Chapter 2
Preprocessing Procedures

2.1 Introduction

The purpose of this chapter is to present two important preprocessing procedures
than need to be carried before someone moves to the phase of recognizing technical
patterns in financial price series. First, the importance of detecting errors in a
dataset (the editing process) and various manners of replacing missing values
(imputation) are discussed. Second, after ensuring that datasets are cleaned, two
methodologies of identifying regional peaks and bottoms are presented. The first
method presented is the identification of regional locals by using a rolling window
of fixed size, while the second method includes the identification of local extrema
known in the context of data mining as perceptually important points. The identi-
fication of these regional locals is crucial in technical pattern recognition processes
since the criteria used for identifying a pattern mainly refer to sequences of local
extrema.

The rest of the chapter is organized as follows. In Sect. 2.2, means of dealing
with problematic datasets are discussed. In Sect. 2.3 two methods for the identifi-
cation of regional locals in price series are presented. More precisely, the use of a
rolling window is presented in Sect. 2.3.1, while the identification of perceptually
important points is presented in Sect. 2.3.2. Finally, in Sect. 2.4 we conclude. In
Appendices 1 and 2, the reader will find the developed Matlab code for the
methodology presented in Sects. 2.3.1 and 2.3.2 respectively.

2.2 Data Pre-processing

Even high quality data purchased from well reputed vendors might be problem-
atic. The quality of data used is crucial in any empirical assessment. If not
carefully pre-processed false conclusions might be reached, good trading systems

© Springer International Publishing Switzerland 2016 29
P.E. Tsinaslanidis, A.D. Zapranis, Technical Analysis for Algorithmic Pattern
Recognition, DOI 10.1007/978-3-319-23636-0_2

30 2 Preprocessing Procedures

might be rejected whilst in a worst-case scenario bad trading systems might be
approved. The old acronym GIGO mainly used in the field of computer science
can also be used in the scientific field of finance. It stands for “Garbage In,
Garbage Out”, and means that if invalid input data are used, invalid outputs will
result.

The process of detecting errors in statistical data is called editing. Chambers
(2001) mentions two different editing types: logical and statistical editing. The first
one refers to the process of detecting data values which violate particular
pre-defined rules. Values that fail a logical edit must be wrong and we call them
illogical. The second type of editing is the process of identifying suspicious values,
i.e. values that might be wrong. Values that fail the editing process are initially
replaced as missing values and subsequently if necessary are replaced by known
acceptable values, a process called imputation. The necessity of imputation varies,
but generally it is being adopted if the trading system considered is designed to
work with complete datasets.

Illogical values, as their name suggests, violate logical constraints. Common
examples of illogical values are observing negative values for the trading
volume, data falling on days where the market is closed (weekends or holidays)
and bad quotes where for example a tick of 21.62 should be 31.62. Detecting
illogical values can be in most cases a straightforward process. Consider the
following example where the variable of interest is the market price of a stock.
By calculating daily returns, we can easily spot daily returns which exceed the
maximum decline/rise permitted, i.e. they violate the limit up or limit down
boundaries (e.g. a daily change of 54 %). Such cases might result from missing
prices or bad quotes as well. More generally, distances of high, low and close
prices from the corresponding open prices can also be used for identifying
illogical values.

Outliers are extreme values, whose presence are theoretically possible, but raise
suspicions. One way to spot such cases is by calculating the variable’s mean and the
standard deviation, and subsequently identify observations distanced more than £3
standard deviations from the mean. After a careful examination, if we conclude that
an outlier is an error then we initially record it as a missing value. Kumiega and Van
Vliet (2008) describe another data cleaning process for outliers. By this process, a
compressing algorithm winsorizes outliers, by pulling them towards the mean and
replacing them with a value at specified limit, say three standard deviations.
However, in view of finance applications, where financial asset’s returns exhibit
time-varying volatility Kumiega and Van Vliet (2008) recommend winsorizing on a
rolling basis.

