
Chapter 2

Preprocessing Procedures

2.1 Introduction

The purpose of this chapter is to present two important preprocessing procedures

than need to be carried before someone moves to the phase of recognizing technical

patterns in financial price series. First, the importance of detecting errors in a

dataset (the editing process) and various manners of replacing missing values

(imputation) are discussed. Second, after ensuring that datasets are cleaned, two

methodologies of identifying regional peaks and bottoms are presented. The first

method presented is the identification of regional locals by using a rolling window

of fixed size, while the second method includes the identification of local extrema

known in the context of data mining as perceptually important points. The identi-

fication of these regional locals is crucial in technical pattern recognition processes

since the criteria used for identifying a pattern mainly refer to sequences of local

extrema.

The rest of the chapter is organized as follows. In Sect. 2.2, means of dealing

with problematic datasets are discussed. In Sect. 2.3 two methods for the identifi-

cation of regional locals in price series are presented. More precisely, the use of a

rolling window is presented in Sect. 2.3.1, while the identification of perceptually

important points is presented in Sect. 2.3.2. Finally, in Sect. 2.4 we conclude. In

Appendices 1 and 2, the reader will find the developed Matlab code for the

methodology presented in Sects. 2.3.1 and 2.3.2 respectively.

2.2 Data Pre-processing

Even high quality data purchased from well reputed vendors might be problem-

atic. The quality of data used is crucial in any empirical assessment. If not

carefully pre-processed false conclusions might be reached, good trading systems
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might be rejected whilst in a worst-case scenario bad trading systems might be

approved. The old acronym GIGO mainly used in the field of computer science

can also be used in the scientific field of finance. It stands for “Garbage In,

Garbage Out”, and means that if invalid input data are used, invalid outputs will

result.

The process of detecting errors in statistical data is called editing. Chambers

(2001) mentions two different editing types: logical and statistical editing. The first

one refers to the process of detecting data values which violate particular

pre-defined rules. Values that fail a logical edit must be wrong and we call them

illogical. The second type of editing is the process of identifying suspicious values,

i.e. values that might be wrong. Values that fail the editing process are initially

replaced as missing values and subsequently if necessary are replaced by known

acceptable values, a process called imputation. The necessity of imputation varies,

but generally it is being adopted if the trading system considered is designed to

work with complete datasets.

Illogical values, as their name suggests, violate logical constraints. Common

examples of illogical values are observing negative values for the trading

volume, data falling on days where the market is closed (weekends or holidays)

and bad quotes where for example a tick of 21.62 should be 31.62. Detecting

illogical values can be in most cases a straightforward process. Consider the

following example where the variable of interest is the market price of a stock.

By calculating daily returns, we can easily spot daily returns which exceed the

maximum decline/rise permitted, i.e. they violate the limit up or limit down

boundaries (e.g. a daily change of 54 %). Such cases might result from missing

prices or bad quotes as well. More generally, distances of high, low and close

prices from the corresponding open prices can also be used for identifying

illogical values.

Outliers are extreme values, whose presence are theoretically possible, but raise

suspicions. One way to spot such cases is by calculating the variable’s mean and the

standard deviation, and subsequently identify observations distanced more than�3

standard deviations from the mean. After a careful examination, if we conclude that

an outlier is an error then we initially record it as a missing value. Kumiega and Van

Vliet (2008) describe another data cleaning process for outliers. By this process, a

compressing algorithm winsorizes outliers, by pulling them towards the mean and

replacing them with a value at specified limit, say three standard deviations.

However, in view of finance applications, where financial asset’s returns exhibit

time-varying volatility Kumiega and Van Vliet (2008) recommend winsorizing on a

rolling basis.

Either because there have been missing values in the initial dataset, or because

we replaced values failing the editing process with missing ones, the outcome is a

dataset with “holes”. Generally, there are two options to deal with this problem.

