ has a finite order.)

EXERCISE 32. Prove that if N˛ D 0 and Mˇ D 0, then K!.˛; ˇ/ D 0, where
K D gcd.M;N/.

EXERCISE 33. Prove that !.ˇ; ˛/ D ˙!.˛; ˇ/ (what is the sign?).

The main property of secondary intersection numbers is the following secondary
Poincaré duality.

Theorem. The correspondence ˛ 7! fˇ 7! !.˛; ˇ/g yields an isomorphism

Tors Hm.X/
Š��! Hom.Tors Hn�m�1.X/;Q=Z/:

EXERCISE 34. Prove this theorem.

17.8 Inverse Homomorphisms

Let X and Y be compact oriented homology manifolds of, possibly, different dimen-
sions m and n, and let f WX ! Y be a continuous map. Poincaré isomorphism allows
us to construct “wrong direction” homology and cohomology homomorphisms

f ŠWHq.YIG/ D�1

��!Hn�q.YIG/ f �

��!Hn�q.XIG/ D��!Hm�nCq.XIG/;
f
Š
WHq.XIG/ D��!Hm�q.XIG/ f���!Hm�q.YIG/ D�1

��!Hn�mCq.YIG/:
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Both homomorphisms change dimensions by m � n: The homomorphism f Š

“increases” the dimension by m� n (we use quotation marks because m� n may be
negative or zero), and the homomorphism f

Š
“decreases” the dimension by m�n. We

will not say much about the cohomology homomorphism f
Š
. It can be regarded as

the simplest case of a general construction called “direct image.” Its analytic sense
(and it belongs rather to analysis than to topology), at least in the case when f is
the projection of a smooth fibration, can be best described by the words “fiberwise
integration” (people familiar with the de Rham theory can easily understand them).
As to the homology homomorphism f Š (called the inverse Hopf homomorphism),
it has a transparent geometric sense which is described, in the smooth case, by the
following proposition.

Theorem. Let a homology class ˛ 2 Hq.Y/ be represented by a q-dimensional
submanifold Z of Y (that is, ˛ D i�ŒZ�, where iWZ ! Y is the inclusion map), and
let f be transversely regular with respect to Z (that is, the composition

TyY
dyf��! Tf .y/X

proj��! Tf .y/X=Tf .y/Z

is onto for every point y 2 f �1.Z/). Then f �1.Z/ is a .q C m � n/-dimensional
submanifold of X which represents the homology class f Š.˛/ 2 HqCm�n.X/.

We will not prove this theorem but will restate it in a form in which it can be
easily translated into an easy-to-prove statement concerning homology manifolds.
Let W be an oriented .qCm�n/-dimensional submanifold of X transverse to f �1.Z/
which may have pseudomanifold-like singularities not in a neighborhood of f �1.Z/.
Then, at least in a neighborhood of Z, f .W/ is an .n � q/-dimensional manifold of
Y, and f establishes a (sign-preserving) bijection between W \ f �1Z and f .W/\ Z.
Now let us turn to the homology manifold case.

Proposition 1. Let X;Y, and f be as above, and let ˛ 2 Hq.Y/; ˇ 2 Hm�q.X/. Then

�X.f
Š˛; ˇ/ D �Y.˛; f�ˇ/

(�X and �Y denote the intersection number in X and Y).

Proof.

�X.f Š˛; ˇ/ D �X.Df �D�1˛; ˇ/ D hf �D�1˛; ˇi
D hD�1˛; f�ˇi D �Y.˛; f�ˇ/:

By part (2) of Theorem 2 in Sect. 17.5, this relation determines f Š˛ up to a
summand of finite order.

Here is one more illustration of the fact that geometrically f Š may be regarded as
a preimage.
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Proposition 2. Let X;Y be compact oriented homological manifolds, and let pWX�
Y ! Y be the projection. Then, for any ˛ 2 Hm.Y/,

pŠ˛ D ŒX� � ˛:

Proof. Let ˛ D D�; � 2 Hn�m.YIZ/. Then

pŠ˛ D DX�Yp�� D DX�Y.1 � �/ D DX1 � DY� D ŒX� � ˛:

EXERCISE 34. Prove the formula h˛; f Šˇi D hf
Š
˛; ˇi:

Let us now turn to the case when dim X D dim Y.

Proposition 3. Let X;Y be connected compact oriented manifolds of the same
dimension n, and let f WX ! Y be a continuous map of degree d. Then the
compositions

Hm.Y/
f Š��!Hm.X/

f���!Hm.Y/;

Hm.YIZ/ f �

��!Hm.XIZ/
f
Š��!Hm.YIZ/

are both multiplication by d.

Here is a proof of the first statement. Let ˛ 2 Hm.Y/; ˛ D DY�; � 2 Hn�m.YIZ/.
Then f�f Š˛ D f�DXf �� D f�.ŒX� _ f ��/ D f�ŒX� _ � D dŒY� _ � D dDY� D
d˛ (we used Exercise 12 of Sect. 16.6).

EXERCISE 35. Prove the second statement of Proposition 3.

Corollary. If d D ˙1, then f� is an epimorphism, and f � is a monomorphism.

GENERALIZATION. If d ¤ 0, then every homology class of Y multiplied by d
belongs to the image of f�, and every cohomology class of Y belonging to Ker f �
is annihilated by the multiplication by d.

For example, there is no map S2 ! S1 � S1 of a nonzero degree, but there is a
map S1 � S1 ! S2 of degree 1: factorization over S1 _ S1.

Everything said in this section has an obvious nonorientable Z2-analog.

17.9 Poincaré Duality and the Cup-Product

Again, we begin with a statement for the smooth case.

Theorem 1. Let Y1;Y2 be closed oriented submanifolds of a smooth closed oriented
manifold X transverse to each other; the latter means that the inclusion map i1 of
Y1 in X is transversely regular to Y2. Then the intersection Z D Y1 \ Y2 D i�11 .Y2/
is a submanifold of X whose dimension k is related to the dimensions n;m1;m2 of
X;Y1;Y2 by the formula k D m1Cm2�n. Let ˛1 2 Hn�m1 .XIZ/; ˛2 2 Hn�m2 .XIZ/;
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and ˇ 2 H2n�m1�m2 .XIZ/ be cohomology classes such that homology classes
D˛1;D˛2, and Dˇ are represented by Y1;Y2, and Z. Then

˛1 ^ ˛2 D ˇ:

There is a similar Z2-statement for the nonorientable case.

Proof of Theorem 1.

D.˛1 ^ ˛2/ D ŒX� _ .˛1 ^ ˛2/ D .ŒX� _ ˛1/ _ ˛2 D .D˛1/ _ ˛2
D i1�ŒY1� _ ˛2 D i1�.ŒY1� _ i�1 ˛2/ D i1�.Di�1 ˛2/
D i1�.Di�1D�1.i2�ŒY2�/ D i1�.iŠ1.i2�ŒY2�//
D i1�Œi�11 .Y2/� D i�ŒZ� D Dˇ:

(Here i2 and i are inclusion maps of Y2 and Z in X; we used in this the proof
of Theorem 1 from Sect. 17.9, which was not proven there; if we use instead
Theorem 2, then the equality ˛1 ^ ˛2 D ˇ will be proven in a broader context
of homology manifolds, but only modulo summand of a finite order.)

This theorem provides a very powerful tool for determining multiplicative
structure in cohomology, mainly for manifolds, but actually for all spaces, because
of the naturality of the multiplicative structure.

Example. If q C r � n, then the product of canonical generators of the groups
H2q.CPnIZ/ and H2r.CPnIZ/ is the canonical generator of H2.qCr/.CPnIZ/;
indeed, Poincaré isomorphism takes the three generators into the homology classes
of projective subspaces of dimensions n � q; n � r, and n � q � r, and, in general
position, the intersection of the first two is the third. Thus, the ring H�.CPnIZ/ DL

i Hi.CPnIZ/ has the following structure: There is 1 2 H0.CPnIZ/ and the
generator x 2 H2.CPnIZ/; the group H2q.CPnIZ/ with 1 � q � n is generated
by xq. If n is finite, then xnC1 D 0. In more algebraic terms, H�.CPnIZ/ is the ring
of polynomials of one variable x factorized by the ideal generated by xnC1,

H�.CPnIZ/ D ZŒx�=.xnC1/; dim x D 2I

similarly,

H�.HPnIZ/ D ZŒx�=.xnC1/; dim x D 4I
H�.RPnIZ2/ D Z2Œx�=.xnC1/; dim x D 1I
H�.CaP2IZ/ D ZŒx�=.x3/; dim x D 8:

In all cases, excluding RPn, the ring Z may be replaced by any commutative ring.

EXERCISE 36. Prove that the integral cohomology ring of the sphere S2g with g
handles is as follows: there are generators a1; : : : ; ag; b1; : : : ; bg of H1.S2gIZ/ such
that a1b1 D a2b2 D � � � D agbg is the generator of H2.S2gIZ/ and all other products
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of generators of H1.S2gIZ/ are zeroes. Describe the multiplicative structure in Z2-
cohomology of the projective plane with handles and the Klein bottle with handles.

EXERCISE 37. Prove that any continuous map CPn ! CPm with n > m induces a
trivial map in cohomology of any positive dimension (with any coefficients). Prove
a similar statement for real projective spaces.

EXERCISE 38. Prove that if g < h, then there are no continuous maps S2g ! S2h of
a nonzero degree.

Theorem 1 shows that the multiplicative structure in cohomology of a closed
orientable manifold is rich (many nonzero products). Actually, we already have a
strong statement of this kind: Theorems 2 and 3 of Sect. 17.5 show that if X is a
compact oriented n-dimensional homology manifold, then for every infinite order
class ˛ 2 Hm.XIZ/ there exists a ˇ 2 Hn�m.XIZ/ such that h˛ ^ ˇ; ŒX�i D 1. If
dim X D 2k and ˛1; ˛2; : : : is a basis in the free part of Hk.XIZ/, then the matrix
kh˛i ^ ˛j; ŒX�ik is unimodular (that is, its determinant is˙1).

The remaining part of this lecture is devoted to several modifications (general-
izations) of Poincaré duality.

17.10 The Noncompact, Relative, and Boundary
Cases of Poincaré Isomorphism

Suppose that a connected triangulated space X is an oriented n-dimensional
homology manifold which, however, is not assumed to be compact; that is, the
triangulation may be not finite. In this case we still have a correspondence
between (oriented) simplices and barycentric stars of complementary dimensions,
but no isomorphism between chains and cochains, since chains are supposed to
be finite linear combinations of simplices (or barycentric stars), and cochains are
allowed to take nonzero values on infinitely many simplices. To construct Poincaré
isomorphism, we need to modify the definition either of chains or of cochains. Both
modifications are well known in topology; moreover, they exist on the singular level.
Here, we restrict ourselves to a brief description of these modifications.

Let X be a locally compact topological space. An n-dimensional open singular
chain of X is a possibly infinite, linear combination of n-dimensional singular
simplices of X with integer coefficients,

P
i kifi; fiW�n ! X; such that for any

compact subset K � X the coefficients ki may be nonzero only for finitely
many singular simplices fi such that fi.�n/ \ K ¤ ;. Open chains form a group
Copen

n .X/, and the usual definition of the boundary operator gives homomorphisms
@WCopen

n .X/! Copen
n�1 .X/ with @@ D 0 and, finally, open homology groups Hopen

n .X/.
Proper (preimages of compact sets are compact) continuous maps f WX ! Y induce
chain and homology homomorphisms f#WCopen

n .X/! Copen
n .Y/ and f�WHopen

n .X/!
Hopen

n .Y/ with all usual properties (including proper homotopy invariance for open
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homology). In particular, if X is a locally finite CW complex, then Hopen
n .X/ can be

calculated by means of cellular chains which are not assumed to be finite.
There is also a similar (dual) definition of compact or compactly supported coho-

mology of a locally compact topological space X. Namely, a cochain c 2 Cn.XIG/
is called compactly supported if there exists a compact set K � X such that
c.f / D 0 for any singular simplex f W�n ! X such that f .�n/ \ K D ;.
There arise groups of compactly supported cochains, Cn

comp.XIG/, coboundary
operators, ıWCn

comp.XIG/ ! CnC1
comp.XIG/, and compact(ly supported) cohomology

Hn
comp.XIG/. For compactly supported cochains and cohomologies, homomor-

phisms f # and f � are induced by proper continuous maps. For locally finite CW
complexes, compact cohomology can be calculated by means of complexes of finite
cochains. Remark also that the usual definition of multiplications gives (in the
presence of a pairing G1 � G2 ! G) the following binary operations:

	
�1 2 Hq1

comp.XIG1/; �2 2 Hq2 .XIG2/

 7! �1 ^ �2 2 Hq1Cq2

comp .XIG/I	
˛ 2 Hopen

q1 .XIG1/; � 2 Hq2 .XIG2/

 7! ˛ _ � 2 Hopen

q1�q2 .XIG/I	
˛ 2 Hopen

q1 .XIG1/; � 2 Hq2
comp.XIG2/


 7! ˛ _ � 2 Hq1�q2 .XIG/:

All these operations are defined in the usual way on the chain/cochain level.
Consider again a connected triangulated oriented n-dimensional homology

manifold X. The barycentric star construction of Sect. 17.4 provides Poincaré
isomorphisms

DWHm.XIG/! Hopen
n�m.XIG/ and DWHm

comp.XIG/! Hn�m.XIG/I
both can be expressed by the formula D� D ŒX� _ � , where the fundamental
class ŒX� is an element of Hopen

n .X/. These isomorphisms may not look appealing
because they involve exotic homology and cohomology groups. However, in many
important cases this may be avoided. This possibility is provided by the following
general proposition.

Proposition 1. Let X be a compact topological space and let A � X be a closed
subset. Then there are natural (make the statement precise: in what sense natural?)
isomorphisms

Hopen
n .X � AIG/ Š Hn.X;AIG/ and Hn

comp.X � AIG/ Š Hn.X;AIG/:

In particular, if X is locally compact and X� is the one-point compactification of
X, then

Hopen
n .XIG/ Š eHn.X

�IG/ and Hn
comp.XIG/ Š eHn.X�IG/:

Proposition 1 shows that the preceding Poincaré isomorphisms, in the case when
the given homology manifold is a complement to a CW subcomplex A of a compact
CW complex X, take the form
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Fig. 71 A barycentric star complex approximation of X � A

DWHm.X � AIG/! Hn�m.X;AIG/
and Hm.X;AIG/! Hn�m.X � AIG/:

(Moreover, both isomorphisms can be described as cap-products with the “funda-
mental class” ŒX;A� 2 Hn.X;A/.) We do not prove this proposition, and we do not
even offer it as an exercise. Instead, we will give a direct construction of the last
isomorphisms, at least in the triangulated case.

Let X be a compact triangulated space, and let A be a triangulated subspace
of X such that X � A is a homology manifold. We assume that A satisfies the
“regularity condition”: If all vertices of some simplex s of X belong to A, then s
is contained in A. Let Y be the union of barycentric stars of simplices of X not
contained in A (see Fig. 71). Then Y is a closed subset of X, even a triangulated
subspace of the barycentric subdivision of X; moreover, Y is homotopy equivalent
to X � A (we do not give a formal proof of this homotopy equivalence, but we hope
that Fig. 71 may serve as a convincing confirmation of that). The correspondence
between simplices and their barycentric stars provides isomorphisms between free
Abelian groups generated by simplices in X not contained in A and barycentric stars
in Y. These isomorphisms may be considered as either Cm

bast.YIZ/ Š Cclass
n�m.X;A/ or

Cm
class.X;AIZ/ Š Cbast

n�m.Y/; in both cases, the commutativity with @ and ı [similar to
(	) in Sect. 17.4] holds, so there arise homology/cohomology isomorphisms

DWHm.X � AIZ/! Hn�m.X;A/ and DWHm.X;AIZ/! Hn�m.X � A/

as stated above (it is easy to extend them to an arbitrary coefficient group G).

EXERCISE 39. Prove that both isomorphisms can be expressed as ŒX;A� _. (For
one of them, we will have to reverse the ordering of vertices in the barycentric
subdivision.)

EXERCISE 40. For homology classes ˛ 2 Hm.X � A/; ˇ 2 Hn�m.X;A/, define the
intersection number �.˛; ˇ/ which has the usual geometric sense. (This must be a
replica of Sect. 17.5.) Prove the relative Poincaré duality: The homomorphism
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Free Hm.X � A/! Hom.Free Hn�m.X;A/;Z/; ˛ 7! fˇ 7! �.˛; ˇ/g

is an isomorphism. Do similar work with the torsion subgroup and the secondary
intersection numbers.

There are two especially important cases of the relative Poincaré duality: the case
when X is a sphere and the case when X is a manifold with boundary and A D @X.
We postpone the first case to the next section and will consider the second case now.

Although there exists a theory of homology manifolds with boundary (see,
for example, Mitchel [62]), we will not discuss it here; instead of this, we will
restrict ourselves to the smooth case. Let X be a connected oriented compact
.n C 1/-dimensional smooth manifold with a boundary @X; we suppose that X
possesses a smooth triangulation such that simplices contained in @X form a smooth
triangulation of @X. Since, obviously, X � @X is a homology manifold, the previous
construction yields (for an arbitrary coefficient group G) Poincaré isomorphisms

DWHm.XIG/! HnC1�m.X; @XIG/;
DWHm.X; @XIG/! HnC1�m.XIG/

(we use the obvious fact that X � @X is homotopy equivalent to X). Both
isomorphisms have the form � 7! ŒX; @X� _ � , where ŒX; @X� 2 HnC1.X; @X/
is the fundamental class of X [represented in the classical complex by the sum of all
.nC 1/-dimensional simplices of X oriented in accordance to the orientation of X].