Either because there have been missing values in the initial dataset, or because
we replaced values failing the editing process with missing ones, the outcome is a
dataset with “holes”. Generally, there are two options to deal with this problem.
We can either ignore these missing values by not including them in our final

2.3 Identification of Regional Locals 31

dataset, or we can replace them with new acceptable values. The final choice
depends on the application considered. The first procedure has the drawback of
losing probable useful information from the initial sample. In addition, when the
number of errors is significant, ignoring missing values will reduce the sample
size. For the second alternative two methodologies can be used. In the first
methodology, called donor imputation, the missing values for one or more vari-
ables, called recipients, are replaced by the corresponding similar to them values
called donors (Beaumont and Bocci 2009). If donors are more than one then the
replacing value is determined by various ways like choosing the first candidate
donor, calculating the average value of all donors, choosing randomly among a set
of potential donors (Random Hot-Deck imputation) or using a Nearest-Neighbour
approach (Nearest-Neighbour) imputation. Alternatively, missing values can be
replaced by acceptable values by using a moving average or a more complex
model (like an ARIMA") prior to the missing value. Finally, missing values of
financial price series can also be replaced by linearly interpolating adjacent
values.

However, cleaning data might also raise some problems. It is not certain
whether the cleaned data were the values observed, when the actual trading took
place in real time (Kumiega and Van Vliet 2008). Thus, cleaned data, when used
for back-testing a trading system, might affect the results obtained and their
inferences.

2.3 Identification of Regional Locals

Financial price series have idiosyncratic characteristics over other price series.
Significant points (like regional locals and turning points) are crucial in pattern
recognition processes via visual assessment. Descriptions found in the literature,
for the visual identification of technical patterns, involve the assignment of
criteria (conditions) to sequences of regional locals. More precisely, Neftci
(1991) states:

...most patterns used by technical analysts need to be characterized by appropriate
sequences of local minima and/or maxima. . .

This section presents two methodologies for identifying regional locals. More
precisely, in Sect. 2.3.1 the identification of local minima and maxima with a rolling
window is described while in Sect. 2.3.2 the identification of perceptually important
points is presented.

! Autoregressive Integrated Moving Average.

32 2 Preprocessing Procedures
2.3.1 Identify Regional Locals with a Rolling Window

The prerequisite process for the identification of the technical patterns examined in
this book, involves the identification of regional peaks and bottoms with the
following developed Matlab function (see Appendix 1)*:

[Peaks, Bottoms] = RW (ys,w, pflag)

The RW () function takes three input variables: ys, w and pflag. “ys” is a column
vector of the y-coordinates (prices) of the examined price series, “w” is used to
define the width of the rolling window (RW), and “pflag” returns a corresponding
graph if it takes the value of one. The outputs are the regional locals identified by
the function. Particularly, Peaks (Bottoms) is am x 2 (k x 2) matrix containing the
coordinates of the m (k) identified peaks (bottoms). The first and second columns of
the above outputs contain the y and x-coordinates respectively. For a given price
series, an observation is identified as local peak (trough) if it is the largest (smallest)
of the observations in a window of size 2w + 1 centered on this observation. The
window slides by one observation in each iteration and the process is repeated until
the whole price series is scanned (Kugiumtzis et al. 2007).

Let {p}., and t€[l:4 be the prices (y-coordinates) and the time
(x-coordinates) of the examined price series of length ¢ respectively.® The indicator
t refers to the oldest observation when it takes the value of one and to the most
recent observation when it takes the value of ¢ respectively. The process for
identifying the regional locals is described in (2.1) and 2.2) V¢ € [w+1: £ —w).

Local Peak if p, > max{p[,fwz,fu}& Py > max{pwl”w]} (2.1)
Local Trough if p, < min{p[,,w%u}& P < min{p[ZHHW]} (2.2)

An example is illustrated in Fig. 2.1 where RW(-) identified 6 regional peaks and
seven regional bottoms (troughs) on NASDAQ Index by adopting a rolling window
of 31 days (w = 15). The identification process starts from the 16th observation
(t = 16) and terminates when ¢ = ¢ — 15, where £ is the length of the price series.

Alternative methods to identify regional locals are also provided in the bibliog-
raphy. By implementing kernel mean regression algorithm we can smooth the price
series and identify the corresponding extrema (Lo et al. 2000; Dawson and Steeley

2 Functions presented in this book have the following general form: [output,, output,, ...,
output,] = function’s name (input,, input,, ..., input,). The variables in the squared brackets are
the outputs generated by the corresponding function and the variables inside the brackets are the
necessary inputs. We follow the same notation used in the Matlab software since all the identifi-
cation mechanisms presented in this book were developed with the use of this software.