We can either ignore these missing values by not including them in our final
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dataset, or we can replace them with new acceptable values. The final choice

depends on the application considered. The first procedure has the drawback of

losing probable useful information from the initial sample. In addition, when the

number of errors is significant, ignoring missing values will reduce the sample

size. For the second alternative two methodologies can be used. In the first

methodology, called donor imputation, the missing values for one or more vari-

ables, called recipients, are replaced by the corresponding similar to them values

called donors (Beaumont and Bocci 2009). If donors are more than one then the

replacing value is determined by various ways like choosing the first candidate

donor, calculating the average value of all donors, choosing randomly among a set

of potential donors (Random Hot-Deck imputation) or using a Nearest-Neighbour

approach (Nearest-Neighbour) imputation. Alternatively, missing values can be

replaced by acceptable values by using a moving average or a more complex

model (like an ARIMA1) prior to the missing value. Finally, missing values of

financial price series can also be replaced by linearly interpolating adjacent

values.

However, cleaning data might also raise some problems. It is not certain

whether the cleaned data were the values observed, when the actual trading took

place in real time (Kumiega and Van Vliet 2008). Thus, cleaned data, when used

for back-testing a trading system, might affect the results obtained and their

inferences.

2.3 Identification of Regional Locals

Financial price series have idiosyncratic characteristics over other price series.

Significant points (like regional locals and turning points) are crucial in pattern

recognition processes via visual assessment. Descriptions found in the literature,

for the visual identification of technical patterns, involve the assignment of

criteria (conditions) to sequences of regional locals. More precisely, Neftci

(1991) states:

. . .most patterns used by technical analysts need to be characterized by appropriate

sequences of local minima and/or maxima. . .

This section presents two methodologies for identifying regional locals. More

precisely, in Sect. 2.3.1 the identification of local minima and maxima with a rolling

window is described while in Sect. 2.3.2 the identification of perceptually important

points is presented.

1 Autoregressive Integrated Moving Average.
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2.3.1 Identify Regional Locals with a Rolling Window

The prerequisite process for the identification of the technical patterns examined in

this book, involves the identification of regional peaks and bottoms with the

following developed Matlab function (see Appendix 1)2:

Peaks;Bottoms½ � ¼ RW ys;w; pflagð Þ

The RW �ð Þ function takes three input variables: ys, w and pflag. “ys” is a column

vector of the y-coordinates (prices) of the examined price series, “w” is used to

define the width of the rolling window (RW), and “pflag” returns a corresponding
graph if it takes the value of one. The outputs are the regional locals identified by

the function. Particularly, Peaks (Bottoms) is am� 2 k � 2ð Þmatrix containing the

coordinates of the m (k) identified peaks (bottoms). The first and second columns of

the above outputs contain the y and x-coordinates respectively. For a given price

series, an observation is identified as local peak (trough) if it is the largest (smallest)

of the observations in a window of size 2wþ 1 centered on this observation. The

window slides by one observation in each iteration and the process is repeated until

the whole price series is scanned (Kugiumtzis et al. 2007).

Let ptf g ‘
t¼1 and t 2 1 : ‘½ � be the prices (y-coordinates) and the time

(x-coordinates) of the examined price series of length ‘ respectively.3 The indicator
t refers to the oldest observation when it takes the value of one and to the most

recent observation when it takes the value of ‘ respectively. The process for

identifying the regional locals is described in (2.1) and (2.2) 8 t 2 wþ 1 : ‘� w½ �.

Local Peak if pt > max p t�w:t�1½ �
n o

& pt > max p tþ1:tþw½ �
n o

ð2:1Þ

Local Trough if pt < min p t�w:t�1½ �
n o

& pt < min p tþ1:tþw½ �
n o

ð2:2Þ

An example is illustrated in Fig. 2.1 where RW �ð Þ identified 6 regional peaks and

seven regional bottoms (troughs) on NASDAQ Index by adopting a rolling window

of 31 days w ¼ 15ð Þ. The identification process starts from the 16th observation

t ¼ 16ð Þ and terminates when t ¼ ‘� 15, where ‘ is the length of the price series.