Proposition 2. Poincaré isomorphisms described above, together with Poincaré’s
isomorphisms for the manifold @X, form an isomorphism between homology and
cohomology sequences of the pair .X; @X/; more precisely, there arises a plus–minus
commutative diagram

Proof. We will prove the plus–minus commutativity of the first square; for the third
square the proof is more or less the same, while the commutativity of the second
square is obvious.

Take a c 2 Cn�m.@XIG/ and extend it to ec 2 Cn�m.XIG/. Here we use the
notations ŒX; @X� and Œ@X� for chains; thus, ŒX; @X� 2 CnC1.X/ and @ŒX; @X� D
Œ@X� 2 Cn.@X/ � Cn.X/. As we know from Sect. 16.6 (Exercise 8),

@.ŒX; @X� _ec/ D ˙.@ŒX; @X� _ec/˙ .ŒX; @X� _ ıec/: (	)

Since @ŒX; @X� D Œ@X� 2 Cn.@X/ � Cn.X/, the cap-product @ŒX; @X� _ ec 2
Cm.XIG/ belongs to Cm.@XIG/ and, in this capacity, is Œ@X� _

�ecj
@X

� D Œ@X� _ c.
If c is a cocycle representing a class � 2 Hn�m.@XIG/, then @ŒX; @X� _ ec and
ŒX; @X� _ ıec are cycles (in Cm.XIG/) representing i�.Œ@X� _ �/ D i� ı D� and
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ŒX; @X� _ ı�� D Dıı�� . Since the sum or difference of these cycles is a boundary
[formula (	)], this proves the plus–minus commutativity of the first square.

We will reformulate the last proposition by passing from Poincaré isomorphisms
to Poincaré duality. To avoid separately considering free parts and torsion, we will
assume that the coefficient domain is Q, and, for brevity’s sake, we will omit the
indication of the coefficient domain. We will replace the bottom line of the diagram
in Proposition 2 by the dual (with respect to h ; i) homology sequence. We get the
following “duality diagram.”

The spaces of each vertical are dual to each other with respect to the intersection
number, while the arrows of each vertical are plus–minus dual to each other. The
last fact (equivalent to Proposition 2) means the following:

�.i�˛; ˇ/ D ˙�.˛; @�ˇ/ for every ˛ 2 Hm.@X/; ˇ 2 Hn�mC1.X; @X/;
�.j�˛; ˇ/ D ˙�.˛; j�ˇ/ for every ˛ 2 Hm.X/; ˇ 2 Hn�mC1.X/;
�.@�˛; ˇ/ D ˙�.˛; i�ˇ/ for every ˛ 2 Hm.X; @X/; ˇ 2 Hn�mC1.@X/:

These results appear the most interesting when n is even: n D 2k. Consider the
fragment

HkC1.X; @X/
@���!Hk.@X/

i���!Hk.X/

of the homology sequence of the pair .X; @X/ (with the coefficient in Q). The middle
space is self-dual, the left and right groups are dual to each other, as well as the
homomorphisms i� and @� (all the dualities are with respect to the intersection
number �). The exactness of the sequence implies the equality dim Hk.@X/ D
rank@� C rank i�, and the duality shows that rank @� D rank i�. Together, these
equalities show that Bk.@X/ D dim Hk.@X/ D 2 rank@�. In other words, the space
Hk.@X/ is even-dimensional (we already know this in the case when k is odd;
see Theorem 3 of Sect. 17.5), and the dimension of Ker i� D Im @� � Hk.@X/
is half of dim Hk.@X/. For example, the torus T can be presented as a boundary
of an orientable compact three-dimensional manifold in many different ways (for
example, the torus is the boundary of the solid torus). But if T D @X (where X is a
compact orientable three-dimensional manifold), then the inclusion homomorphism
i�WH1.T/ ! H1.X/ must have a one-dimensional kernel, not less and not more (if
X is a solid torus, then i� annihilates the homology class of the meridian, but not the
homology class of the parallel).

Furthermore, if ˛; ˇ 2 HkC1.X; @X/, then, since @� and i� are �-dual to each
other,
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�.@�˛; @�ˇ/ D �.˛; i�@�ˇ/ D �.˛; 0/ D 0;

which shows that the restriction of the form � to this subspace is zero. In the
case when k is odd, the form � determines a symplectic structure in Hk.@X/,
and the last statement means that Ker i� D Im @� is a Lagrangian subspace of
Hk.@X/. This, however, does not impose any condition on the manifold @X. The
case when k is even, however, is very much different. A real vector space V with
a nondegenerate symmetric bilinear form ! can have a subspace W of dimension
one half of dim V with a zero restriction !j

W
if and only if the signature of ! (the

difference between the positive and negative inertia indices) is zero. For a compact
oriented 4`-dimensional manifold Y, the signature of the form � in H2`.Y/ is called
the signature of Y and is denoted as 	.Y/.

EXERCISE 41. Prove that 	 is multiplicative: If Y1 and Y2 are two closed oriented
manifolds of dimensions divisible by 4, then 	.Y1 � Y2/ D 	.Y1/	.Y2/.
EXERCISE 42. Prove that if Y1 and Y2 are two closed orientable manifolds whose
dimensions are not divisible by 4, but sum up to a number divisible by 4, then
	.Y1 � Y2/ D 0.

EXERCISE 43. Prove that the reversion of the orientation leads to the negation of
the signature.

EXERCISE 44. Let Y1 and Y2 be two connected orientable closed manifolds of the
dimension 4`, and let Y D Y1#Y2 be the connected sum of Y1;Y2 (that is, Y is
obtained from Y1;Y2 by drilling holes in both of them and then attaching to the
boundaries of the holes the tube S4`�1 � I). Prove that 	.Y/ D 	.Y1/C 	.Y2/.
Theorem. If a closed oriented 4`-dimensional manifold Y is a boundary of a
compact oriented manifold X, then 	.Y/ D 0 [in particular, B2`.Y/ is even].

Proof. We showed that B2`.@X/must be even and that H2`.@X/ contains a subspace

of dimension
1

2
B2`.@X/ with zero restriction of �. Hence, 	.@X/ D 0.

Example. The manifold CP2` cannot be a boundary of a compact orientable .4`C
1/-dimensional manifold, because B2`.CP2`/ D 1 is odd. But the connected sum
CP2`#CP2` (see Exercise 44), which has even middle Betti number, is also not a
boundary since its signature is not zero (it is 2). The same is true for a connected
sum of a number of copies of CP2`. But the connected sum CP2`#.�CP2`/ (where
the minus sign stands for the orientation reversion) has zero signature and may be a
boundary. Actually, it is a boundary (see Exercise 45 ahead).

EXERCISE 45. Let Y be a connected closed oriented manifold. Prove that the
manifold Y#.�Y/ is a boundary of some compact manifold. (Hint: Drill a hole in Y
and then multiply by I.)
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17.11 Alexander Duality

Let A � Sn be a simplicial subset of Sn, that is, a union of some simplices of some
triangulation of Sn. The goal of this section is to construct Alexander isomorphisms,

LW eHm.AIG/ Š��! eHn�1�m.Sn � AIG/
and LW eHm.Sn � AIG/ Š��! eHn�1�m.AIG/;

and then to reformulate them as a duality between homology groups of A and Sn�A.
We begin with an obvious remark: If A is empty of is equal to Sn, then the existence
of the isomorphisms follows from the definition of groups eH�1 and eH�1 (which
demonstrates one more time that these definitions are right). From now on, we
assume that neither A, nor Sn � A, is empty. For brevity’s sake, we will always
omit the indication to the coefficient group (which may be arbitrary).

Remember that, according to Sect. 17.10, the cap-product ŒSn;A�_ yields
isomorphisms

DWHm.Sn � A/! Hn�m.Sn;A/
and DW HmC1.Sn;A/! Hn�1�m.Sn � A/:

Consider the reduced homology sequence of the pair .Sn;A/:

: : : eHn�m.S
n/! Hn�m.S

n;A/! eHn�1�m.A/! eHn�1�m.S
n/ : : : : (	)

If m ¤ 0; 1, then the first and last groups in this exact sequence are zeroes, and we
obtain an isomorphism @�WHn�m.Sn;A/! eHn�1�m.A/ and the composition

L D @� ı DWHm.Sn � A/
Š��! eHn�1�m.A/

as was promised [for these m, Hm.Sn � A/ D eHm.Sn � A/]. It remains to settle the
cases m D 0; 1.

Lemma. If A ¤ Sn, then the inclusion homomorphism Hn.A/! Hn.Sn/ is zero.

Proof. If x0 … A, then this homomorphism factorizes as Hn.A/ ! Hn.Sn � x0/ !
Hn.Sn/, and Hn.Sn � x0/ D 0, since Sn � x0 is homeomorphic to R

n.

[Actually, Hn.A/ D 0, since HnC1.Sn;A/ D 0; but we do not need this.]
If m D 1, then the last homomorphism of the sequence (	) is zero, and @� remains

an isomorphism. If m D 0, we get the exact sequence

0��! eHn.S
n/ .D Z/! Hn.S

n;A/! eHn�1.A/! 0;

which provides an isomorphism Hn.Sn;A/=Z! eHn�1.A/ which gives, in combina-
tion with D, the promised isomorphism
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LW eH0.Sn � A/ D H0.Sn � A/=Z
D��!Hn.S

n;A/=Z! eHn�1.A/

(the reader is granted the right to replace Z everywhere with G).
The isomorphism LW eHm.A/ ! eHn�1�m.Sn � AIG/ is obtained from the

isomorphism DWHmC1.Sn;A/ ! Hn�1�m.Sn � A/ precisely in the same way, with
use of the reduced cohomology sequence of the pair .Sn;A/.

Like Poincaré isomorphism, Alexander isomorphism may be turned into a
homology–homology duality, with the role of intersection numbers played by so-
called linking numbers. From the point of view of Alexander isomorphism, the
definition of linking numbers is immediately clear. Let A � Sn be as above, and
let ˛ 2 Hp.Sn � A/; ˇ 2 Hq.A/ be two homology classes with pC q D n� 1. Then

�.˛; ˇ/ D hL�1˛; ˇi

is called the linking number of ˛ and ˇ, and the isomorphism L (rather L�1) becomes
a duality

Free Hq.A/
Š��! Hom.Free Hp.S

n � A/;Z/; ˇ 7! f˛ 7! �.˛; ˇ/g:

But, like intersection numbers, linking numbers have a clear geometric sense, which
we will describe now.

Let a; b be two cycles of a compact oriented n-dimensional homology manifold X
whose dimensions p; q sum up to n�1. [It is convenient to assume that a 2 Cclass

p .X/
and b 2 Cbast

q .X/.] Suppose also that both a; b are homological to zero. Choose a c
with @c D b and put

�.a; b/ D �.a; c/

(see Fig. 72).

EXERCISE 46. Prove that �.a; b/ does not depend on the choice of c.

Fig. 72 Definition of the linking number �.a; b/
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EXERCISE 47. Prove that �.a; b/ D .�1/pqC1�.b; a/. (For example, the linking
number of two disjoint oriented closed curves in R

3 is symmetric with respect to
these curves.)

Let us now transfer the definition of a linking number into a context closer to
the Alexander duality. Let A;B be disjoint closed subsets of a compact oriented
n-dimensional homology manifold X (we can conveniently assume that both are
union of simplices of X), and let ˛ 2 Hp.A/; ˇ 2 Hq.B/ be homology classes
which are annihilated by homology homomorphisms induced by the inclusions
A! X; B! X. Then ˇ D @�� for some � 2 HqC1.X;B/, and we put �.˛; ˇ/ D
�.˛; �/ (in the last formula, we can think of ˛ on the right-hand side as of the image
of ˛ in the homology of X � B).

EXERCISE 460. Prove that �.˛; ˇ/ does not depend on the choice of � .

EXERCISE 470. Prove that �.˛; ˇ/ D .�1/pqC1�.ˇ; ˛/.

In particular, we can take Sn for X, and the complement to a thin neighborhood
of A (which is as above) for B (that is, B may look like Y in Fig. 71). Then linking
numbers are defined for any ˛ 2 eHp.A/; ˇ 2 eHq.B/ with pC q D n � 1.

Theorem. The equality

�.˛; ˇ/ D hL�1˛; ˇi

holds.

This follows from the definition of L: L D @� ı D.
Thus, linking numbers provide Alexander duality similar to the Poincaré duality.

EXERCISE 48. Make up the definition of “secondary linking numbers” 
.˛; ˇ/ 2
Q=Z for ˛ 2 Tors Hp.A/; ˇ 2 Tors Hq.Sn � A/ with pC q D n � 2 and prove that

Tors Hp.A/! Hom.Tors Hq.S
n � A/;Q=Z/; ˛ 7! fˇ 7! 
.˛; ˇ/g

(where pC q D n � 2) is an isomorphism.

In conclusion, several exercises.

EXERCISE 49. (The Alexander isomorphism in R
n) Let A be a compact polyhedron

in R
n. Prove that Hp.A/ Š eHq.R

n � A/ for pC q D n � 1.

EXERCISE 50. Let A be a k-component link (D the union of k disjoint non-self
intersecting closed curves in S3). Find the homology of S3 � A.

EXERCISE 51. (A continuation of Exercise 50) Assume that the linking numbers
of the components of A are known. Find the multiplicative structure in the integral
cohomology of S3 � A.
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Fig. 73 Borromeo rings

EXERCISE 52. The following is a description of a “secondary multiplicative struc-
ture in cohomology” provided by “Massey products.” Let ˛ 2 Hp.XIG/; ˇ 2
Hq.XIG/; � 2 Hr.XIG/ be cohomology classes of some topological space with
coefficients in a ring. Assume that ˛ ^ ˇ D 0 and ˇ ^ � D 0. Let a 2
Cp.XIG/; b 2 Cq 2 Cq.XIG/; c 2 Cr.XIG/ be (singular) cocycles representing
˛; ˇ; � , and let a ^ b D ıu; b ^ c D ıv. Then h D u ^ c � .�1/pa ^ v 2
CpCqCr�1.XIG/ is a cocycle, and its cohomology class is determined by ˛; ˇ, and
� up to a summand of the form ˛ ^ 
 C 	 ^ � with 
 2 HqCr�1.XIG/; 	 2
HpCq�1.XIG/. This (not always and not uniquely) defined cohomology class is
called the (triple) Massey product of ˛; ˇ; � and is denoted as h˛; ˇ; �i. Check all
this and compute the cohomology, with cup-products and Massey products, of the
complement of the “Borromeo rings” (see Fig. 73).

There exists an extensive theory of “triple linking numbers” and their relations
to Massey products (with further generalizations); see Milnor [54] and Turaev [87].

17.12 Integral Poincaré Isomorphism for Nonorientable
Manifolds

These isomorphisms have the form

Hm.XIZ/ Š Hn�m.XIZT/; Hm.XIZT/ Š Hn�m.XIZ/:

Here X is a connected compact n-dimensional nonorientable homology manifold,
and homology and cohomology with coefficients in ZT (“twisted” integers) are
defined in the following way. Let eX be the oriented twofold covering of X. Then
there is a canonical orientation reversing involution t W eX ! eX. There arise a
transformation t#WCq.eX/! Cq.eX/ with the square 1, and a decomposition

Cq.eX/ D CC
q .
eX/˚ C�

q .
eX/;
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where Cq̇ .
eX/ D fc 2 Cq.eX/ j t#.c/ D ˙cg. Obviously, CC

q .
eX/ is the same as

Cq.X/; we take the other summand, C�
q .
eX/, for Cq.XIZT/. The groups Cq.XIZT/

form, in the obvious way, a complex. The homology of this complex is denoted as
Hq.XIZT/, and the corresponding cohomology is taken for Hq.X;ZT/. We will not
discuss in any detail these homology and cohomology with “twisted coefficients”;
moreover, we will have to do it in a much bigger generality in Chap. 3. Now
we restrict ourselves to a recommendation to the reader to reconstruct Poincaré
isomorphism given above [they are cap-products with a “fundamental class” ŒX� 2
Hn.XIZT )], and Poincaré duality with appropriately defined intersection numbers
and secondary intersection numbers.

Lecture 18 The Obstruction Theory

18.1 Obstructions to Extending a Continuous Map

Most problems in homotopy topology consist in a homotopy classification of
continuous maps between two topological spaces. A natural intermediate problem
is the question of whether a given continuous map A ! Y can be extended to a
continuous map X ! Y for some X � A (with a subsequent classification of such
extensions). This is what the obstruction theory was designed for. We will begin
with a technically important particular case.

Let X be a CW complex, and let Y be a connected topological space which is
assumed homotopically simple (that is, the action of the fundamental group in all
homotopy groups is trivial; later, we will discuss several possibilities of removing or,
at least, weakening this condition). Consider the problem of extending a continuous
map f WXn ! Y to a continuous map XnC1 ! Y (where Xn;XnC1 are skeletons).
Let e � X be a cell of dimension n C 1, and let hWDnC1 ! X be a corresponding
characteristic map. There arises a continuous map fe D f ı hjSn W Sn ! Y. It is
obvious that f can be continuously extended to Xn [ e if and only if fe is homotopic
to a constant, that is, if fe represents the class 0 2 �n.Y/ (since Y is homotopically
simple, we do not need to fix a base point in Y).

Furthermore, the possibility of extension of f to XnC1 is the same as the
possibility of its extension to every .nC 1/-dimensional cell of X. If we construct,
as above, a map feW Sn ! Y for every e and denote by 'e the class of fe in �n.Y/,
we arrive at the following, essentially tautological, statement: A continuous map
f WXn ! Y can be extended to a continuous map XnC1 ! Y if and only if every 'e

is equal to 0.
The function e 7! 'e can be regarded as an .nC 1/-dimensional cellular cochain

cf of X with coefficients in �n.Y/. (This cochain does not depend on the choice of
characteristic maps. Indeed, from the homotopy point of view there are only two
characteristic maps corresponding to the two orientations of e; the replacement of h
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by a characteristic map of the opposite orientation changes the sign at 'e, but also
reverses the orientation of e, so the cochain cf stays unchanged.) Thus,

cf 2 CnC1.XI�n.Y//;

and f can be extended to XnC1 if and only if cf D 0. The cochain cf is called the
obstruction cochain to the extension of f to XnC1.