3 Hereafter we will use the notation [a : b] to refer to all positive natural values between the closed
interval [a, b], where 0 < a < band a,b € N.

2.3 Identification of Regional Locals 33

5500

— Price series
5000 - *_Bettoms
4500 |-

4000 -~

3500 |- {' V\/ " pg]

Price

3000 |- LA T -
2500 \ "-E [\ i |
2000 |- o A L e W .

1500 - o .

1000
11111098 117182001
Date

Fig. 2.1 Identification of regional locals on NASDAQ Index. Six Peaks and seven Bottoms were
identified by RW(-) with a rolling window of 31 days (w = 15)

2003; Savin et al. 2007). Lucke (2003) used a computer program which was
originally designed to identify business cycle turning points. Identification of
perceptually important points is an alternative algorithmic approach for detecting
regional significant points and it is presented in Sect. 2.3.2.

2.3.2 Perceptually Important Points

A promising method to exploit salient points from a price series is by using
Perceptually Important Points (PIPs). The identification methodology was first
introduced in Chung et al. (2001), and used in many applications on time series
data mining. More precisely, they have been used mainly for purposes of dimension
reduction (or else time series representation) (Fu et al. 2008; Phetchanchai
et al. 2010), as a dynamic approach for time series segmentation (Fu et al. 2006;
Jiang et al. 2007; Tsinaslanidis and Kugiumtzis 2014) and for clustering reasons
(Fu et al. 2004).* PIPs have been also used in finance applications to identify
technical patterns (Fu et al. 2007; Chen et al. 2013).

As a preprocessing step of our methodology, we may use PIPs in order to
identify significant points. The algorithm starts by characterizing the first and the
last observation as the first two PIPs. Subsequently, it calculates the distance
between all remaining observations and the two initial PIPs and signifies as the
third PIP the one with the maximum distance. The fourth PIP is the point that

* A comprehensive review on the existing time series data mining research is presented in Fu
(2011), where variant methodologies that deal with the aforementioned aspects of data mining are
highlighted.

34 2 Preprocessing Procedures

maximizes its distance to its adjacent PIPs (which are either the first and the third,
or the third and the second PIP). The algorithm stops when the required by the user
number of PIPs is identified.

Three metrics are generally used for the distance in the PIPs algorithm, namely
the Euclidean distance (ED) dp, the perpendicular distance (PD) dp and the vertical
distance (VD) dy. Let {p1,ps, . ..,ps} be the price time series of length ¢, and two
adjacent PIPs x; = (1, p,) and x,.7 = (t+ T, p,r). The Euclidean distance df of
each of the intermediate points x; = (i, p;), fori € {t+ 1, ...,t + T — 1} from the
two PIPs is defined in (2.3).

de (i3 5iar) =) (0= 0 + (o= P2+ e+ T =i+ (prr —)’ (23)

For the two other distances, we consider first the line connecting the two PIPs x;
= (t,p,) and xy7 = (t+ 7T, prur), z = si+c, and (i,z) the points on the line,
where the slope is s= (Diar — p,) /T and the constant term is
¢ = p,— t(pier — p;)/T. Then the perpendicular distance dp of any intermediate
point x; = (i, p;), between the two PIPs from the line is given by (2.4).

_sit+c—pi
dp(xi,x,,x,+r) = ﬁ (2-4)

Finally, (2.5) expresses the vertical distance dy of x; to the line.
dV('xiv-xtv-xl+T) = |S i +c— pl| (25)

For any of the three distances, denoted collectively d, the new PIP point,
x; = (i, py). is the one that maximizes the distance d at i* (2.6). In (2.6) “argmax”
stands for the argument of maximum.

i = argmax (d (x;, X;, Xp47)) (2.6)

l

Figure 2.2 presents a step-by-step identification process of five ED-PIPs on
NASDAQ Index for the requested period 19/11/1999-19/11/2001. Figure 2.3
presents a simplified illustration of the identification of the third PIP according
with the three aforementioned distance measures.