Alternative methods to identify regional locals are also provided in the bibliog-

raphy. By implementing kernel mean regression algorithm we can smooth the price

series and identify the corresponding extrema (Lo et al. 2000; Dawson and Steeley

2 Functions presented in this book have the following general form: [output1, output2, . . .,
outputn]¼ function’s name (input1, input2, . . ., inputn). The variables in the squared brackets are

the outputs generated by the corresponding function and the variables inside the brackets are the

necessary inputs. We follow the same notation used in the Matlab software since all the identifi-

cation mechanisms presented in this book were developed with the use of this software.
3 Hereafter we will use the notation [a : b] to refer to all positive natural values between the closed
interval [a, b], where 0 < a < b and a, b 2 ℕ.
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2003; Savin et al. 2007). Lucke (2003) used a computer program which was

originally designed to identify business cycle turning points. Identification of

perceptually important points is an alternative algorithmic approach for detecting

regional significant points and it is presented in Sect. 2.3.2.

2.3.2 Perceptually Important Points

A promising method to exploit salient points from a price series is by using

Perceptually Important Points (PIPs). The identification methodology was first

introduced in Chung et al. (2001), and used in many applications on time series

data mining. More precisely, they have been used mainly for purposes of dimension

reduction (or else time series representation) (Fu et al. 2008; Phetchanchai

et al. 2010), as a dynamic approach for time series segmentation (Fu et al. 2006;

Jiang et al. 2007; Tsinaslanidis and Kugiumtzis 2014) and for clustering reasons

(Fu et al. 2004).4 PIPs have been also used in finance applications to identify

technical patterns (Fu et al. 2007; Chen et al. 2013).

As a preprocessing step of our methodology, we may use PIPs in order to

identify significant points. The algorithm starts by characterizing the first and the

last observation as the first two PIPs. Subsequently, it calculates the distance

between all remaining observations and the two initial PIPs and signifies as the

third PIP the one with the maximum distance. The fourth PIP is the point that

Fig. 2.1 Identification of regional locals on NASDAQ Index. Six Peaks and seven Bottoms were

identified by RW �ð Þ with a rolling window of 31 days (w¼ 15)

4 A comprehensive review on the existing time series data mining research is presented in Fu

(2011), where variant methodologies that deal with the aforementioned aspects of data mining are

highlighted.
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maximizes its distance to its adjacent PIPs (which are either the first and the third,

or the third and the second PIP). The algorithm stops when the required by the user

number of PIPs is identified.

Three metrics are generally used for the distance in the PIPs algorithm, namely

the Euclidean distance (ED) dE, the perpendicular distance (PD) dP and the vertical
distance (VD) dV. Let {p1, p2, . . ., p‘} be the price time series of length ‘, and two

adjacent PIPs xt ¼ t; ptð Þ and xtþT ¼ tþ T, ptþT

� �
. The Euclidean distance dE of

each of the intermediate points xi ¼ i; pið Þ, for i 2 tþ 1, . . . , tþ T � 1f g from the

two PIPs is defined in (2.3).

dE xi; xt; xtþTð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� ið Þ2 þ pt � pið Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ T � ið Þ2 þ ptþT � pi

� �2q
ð2:3Þ

For the two other distances, we consider first the line connecting the two PIPs xt
¼ t; ptð Þ and xtþT ¼ tþ T, ptþT

� �
, zi ¼ s iþ c, and (i, zi) the points on the line,

where the slope is s ¼ ptþT � pt
� �

=T and the constant term is

c ¼ pt � t ptþT � pt
� �

=T. Then the perpendicular distance dP of any intermediate

point xi ¼ i; pið Þ, between the two PIPs from the line is given by (2.4).

dP xi; xt; xtþTð Þ ¼ s iþ c� pij jffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p ð2:4Þ

Finally, (2.5) expresses the vertical distance dV of xi to the line.

dV xi; xt; xtþTð Þ ¼ s iþ c� pij j ð2:5Þ

For any of the three distances, denoted collectively d, the new PIP point,

x*i ¼ i*; pi*
� �

, is the one that maximizes the distance d at i* (2.6). In (2.6) “argmax”

stands for the argument of maximum.

i* ¼ argmax
i

d xi; xt; xtþTð Þð Þ ð2:6Þ

Figure 2.2 presents a step-by-step identification process of five ED-PIPs on

NASDAQ Index for the requested period 19/11/1999–19/11/2001. Figure 2.3

presents a simplified illustration of the identification of the third PIP according

with the three aforementioned distance measures.