Notice that the obstruction cochains have a naturality property: If 'WX0 ! X is a
cellular map and  WY ! Y 0 is a continuous map, then c ıf ı' D '# #cf .

Up to now, everything said was a sheer triviality. Here is the first nontrivial
statement.

Theorem 1. The obstruction cochain is a cocycle: ıcf D 0.

Proof. The statement may be regarded as a variation on the theme of @@ D 0

[we need to prove that cf .@a/ D 0, but the cochain cf itself is defined by means
of boundaries], but the accurate proof requires some work. For example, it can
be deduced from the relative Hurewicz theorem (Sect. 14.4). According to this
theorem, if X satisfies some conditions (we will discuss them later), then the
Hurewicz homomorphism hW�q.Xq;Xq�1/ ! Hq.Xq;Xq�1/ is an isomorphism.
Consider the diagram

This diagram is commutative by the definition of the cochain cf and the
homomorphism @W CnC2.X/ ! CnC1.X/. Also, the part of the vertical column
marked by a brace is a fragment of the homotopy sequence of the pair .XnC1;Xn/,
and hence the composition os homomorphism within this part is 0. Thus, cf ı @ D
ıcf D 0.

However, the reference to the relative Hurewicz theorem forces us to respect its
assumptions, that is, to assume that X is simply connected and that n C 1 > 1.



260 2 Homology

We will ignore the second assumption (it is easy to see that our arguments are
valid when n D 0), and we can get rid of the simply connectedness assumption
in the following way. Let pW eX ! X be the universal covering of X. The CW
decomposition of X induces a CW decomposition of eX, and the map p#W Cq.X/ !
Cq.eX/ is a monomorphism. For a map f WXn ! Y, the obstruction cochain cf ıp 2
CnC1.eXI�n.Y// is p#cf , p#ıcf D ıp#cf D ıcf ıp D 0, and hence ıcf D 0.

The cohomology class Cf 2 HnC1.XI�n.Y// of the cocycle cf is called the
cohomology obstruction, or simply the obstruction to extension of f to XnC1.

Theorem 2. The condition Cf D 0 is necessary and sufficient to the existence of
extending f jXn�1 to XnC1. In other words, Cf =0 if and only if it is possible to extend
f to XnC1 after, possibly, a changing f on Xn � Xn�1.

[One can apply this theorem to successive extensions of f from a skeleton to a
skeleton. Say, let us have a continuous map f WXn ! Y. There arises an obstruction
Cf 2 HnC1.XI�n.Y/. If it is 0, we can extend f to XnC1 at the price of some
modification of f on Xn not touching f on Xn�1. In this case (that is, if Cf D 0),
we get a new obstruction in HnC2.XI�nC1/. If it is zero, we extend f to XnC2
(maybe, after changing the previous extension), and get the next obstruction in
HnC3.XI�nC2.Y//, and so on. One should remember, however, that every new
obstruction depends from the previous extension, and hence these obstructions are
defined with a growing indeterminacy.]

Before proving Theorem 2, we will give a new definition which will be useful
in the proof but will also have a considerable independent value. Let f ; gWXn ! Y
be two continuous maps which agree on Xn�1. Consider an arbitrary n-dimensional
cell e with a characteristic map hWDn ! X. The maps f ı h; g ı hWDn ! Y agree
on Sn�1 [since h.Sn�1/ � Xn�1, and f and g agree on Xn�1] and together compose
a map keW Sn ! Y (which is f ı h on the lower hemisphere and g ı h on the upper
hemisphere). We define the difference cochain

df ;g 2 Cn.XI�n.Y//;

whose value on e is the class of ke in �n.Y/. It is clear that the condition df ;g D 0 is
necessary and sufficient for the existence of a homotopy between f and g which is
fixed on Xn�1 (in the terminology of Chap. 1, an Xn�1-homotopy; see Sect. 5.7). In
the important case when f and g are defined on the whole X and agree on Xn�1, the
condition df ;g D 0 is necessary and sufficient for the existence of an Xn�1-homotopy
of f making f agree with g on Xn (for this statement, we need to use Borsuk’s
theorem, Sect. 5.5). Notice also that the difference cochains have a naturality
property similar to that of the obstruction cochains: d ıf ı'; ıf ı' D '# #df ;g:

Lemma 1. For any continuous map f WXn ! Y and any cochain d 2 Cn.XI�n.Y//,
there exists a continuous map gWXn ! Y which agrees with f on Xn�1 and is such
that df ;g D d.
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.

e

f(e)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

d(e)

g(e)

f

g

Fig. 74 Proof of Lemma 1

Proof. Consider an n-dimensional cell e of X and distinguish a small ball in e. Than
change the map f on this ball in such a way that the two maps of the ball, the old
one and the new one, compose a spheroid of the class d.e/ (see Fig. 74). Having
such a change made on each n-dimensional cell, we get the map g with the required
properties.

Lemma 2. ıdf ;g D cg � cf .

Proof. Consider, for simplicity’s sake, the case when f and g are different on only
one n-dimensional cell e � X (the general case, essentially, is not different from this
case). Let 
 be an .nC 1/-dimensional cell of X; we want to show that

cg.
/ � cf .
/ D Œ
 W e�df ;g.e/:

Let hWDnC1 ! X be a characteristic map for 
 . We can assume that h�1.e/ consists
of several open balls, of which every one is mapped by h homeomorphically onto
e, with preserving or reversing the orientation, and Œ
 W e� is the difference of the
number of balls where the orientation is preserved and the number of balls where it
is reversed (compare the description of the incidence numbers in Sect. 13.6). This
makes the desired equality obvious: A spheroid representing cg.
/ is obtained from
a spheroid representing cf .
/ by adding spheroids of the class ˙df ;g.e/, and the
algebraic number of these spheroids is Œ
 W e�.
Proof of Theorem 2. If Cf D 0, then cf D ıd and, by Lemma 1, there exists a map
gWXn ! Y such that g jXn�1D f jXn�1 and df ;g D �d. But then, by Lemma 2,
cg D cf C ıdf ;g D ıd � ıd D 0; thus, g can be extended to XnC1. Conversely, if
there exists a map gWXn ! Y which agrees with f on Xn�1 and can be extended to
XnC1, then cg D 0 and cf D cf � cg D ıdf ;g, and hence Cf D 0.

Remark. The two lemmas of this proof are not less important than the theorem; we
will use them later.

EXERCISE 1. Prove that dg;f D �df ;g and df ;h D df ;g C dg;h.
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18.2 The Relative Case

Let A be a CW subcomplex of a CW complex X, and let the continuous map f be
defined on A[Xn. The obstruction cochain cf to an extension of this map to A[XnC1
is contained in CnC1.X;AI�n.Y//, it is a cocycle, and its cohomology class Cf 2
HnC1.X;AI�n.Y// is called an obstruction. The theory of these relative obstructions
is absolutely parallel to its absolute prototype; in particular, it contains the notion of
difference cochains, and there are precise analogies (for both the statements and the
proofs) of all theorems and lemmas of the previous section. We will point out the
following important consequence of the relative theory in the absolute theory.

Let f ; gWX ! Y (or XnC1 ! Y) be two maps with f jXn�1D g jXn�1 [or
with a fixed homotopy connecting f jXn�1 and g jXn�1]. We consider the problem
of constructing a homotopy between f and g fixed (or coinciding with the given
homotopy) on Xn�1. This problem is equivalent to extending to X�I (or to XnC1�I)
the map which is given on .X � 0/[ .Xn�1 � I/ [ .X � 1/ by the formula

.x; t/ 7!
�

f .x/; if t D 0 or x 2 Xn�1;
g.x/; if t D 1.or x 2 Xn�1/

(this formula is for the case when f and g agree on Xn�1; if a homotopy between
f jXn�1 and g jXn�1 is given, the formula will be slightly different; we leave the details
to the reader). The obstruction to an extension of this map to .X�0/[.Xn�I/[.X�1/
lies in CnC1.X � I; .X � 0/ [ .X � 1/I�n.Y// D Cn.XI�n.Y//, and it is easy to see
that it is nothing but df ;g. By the way, ıdf ;g D cg � cf D 0, since f and g are both
defined on the whole X (or, at least, on XnC1). If we apply to this situation the relative
version of Theorem 2 of Sect. 18.1, we will get the following result.

Theorem. If f ; gWX ! Y are two continuous maps which agree on Xn�1, then the
difference cochain df ;g is a cocycle whose cohomology class Df ;g 2 Hn.XI�n.Y// is
equal to 0 if and only if f jXn and g jXn are Xn�2-homotopic.

18.3 The First Application: Cohomology and Maps
into K.�; n/s

The main result of this section was promised in Lecture 4. Let � be an Abelian
group.

Recall that the construction of a K.�; n/ space begins with taking a bouquet of
n-dimensional spheres set into a correspondence with some system of generators of
� (see Sect. 11.7); then we attach to this bouquet cells of dimensions > n. If we
assign to every n-dimensional cell of K.�; n/ the corresponding element of � , we
get a cochain c 2 Cn.K.�; n/I�/ [we admit here a certain abuse of notation, using
the symbol K.�; n/ for a CW complex obtained by some concrete construction].
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Lemma. c is a cocycle.

First Proof (Direct). The cells of dimension n C 1 correspond to the defining
relations between the chosen generators. If the cell 
 corresponds to the relationP

kigi D 0 between the generators gi, then for the n-dimensional cell ei corre-
sponding to the generator gi, the incidence number Œ
 W ei� is ki. Then

ıc.
/ D
X

i
Œ
 W ei�c.ei/ D

X
i
kigi D 0:

Second Proof (Indirect). Actually, c D dconst;id; thus, ıc D 0 by Lemma 2 of
Sect. 18.1.

The cohomology class F� 2 Hn.K.�; n/I�/ of the cocycle c is called the
fundamental cohomology class of K.�; n/. Another description of this class:
According to the universal coefficients formula,

Hn.K.�; n/I�/ D Hom.Hn.K.�; n//; �/;

and, by Hurewicz’s theorem, Hn.K.�; n// D �n.K.�; n// D � . The class F�
corresponds to the identity homomorphism

id� 2 Hom.Hn.K.�; n//; �/:

EXERCISE 2. Prove the equivalence of the two definitions of the fundamental
homology class.

Notice that the second definition of the fundamental class can be applied to an
arbitrary .n� 1/-connected space X. In this case, it yields a cohomology class FX 2
Hn.XI�n.X//. We will return to this class later.

Now we turn to the main result of this section.

Theorem. Let X be a CW complex. For any Abelian group � and for any n > 0,
the map

�.X;K.�; n//! Hn.XI�/; Œf �! f �.F�/; (	)

is a bijection.

Proof. First, let � 2 Hn.XI�/, and let c 2 Cn.XI�/ be a cocycle of the class � . We
want to construct a continuous map f WX ! K.�; n/ which takes the cocycle of class
F� (constructed above) into c. By Lemma 1 of Sect. 18.1, there exists a map f WXn !
K.�; n/ such that f .Xn�1/ is the (only) vertex of K.�; n/ and dconst;f D c. Then,
obviously, f #W Cn.K.�; n/I�/ ! Cn.XI�/ takes dconst;id into dconst;f D c (by the
naturality property of the difference cochains; see Sect. 18.1). Then we extend this
map f to XnC1;XnC2; : : : , and it is possible, since�nC1.K.�; n//; �nC2.K.�; n//; : : :
are all zeroes. We obtain a map f WX ! K.�; n/. By construction, f � takes F� into � .
Thus, the map (	) is onto.
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Now let f ; gWX ! K.�; n/ be two continuous maps with f �F� D g�F� . We want
to prove that f � g; we can assume that f and g are cellular maps (in particular, they
are constant on Xn�1). Then f �F� and g�F� are represented by f #dconst;id D dconst;f

and g#dconst;id D dconst;g. Hence, the cocycles dconst;f and dconst;g are cohomological,
so the difference dconst;g � dconst;f D df ;g is cohomological to 0, or Df ;g D 0.
According to the theorem in Sect. 18.2, this shows that f and g are Xn�2-homotopic
(the homotopy being fixed on Xn�2 is not important to us) on Xn. They are also
homotopic on further skeletons, since the further difference cochains belong to the
cochain groups with trivial coefficients. Thus, the map (	) is one-to-one.

Corollary 1. A CW complex of the type K.�; n/ is homotopically unique. Hence, a
topological space of the type K.�; n/ is weakly homotopically unique.

Proof. Let X;X0 be CW complexes of the type K.�; n/, and let F� 2
Hn.XI�/;F0

� 2 Hn.X0I�/ be the fundamental classes. According to the theorem,
there exist continuous maps f WX ! X0; gWX0 ! X such that f �.F0

�/ D F� and
g�.F�/ D F0

� . Since .g ı f /�.F�/ D f � ı g�.F�/ D F� D .idX/
� .F�/, we have

g ı f � idX and, similarly, f ı g � idX0 .

EXERCISE 3. Since K.�; n/ � �K.�; nC1/ is an H-space, the set �.X;K.�; n// is
a group (see Lecture 4), and the bijection Hn.XI�/ $ �.X;K.�; n// is a bijection
between two groups. Prove that it is a group isomorphism.

Actually, for every Abelian group � and every n, there exists an Abelian
topological group of the type K.�; n/. The reader may try to prove it by an
appropriate enhancing of the construction of the (second) loop space.

Corollary 2. For a CW complex X, there is a group isomorphism H1.XIZ/ Š
�.X; S1/ (where S1 is regarded as an Abelian topological group).

EXERCISE 4. Prove that every continuous map S1 � � � � � S1„ ƒ‚ …
n

! S1 � � � � � S1„ ƒ‚ …
m

is

homotopic to a linear map (that is, to a map obtained by a factorization from a
linear map R

n ! R
m determined by an integral matrix).

18.4 The Second Application: Hopf’s Theorems

Theorem 1 (Hopf). For every n-dimensional CW complex X, there is a bijection

Hn.XIZ/$ �.X; Sn/; Œf � 7! f �.s/;

where s D 1 2 Z D Hn.SnIZ/.

Proof. This classical theorem (proved, actually, before the appearance of not only
the obstruction theory, but also cohomology) is, from a modern point of view,
a corollary of the theorem in Sect. 18.3. Indeed, the construction of the space



18.4 The Second Application: Hopf’s Theorems 265



266 2 Homology

K.�; n/, as given in Sect. 11.7, begins with a bouquet of n-dimensional spheres
corresponding to generators of �; if � D Z, we can take one sphere. On the next
step, we attach .n C 1/-dimensional cells corresponding to relations between the
chosen generators; but in the case � D Z there are no relations, and no .n C 1/-
dimensional cells are needed. Then we attach cells of dimensions � n C 2. We
see that the .n C 1/st skeleton of (such constructed) K.Z; n/ is Sn. Hence, by the
cellular approximation theorem, if X is n-dimensional, every map X ! K.Z; n/ is
homotopic to a map X ! Sn � K.Z; n/ and every two maps X ! Sn � K.Z; n/
homotopic in K.Z; n/ are homotopic in Sn.

[There is a more direct proof which is a replica of the proof of the theorem in
Sect. 18.3. The main difference is that the higher obstruction and difference cochains
are equal to zero not because the higher homotopy groups of Sn are zeroes (which is
not true), but because X has no cells of higher dimensions.]

Theorem 2 (Hopf). Let an n-dimensional CW complex X contain as a CW sub-
complex a sphere Sn�1. This sphere is a retract of X if and only if the inclusion
homomorphism Hn�1.XIZ/! Hn�1.Sn�1IZ/ is an epimorphism.

Proof. The only if part is obvious: If rWX ! Sn�1 is a retraction, then the
composition

Hn�1.Sn�1IZ/ r�

��!Hn�1.XIZ/ j���!Hn�1.Sn�1IZ/;

where j is the inclusion map, is the identity, and hence j� is an epimorphism. Assume
now that j� is an epimorphism and fix a class ˛ 2 Hn�1.XIZ/ such that j�.˛/ D
1 2 Z D Hn�1.Sn�1IZ/. Let a 2 Cn�1.XIZ/ be a cocycle of the class ˛. Construct
a map qWX ! Sn�1 in the following way. All the cells of dimensions � n � 2
we map into a point. On every .n � 1/-dimensional cell e define the map as the
spheroid of the class a.e/. This requirement means precisely that the map q# takes
1 2 Z D Cn�1.Sn�1IZ/ into a. On the other side, it means that the cochain a is the
difference cochain between the already constructed part of the map q and the map
constWXn�1 ! Sn�1. Hence,

0 D ıa D ıdq;const D cq � cconst D cq;

so the map q can be extended to Xn D X. The composition

Sn�1 j��!X
q��! Sn�1

induces the identity map in cohomology: .q ı j/�.1/ D j�.q�.1// D j�.˛/ D 1, and
hence homotopic to id. We can extend the homotopy between this map and id to the
homotopy of the map q. As a result, we will get a map rWX ! Sn�1 which is the
identity on Sn�1, that is, a retraction.
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18.5 Obstructions to Extensions of Sections

Let � D .E;B; F; p/ be a locally trivial fibration. We assume that the fiber
F is homotopically simple (for example, simply connected), and the base B is
simply connected. (The last assumption can be weakened to the assumption of the
homotopical simplicity of the fibration. The latter means that for every continuous
map S1 ! B, the induced fibration over S1 is trivial. In the next lecture, we will
encounter important examples of this situation.)