At this point the algorithmic methodology of PIPs’ identification is presented.
LetP = {p}.,and T = {r} ", are two £ x 1 column vectors containing the prices
(y-coordinates) and the time (x-coordinates) of the examined price series of length £
respectively. We subsequently define A, and A, two £ x 2 matrices containing the
x- and y-coordinates respectively, of the closer adjacent PIPs for the i iteration.”

5 Since the first two PIPs are defined as the first and the last observation the /" iteration identifies
the (1 +2)" PIP.

2.3 Identification of Regional Locals 35

Step: 1 Step: 2
6000 [. 6000 [
3
5000 /. '"'q 5000 | A
g 4000 /M\ \ I‘&'J'M\'f\m g 4000 ;/ﬂ 1 m rd\"’/\'\'
= n T ¥ / 1,
& 3000 [" A & 3000 [" 4
L W
2000 \V‘""‘h"/w\vi 2000 \VWM\/,,E
1000 1000 |
111911908 1111972001 11/19/1909 111972001
Date Date
Step: 3 Step: 4
6000 6000 |
3 3
5000 0 5000 | A,'/u‘ll
/] h . A
g 400 /V/ e A g 0| ‘ll'f' AN,
§ \ 8 W \w
& 3000 [) & 3000 }1 ,
W Was) \,* A
2000 \P"“’W 2000 | 5 "‘“"'VW\.V:
1000 1000 |
11/19/1998 11/19/2001 11/19/1999 1171972001
Date Date

Fig. 2.2 PIPs identification process. First 5 PIPs identified on NASDAQ Index, with the ED
measure

Fig. 2.3 Identification of the third PIP with three different distance measures ED, PD and VD

Particularly, the first column contains the coordinates of the closer adjacent PIP
whereas the second column contains the coordinates of the second closer adjacent
PIP. Existed PIPs are indicated with “nan”® in order to avoid the identification of
the same PIP. Consider the following simplified example. If ¢ = 6, in the first
iteration,: = 1, the third PIP is about to identified (since the first two PIPs are (1, p;)
and (6,pg)), and A, and Ay, are shown in (2.7) and (2.8).

S nan stands for “not-a-number”. A nan value is the result from operations which have undefined
numerical results. When nan is involved in a calculation (for example nan x 10) the result is
also nan.

36 2 Preprocessing Procedures

nan 1 1 6 6 nan /
An = [nan 6 6 1 1 nan } (2.7)
A — nan pg P Pe Pe nan (2 8)
M nan pe pPe P1 P1 nan '

In (2.7) and (2.8), X’ is the transpose of X. If the third identified PIP is (4, p4), in the
subsequent iteration, 1 = 2, (2.7) becomes

nan 1 4 nan 4 nan
A2 { nan 4 1 nan 6 nan } (2.9)
and (2.8)
4, _ |man pi py nan p, nan (2.10)
y2 nan p, p, nan pg nan |’ ‘

In every iteration, (2.11) measures the ED between the adjacent PIPs and
intermediate points.

ED, = {[Axl (:v 1) - T]oz + [Ayz (:7 1) - Pyz}d/z

A -7+ 462 -7 e

Here, ED, = {ed,,l}f:1 is an £ x 1 column vector containing the Euclidean
distances of all intermediate points from their two adjacent PIPs for the /" iteration,
o symbolizes the Hadamard (or else element-wise) product, X*" is the n™ element-
wise power of the matrix X, n € R, and X(:, j) represents the j’h column of matrix X.
The new PIP identified in " iteration (2.12) has coordinates
PIP, = (PIPy,,PIPy,), where

PIP, = <argmax(ed,,,), Prip,) (2.12)
) .

Alternatively, we can identify PIPs by measuring Perpendicular Distances
(PD) of the intermediate points from the lines passing through their two adjacent
PIPs. As already mentioned, on a two-dimensional, Cartesian coordinate system,
the points (7, z;) of a straight line are defined by z; = s i + ¢, where s is the slope of
the line and c is the constant term. Equations (2.13) and (2.14) show the calculation
of S, and C, respectively, which are two ¢ x 1 column vectors containing accord-

2.3 Identification of Regional Locals 37

ingly the slopes and constant terms of lines defined by all successive pairs of existed
PIPs, identified before the completion of the i iteration.