At this point the algorithmic methodology of PIPs’ identification is presented.

Let P ¼ ptf g ‘
t¼1 and T ¼ tf g ‘

t¼1 are two ‘� 1 column vectors containing the prices

(y-coordinates) and the time (x-coordinates) of the examined price series of length ‘
respectively. We subsequently define Axı and Ayı two ‘� 2 matrices containing the

x- and y-coordinates respectively, of the closer adjacent PIPs for the ıth iteration.5

5 Since the first two PIPs are defined as the first and the last observation the ıth iteration identifies

the ıþ 2ð Þth PIP.
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Particularly, the first column contains the coordinates of the closer adjacent PIP

whereas the second column contains the coordinates of the second closer adjacent

PIP. Existed PIPs are indicated with “nan”6 in order to avoid the identification of

the same PIP. Consider the following simplified example. If ‘ ¼ 6, in the first

iteration, ı ¼ 1, the third PIP is about to identified (since the first two PIPs are (1, p1)
and (6, p6)), and Ax1 and Ay1 are shown in (2.7) and (2.8).

Fig. 2.2 PIPs identification process. First 5 PIPs identified on NASDAQ Index, with the ED

measure

Fig. 2.3 Identification of the third PIP with three different distance measures ED, PD and VD

6 nan stands for “not-a-number”. A nan value is the result from operations which have undefined

numerical results. When nan is involved in a calculation (for example nan� 10) the result is

also nan.
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Ax1 ¼ nan 1

nan 6

1 6

6 1

6 nan
1 nan

� �0

ð2:7Þ

Ay1 ¼ nan p1
nan p6

p1 p6
p6 p1

p6 nan
p1 nan

� �0

ð2:8Þ

In (2.7) and (2.8), X0 is the transpose of X. If the third identified PIP is (4, p4), in the
subsequent iteration, ı ¼ 2, (2.7) becomes

Ax2 ¼ nan 1

nan 4

4 nan
1 nan

4 nan
6 nan

� �0

ð2:9Þ

and (2.8)

Ay2 ¼ nan p1
nan p4

p4 nan
p1 nan

p4 nan
p6 nan

� �0

: ð2:10Þ

In every iteration, (2.11) measures the ED between the adjacent PIPs and

intermediate points.

EDı ¼ Axı :; 1ð Þ � T½ �⋄2 þ Ayı :; 1ð Þ � P
� �⋄2n o⋄1=2

þ Axı :; 2ð Þ � T½ �⋄2 þ Ayı :; 2ð Þ � P
� �⋄2n o⋄1=2

ð2:11Þ

Here, EDı ¼ edt, ıf g ‘
t¼1 is an ‘� 1 column vector containing the Euclidean

distances of all intermediate points from their two adjacent PIPs for the ıth iteration,
⋄ symbolizes the Hadamard (or else element-wise) product, X⋄n is the nth element-

wise power of the matrix X, n 2 ℝ, and X(:, j) represents the jth column of matrix X.
The new PIP identified in ıth iteration (2.12) has coordinates

PIPı ¼ PIPx, ı,PIPy, ı
� �

, where

PIPı ¼ argmax
t

edt, ıð Þ, pPIPx, ı

	 

: ð2:12Þ

Alternatively, we can identify PIPs by measuring Perpendicular Distances

(PD) of the intermediate points from the lines passing through their two adjacent

PIPs. As already mentioned, on a two-dimensional, Cartesian coordinate system,

the points (i, zi) of a straight line are defined by zi ¼ s iþ c; where s is the slope of
the line and c is the constant term. Equations (2.13) and (2.14) show the calculation

of Sı and Cı respectively, which are two ‘� 1 column vectors containing accord-
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ingly the slopes and constant terms of lines defined by all successive pairs of existed

PIPs, identified before the completion of the ıth iteration.