Assume that the base B is a CW complex and that there given a section sWBn ! E
[which means that p ı s D id] over the nth skeleton of the base. We are going
to describe an obstruction to extending this section to BnC1. Let e be an .n C 1/-
dimensional cell over B. The fibration h�� over DnC1, induced by means of a
characteristic map hWDnC1 ! B for the cell e, is trivial. The section s induces a
section Sn ! DnC1 � F of the restriction of the last fibration to Sn � DnC1, and
hence an element of �n.DnC1 � F/ D �n.F/ (rather of the fiber p�1.x/ over some
point x 2 e, but the simply connectedness of the base, or the homotopical simplicity
of the fibration �, provides a canonical homomorphism between homotopy groups
of all fibers—the reader will reconstruct a detailed explanation of this). We get a
cochain cs 2 CnC1.BI�n.F//. This is the obstruction cochain to extending s to BnC1.
The properties of this obstruction cochain are the same as those of the obstruction
cochains considered in Sect. 18.1. Namely:

(1) The section s can be extended to a section over the .n C 1/st skeleton of B if
and only if cs D 0.

(2) ıcs D 0.
(3) The cohomology class Cs 2 HnC1.BI�n.F// of cs (which is called the

obstruction) is equal to 0 if and only if the section s can be extended to a section
over BnC1.

There are also difference cochains ds;s0 whose definition and properties are the
same as before.

Obstructions to extending maps may be regarded as particular cases of obstruc-
tions to extending sections. Namely, a continuous map f WX ! Y can be represented
by the graph FWX ! X�Y; F.x/ D .x; f .x//, which, in turn, is a section of the trivial
fibration .X�Y;X;Y; p/, where pWX�Y ! X is the projection of the product onto a
factor. Obstructions to extending a map are the same as obstructions to extending its
graph. On the other hand, the theory of obstructions to sections cannot be reduced to
the theory of obstructions to maps. In particular, the latter does not have any analogy
of the next construction.

Suppose that �0.F/ D �1.F/ D � � � D �n�1.F/ D 0, and �n.F/ ¤ 0.
Then there are no obstructions to extending a section from B0 (where it obviously
exists) to B1; : : : ;Bn�1 and the first obstruction emerges in HnC1.BI�n.F//: It is the
obstruction to extending the section from Bn�1 to Bn. This obstruction could depend,
however, on the sections on the previous skeletons; however, the next proposition
states that it is not the case.
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Proposition 1. Let �0.F/ D �1.F/ D � � � D �n�1.F/ D 0, and let s; s0WBn ! E be
two sections. Then Cs D Cs0 2 HnC1.BI�n.F//.

To prove this, we need a slightly modified version of the homotopy extension
property (Borsuk’s theorem; see Sect. 5.5).

Lemma (Borsuk’s Theorem for Sections). Let � D .E;B;F; p/ be a locally trivial
fibration with a CW base, let SWB ! E be a section of �, let A be a CW subspace
of B, and let stWA ! E be a homotopy consisting of sections of � jA such that
s0 D S jA. Then there exists a homotopy StWB ! E consisting of sections of � and
such that S0 D S; St jAD st.

Proof of Lemma. This lemma is not different from Borsuk’s theorem in the case
when the fibration is (standard) trivial: E D B�F; p is the projection of the product
onto a factor. Indeed, in this case, a section is the same as a continuous map B! F.
Passing to the general case, we can restrict ourselves to the situation when A and
B differ by one cell: B D A [ e, where e is a cell of B. Take a characteristic map
hWDn ! B (where n D dim e). Then the sections S; st of � and � jA give rise to
sections S0; s0

t of the fibrations h��; h�� jSn�1 [such that s0
0 D S0 jSn�1]. Since the

fibration h�� is trivial (Feldbau’s theorem, Sect. 9.2), the lemma has already been
proved for this fibration, which provides a homotopy S0

t consisting of sections of this
fibration such that S0

0 D S0 and S0
t jSn�1D s0

t. The homotopies st and S0
t together form

a homotopy StWB! E with the required properties.

Proof of Proposition 1. It is clear that a homotopy of a section sWBk ! E will not
affect either cs or Cs. Suppose that the given sections s; s0 are homotopic over Bk for
some k; 0 � k < n � 1 (since the fiber F is connected, this is obviously true for
k D 0). A homotopy of s0 to s on Bk can be extended, by the lemma, to a homotopy of
s0 on Bn, without any changes for cs0 and Cs0 so we can assume that s0 D s on Bk. The
difference cochain ds;s0 2 CkC1.BI�kC1.F// is zero, because �kC1.F/ D 0; thus,
s0 � s on BkC1. In this way, we can reduce the general case of the proposition to the
case when s0 D s on Bn�1. Then we have a difference cochain ds;s0 2 Cn.B; �n.X//,
and ıds;s0 D cs0 � cs. Thus, the cocycles cs and cs0 are cohomological and hence
Cs D Cs0 .

Proposition 1 shows that the first obstruction to extending a section to the nth
skeleton of the base is determined by the fibration, so we obtain a well-defined class
C.�/ 2 HnC1.BI�n.F// (recall that n is the number of the first nontrivial homotopy
group of F); this class is called the characteristic class of �; we will also use the term
primary characteristic class to distinguish it from numerous characteristic classes of
vector bundles, which will be studied in Lecture 19.

One can say that a fibration as above has a section over the nth skeleton of the
base if and only if its characteristic class is zero.

EXERCISE 5 (The main property of characteristic classes). Let � be a fibration as
above, and let f WB0 ! B be a continuous map of some CW complex into B. Then

C.f ��/ D f �.C.�//:
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EXERCISE 6. Prove that a characteristic class is homotopy invariant (we leave to
the reader not only the proof, but also a precise statement of this fact). In particular,
the characteristic class does not depend on the CW structure of the base.

EXERCISE 7. Using previous exercises, make up a definition of a characteristic
class in the case when the base is not a CW complex.

Example. (Since this example concerns smooth manifolds, the definitions and
statements will not be genuinely rigorous.) Let X be a connected closed oriented
n-dimensional manifold and let T be the manifold of all nonzero tangent vectors
of M. The projection pWT ! X (which assigns to a tangent vector the tangency
point) gives rise to a locally trivial fibration 	X D .T;X;Rn�0; p/. Since the fiber is
homotopy equivalent to Sn�1, there arises a characteristic class C.	X/ 2 Hn.XIZ/.
(It is easy to understand that the fibration 	X is simple if and only if the manifold X
is orientable.)

Proposition 2. hC.	X/; ŒX�i D �.X/.
Proof. A section of the fibration 	X is the same as a nowhere vanishing vector field
on X. It is easy to understand that a generic vector field on X has only isolated
zeroes. Take a local coordinate system with the origin at the isolated zero x0 of a
vector field �, take a small sphere S � Sn�1 centered at x0, and consider the map
S D Sn�1 ! Sn�1 which takes x 2 S into �.x/=k�.x/k. Denote by d�.x0/ the degree
of this map. We can assume (although it is actually not necessary) that all the zeroes
of � are nondegenerate, that is, d.x0/ D ˙1. Now consider a smooth triangulation
of X such that all zeroes of � lie inside n-dimensional simplices, at most one in every
simplex. Then � is a section of the fibration 	X over the .n � 1/st skeleton of X, and
the obstruction c� to extending this section to an n-dimensional simplex s is zero if
s does not contain zeroes of � and is d.x0/ if s contains a zero x0 of �. Since the
fundamental cycle of ŒX� is the sum of all (oriented) n-dimensional simplices of the
triangulation, hc� ; ŒX�i DPx02fzeroes of �g d.x0/. The left-hand side of this equality is
hC.	X/; ŒX�i, the right-hand side, as explained in Sect. 17.6 (see Theorem 3 and the
discussion after it), is �.X/. This completes the proof of Proposition 2.

Corollary. A connected closed orientable manifold possesses a nowhere vanishing
vector field if and only if �.X/ D 0.

The only if part of this statement has been proved before: See Theorem 2 in
Sect. 17.6. The if part was promised there. The orientability condition is not needed;
it also was explained in Sect. 17.6.

In conclusion, a couple of additional exercises.

EXERCISE 8. Make up a theory of obstructions to extending sections in the context
of Serre fibrations (see Sect. 9.4).

EXERCISE 9. Let X be a CW complex with �0.X/ D �1.X/ D � � � D �n�1.X/ D
0; �n.X/ ¤ 0. Prove that the characteristic class of the Serre fibration EX ! X
with the fiber �X which belongs to Hn.XI�nC1.�X// D Hn.XI�n.X// is just the
fundamental class of X.
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Lecture 19 Vector Bundles and Their Characteristic Classes

19.1 Vector Bundles and Operations over Them

A: Definitions

We consider three types of vector bundles: real, oriented, and complex. A real n-
dimensional vector bundle with the base B is a locally trivial fibration with the base
B and the fiber homeomorphic to R

n with an additional structure: Each fiber is
furnished by a structure of an n-dimensional vector space, in such a way that the
vector space operations .�; x/ 7! �x and .x; y/ 7! xC y depend continuously on the
fiber, in the sense that the arising maps R � E ! E and f.x; y/ 2 E � E j p.x/ D
p.y/g ! E (where E is the total space and p is the projection of the fibration) are
continuous. Complex vector bundles are defined precisely in the same way, only
the field R is replaced by the field C; oriented vector bundles are real vector bundles
whose fibers are furnished with orientation depending continuously on the fiber. The
last property can be formalized in the following way. For simplicity’s sake, assume
that B is connected. Let eE be the set of all bases in all fibers of the fibration; there is
a natural topology in eE. The fibration is orientable if and only if eE has two (not one)
components; a choice of one of these components is an orientation of the fibration.

For vector bundles of all three kinds there are natural definitions of equivalences,
restrictions (over subspaces of the base) and induced bundles (by a continuous map
of some space into the base). A trivial bundle is a bundle equivalent (in its class)
to the projection bundle B � R

n ! B or B � C
n ! B furnished by the obvious

structure.

Important Example. The Hopf or tautological vector bundle over RPn is the one-
dimensional vector bundle whose total space is the set of pairs .`; x/, where ` 2 RPn

is a line in R
nC1 and x 2 ` is a point on this line [topology in this set is

defined by the inclusion into RPn � R
nC1]. Precisely in the same way, the Hopf,

or tautological, one-dimensional complex vector bundle over CPn is defined. An
obvious generalization of this construction provides tautological vector bundles over
the Grassmannians G.m; n/;GC.m; n/, and CG.m; n/, which are n-dimensional,
respectively, real, oriented, and complex vector bundles.

B: Realification and Complexification

One can make a complex vector bundle real by removing a part of its structure,
namely the multiplication by nonreal scalars. If � is an n-dimensional complex vec-
tor bundle, then the realification provides a 2n-dimensional real vector bundle which
is denoted as R�. The bundle R� possesses a canonical orientation: If x1; : : : ; xn is
a complex basis in a fiber of �, then x1; ix1; : : : ; xn; ixn is a real basis in the same
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space, and the orientation of this basis does not depend on the choice of the complex
basis x1; : : : ; xn [this follows from the fact that the image of the natural embedding
cWGL.n;C/ ! GL.2n;R/ consists of matrices with positive determinant; the last
statement follows from the fact that GL.n;C/ is connected, or, more convincingly,
from the formula det.cA/ D j det Aj2; compare with the “important remark” in the
example after Theorem 1 in Sect. 17.5]. The definition of the complexification C�

of a real vector bundle .E;B;Rn; p/ is a bit more complicated. In the product C�E,
make an identification .rx; �/ D .x; r�/ for every x 2 E; r 2 R; � 2 C. The resulting
space CE is the space of our fibration; the projection CE ! B is defined by the
formula .x; �/ D p.x/, and the vector operations act as .x; �/C .x; �0/ D .x; �C�0/
and 
.x; �/ D .x; 
�/ (it is obvious that these formulas are compatible with the
preceding factorization). It is clear also that C� is an n-dimensional complex vector
bundle.

There is one more operation related to the two previous ones. Let � be a complex
vector bundle. Denote by � a complex vector bundle (of the same dimension as �)
which differs from � only by the operation of multiplication by scalars: �x with
respect to the structure of � is the same as �x in �.

EXERCISE 1. Let � be a complex vector bundle. Prove that the following two
statements are equivalent:

(i) The vector bundles � and � are equivalent to each other.
(ii) There exists a real vector bundle � such that � is equivalent to C�.

C: Direct Sums and Tensor Products

If �1; �2 are two vector bundles of the same type (real, complex, oriented) and with
the same base, then the (direct or Whitney) sum �1˚�2 and the tensor product �1˝�2
are defined as vector bundles with the same base whose fibers are, respectively,
direct sums or tensor products of the fibers of the bundles �1 and �2. Here is
a more formal definition of the sum (here and below, K denotes R or C). Let
�1 D .E1;B1;Kn1 ; p1/; �2 D .E2;B2;Kn2 ; p2/ be two vector bundles (the bases may
not be the same). Put �1 � �2 D .E1 � E2;B1 � B2;Kn1Cn2 ; p1 � p2/; this is a vector
bundle over B1 � B2 of dimension n1 C n2. If B1 D B2 D B, then we define �1 ˚ �2
as the restriction of �1 � �2 to the diagonal B � B � B. Another formal definition:
Let B1 D B2 D B and let p�

2 �1 D .eE;E2;Kn1 ;ep/ be the bundle over E2 induced by
�1. Then �1 ˚ �2 D .eE;B;Kn1Cn2 ; p2 ıep/.

There exists a different approach to the definition of ˚ and ˝ (see Sect. 19.4).
At the moment, we speak of tensor products of vector bundles not specifying any
formal definition; we hope that the reader will be able to create this definition
without our help (Exercise 5).
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EXERCISE 2. Prove the equivalence of the two definitions of �1 ˚ �2. (This will
show, in particular, that the second definition is actually symmetric with respect to
�1 and �2.)

EXERCISE 3. Introduce an orientation into the sum of two oriented bundles.

EXERCISE 4. Make up a formal definition of a tensor product of two (real or
complex) vector bundles.

EXERCISE 5. For real or complex vector bundles �1; �2 with the same base, make
up a definition of a vector bundle Hom.�1; �2/.

Two vector bundles of the same type, but, possibly, of different dimensions,
are called stably equivalent if they become equivalent after adding trivial bundles.
To make up a more formal definition, notice that a standard trivial n-dimensional
bundle B �K

n ! B is usually denoted simply as n. With this notation,

� �stab �, 9m; nW � ˚ n � �˚ m:

In conclusion, let us point out a connection of the sum construction with previous
constructions.

EXERCISE 6. Make up a canonical real vector bundle equivalence RC� � � ˚ �
(where � is a real vector bundle).

EXERCISE 7. Make up a canonical complex vector bundle equivalenceCR� � �˚
� (where � is a complex vector bundle).

D: Linear Maps Between Vector Bundles, Subbundles,
and Quotient Bundles

A linear map of a vector bundle �1 D .E1;B1;Kn1 ; p1/ into a vector bundle �2 D
.E2;B2;Kn2 ; p2/ (as before,K denotes R or C) is a pair of continuous maps FWE1 !
E2; f WB1 ! B2 such that f ı p1 D p2 ı F and for every x 2 B, the appropriate
restriction of F is a linear map p�1

1 .x/ ! p�1
2 .f .x//. The subbundle of a vector

bundle � D .E;B;Kn; p/ is a vector bundle � 0 D
�

E0;B;Kn0

; pjE0

�
with E0 � E

whose fibers are subspaces of the fibers of �. The inclusion map E0 ! E and the
identity map B ! B compose a linear map (inclusion) � 0 ! �. If � 0 is a subbundle
of �, then a fiberwise factorization creates a quotient bundle �=� 0. More formally,
the total space of �=� 0 is obtained from E by a factorization over the equivalence
relation: x1 � x2 if p.x1/ D p.x2/ and x2 � x1 2 E0. There is an obvious linear map
(projection) � ! �=� 0.

Let us mention two important subbundles: Sk� � � ˝ � � � ˝ �„ ƒ‚ …
k

and ƒk� �

� ˝ � � � ˝ �„ ƒ‚ …
k

.



19.1 Vector Bundles and Operations over Them 273

E: Coordinate Presentation of a Vector Bundle

Let � be an n-dimensional vector bundle (of one of our three types). Fix an open
covering fUig of the base B such that the restrictions �jUi are all trivial vector
bundles; let 'iW p�1.Ui/ ! K

n be a trivialization, that is, a map which is a vector
space isomorphism on every p�1.x/; x 2 Ui. For every y 2 Ui \ Uj, there arises a
composition

K
n

'�1
j��! p�1.y/

'i��!K
nI

the function which assigns this composition to y is a continuous map 'ijWUi \Uj !
G where G D GL.n;K/ [GLC.n;R/ in the case of an oriented bundle]. Moreover, (i)
'ii.y/ D I for y 2 Ui, (ii) 'ji.y/ D

�
'ij.y/

��1
for y 2 Ui\Uj, and (iii) 'ik.y/'kj.y/ D

'ij.y/ for y D Ui\Uj\Uk. It is easy to understand that a set of maps 'ijWUi\Uj ! G
with properties (i)–(iii) gives rise to a vector bundle. This presentation of a vector
bundle is called the coordinate presentation.

An obvious generalization of the so presented vector bundles consists in specify-
ing a topological group G and a G-space F. Suppose that there are an open covering
fUig of a space B and a set of continuous functions 'ijWUi\Uj ! G with properties
(i)–(iii) just listed. In the disjoint union

`
i.Ui�F/, make, for every i; j; y 2 Ui\Uj,

an identification
	
.y; f / 2 Uj � F


 � 	
.y; 'ij.y/f / 2 Ui � F



; the space arising we

take for E. The projections Ui � F ! Ui � B form a projection pWE ! F, and
there arises a locally trivial fibration .E;B;F; p/ with a certain additional structure
similar to a structure of a vector bundle. Such fibrations are called fiber bundles (or
Steenrod fibrations); according to this terminology, G is the structure group, and F
is the standard fiber. The reader can find details in the classical book by Steenrod
[80], or in a variety of more modern books, for example, Husemoller [49]; here we
only mention some examples.