_ A 1(:7 1) - Ay,(Z,Z)
S =) Aal2) (2.13)
Co=Au(:,1) = Spedy(:,1) = Ay (:,2) — oy (:,2) (2.14)

Subsequently, PD, = { pa’,,,},/’:1 is a £ x 1 column vector containing all points’
corresponding perpendicular distances as measured within the " iteration (2.15).”

S§;oT—P+C,
PD, = |°—+1/2| (2.15)
(s2+1)
Similarly with the case of ED-PIPs the new PD-PIP has coordinates
PIP, = <argmax(pd,,,), Prip,) (2.16)
p ,

Finally by using the Vertical Distance (VD) as a distance measure, the VD, =
{vd,,,}f:1 is an £ x 1 column vector defined by (2.17)

VD, = |Z, — P| (2.17)
where
Z, = S,oT + C,. (2.18)

Similarly, the new VD-PIP has coordinates

PIP, = <argmax(vd,,,), Prip,) (2.19)
; ,

We prefer to use matrix notations for the above calculations in order to avoid
“for-loops” in programming and enhance the computational speed. The Matlab
code for the PIPs identification process we described above is provided in Appen-
dix 2. Alternatively the reader may use the relevant equations referred in Fu
et al. (2008) or (2.3)—(2.6).

7 Since the division between matrices is not defined in Egs. (2.13) and (2.14) an element wise
division is implied.

38 2 Preprocessing Procedures
2.4 Conclusions

For reliable results when assessing a trading system the use of high-quality data is
necessary. Data retrieved even from well-reputed vendors may be problematic.
Illogical, suspicious and missing values are the most common problems that need to
be dealt before performing an empirical analysis. In this chapter these issues were
discussed and various methods for dealing with these problems were highlighted.

The second part of this chapter focuses on the identification of regional locals on
financial price series. Someone who is already familiar with the descriptions for
identifying various technical patterns, should have noticed that these descriptions
mainly refer to specific criteria that a sequence of regional locals must fulfil for a
successful pattern confirmation. In this chapter two methodologies for identifying
regional locals were presented. The first includes the use of a RW centered on each
observation. This observation is characterized as a local peak (bottom) if it is the
maximum (minimum) of all observations included in this window. This is a
sequential algorithmic approach which starts from the first and terminates to the
last available observation. This means that locals that correspond to earlier obser-
vations are identified first. When using RW the user must set the window size and
the number of regional locals that will be identified is not known, a priori. On the
contrary, PIPs identification is an algorithmic process where the user must specify
the distance measure to be used and the number of regional locals to be identified.
In this process a series is scanned dynamically until the desired number of regional
locals is identified. It is up to the discretion of the user to decide which one of the
presented methods (if any) should be used.

Appendix 1: RW Function
1.1. The Function
[Peaks, Bottoms] = RW (ys,w, pflag)

1.2. Description

This function identifies regional peaks and bottoms of a price series with a RW of
size 2w + 1, and a slide step of one observation.

Inputs

1. ys: Price series (Column Vector).
2. w: Is used to define the size of the RW, which is 2w + 1.
3. pflag: If 1, the function generates a plot.

2.4 Conclusions 39

Outputs

1. Peaks: An (n x 2) matrix containing the coordinates of the n identified peaks.
2. Bottoms: A (k x 2) matrix containing the coordinates of the k identified
bottoms.
The first and second column of these outputs contains the y- and x-coordinates
respectively.

1.3. Code

function [Peaks,Bottoms]=RW (ys,w, pflag)
l=length(ys);
Peaks_Bottoms=zeros(1l,2) ;%Preallocation
for i=w+1:1-w%Index peaks and bottoms with ones

ifys(i,l)>max(ys(i-w:i-1))...