There are many obvious examples. Take a coordinate presentation of a real,
complex, or oriented vector bundle and assume that the functions 'ij take values
not in the group GL.n;R/;GL.n;C/ or GLC.nIR/, but in some subgroup of one of
these groups, say, in O.n/; SO.n/, or U.n/. It is clear that the fiber bundles arising
have an adequate description as real, complex, or oriented vector bundles with
an additional structure, for the examples above, with an Euclidean or Hermitian
structure, in every fiber. If the subgroup is the group of block diagonal matrices,
GL.p;K/ � GL.q;K/ � GL.nIK/; n D p C q, then the fiber bundle arising is
the usual n-dimensional vector bundle presented as the sum of two vector bundles,
of dimensions p and q. In a similar way, we can present vector bundles with a
fixed nonvanishing section, or with a fixed subbundle, and so on. An example of
a different nature: Take an arbitrary G and put F D G with the left translation
action; the fibrations arising are called principal. Some other examples will appear
in the next sections.
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19.2 Tangent and Normal Bundles

The notion of a tangent vector to a smooth manifold is very important, and for this
reason it has many equivalent definitions. The most natural definition is based on
local coordinates. Let x be a point of an n-dimensional manifold X, and let 'WU !
R

n be a chart such that x 2 U; then a tangent vector to X at x is defined as a
vector v of the space R

n at the point '.x/. If there is another chart,  WV ! R
n,

also covering x, then the tangent vector corresponding to the chart ' and the vector
v is identified with the tangent vector corresponding to the chart  and the vector
w D d'; .v/, where d'; is the differential of the map '.U\V/!  .U\V/; y 7!
 .'�1.y//. Another possibility, which does not require a fixation of a chart, is to
define a tangent vector at x as a class of parametrized smooth curves � W .�"; "/! X
such that �.0/ D x, where the curves �; � 0 are equivalent if dist.�.t/; � 0.t// D
o.t/ (the distance is calculated with respect to any local coordinate system). An
algebraically more convenient approach consists in defining a tangent vector of X at
x as a linear map vW C1.X/ ! R (C1.X/ is the space of real C1-functions) such
that v.fg/ D v.f /g.x/C f .x/v.g/ (in other words, tangent vectors are identified with
directional derivatives). Finally, if X is presented as a smooth surface in an Euclidean
space, then a tangent vector to X is simply a tangent vector to this surface. To make
this definition compatible with previous definitions, we can say that a tangent vector
at some point to the Euclidean space regarded as a smooth manifold is simply a
vector of this space at this point, and tangent vectors to a submanifold are tangent
vectors to the manifold tangent to the submanifold.

The set of tangent vectors to an n-dimensional manifold X at a point x is an
n-dimensional vector space which is denoted as TxX. The union of all spaces TxX
possesses a natural topology and, moreover, a structure of a 2n-dimensional smooth
manifold; this manifold is denoted as TX. The natural projection TX ! X makes
TX a total space of a vector bundle over X; this vector bundle is called the tangent
bundle of X and is denoted as 	.X/. A section of a tangent bundle is a vector field
on the manifold. A manifold whose tangent bundle is trivial is called parallelizable;
a manifold is parallelizable if it is possible to choose bases in all tangent spaces
depending continuously of a point or, equivalently, if there exist n D dim X vector
fields on X which are linearly independent at every point. For example, the circle
is parallelizable, the torus is parallelizable, while the two-dimensional sphere is not
parallelizable. The three-dimensional sphere is parallelizable: If it is presented as the
space of unit quaternions, then the basis at the space TxS3 is formed by quaternions
ix; jx; kx where i; j; k are quaternion units. If you replace quaternions by octonions,
you will prove that the sphere S7 is parallelizable. There is a remarkable fact that
no spheres besides S1; S3; S7 are parallelizable: This is one of the versions of the
Frobenius conjecture proven by Adams (two different proofs, both belonging to
Adams, will be presented in Chaps. V and VI later). Notice that the problem of
parallelization of spheres is equivalent to the problem of existence of spheroids with
the invariant Hopf equal to one (see Remark 5 in Sect. 16.5).
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EXERCISE 8. Prove that the orientability of a manifold X (in the sense of Sect. 17.1)
is equivalent to the orientability of the tangent bundle 	.X/.

If Y is a submanifold of a manifold X, then there arise two vector bundles with
the base Y: 	.Y/ and 	.X/jY , and 	.Y/ � 	.X/jY (a tangent vector to a submanifold
is also a tangent vector to the manifold). The quotient bundle 	.X/jY=	.Y/ is called
the normal bundle of Y in X and is denoted as �X.Y/ or �.Y/. The word “normal” is
an indication of the fact that if X is a submanifold of an Euclidean space, then the
total space of �.Y/ may be regarded as consisting of vectors at points of Y which
are tangent to X and normal to Y.

Mark an isomorphism 	.Y/ ˚ �.Y/ D 	.X/jY . In particular, if X D R
n, then

	.Y/˚ �.Y/ D n.
Notice that the construction of normal bundles with all properties listed can

be applied not only to submanifolds, that is, to embeddings of a manifold Y to a
manifold X, but also to immersions �WY ! X; the only significant change is that the
restriction bundle 	.X/jY should be replaced by the induced bundle ��	.X/.

EXERCISE 9. Deduce from the last equality that normal bundles of a manifold
corresponding to different embeddings or immersions of this manifold to Euclidean
spaces (possibly, of different dimensions) are stably equivalent.

EXERCISE 10. Prove that the normal bundle to an n-dimensional oriented surface
embedded (or immersed) into the .n C 1/-dimensional Euclidean space is trivial.
Deduce from this that the tangent bundle to such a surface (for example, to
an arbitrary sphere with handles) is stably trivial (that is, stably equivalent to a
trivial bundle). A manifold whose tangent bundle is stably trivial is called stably
parallelizable. Obviously, a manifold is stably parallelizable if and only if its normal
bundle is stably trivial.

FYI (this is not an exercise). A closed connected manifold is stably parallelizable if
and only if it is parallelizable in the complement to a point. A noncompact connected
manifold if stably parallelizable if and only if it is parallelizable. A manifold is
stably parallelizable if and only if it is orientable and admits an immersion in the
Euclidean space of the dimension bigger by 1.

EXERCISE 11. Let � be the Hopf bundle over RPn. Prove that

	.RPn/˚ 1 � � ˚ � � � ˚ �„ ƒ‚ …
nC1

D .nC 1/�:

Prove a similar statement for CPn [notice that the bundle 	.CPn/ possesses a natural
structure of a complex vector bundle].
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19.3 Associated Fibrations and Characteristic Classes

A: An Introduction

Choose one of the three types of vector bundles, and choose integers n and q and
an Abelian group G. A characteristic class c of n-dimensional vector bundles on the
chosen type with values in q-dimensional cohomology with the coefficients in G is
a function which assigns to every n-dimensional vector bundle � of the chosen type
with a CW base B a cohomology class c.�/ 2 Hq.BIG/ such that if f WB0 ! B is a
continuous map of another CW complex into B, then c.f ��/ D f �c.�/. Here f � on
the left-hand side of the formula means the inducing operation for vector bundles,
and on the right-hand side it means the induced cohomology homomorphism.

The term “characteristic class” is not new for us: In Sect. 18.5, we called the first
obstruction to extending a section of a locally trivial fibration a characteristic class
(or a primary characteristic class) of this fibration, and the equality c.f ��/ D f �c.�/
held for that characteristic classes. However, that construction cannot be applied to
vector bundles directly, because their fiber is contractible. (Recall that the coefficient
domain for the characteristic classes of Sect. 18.5 is the first nontrivial homotopy
group of the fiber.) What we still can do is to apply the construction to some fibration
which can be constructed from the given vector bundle. An ample variety of such
fibrations is delivered by the construction of an associated fibration.

B: A Construction of Associated Fibrations

This construction was actually described in Sect. 19.1.E. We take a coordinate
presentation ffUig; f'ijWUi \ Uj ! Ggg of a vector bundle with the base B [where
G D GL.n;R/;GLC.nIR/ or GL.n;C/] and choose an arbitrary space F with an
action of the group G. After this, we construct the total space E of a new fibration as

`
i.Ui � F/ j Œ.y; f / 2 Uj � F� � Œ.y; 'ij.y/f / 2 Ui � F�

for all y 2 Ui \ Uj; f 2 F:

The fibration .E;B;F; p/ [where pWE ! B is the projection .y; f / 7! y] is
the associated (by the given vector bundle) fibration with the standard fiber F.
However, usually we will not need this general construction: Almost always, we
will restrict ourselves to one particular case of it, which is described ahead. Let
� D .E;B;Rn; p/, or .E;B;Cn; p/, be a given vector bundle, and let 1 � k � n. Put

Ek D f.x1; : : : ; xk/ 2 E � � � � � E j p.x1/ D � � � D p.xk/I
x1; : : : ; xk are linearly independentg:
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There is an obvious projection pkWEk ! B, and there arises a locally trivial fibration
�k D .Ek;B;Rk; pk/ where Rk is the space of all linearly independent k-frames in R

n

or Cn. (This is the fibration associated with � with the standard fiber Rk.) The case
k D 1 is especially simple: E1 is E � B, where B is embedded into E as the zero
section, and R1 is Rn � 0 or Cn � 0.

Point out a small defect of this construction (rather more aesthetic than mathe-
matical). The fibers are noncompact spaces which would have better been replaced
by homotopy equivalent classical manifolds: Stiefel manifolds and spheres. This
can be done with the help of the following simple lemma.

Lemma. If a vector bundle has a CW base, then it is possible to introduce in all
fibers an Euclidean or Hermitian structure which depends continuously on the point
of the base; moreover, this can be done in a homotopically unique way.

Proof. The set of all Euclidean (Hermitian) structures in fibers of a vector bundle
is a total space of a fibration whose fiber is the space of all Euclidean (Hermitian)
structures in a given vector space (this is also a fibration associated with the vector
bundle). Obviously, the fiber of this fibration is contractible (it is a convex subset
of the space of all symmetric bilinear (Hermitian) forms in this vector space.
This fibration has a section (all the obstructions are zeroes) and this section is
homotopically unique (all difference cochains are zeroes). This is precisely the
statement of the lemma.

Using these Euclidean or Hermitian structures in the fibers, we can replace the
fibration �k into the fibration �0k whose total space is the space of all orthonormal
(unitary) frames in the fibers of �. The fiber of �0k is the Stiefel manifold V.n; k/ or
CV.n; k/; in particular, �01 is the fibration whose fiber is the sphere Sn�1 (S2n�1 in
the complex case); this fibration is called spherical.

C: Classical Characteristic Classes of Vector Bundles

Let � be an n-dimensional oriented (real) vector bundle with the CW base B.
Consider the corresponding spherical fibration �01 . It is easy to see that the ori-
entability of the bundle � implies the orientability of the fibration �01 ; that is, the
fibration �01 is homologically simple. (The reader may prove that a Steenrod bundle
whose structure group is connected is always simple.) Thus, there arises the first
obstruction to extending a section of �01 , and this first obstruction is an element of
Hn.BIZ/. Regarded as a characteristic class of the bundle �, this element is called
the Euler class of �; the notation: e.�/.

Pass to the fibrations �0k .

Lemma. Let 1 � k < n. Then

(i) �i.V.n; k// D 0 for i < n � k:
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(ii) �n�k.V.n; k// Š
�
Z; if k D 1 or n � k is evenI
Z2 in all other cases:

Proof. The case k D 1 is trivial: �i.V.n; 1// D �i.Sn�1/ is zero for i < n� 1 and Z

for i D n � 1. Let k � 2, and consider the fibration

V.n; k/
V.n�1;k�1/�����! Sn�1

[the projection assigns to fv1; : : : ; vkg 2 V.n; k/ the last vector vk]. Consider the
fragment

�iC1.Sn�1/! �i.V.n � 1; k � 1//! �i.V.n; k//! �i.S
n�1/

of the homotopy sequence of this fibration. If i < n� 2, then the first and last terms
are zeroes, and we get an isomorphism �i.V.n � 1; k � 1// Š �i.V.n; k//. Thus, if
i < n � k and k > 1, then

�i.V.n; k// Š �i.V.n � 1; k � 1// Š � � � Š �i.V.n � kC 1; 1// D �i.S
n�k/ D 0:

For i D n � k, this chain of isomorphisms becomes shorter:

�n�k.V.n; k// Š �n�k.V.n � 1; k � 1// Š � � � Š �n�k.V.n � kC 2; 2//;

and the general case of the lemma is reduced to the case of V.n; 2/. We need to
prove that �n�2.V.n; 2// D Z for n even and Z2 for n odd. For k D 2 and i D n� 2,
our homotopy sequence becomes

�n�1.Sn�1/! �n�2.Sn�2/! �n�2.V.n; 2//
@���! �n�2.Sn�1/

k k k
Z Z 0:

Thus, �n�2.V.n; 2// D CokerŒ@�W�n�1.Sn�1/ ! �n�2.Sn�2/�. The space V.n; 2/
is the space T1Sn�1 of unit tangent vectors to the sphere Sn�1, the fibration

V.n; 2/
Sn�2

��! Sn�1 is the natural fibration of the space of unit tangent vectors. The
construction of the homomorphism @� is the following. We take a homotopy of an
.n � 2/-dimensional spheroid of Sn�1 sweeping an .n � 1/-dimensional spheroid,
lift this homotopy to T1Sn�1, and obtain a spheroid of the fiber. If we apply this
construction to the identity spheroid Sn�1 ! Sn�1, the lifting provides a vector field
on Sn�1, and the resulting element of �n�2.Sn�2/ is the value of the obstruction to
extending a vector field on Sn�1. As proved in Sect. 18.5 (see Proposition 2), this
value is the Euler characteristic of Sn�1, that is, 2 for n odd and 0 for n even. Thus,
the homomorphism @�W�n�1.Sn�1/ ! �n�2.Sn�2/ is trivial if n is even and is a
multiplication by 2 if n is odd. This completes the proof of the lemma.
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The lemma shows that the first obstruction to extending a section of fibration �0k
(or �k) takes value in Hn�kC1.BIZ or Z2/. Reduced modulo 2, this obstruction is
a characteristic class of � with the values in Hj.BIZ2/; j D n � k C 1. This class
is called the jth Stiefel–Whitney class of � and is denoted as wj.�/. We also put
wi.�/ D 0 for i > dim � and w0.�/ D 1 2 H0.BIZ2/.

Notice that the orientability of the vector bundle � which was needed for the
simplicity of the fibration �k becomes unnecessary after reducing modulo 2; thus,
the Stiefel–Whitney classes are defined for arbitrary real vector bundles.

For an n-dimensional oriented vector bundle �, wn.�/ D �2e.�/, where �2 is the
reduction modulo 2.

The complex version of the previous construction is a simplified version of it.

Lemma. Let 1 � k < n. Then

�i.CV.n; k// Š
�
0 for i < 2.n� k/C 1;
Z for i D 2.n� k/C 1:

Proof This repeats the first, easier, part of the proof of the previous lemma and is
based on the equality CV.n; 1/ D S2n�1 and the homotopy sequence

�iC1.S2n�1/! �i.CV.n; k//! �i.CV.n � 1; k � 1/! �i.S
2n�1/

of the fibration CV.n; k/
CV.n�1;k�1/�����! S2n�1.

Let � be an n-dimensional complex vector bundle with a CW base B. The lemma
shows that the first obstruction to extending a section in the fibration �0k (or �k) is a
class cj.�/ 2 H2j.BIZ/ where j D n�kC1. We get a characteristic class of complex
vector bundles which is called the jth Chern class. Precisely as in the real case, we
put ci.�/ D 0 for i > dimC � and c0.�/ D 1.

Finally, if � is again an n-dimensional vector bundle, then we put pj.�/ D
.�1/jc2j.C�/ 2 H4j.BIZ/ and call the classes pj.�/ Pontryagin classes of the
bundle �. [The sign .�1/j has a historic origin. The reason why we restrict ourselves
to even-numbered Chern classes is that the odd-numbered Chern classes of a
complexification of a real vector bundle have order at most 2; see Exercise 15 in
Sect. 19.5 later.] It is possible to define Pontryagin classes directly: We can associate
with an n-dimensional vector bundle a fibration whose standard bundle is the space
of all systems of n�2jC2 vectors of rank> n�2j; the first obstruction to extending
sections in this fibration is pj.�/ (the reader can try to prove this although it is not
awfully interesting).

EXERCISE 12. Prove that w1.�/ D 0 if and only if the bundle � is orientable.

EXERCISE 13. Prove that if � is an n-dimensional complex vector bundle, then

e.R�/ D cn.�/; w2j.R�/ D �2cj.�/; w2jC1.R�/ D 0:
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D: Geometric Construction of Euler, Stiefel–Whitney,
and Chern Classes

Let � be an n-dimensional oriented vector bundle with a CW base B. Then there
exists a nowhere vanishing section of � over the .n � 1/st skeleton Bn�1 of B. We
can extend this section to Bn, but it may have zeroes over n-dimensional cells. If
we assume these zeroes to be transverse intersections with the zero section, then
we can count the “algebraic number” of these zeroes (that is, we assign a C or �
sign to every zero), and a function which assigns this number to every cell is an
n-dimensional integral cellular cocycle. Its cohomology class is the Euler class e.�/
(this is the construction of the first obstruction).

If � is not assumed oriented, then the previous construction gives a cohomology
class modulo 2, and this is wn.�/. We can construct in this way the other Stiefel–
Whitney classes. Namely, let us assume that � has an Euclidean structure (in the
fibers), and consider again a nowhere vanishing section of � over Bn�1. Let us try
to construct a second nowhere vanishing section of � orthogonal to the first section.
This can be done over Bn�2, but if we want to extend the second section to Bn�1, we
have to admit that it will have zeroes over .n�1/-dimensional cells. Assuming these
zeroes transverse, we can count their number modulo 2 in every .n�1/-dimensional
cell, and in this way we get an .n�1/-dimensional cellular cocycle with coefficients
in Z2, and the cohomology class of this cocycle is wn�1.�/. Then we construct a third
section orthogonal to the first two, it can be made nowhere vanishing over Bn�3, but
to extend this third section to Bn�2, we have to admit transverse zeroes over .n�2/-
dimensional cells, and in this way we obtain a cocycle representing wn�2.�/. And
so on.

The Chern classes of complex vector bundles may be constructed in a similar
way; we leave the details to the reader.

19.4 Characteristic Classes and Classifying Spaces

A: The Classification Theorem

In Sect. 19.1.A, we mentioned tautological bundles over Grassmannians. They will
be of primary importance now.

The theory here has three absolutely parallel versions for the three types of vector
bundles. We will consider in detail the real case; the transition to the two other cases
does not require any efforts: One should just replace the Grassmannians G.1; n/ by
GC.1; n/ and CG.1; n/.

Recall that the total space of the tautological bundle (which we denote as � or �n)
over the Grassmannian G.1; n/ is the space of pairs .�; x/where� 2 G.1; n/ is an
n-dimensional subspace of RN and x 2 � � R

1; the projection acts as .�; x/ 7! � .
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Theorem. Let X be a finite CW complex. Then

(i) For every n-dimensional vector bundle � over X, there exists a continuous map
f WX ! G.1; n/ such that f �� D �.

(ii) This map f is unique up to a homotopy; that is, if f �
1 � � f �

2 �, then f1 � f2 (the
second� means a homotopy).

(iii) Conversely, if f1 � f2, then f �
1 � � f �

2 �.

Corollary. The correspondence f 7! f �� establishes a bijection between the
set �.X;G.1; n// of homotopy classes of continuous maps X ! G.1; n/ and
equivalence classes of n-dimensional vector bundles with the base X.

Proof of Theorem. First, notice that since X is compact and G.1; n/ D��!
lim G.N; n/, a continuous map X ! G.1; n/ is the same as a continuous map
X ! G.N; n/ (with sufficiently large N) composed with the inclusion map
G.N; n/ ! G.1; n/. Same for homotopies: Maps X ! G.N1; n/ ! G.1; n/ and
X ! G.N2; n/ ! G.1; n/ are homotopic if and only if maps X ! G.N1; n/ !
G.M; n/ and X ! G.N2; n/! G.M; n/ are homotopic for sufficiently large M.

Second, notice that statements (i) and (ii) are covered by the following relative
version of statement (i):

(i0) Let X be a finite CW complex, and � be an n-dimensional vector bundle over
X. Then let A be a CW subcomplex of X, and let gWA ! G.1; n/ be a continuous
map such that g�� � �jA. Then there exists a continuous map f WX ! G.1; n/ such
that f �� � � and f jA D g.

We begin with proving statement (i), that is, (i0) with A D ;, and then we will
explain what we need to add to handle the case A ¤ ;. A linear functional on
the total space E of � is a continuous function E ! R which is linear on every
fiber of the bundle �. To construct a linear functional on E, it is sufficient to take
some linear function 'W p�1.x/ ! R (where x 2 X), then extend it to a linear
functional p�1.U/ ! R where U is a neighborhood of x such that the restriction
�jU is trivial [there is a retraction �W p�1.U/ � U � p�1.x/ ! ��1.x/ which is
linear on every fiber, and the composition ' ı � is a required functional], and then
we multiply the last functional by a continuous function X ! R, which is 1 in a
neighborhood V of x such that V � U and is 0 in the complement of U. We apply
this construction to some linearly independent functionals 'iW p�1.x/ ! R; i D
1; : : : ; n, and we get linear functionals 'x;iWE ! R whose restrictions to p�1.x/ are
linearly independent; hence, for some neighborhood Ux of x the restrictions of these
functionals to p�1.y/ are linearly independent for all y 2 Ux. Since X is compact,
there exist some x1; : : : ; xm such that the sets Uxj ; j D 1; : : : ;m cover X. Then the
functionals 'xj;i have the following property: For every z 2 X there are n of these
functionals which are linearly independent on p�1.z/.

Together, the N D mn functionals 'xj;iWE ! R form a map ˆWE ! R
N , and for

every z 2 X, the restrictionˆjp�1.z/ is a linear monomorphism. The imageˆ.p�1.z//
is an n-dimensional subspace of RN , and we define the map f WX ! G.N; n/ by the
formula f .z/ D ˆ.p�1.z/. Since ˆ maps isomorphically the fiber of � over z 2 X
onto the fiber of � over f .z/, we have f �� D �, as required.
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Now, let us adjust this proof to the relative version. We assume that there are some
A � X; gWA! G.M; n/ � G.1; n/, and an equivalence between �jA and g��. The
last equivalence is the same as a continuous map  W p�1.A/ ! R

M which maps
isomorphically p�1.z/ .z 2 A/ onto the subspace g.z/ of RM . First, we extend this
map to a continuous map ‰WE ! R

M which is linear on each fiber of � [to do this,
we need to extend each of the M coordinate functions of  to a function E ! R

linear on fibers; this is the same as extending from A to X a section of a certain vector
bundle (composed of dual spaces .p�1.x//�) which does not meet any obstruction,
since the fibers of a vector bundle are contractible]. The linear maps ‰jp�1.y/ are
isomorphisms for y 2 A, and hence they are isomorphisms for y 2 W, where W is
some open neighborhood of A. To finish the construction, we take a ˆWX ! R

N as
constructed above and multiply this ˆ by a continuous function hWX ! R which is
0 on A and 1 in the complement of W, ˆ0 D hˆ. The functions ‰ and ˆ0 together
form a map �WE ! R

MCN , which is a linear monomorphism on every fiber of �

such that �jp�1.A/ is the composition p�1.A/
 ��!R

M ���!R
MCN . This � gives

rise to a continuous map f WX ! G.M C N; n/ such that f �� D � and f jA is the

composition A
g��!G.M; n/

���!G.M C N; n/ . This completes a proof of (i0).
It remains to prove (iii). Our proof is based on the following simple observation.

We say that n-dimensional subspaces �1; �2 of R
n are close to each other if no

nonzero vector of �1 is orthogonal to �2 (this condition is symmetric in �1; �2);
equivalently: �1 is close to �2 if the orthogonal projection �1 ! �2 is an
isomorphism. Obviously, every � 2 G.N; n/ has a neighborhood U in G.N; n/ such
that every � 2 U is close to � .

Lemma. Let f1; f2WX ! G.N; n/ (no restrictions on X) be two continuous maps
such that, for every x 2 X, the subspaces f1.x/; f2.x/ of Rn are close to each other.
Then f �

1 � � f �
2 �.

Proof of Lemma. Let p1WE1 ! X; p2WE2 ! X be the bundles f �
1 �; f

�
2 �. For every

x 2 X, the definition of the inducing operation provides isomorphisms �1W p�1
1 .x/!

f1.x/; �2W p�1
2 .x/ ! f2.x/; also, there is the orthogonal projection �W f1.x/ ! f2.x/.

The composition ��1
2 ı � ı �1W p�1

1 .x/ ! p�1
2 .x/ is an isomorphism depending

continuously on x; and these isomorphisms form an equivalence f �
1 � � f �

2 �.

Proof of (iii). If X is compact (otherwise, arbitrary), and fftWX ! G.N; n/g is
a homotopy, then there exists an m such that, for every i; 0 � i < m, the maps
fi=m; f.iC1/=m satisfy the condition of the lemma. Hence, for every i, f �

i=m� � f �
.iC1/=m�.

Hence, f �
0 � � f �

1 �, which is the statement of (iii).

B: More General Constructions

The space G.1; n/ is called a classifying space for real n-dimensional vector
bundles, and � is called a universal bundle; a similar terminology is applied
to GC.1; n/ and CG.1; n/. There exists a far-reaching generalization of the
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preceding construction. For a topological group G, there exists a principal fibration
(see Sect. 19.1.E) .EG;BG;G; pG/ with a cellular base and contractible space
EG; for a given G, a principal fibration with these properties is unique up to
a homotopy equivalence. The space BG is called the classifying space for G;
in particular, BGL.n;R/ D BO.n/ D G.1; n/; BGLC.n;R/ D BSO.n/ D
GC.1; n/; BGL.n;C/ D BU.n/ D CG.1; n/. If F is a space with a faithful
action of G, then, for a finite CW complex X, there is a bijection between the set
of equivalence classes of Steenrod bundles over X with the structure group G and
the standard fiber F and the set �.X;BG/ of homotopy classes of continuous maps
X ! BG. This construction belongs to J. Milnor [55]. It has further generalizations
to the cases when G is not a topological group, but an H-space or a topological
groupoid.

C: Immediate Applications of the Classification Theorem

Some definitions and theorems of the previous sections can be clarified with the
help of the classification theorem of Sect. 19.4.A. For example, the lemma of
Sect. 19.3.B, which states that every vector bundle whose base is a finite CW
complex can be furnished by an Euclidean or Hermitian structure in the fibers,
follows immediately from the theorem of Sect. 19.4.A. Namely, if we fix an
Euclidean structure in R

N [or a Hermitian structure in C
N], then all n-dimensional

subspaces inherit this structure. This provides an Euclidean or Hermitian structure
in the fibers of �, and hence in the fibers of all vector bundles induced by �, that is,
of all vector bundles whose bases are finite CW complexes.

The definition of the sum of vector bundles can be done in the following way:
If f WX ! G.N; n/ and gWX ! G.M;m/ are two continuous maps, then there arises
a map f ˚ gWX ! G.M C N;m C n/; .f ˚ g/.x/ D f .x/ ˚ g.x/ � R

N ˚ R
M ,

and f �� ˚ g�� D .f ˚ g/��, which gives an alternative construction of the sum
of vector bundles. The same for tensor products: We consider a map f ˝ gWX !
R

NM; f ˝ g.x/ D f .x/ ˝ g.x/ � R
N ˝ R

M D R
NM , and f �� ˝ g�� D .f ˝ g/��,

which can be regarded as a definition of a tensor product of vector bundles (same
with complex vector bundles). In a similar way, for a vector bundle �, we can define
Sr�;ƒr�; ��, etc.

D: Characteristic Classes and Cohomology of Classifying Spaces

Theorem. The group of q-dimensional characteristic classes of n-dimensional
real [resp. n-dimensional oriented, resp. n-dimensional complex] vector bun-
dles with coefficients in G is isomorphic to the group Hq.G.1; n/IG/ [resp.
Hq.GC.1; n/IG/, resp. Hq.CG.1; n/IG/].
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Proof. We restrict ourselves to the real case; the proof in the other two cases is
the same. If c is a characteristic class of the type considered, we can compute it
for the bundle � over G.1; n/ [or over G.N; n/ with N 
 n; q]. We get a c.�/ 2
Hq.G.1; n/IG/. We need to check two things: (i) If c.�/ D 0, then c D 0; (ii) for
every � 2 Hq.G.1; n/IG/, there exists a characteristic class c such that c.�/ D � .

(i) Let c.�/ D 0. If � is an n-dimensional vector bundle whose base X is
a finite CW complex, then � D f �� for some f WX ! G.1; n/, and therefore
c.�/ D c.f ��/ D f �c.�/ D f �.0/ D 0. If the base X of � is an arbitrary CW
complex, and 0 ¤ c.�/ D ˛ 2 Hq.XIG/, then there exists a finite CW subcomplex
Y of X such that ˛jY ¤ 0; then 0 D c.�jY/ D c.�/jY D ˛jY ¤ 0, which is a
contradiction.

(ii) Let � 2 Hq.G.1; n/IG/; we want to define a characteristic class c with
c.�/ D � . Let � be an n-dimensional real vector bundle with a CW base X. Then,
for every finite CW subcomplex Y of X, we can define c.�jY / 2 Hq.YIG/ as f �� ,
where f WY ! G.1; n/ is a continuous map with f �� D �jY . Then, obviously, there
exists a unique ˛ 2 Hq.XIG/ such that ˛jY D c.�jY/ for every finite Y � X. We set
c.�/ D ˛.

(Both parts of this proof implicitly use the following property of cohomology.
Let X be a CW complex, and let F be the category of finite CW subcomplexes

of X and inclusions. Then Hq.XIG/ D  ��lim FHq.YIG/. This follows, for example,
from a similar property for homology and the universal coefficients formula for
cohomology. We leave the details to the reader.)

GENERALIZATION. Characteristic classes of Steenrod fibrations with the structure
group G taking values in the q-dimensional cohomology of the base with coefficients
in A correspond bijectively to elements of Hq.BGIA/.

E: Completeness of Systems of Euler, Stiefel–Whitney, Chern,
and Pontryagin Characteristic Classes

Theorem. (i) Every characteristic class of n-dimensional real vector bundles
with coefficients in Z2 is a polynomial of the Stiefel–Whitney classes
w1; : : : ;wn, and different polynomials are different characteristic classes.

(ii) Every characteristic class of n-dimensional complex vector bundles with
coefficients in Z is a polynomial of the Chern classes c1; : : : ; cn, and different
polynomials are different characteristic classes.

(iii) Every characteristic class of n-dimensional real vector bundles with coef-
ficients in Q, or R, or C is a polynomial of the (images with respect to
the inclusion of Z into the coefficient domain) of the Pontryagin classes
p1; : : : ; pŒn=2�, and different polynomials are different characteristic classes.

(iv) Every characteristic class of n-dimensional orientable vector bundles with
coefficients in Q, or R, or C is a polynomial of the (images with respect
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to the inclusion of Z into the coefficient domain) of the Pontryagin classes
p1; : : : ; pŒn=2� and, if n is even, the Euler class e, and different polynomials are
different characteristic classes.

We postpone the details of the proof to the next section. Here we only notice
that the proof of every part consists of two parts. First, we need to show that the
corresponding group

Hq.G.1; n/;GC.1; n/; or C.1; n/I Z2;Z;Q;R; or C/

has precisely the same size as the group of polynomials of the form indicated. This
can be easily deduced from the computation of the cohomology of Grassmannians
in Sect. 13.8.C. Next, we need to check that no one of these polynomials is zero
as a characteristic class [in the nonfield case (ii) we will need slightly more]. For
this purpose, we need a sufficient supply of explicit computations of characteristic
classes. At the moment, we do not have such a supply, but it will appear in the next
section.

19.5 The Most Important Properties of the Euler,
Stiefel–Whitney, Chern, and Pontryagin Classes

A: The Properties of the Stiefel–Whitney Classes

Theorem. The Stiefel–Whitney classes possess the following properties.

(1) For the Hopf (tautological) bundle � over RPn .n � 2/, 0 ¤ w1.�/ 2
H1.RPnIZ2/D Z2 and wi.�/ D 0 for i > 1.

(2) For arbitrary real vector bundles �; � with (the same) CW base,

wi.� ˚ �/ D
X

pCqDi

wp.�/wq.�/:

Remark. Statements (1) and (2) are often considered as axioms for Stiefel–Whitney
classes: Together with the property that Stiefel–Whitney classes are characteristic
classes, these axioms uniquely determine them. We will not return to this axiomatic
definition of Stiefel–Whitney classes, but the reader will be able to deduce all
necessary statements from the results of the current section. In details, this
axiomatic approach to all classical characteristic classes is developed in the book
Characteristic Classes by Milnor, Stasheff [60].

Proof of Part (1) is immediate. The restriction of � to RP1 D S1 is the Möbius
bundle, and obviously it has no nowhere vanishing section. Thus, � has no section
over the first skeleton, which means that the first obstruction w1.�/ 2 H1.RPnIZ2/
is not zero.
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Part (2) is equivalent to the statement .20/: for arbitrary real vector bundles �; �
with, possibly different, CW bases,

wi.� � �/ D
X

pCqDi

wp.�/ � wq.�/:

The proof of .20/ consists of three steps.

Step 1. Stiefel–Whitney classes invariant with respect to stable equivalence,
which is the same as the statement wi.� ˚ 1/ D wi.�/. This follows from the
inductive construction of Stiefel–Whitney classes outlined in Sect. 19.3.D. For the
first section of � ˚ 1 we can take the natural nonzero section of the summand 1.
Then the second section of � ˚ 1 is the first section of �, the third section of � ˚ 1
is the second section of �, and so on. We see that if dim � D n, then, for every k,
w.nC1/�.kC1/C1.� ˚ 1/ D wn�kC1.�/, which is our statement.

Step 2. Let dim X D dim � D p; dim Y D dim � D q (where X and Y are
the bases of � and �); statement .20/ in this case means wpCq.� � �/ D wp.�/ �
wq.�/. Fix a section of � which has no zeroes on Xp�1 and has transverse zeroes
on p-dimensional cells; for a p-dimensional cell e of X, let ne 2 Z2 be the number
of zeroes of the section on e reduced modulo 2. Similarly, fix a section of �, without
zeroes on Yq�1 and with transverse zeroes on q-dimensional cells, and let mf 2 Z2

be the number of zeroes of � on a cell f reduced modulo 2. Then wp.�/ is represented
by the cocycle e 7! ne, and wq.�/ is represented by the cocycle f 7! mf . The
two sections together form a section of � � � with no zeroes on .X � Y/pCq�1 and
with transverse zeroes on cells e � f , the number of which modulo 2 is nemf . Thus,
.e�f 7! nemf / is a cocycle of the class wpCq.���/ which shows that wpCq.���/ D
wp.�/ � wq.�/.