&& ys (i, 1) >max(ys (i+1:1+w))
Peaks_Bottoms (i,1)=1;
end
ifys(i,l)<min(ys(i-w:i-1))...
&& ys(i,1)<min(ys (i+1:1i+w))
Peaks_Bottoms (1,2)=1;

end
end
P_Indx=find (Peaks_Bottoms(:,1));
B_Indx=find (Peaks_Bottoms(:,2));
Peaks=[ys (P_Indx),P_Indx];
Bottoms=[ys (B_Indx),B_Indx];
if pflag==

plot(ys),holdon

plot (Peaks(:,2),Peaks(:,1), 'ro")

plot (Bottoms(:,2),Bottoms(:,1), 'r*")

legend(’Price series’, 'Peaks’, 'Bottoms’), hold off
end
end

40 2 Preprocessing Procedures

Appendix 2: PIPs Function
2.1. The Function
[PIPxy] = PIPs(ys,n of PIPs,type of dist,pflag)

2.2. Description

This function identifies the Perceptually Important Points (PIPs) on a price series.

Inputs

1. ys: Price series (Column Vector).

2. nof PIPS: Number of requested PIPs.

3. type of dist: 1 = (Euclidean Distance) ED, 2 = (Perpendicular Distance) PD and
3 = (Vertical Distance) VD.

4. pflag: If 1, the function generates a plot.

Outputs

1. PIPxy: A (nof PIPs x 2) matrix containing the coordinates of PIPs. The first
(second) column presents the x-coordinates (y-coordinates).

2.3. Code

function [PIPxy]=PIPs (ys,nofPIPs, typeofdist, pflag)
l=1length(ys) ;

xs=(1:1)"';% Column vector with xs

PIP_points=zeros(l,1) ;% Binary indexation
PIP_points([1,1],1)=1;% One indicate the PIP points.The first two
PIPs are the first and the last observation.

Adjacents=zeros(1l,2);
currentstate=2;% Initial PIPs

while currentstate<=nofPIPs
Existed_Pips=find (PIP_points) ;
currentstate=length (Existed_Pips) ;
locator=nan(l, currentstate);
for j=1:currentstate

locator(:,j)=abs (xs-Existed_Pips(j,1));

end
bl=zeros(1l,1) ;b2=Dbl;

2.4 Conclusions 41

fori=1:1
[~,bl(i)]l=min(locator (i, :)) ;% Closer point
locator(i,bl(i))=nan; %$ Do not consider Closer point
[~,b2(1)]=min(locator (i, :)) ;% 2nd Closer Point
Adjacents(i,1)=Existed_Pips(bl(i)) ;%x-coordinates of the
closer point
Adjacents (i,2)=Existed_Pips(b2(i)) ;%x-coordinates of the
2nd closer points
end
%% Calculate Distance
Adjx=Adjacents;
Adjy=I[ys(Adjacents(:,1)),ys(Adjacents(:,2))1;

Adjx (Existed_Pips, :)=nan;$% Existed PIPs are not candidates for
new PIP.
Adjy (Existed_Pips, :)=nan;

if typeofdist==1
[D]=EDist (ys,xs,Adjx,Adjy) ;
elseif typeofdist==2
[D]=PDist (ys,xs,Adjx,Adjy) ;
else
[D]=VDist (ys, xs,Adjx,Ad]jy) ;
end
[~,Dmax] =max (D) ;
PIP_points (Dmax,1)=1;
currentstate=currentstate+1;
end
PIPxy=[Existed_Pips, ys(Existed_Pips)];
%% Plot
if pflag==1
plot(ys), hold on
plot (Existed_ Pips,ys(Existed_Pips), 'r*’),hold off
end
end
%% Distance measures
% Euclidean Distance
function [ED]=EDist (ys,xs,Adjx,Adjy)
ED=((Adjx(:,2)-xs) .72+ (Adjy(:,2)-ys)."2) .7 (1/2)+...
((Adjx(:,1)-xs) .72+ (Adjy(:,1)-ys)."2).7(1/2);
end
% Perpendicular Distance
function [PD]=PDist (ys,xs,Adjx,Adjy)
slopes=(Adjy(:,2)-Adjy(:,1))./(Adjx(:,2)-Adjx(:,1));
constants=Adjy(:,2)-slopes.*Adjx(:,2);
PD=abs (slopes. *xs-ys+constants) ./ (slopes.”2+1) .7 (1/2) ;

% line function: y=kx+m (1)

42 2 Preprocessing Procedures

o0

the perpendicular distance (PD) froma point p(x1l,yl) toa line

o°

is given by the following formula:

% PD=abs (k*x1-yl+m) /sqgrt (k"2+1)

end

% Vertical Distance

function [VD]=VDist (ys,xs,Adjx,Adjy)
slopes=(Adjy(:,2)-Adjy(:,1))./(Adjx(:,2)-Adjx(:,1));
constants=Adjy(:,2)-slopes.*Adjx(:,2);
Yshat=slopes.*xs+constants;

VD=abs (Yshat-ys) ;

end

References

Beaumont J-F, Bocci C (2009) Variance estimation when donor imputation is used to fill in
missing values. Can J Stat 37(3):400-416

Chambers R (2001) Evaluation criteria for statistical editing and imputation. National Statistics
Methodological Series No. 28. Office for National Statistics, UK

Chen C-H, Tseng VS, Yu H-H, Hong T-P (2013) Time series pattern discovery by a PIP-based
evolutionary approach. Soft Comput 17:1699-1710

Chung FL, Fu TC, Luk R, Ng V (2001) Flexible time series pattern matching based on perceptually
important points. Paper presented at the international joint conference on artificial intelligence
workshop on learning from temporal and spatial data

Dawson ER, Steeley JM (2003) On the existence of visual technical patterns in the UK stock
market. J Bus Financ Account 30(1 and 2):263-293

Fu TC (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164-181

Fu TC, Chung FL, Luk R, Ng CM (2004) Financial time series indexing based on low resolution
clustering. In: Workshop at the 4th international conference on data mining, pp. 5-14

Fu TC, Chung FL, Luk R, Ng CM (2007) Stock time series pattern matching: template-based
vs. rule-based approaches. Eng Appl Artif Intell 20(3):347-364

Fu TC, Chung FL, Luk R, Ng CM (2008) Representing financial time series based on data point
importance. Eng Appl Artif Intell 21(2):277-300

Fu TC, Chung FL, Ng CM (2006) Financial time series segmentation based on specialized binary
tree representation. In: International conference on data mining, pp. 3-9

Jiang J, Zhang Z, Wang HA (2007) New segmentation algorithm to stock time series based on PIP
approach. In: International conference on wireless communications, networking and mobile
computing, pp. 5609-5612

Kugiumtzis D, Vlachos I, Papana A, Larsson PG (2007) Assessment of measures of scalar time
series analysis in discriminating Preictal states. Int J Bioelectromag 9(3):134-145

Kumiega A, Van Vliet B (2008) Quality money management. Elsevier, Amsterdam

Lo AW, Mamaysky H, Wang J (2000) Foundations of technical analysis: computational algo-
rithms, statistical inference, and empirical implementation. J Financ 55(4):1705-1765

Lucke B (2003) Are technical trading rules profitable? Evidence for head-and-shoulder rules. Appl
Econ 35:33-40

Neftci SN (1991) Naive trading rules in financial markets and Wiener-Kolmogorov prediction
theory: a study of "Technical Analysis". J Bus 64(4):549-571

References 43

Phetchanchai C, Selamat A, Rehman A, Saba T (2010) Index financial time series based on zigzag-
perceptually important points. J Comput Sci 6(12):1389-1395

Savin G, Weller P, Zvingelis J (2007) The predictive power of “Head-and-Shoulders” price
patterns in the U.S. stock market. J Financ Econometr 5(2):243-265

Tsinaslanidis PE, Kugiumtzis D (2014) A prediction scheme using perceptually important points
and dynamic time warping. Expert Syst Appl 41(15):6848-6860

2 Springer
http://www.springer.com/978-3-319-23635-3

Technical Analysis for Algorithmic Pattern Recognition
Tsinaslanidis, P.E.; Zapranis, A.D.

2016, XM, 204 p., Hardcover

ISBN: 978-3-319-23635-3

	Chapter 2: Preprocessing Procedures
	2.1 Introduction
	2.2 Data Pre-processing
	2.3 Identification of Regional Locals
	2.3.1 Identify Regional Locals with a Rolling Window
	2.3.2 Perceptually Important Points

	2.4 Conclusions
	Appendix 1: RW Function
	1.1. The Function
	1.2. Description
	1.3. Code

	Appendix 2: PIPs Function
	2.1. The Function
	2.2. Description
	2.3. Code

	References