Step 3. The general case. Fix p; q with p C q D i; p � dim �; q � dim �,
and consider the restrictions �jXp ; �jYq . We know that � has dim � � p linearly
independent sections over Xp and � has dim � � q linearly independent sections
over Yq. From this, we conclude that

�jXp D �p ˚ .dim � � p/; �jYq D �q ˚ .dim �� q/

where �p and �q are bundles over Xp and Yq of dimensions p and q. Certainly, it is
also true that

.� � �/jXp�Yq D .�p � �q/C .dim � C dim � � p � q/:

Let

u D wi.� � �/ �
X

p0Cq0Di

wp0.�/ � wq0.�/ 2 Hi.X � YIZ2/:
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Then

ujXp�Yq D wi..� � �/jXp�Yq/ �Pp0Cq0Di wp0.�jXp/ � wq0.�jYq/

D wi.�p � �q/ �Pp0Cq0Di wp0.�p/ � wq0.�q/

D wi.�p � �q/ � wp.�p/ � wq.�q/ D 0

(here the first equality is obvious, the second equality follows from the result of step
1, the third equality follows from triviality of Stiefel–Whitney classes in dimensions
exceeding the dimension of the bundle, and the last equality is the result of step 2).
We see that ujXp�Yq D 0 for any p; q with pC q D i. Consider the homomorphism

Hi.X � YIZ2/ DLpCqDi Hp.XIZ2/˝ Hq.YIZ2/
!L

pCqDi Hp.XpIZ2/˝Hq.YqIZ2/
DLpCqDi Hi.Xp � YqIZ2/I

here the two equalities follow from Künneth’s formula, and the arrow denotes the
sum of homomorphisms induced by the inclusion maps Xp ! X; Yq ! Y. On the
one hand, every homomorphism Hp.XIZ2/ ! Hp.XpIZ2/ is a monomorphism
(since Hp.X;XpIZ2/ D 0/, and similarly for Y; thus, the preceding homomorphism
is a monomorphism. On the other hand, this homomorphism acts as

� 7! .� jXi�Y0 ; � jXi�1�Y1 ; : : : ; � jX1�Yi�1 ; � jX0�Yi / :

Hence, it takes u to 0, and hence u D 0. This completes the proof.
It is convenient to write the formulas from (2) and .20/ as

w.� ˚ �/ D w.�/w.�/; w.� � �/ D w.�/ � w.�/

where w is the formal sum 1C w1 C w2 C : : : .

B: The Splitting Principle for the Stiefel–Whitney Classes

We begin with a computation of the Stiefel–Whitney classes for a very important
example.

Proposition. Consider the vector bundle � � � � � � �„ ƒ‚ …
n

over the space

RP1 � � � � �RP1„ ƒ‚ …
n

: Let x1; : : : ; xn 2 H1.RP1 � � � � � RP1IZ2/ be the generators

of H�.RP1 � � � � � RP1IZ2/. Then

wi.� � � � � � �/ D ei.x1; : : : ; xn/;
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where ei is ith elementary symmetric polynomial.

Proof. Since w.�/ D 1C x, the preceding formula .20/ shows that

w.� � � � � � �/ D .1C x/ � � � � � .1C x/ D .1C x1/ : : : .1C xn/

D 1CPn
iD1 ei.x1; : : : ; xn/;

as required.

Now we can prove a result announced in the previous section.

Proof of the Theorem in Sect. 19.4.E, Part (i). It is well known in algebra that
every symmetric polynomial in n variables with coefficients in an arbitrary
integral domain R has a unique presentation as a polynomial in the elementary
symmetric polynomial; the uniqueness statement means that no nonzero
polynomial in e1; : : : ; en is equal to zero. If W D P.w1; : : : ;wn/ is a
nonzero polynomial of the Stiefel–Whitney classes, then W.� � � � � � �/ D
P.e1.x1; : : : ; xn/; : : : ; en.x1; : : : ; xn// ¤ 0, which shows that W is not zero
as a characteristic class. Hence, the dimension (over Z2) of the full space of
q-dimensional characteristic classes with coefficients in Z2 of n-dimensional real
vector bundles is at least the number of partitions q D 1 � r1C2 � r2C� � �Cn � rn with
nonnegative ris. But this number is precisely the number of q-dimensional cells in
the standard (Schubert) CW decomposition of G.1; n/, which, in turn, does not
exceed dimZ2 Hq.G.1; n/IZ2/, that is, the dimension of the space of characteristic
classes. Thus, all these numbers and dimensions are the same. This proves that all
the characteristic classes of n-dimensional vector bundles with coefficients in Z2

are polynomials in w1; : : : ;wn, as stated in part (i) of the theorem in Sect. 19.4.E.

Remark 1. This proof shows that dimZ2 Hq.G.1; n/IZ2/ is actually equal to the
number of q-dimensional Schubert cells, which means, in turn, that all the incidence
numbers in the cellular complex corresponding to the Schubert cell decomposition
of the Grassmannian are even. This fact is not new for us; it was offered as
Exercise 11 in Sect. 13.8.C. Now we have a proof of this fact, thus a (rather indirect)
solution of that exercise.

Remark 2. We see also that a nonzero characteristic class with coefficients in Z2 of
n-dimensional vector bundles takes a nonzero value on the bundle � ˚ � � � ˚ �. This
provides a method of finding relations between characteristic classes: A relation
holds if it holds for �˚ � � �˚ �. Usually, this statement is formulated in a seemingly
weaker, but actually equivalent form: To establish a relation between characteristic
classes it is sufficient to check it for splitting bundles, that is, for bundles isomorphic
to sums of one-dimensional bundles. This proposition is known under the name of
the splitting principle (later, we will deal with different versions of this principle).
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EXERCISE 14. Prove the following version of the splitting principle (and explain
why it is equivalent to the splitting principle). The Z2-cohomology homomorphism
induced by the map

RP1 � � � � �RP1„ ƒ‚ …
n

! G.1; n/;
�f`1 � R1g; : : : ; f`n � R1g� 7! `1 � � � � � `n � R1 � � � � � R1 D R1

is a monomorphism; moreover, its image in H�.RP1 � � � � � RP1IZ2/ D
Z2Œx1; : : : ; xn� is precisely the space of symmetric polynomials.

C: Stiefel–Whitney Classes and Operations over Vector Bundles

Formulas expressing the Stiefel–Whitney classes of the bundles �˝�;ƒk�; Sk�, and
so on via the Stiefel–Whitney classes of � and � (and the dimensions of � and �)
exist, but more complicated and less convenient, than the formulas for the Stiefel–
Whitney classes of the sum (or direct product). We will give a brief overview of this
subject.

Lemma. Let �; � be one-dimensional real vector bundle over the same CW base.
Then

w1.� ˝ �/ D w1.�/C w1.�/:

Proof. Fix sections s; t of � and � over the 1-skeleton X1 of the base X of � �. We
may assume that these sections have no zeroes over X0 and have transverse zeroes
over one-dimensional cells, and the zeroes of s are different from the zeroes of t.
Then s ˝ t is a section of � ˝ �, and the set of zeroes of s ˝ t is the union of the
set of zeroes of s and the set of zeroes of t. Let me; ne be residues modulo 2 of
the numbers of zeroes of the sections s and t within a one-dimensional cell of X.
Then the functions e 7! me; e 7! ne; e 7! me C ne are cocycles representing
w1.�/;w1.�/;w1.� ˝ �/, whence our result.

For our next statement, we will need some notations from algebra of symmetric
polynomials. Consider the ith symmetric polynomial of mn variables yjCzk; 1 � j �
m; 1 � k � n, and express it as a polynomial in elementary symmetric polynomials
separately in y1; : : : ym and z1; : : : ; zn (we assume that i � m and i � n):

ei.yj C zk/ D Em;nIi.e1.y/; e2.y/; : : : I e1.z/; e2.z/; : : : /I
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for example,

Em;nI1 D
mX

jD1

nX
kD1
.yj C zk/ D n

mX
jD1

yj C m
nX

kD1
zk D ne1.y/C me1.z/I

Em;nI2 D
X

.j0;k0/¤.j;k/
.yj C zk/.yj0 C zk0/

D n.n � 1/
mX

jD1
y2j C n2

X
j0¤j

yjyj0 C 2.mn� 1/
mX

jD1

nX
kD1

yjzk

Cm.m � 1/
nX

kD1
z2k Cm2

X
k0¤k

zkzk0

D n.n � 1/.e1.y/2 � 2e2.y//C 2n2e2.y/C 2.mn� 1/e1.y/e1.z/
Cm.m � 1/.e1.z/2 � 2e2.z//C 2m2e2.z/;

that is,

Em;nI2 D n.n� 1/
2

e1.y/
2 C ne2.y/C .mn � 1/e1.y/e1.z/

Cm.m � 1/
2

e1.z/
2 C me2.z/:

These examples show that it is possible to find explicit expressions for the
polynomials Em;nIi, but the formula may be complicated.

In addition, consider the elementary symmetric polynomials of

 
n

r

!
variables

xj1 C � � � C xjr 1 � j1 < � � � < jr � n. Obviously, they are symmetric polynomials in
x1; : : : ; xn, and we can write

ei.xj1 C � � � C xjr 1 � j1 < � � � < jr � n/ D FnIrIi.e1.x/; e2.x/; : : : /;

where FnIrIi is a polynomial. For example,

FnIrI1 D
 

n � 1
r � 1

!
e1.x/; FnI2I2 D .n � 1/.n � 2/

2
e1.x/

2 C .n � 2/e2.x/:

The polynomials F are related to the polynomials E. Namely, if we put x1 D
y1; : : : ; xm D ym; xmC1 D z1; : : : ; xmCn D zn, then, obviously, fxj C xkj1 � j <
k � m C ng D fyj C ykj1 � j < k � mgSfyj C zkj1 � j � m; 1 � k �
ngSfzj C zkj1 � j < k � ng, which shows that

FmCnI2Ii.e1.x/; e2.x/; : : : / D
X

pCqCrDi

FmI2Ip.e1.y/; e2.y/; : : : /

�Em;nIq.e1.y/; e2.y/; : : : ; e1.z/; e2.z/; : : : / � FnI2Ir.e1.z/; e2.z/; : : : /:
(	)



19.5 The Most Important Properties of the Euler, Stiefel–Whitney, Chern: : : 291

And one more family of polynomials:

GnIrIi.e1.x/; e2.x/; : : : / D ei.xj1 C � � � C xjr j1 � j1 � � � � � jr � n/I

a computation shows that

GnIrI1 D
 

nC r � 1
r � 1

!
e1.x/;

GnI2 D .n � 1/.nC 2/
2

e21 C .nC 2/e2; if n > 1:

The formula (	) with the polynomials F replaced by polynomials G is also true.
Now, let us formulate the main results of this section.

Theorem 1. Let � and � be real vector bundles of dimensions m and n over the
same CW base. Then

wi.� ˝ �/ D Em;nIi.w1.�/;w2.�/; : : : Iw1.�/;w2.�/; : : : /I

thus, in particular, w1.� ˝ �/ and w2.� ˝ �/ are, respectively,

nw1.�/C mw1.�/

and

n.n� 1/
2

w1.�/
2 C nw2.�/ C.mn � 1/w1.�/w1.�/

Cm.m � 1/
2

w1.�/
2 C mw2.�/:

Theorem 2. Let � be an n-dimensional real vector bundle with a CW base. Then

wi.ƒ
r�/ D FnIrIi.w1.�/;w2.�/; : : : /I

in particular,

w1.ƒr�/ D
 

n � 1
r � 1

!
w1.�/;

w2.ƒ2�/ D .n � 1/.n � 2/
2

w1.�/C .n � 2/w2.�/:

Theorem 3. Let � be an n-dimensional real vector bundle with a CW base. Then

wi.S
r�/ D GnIrIi.w1.�/;w2.�/; : : : /I
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in particular,

w1.Sr�/ D
 

nC r � 1
r � 1

!
w1.�/;

w2.S2�/ D .n � 1/.nC 2/
2

w1.�/C .nC 2/w2.�/; if n > 1:

Proofs. We begin with Theorem 1 in the case when � D �. The class wi.� ˝ �/
is a characteristic class of a real vector bundle. Hence, by part (i) of the theorem
in Sect. 19.4.E, it must be a polynomial in Stiefel–Whitney classes. To identify
this polynomial, we need to compute the class for the bundle � D � � � � � � �„ ƒ‚ …

n

over

RP1 � � � � �RP1„ ƒ‚ …
n

; this bundle is the same as �1 ˚ � � � ˚ �n, where �j is the bundle

induced by � with respect to the projection of RP1 � � � � �RP1 onto the jth factor.
Then � ˝ � DLj;k.�j ˝ �k/ and

w.� ˝ �/ D
Y
j;k

w.�j ˝ �k/ D .by Lemma/
Y
j;k

.1C xj C xk/

D 1C
X
i�1

ei.xj C xkj1 � j � n; 1 � k � n/

D 1C
X
i�1

En;nIi.e1.x/; e2.x/; : : : ; e1.x/; e2.x/; : : : /

D 1C
X
i�1

En;nIi.w1.�/;w2.�/; : : : ;w1.�/;w2.�/; : : : /;

which is the statement of the theorem (for � D �).

Next, we prove Theorem 2. The proof is the same as the previous proof, and it is
based on the relation, for � D �1 ˚ � � � ˚ �n,

ƒr� D
M

1	j1<���<jr	n

.�j1 ˝ � � � ˝ �jr/;

which gives, by the lemma,

w.ƒr�/ D
Y

1	j1<���<jr	n

.1C .j1 C � � � C jr//

D 1C
X

1	j1<���<jr	n

e1.xj1 C � � � C xjr j1 � j1 < � � � < jr � n/:

The rest of the proof repeats the previous proof.
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The proof of Theorem 3 is so close to the proof of Theorem 2 that we do not
feel any necessity in detailing it [just mention that it is based on the relation Sr� DM
1	j1	���	jr	n

.�j1 ˝ � � � ˝ �jr/].

Finally, let us prove Theorem 1 in the general case. Notice that for any vector
bundles � and �,

ƒ2.� ˚ �/ D ƒ2� ˚ .� ˝ �/˚ƒ2�;

and hence

w.ƒ2.� ˚ �// D w.ƒ2�/w.� ˝ �/w.ƒ2�/:

Since w D 1 C w1 C w2 C : : : is an invertible element of the ring H�.BIZ2/,
this formula determines w.� ˝ �/ if w.ƒ2�/; w.ƒ2�/ and ƒ2.� ˚ �/ are known.
The formula from Theorem 1 follows from the formula of Theorem 2 and the
relation (	).

D: Properties of the Euler, Chern, and Pontryagin Classes

For the Euler classes, a multiplication formula e.� ˝ �/ D e.�/e.�/ holds.
All the major properties of the Stiefel–Whitney classes can be repeated with

appropriate changes for the Chern classes. In particular, the class c1 of the Hopf
bundle �C is the standard generator of the group H2.CP1IZ/. There are the
multiplication formula

ci.� ˚ �/ D
X

pCqDi

cp.�/cq.�/

and the splitting principle. Like Stiefel–Whitney classes, the Chern classes are
invariant with respect to stable equivalence. The computation of the Chern classes of
tensor product, exterior powers, and symmetric powers of complex vector bundles
repeats the computations in Sect. 19.5.C.

EXERCISE 15. Prove that ci.�/ D .�1/ici.�/. Deduce from this that for every real
vector bundle � and every odd i the equality 2ci.C�/ D 0 (compare the comment to
the definition of the Pontryagin classes in Sect. 19.3.C).

EXERCISE 16. Define a polynomial Qr of r variables by the formula

Nr D Qr.e1; : : : ; er/;
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where the ei are elementary symmetric polynomials and Ni are sums of ith powers of
variables (so Q1 D e1; Q2 D e21 � 2e2; Q3 D e31 � 3e1e2 C 3e3; : : : ). For a complex
vector bundle � with the base X, put

chr.�/ D 1

rŠ
Qr.c1.�/; : : : ; cr.�// 2 H2r.XIQ/:

The (nonhomogeneous) characteristic class ch with coefficients in Q defined by the
formula

ch D ch0C ch1C ch2C � � � 2 Heven.XIQ/
is called the Chern character. Notice that ch0.�/ 2 H0.XIQ/ is just dim �.

Prove that

ch.� ˚ �/ D ch.�/C ch.�/ and ch.� ˝ �/ D ch.�/ ch.�/:

For the Pontryagin classes, the multiplication formulas and all the other formulas
are deduced from the corresponding formulas for the Chern classes and hold
“modulo 2-torsion”; for example,

2
�

pi.� ˚ �/ �
X

pCqDi
pp.�/pq.�/

�
D 0:

EXERCISE 17. Prove that stably equivalent bundles have equal Pontryagin classes.

E: More Relations Between Stiefel–Whitney, Chern,
and Euler Classes

In conclusion, we give two more formulas expressing the Stiefel–Whitney and
Chern classes via the Euler class. Let � be an n-dimensional real vector bundle
with a CW base X and � be the Hopf bundle over RP1. Consider the bundle � ˝ �
over X �RP1 (more precisely, it is the tensor product of bundles induced by � and
� with respect to the projections of the product X � RP1 onto the factors). Then

�2e.� ˝ �/ D wn.� ˝ �/ D
nX

iD0
.wi.�/ � xn�i/ 2 Hn.X � RP1IZ2/;

where x 2 H1.RP1IZ2/ is the generator. Similarly, if � is an n-dimensional
complex vector bundle with a CW base X and �C is the (complex) Hopf bundle
over CP1, then

e.� ˝ �C/ D cn.� ˝ �/ D
nX

iD0
.ci.�/ � xn�i/ 2 H2n.X � CP1IZ/;

where x 2 H2.CP1IZ/ is the generator.
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These formulas may be regarded as definitions of the Stiefel–Whitney and Chern
classes.

EXERCISE 18. Prove these formulas.

19.6 Characteristic Classes in Differential Topology

We can only touch on this vast subject.

A: Geometric Interpretation of the First Obstruction

Let .E;B;F; p/ be a homotopically simple locally trivial fibration where E and B are
smooth manifolds and the manifold B is closed, n-dimensional and oriented, and p
is a submersion, that is, a smooth map whose differential at every point has rank
equal to n. Assume also that �0.F/ D � � � D �k�2.F/ D 0 and �k�1.F/ D � . Then
the first obstruction to extending a section of our fibration lies in Hk.BI�/. Suppose
also that we were able to construct a section over B � X where X is a submanifold
of B (possibly, with singularities of codimension � 2) of dimension n � k or a
union of a finite number of such submanifolds which are connected and transversally
intersect each other, X D S

Xi (simple general position argumentations show that
it is always possible to do this). For every i, choose a nonsingular point xi of Xi and
construct a small .k � 1/-dimensional sphere si centered at xi in a k-dimensional
surface transversally intersecting Xi at xi. Since there is a section over si, and the
fibration is trivial in a proximity of xi, we obtain a continuous map Sk�1 ! p�1.xi/

which determines, since the fibration and the fiber are homotopically simple, an
element ˛i 2 �k�1.F/ D � .

Claim: The homology class
P

i ˛iŒXi� 2 Hn�k.BI�/ is the Poincaré dual of the
first obstruction to extending a section in our fibration. The proof is left to the reader.
(Hint: Triangulate the manifold B in such a way that X is disjoint from the simplices
of dimension less than k and intersects each k-dimensional simplex transversally in
at most one point.)

B: Differential Topology Interpretations of the Euler Class

For a closed oriented manifold X, the value of the Euler class of the tangent bundle
e.X/ D e.	X/ on the fundamental class ŒX� is equal to the Euler characteristic
�.X/ of X (this is Proposition 2 of Sect. 18.5). This implies that a closed manifold
possesses a nonvanishing vector field if and only if its Euler characteristic is zero
(corollary in Sect. 18.5).
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Some other properties of the Euler class are given here as exercises.

EXERCISE 19. Prove that a closed manifold X (orientable or not) possesses a
continuous family of tangent lines (equivalently: The tangent bundle 	.X/ possesses
a one-dimensional subbundle) if and only if �.X/ D 0.

EXERCISE 20. Let .E;B;Rn; p/ be a smooth vector bundle (that is, a vector
bundle such that E and B are smooth manifolds, p is a submersion, and the vector
space operations in E are smooth). Suppose that B is closed and oriented. Let
sWB ! E be a section of � in a general position with the zero section. Show that
the intersection B\ s.B/ (we assume that B is embedded into E as the zero section)
represents the homology class of B which is the Poincaré dual of the Euler class
e.�/ of �.

EXERCISE 21. Let Y be a closed oriented submanifold of a closed oriented
manifold X, and let �X.Y/ D .	.X//jY=	.Y/ be the corresponding normal bundle.
Prove the formula

D.e.�X.Y//� D iŠŒY�;

where D is Poincaré isomorphism (in Y), iWY ! X is the inclusion map, and ŒY� is
a homology class of X represented by Y. Corollary: If ŒY� D 0, then e.�X.Y// D 0;
in particular, the Euler class of the normal bundle of a manifold embedded into an
Euclidean space or a sphere is zero.

EXERCISE 22. The last statement does not hold for immersions. Show, in partic-
ular, that if f is an immersion of a closed oriented manifold of even dimension
n into R

2n with transverse self-intersections, then the algebraic number of the
self-intersection points (the reader will have to make up the definition of a sign
corresponding to a transverse self-intersection) is equal to one half of the “normal
Euler number,” that is, of the value of the Euler class of the normal bundle on the
fundamental class of the manifold. Example: Construct an immersion of S2 into R

4

with one transverse self-intersection (such a two-dimensional figure-eight) and find
the Euler class of the corresponding normal vector bundle.

C: Differential Topology Interpretations
of the Stiefel–Whitney Classes

In this section, we deal only with cohomology and homology with coefficients in
Z2 and understand accordingly Poincaré isomorphism D.

The Stiefel–Whitney classes of the tangent bundle of a smooth manifold X are
called the Stiefel–Whitney classes of X and are denoted as wi.X/. [In a similar
way, people consider the Pontryagin classes pi.X/ of a smooth manifold X and
the Chern classes ci.X/ of a complex manifold X.] Since the normal bundle of
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a smooth manifold embedded into a Euclidean space does not depend, up to a
stable equivalence, on the embedding, we can speak of the “normal Stiefel–Whitney
classes,” wi.X/, of a smooth manifold X. It follows from the multiplication formula
and the fact that the sum of the tangent and normal bundles is trivial that

X
pCqDi

wp.X/wq.Y/ D 0 for i > 0;

or w D w�1 (we already remarked in the end of Sect. 19.5.C that w is invertible in
the cohomology ring). Thus, the normal Stiefel–Whitney classes are expressed via
the usual (tangent) Stiefel–Whitney classes.

EXERCISE 23. Consider a generic smooth map (the reader is supposed to clarify the
meaning of the word generic) of a closed n-dimensional manifold X into R

q; q � n;
let Y � X be the set of points where this map is not a submersion (the rank of the
differential is less than q). Prove that Y is a .q � 1/-dimensional submanifold of X
[maybe, with singularities, but the class ŒY� 2 Hq�1.XIZ2/ is defined] and that

D�1ŒY� D wn�qC1.X/:

EXERCISE 24. Consider a generic smooth map of a closed n-dimensional manifold
X into R

q; q � n; let Y � X be the set of points where this map is not an immersion
(the rank of the differential is less than n). Prove that Y is a .2n�q�1/-dimensional
submanifold of X (maybe, with singularities) and that

D�1ŒY� D wqC1�n.X/:

EXERCISE 25. If an n-dimensional manifold X possesses an immersion into R
nCq,

then wi.X/ D 0 for i > q. (For closed manifolds, this follows from Exercise 24, but
actually this fact is much easier than Exercise 24, and it is more natural to prove it
directly.)

EXERCISE 26. If an n-dimensional manifold X possesses an embedding into R
nCq,

then wi.X/ D 0 for i � q. (To prove this, one needs to use, in addition to Exercise 25,
the corollary part of Exercise 21.)

EXERCISE 27. Prove that if 2k � n < 2kC1, then RPn has no immersion in R
2kC1�2

and no embedding in R
2kC1�1. (To prove this, one needs to use, besides Exercises 25

and 26, Exercise 12 (Sect. 19.2) and the theorem in Sect. 19.5.A.

Remark 1. Thus, if n D 2k, the n-dimensional manifold RPn cannot be embedded
into R

2n�1. This is a very rare phenomenon. The classical Whitney theorem asserts
that an n-dimensional manifold (with a positive n) can always be embedded into
R
2n (this result should not be confused with an earlier theorem of Whitney stating

that any smooth map of an n-dimensional manifold into any manifold of dimension
� 2nC 1 can be smoothly approximated by smooth embeddings); embeddings into
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R
2n�1 are almost always possible: For a nonexistence of such an embedding, it is

necessary and sufficient that n is a power of 2, and there exists a one-dimensional
cohomology class with coefficients in Z2 whose nth power is not zero (these
conditions imply the nonorientability).

Remark 2. Further information concerning embeddability of (real and complex)
projective spaces into Euclidean spaces can be obtained with the help of K-theory
(see Sect. 42.6 in Chap. 6).

EXERCISE 28. Let X be a triangulated smooth manifold. Denote by Ci the
i-dimensional classical chain of the barycentric subdivision of the triangulation
of X equal to the sum of all i-dimensional simplices of this subdivision. Prove that
Ci is a cycle and that

D�1ŒCi� D wi.X/

(ŒCi� is the homology class of Ci).

The values of the cohomology classes of the form wi1 .X/ : : :wir.X/ with
i1 : : : ir D n on the fundamental class of closed n-dimensional manifold (they
are residues modulo 2) are called Stiefel–Whitney numbers of the manifold X;
notation: wi1:::ir ŒX�. For example, two-dimensional manifolds have two Stiefel–
Whitney numbers: w11ŒX� and w2ŒX�.

EXERCISE 29. Find Stiefel–Whitney numbers of classical surfaces.

Remark. The reader will see that for any classical surface X; w11ŒX� D w2ŒX�.
A classical theorem in the topology of a manifold asserts any connected closed
two-dimensional manifold is a classical surface. Hence, the two Stiefel–Whitney
numbers, w11ŒX� and w2ŒX�, are always the same. Later in this section, we will see
that there are more relations between Stiefel–Whitney numbers.

Theorem. If a closed manifold is a boundary of a compact manifold, then all its
Stiefel–Whitney numbers are zeroes.

Proof. If X D @Y and iWX ! Y is the inclusion map, then 	.X/ D 	.Y/jX ˚ 1
(the normal bundle of the boundary is always trivial!). Hence, wj.X/ D i�wj.Y/ for
every j, and

hwj1 .X/ : : :wjr .X/; ŒX�i D hi�.wj1 .Y/ : : :wjr .Y//; ŒX�i
D hwj1 .Y/ : : :wjr .Y/; i�ŒX�i D 0

since i�ŒX� D 0 (the fundamental cycle of the boundary of a compact manifold is
the boundary of the fundamental cycle of this manifold).

This theorem provides a powerful necessary condition for a closed manifold to
be a boundary of a compact manifold.
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EXERCISE 30. Prove that if nC 1 is not a power of 2, then neither RPn nor CPn is
a boundary of a compact manifold.

The most striking fact, however, is that this necessary condition is also sufficient
for a closed manifold to be a boundary of a compact manifold (R. Thom, Fields
Medal of 1952). We will discuss the proof of this result briefly in Chaps. 5 and 6.
As we mentioned before, the Stiefel–Whitney numbers are not linearly independent
(w1ŒX� D 0 for any one-dimensional X, w11ŒX� D w2ŒX� for any two-dimensional X).
The fact is that a maximal linear independent system of Stiefel–Whitney numbers
of a closed n-dimensional manifold is formed by the numbers wj1:::jr ŒX� such that
j1 C � � � C jr D n; j1 � � � � � jr and no one of the numbers js C 1 is a power
of 2. (Corollary: Every closed three-dimensional manifold is the boundary of some
compact four-dimensional manifold; this is a classical theorem of Rokhlin.)

D: Differential Topology Interpretations
of the Pontryagin Classes

The following statement is similar to Exercise 23. Let X be a closed oriented
n-dimensional manifold and f WX ! R

n�2qC2 be a generic smooth map. Let Y � X
be the set of points where the rank of the differential of f does not exceed n�2q (that
is, is at least 2 less than its maximal possible value). Then Y is an oriented .n� 4q/-
dimensional manifold (maybe, with singularities), and the class ŒY� 2 Hn�4q.X/ is
the Poincaré dual to the Pontryagin class pq.X/ 2 H4q.XIZ/ of (the tangent bundle
of) the manifold X. A similar statement holds for the normal Pontryagin classes
(compare to Exercise 24.)

(The orientedness, and even orientability, of manifold X is actually not needed,
but, in general, we will need the version of Poincaré isomorphism developed in
Sect. 17.12.)

If X is a closed oriented manifold of dimension 4m, then the value of the class
pj1 .X/ : : : pjr.X/; j1 C � � � C jr D m on the fundamental homology class of X is
called a Pontryagin number and is denoted as pj1:::jr ŒX�. (It is convenient to assume
that X is not necessarily connected; the fundamental class of a disconnected X is
defined as the sum of the fundamental classes of the components.) If X is a boundary
of a compact oriented manifold, then all the Pontryagin numbers of X are zeroes
(this fact is proved precisely as the similar fact for the Stiefel–Whitney numbers).
There also is a Thom theorem which asserts that if all the Pontryagin numbers of a
closed orientable manifold are zeroes (for example, if its dimension is not divisible
by 4), then a union of several copies of X (taken all with the same orientation) is
a boundary of some compact manifold. Moreover, every set of integers fpj1:::jr j
j1 C � � � C jr D mg becomes, after a multiplication of all the numbers in the set by
the same positive integer, the set of Pontryagin numbers of some closed oriented
manifold of dimension 4m. (Actually, this theorem is way easier than the similar
theorem for the Stiefel–Whitney numbers; we will see this in Chap. 6.)
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A useful corollary of the Thom theorem (and the fact that if Y D X1
F

X2 is the
disjoint union of two closed oriented 4m-dimensional manifolds, then

pj1:::jr ŒY� D pj1:::jr ŒX1�C pj1:::jr ŒX2�

for every j1; : : : ; jr with j1 C � � � C jr D m) is the following statement.

EXERCISE 31. Suppose that for every closed oriented n-dimensional manifold
there is assigned an integer 
.X/with the following properties: (1) If X is a boundary
of a compact oriented manifold, then 
.X/ D 0; (2) 
.X1

F
X2/ D 
.X1/C 
.X2/.

Prove that


.X/ D
X

j1C���CjrDn=4

aj1:::jr pj1:::jr ŒX�;

where aj1:::jr are some rational numbers not depending on X. In particular, 
.X/ D 0
if n is not divisible by 4.

This statement has only one broadly known application, but what an application
it is! Denote by 
.X/ the signature of the intersection index form in the 2m-
dimensional homology of a 4m-dimensional closed oriented manifold X. The
theorem in Sect. 17.10 shows that 
 satisfies condition (1); condition (2) for
the signature is obvious. Hence, the signature is a rational linear combination of
Pontryagin numbers. In particular, 
.X/ D ap1ŒX� if dim X D 4, 
.X/ D bp2ŒX�C
cp11ŒX� if dim X D 8, and so on. To find a; b; c; : : : , we need to have a sufficient
supply of computations in concrete examples. For example, H2m.CP2m/ D Z. The
matrix of the intersection form is just .1/; hence, 
.CP2m/ D 1. Furthermore,

	.CP2m/˚ 1 D .2mC 1/�C
(this is the complex version of Exercise 12), and hence

C	.CP2m/˚ 1C D .2mC 1/.�C ˚ �C/

(see Exercise 8), and

.p0 � p1 C p2 � � � � C .�1/mpm/.CP2m/ D Œ.1C x/.1 � x/�2mC1

D .1 � x2/2mC1

where x 2 H2.CP2m/ D Z is the canonical generator (see Sect. 19.5.D, including
Exercise 16). Hence,
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pi.CP2m/ D

8
<̂
:̂

 
2mC 1

i

!
x2i; if i � m;

0; if i > m:

In particular, p1.CP2/ D 3x2; p1ŒCP2� D 3; and, since 
.CP2/ D 1, then for every
(closed, orientable) four-dimensional manifold X,


.X/ D 1

3
p1ŒX�: (	)

(In particular, the Pontryagin number p1ŒX� of every closed orientable four-
dimensional manifold X is divisible by 3.) Furthermore, p11ŒCP4� D 25; p2ŒCP4� D
10; 
.CP4/ D 1. In addition,

.p0 C p1 C p2/.CP2 � CP2/ D .p0 C p1/.CP2/ � .p0 C p1/.CP2/

(the multiplication formula for the Pontryagin classes holds only modulo 2-torsion,
but there is no torsion in the cohomology of complex projective spaces), and hence

p1.CP2 � CP2/ D .1 � 3x2/C .3x2 � 1/;
p21.CP2 � CP2/ D 18.x2 � x2/;

p2.CP2 �CP2/ D p1.CP2/ � p1.CP2/ D 3x2 � 3x2;
p11ŒCP2 � CP2� D 18; p2ŒCP2 � CP2� D 9;

and also 
.CP2 � CP2/ D 1:

EXERCISE 32. Prove that the signature is multiplicative: 
.X � Y/ D 
.X/
.Y/.)

Hence, 1 D 10b C 25c; 1 D 9b C 18c; whence b D 7

45
; c D � 1

45
. Thus, for

dim X D 8,


.X/ D 7p2ŒX� � p11ŒX�

45
: (		)

(Hence, 7p2ŒX� � p11ŒX� is divisible by 45, and if the first Pontryagin class of a
closed orientable eight-dimensional manifold is zero, then its signature is divisible
by 7.) The formulas (	), (		) form the beginning of an infinite chain of formulas
relating the signature to the Pontryagin numbers. The work of explicitly writing
these formulas was done in the 1950s by F. Hirzebruch. He calculated the Pontryagin
numbers of manifolds of the form CP2m1 � � � � �CP2mk (which, essentially, we have
done) and, using the fact that the signatures of all these manifolds are equal to 1,
he found the coefficients of the Pontryagin numbers in the formulas for signatures.
The resulting formulas are presented in his book [46].
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E: Invariance Problems for Characteristic Classes of Manifolds

As we know, the Euler class of a manifold can be expressed through the Betti
numbers of this manifold. It turns out that although the Stiefel–Whitney classes
are not determined by either homology groups or even a cohomology ring of this
manifold, still they are homotopy invariant; that is, a map of one closed manifold
into another one which is a homotopy equivalence takes the Stiefel–Whitney classes
into the Stiefel–Whitney classes. This fact will be established (or, at least, discussed)
in Chap. 4 (Sect. 31.2). For Pontryagin classes, however, the homotopy invariance
fails (the only homotopy invariant nonzero polynomial in Pontryagin classes is the
signature). In the 1960s, S. Novikov proved the difficult theorem of topological
invariance of rational Pontryagin classes (a homeomorphism between two smooth
closed orientable manifolds takes Pontryagin classes into Pontryagin classes modulo
elements of finite order; these elements of finite order may be nonzero—there are
examples). A decade before that, V. Rokhlin, A. Schwarz, and R. Thom proved
this statement for homeomorphisms, establishing a correspondence between some
smooth triangulations of two smooth manifolds (see Rokhlin and Schwarz [72],
Thom [85]). This result leads naturally to the problem of “combinatorial calculation
of Pontryagin classes,” that is, their calculation via triangulation (compare to
Exercise 29). At present, this problem has been solved only for the first Pontryagin
class (see the article by Gabrielov, Gelfand, and Losik [42]).
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