Sı ¼ Ayı :; 1ð Þ � Ayı :; 2ð Þ
Axı :; 1ð Þ � Axı :; 2ð Þ ð2:13Þ

Cı ¼ Ayı :; 1ð Þ � Sı⋄Axı :; 1ð Þ ¼ Ayı :; 2ð Þ � Sı⋄Axı :; 2ð Þ ð2:14Þ

Subsequently, PDı ¼ pdt, ıf g ‘
t¼1 is a ‘� 1 column vector containing all points’

corresponding perpendicular distances as measured within the ıth iteration (2.15).7

PDı ¼ Sı⋄T� Pþ Cıj j
S⋄2
ı þ 1

� �⋄1=2 ð2:15Þ

Similarly with the case of ED-PIPs the new PD-PIP has coordinates

PIPı ¼ argmax
t

pdt, ıð Þ, pPIPx, ı

	 

: ð2:16Þ

Finally by using the Vertical Distance (VD) as a distance measure, the VDı ¼
vdt, ıf g ‘

t¼1 is an ‘� 1 column vector defined by (2.17)

VDı ¼ Zı � Pj j ð2:17Þ

where

Zı ¼ Sı⋄Tþ Cı: ð2:18Þ

Similarly, the new VD-PIP has coordinates

PIPı ¼ argmax
t

vdt, ıð Þ, pPIPx, ı

	 

ð2:19Þ

We prefer to use matrix notations for the above calculations in order to avoid

“for-loops” in programming and enhance the computational speed. The Matlab

code for the PIPs identification process we described above is provided in Appen-

dix 2. Alternatively the reader may use the relevant equations referred in Fu

et al. (2008) or (2.3)–(2.6).

7 Since the division between matrices is not defined in Eqs. (2.13) and (2.14) an element wise

division is implied.
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2.4 Conclusions

For reliable results when assessing a trading system the use of high-quality data is

necessary. Data retrieved even from well-reputed vendors may be problematic.

Illogical, suspicious and missing values are the most common problems that need to

be dealt before performing an empirical analysis. In this chapter these issues were

discussed and various methods for dealing with these problems were highlighted.

The second part of this chapter focuses on the identification of regional locals on

financial price series. Someone who is already familiar with the descriptions for

identifying various technical patterns, should have noticed that these descriptions

mainly refer to specific criteria that a sequence of regional locals must fulfil for a

successful pattern confirmation. In this chapter two methodologies for identifying

regional locals were presented. The first includes the use of a RW centered on each

observation. This observation is characterized as a local peak (bottom) if it is the

maximum (minimum) of all observations included in this window. This is a

sequential algorithmic approach which starts from the first and terminates to the

last available observation. This means that locals that correspond to earlier obser-

vations are identified first. When using RW the user must set the window size and

the number of regional locals that will be identified is not known, a priori. On the

contrary, PIPs identification is an algorithmic process where the user must specify

the distance measure to be used and the number of regional locals to be identified.

In this process a series is scanned dynamically until the desired number of regional

locals is identified. It is up to the discretion of the user to decide which one of the

presented methods (if any) should be used.

Appendix 1: RW Function

1.1. The Function

Peaks;Bottoms½ � ¼ RW ys;w; pflagð Þ

1.2. Description

This function identifies regional peaks and bottoms of a price series with a RW of

size 2wþ 1, and a slide step of one observation.

Inputs

1. ys: Price series (Column Vector).

2. w: Is used to define the size of the RW, which is 2wþ 1.

3. pflag: If 1, the function generates a plot.
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Outputs

1. Peaks: An n � 2ð Þ matrix containing the coordinates of the n identified peaks.

2. Bottoms: A k � 2ð Þ matrix containing the coordinates of the k identified

bottoms.

The first and second column of these outputs contains the y- and x-coordinates
respectively.

1.3. Code

function [Peaks,Bottoms]¼RW(ys,w,pflag)

l¼length(ys);

Peaks_Bottoms¼zeros(l,2);%Preallocation

for i¼w+1:l-w%Index peaks and bottoms with ones

if ys(i,1)>max(ys(i-w:i-1)). . .

&& ys(i,1)>max(ys(i+1:i+w))

Peaks_Bottoms(i,1)¼1;

end

if ys(i,1)<min(ys(i-w:i-1)). . .

&& ys(i,1)<min(ys(i+1:i+w))

Peaks_Bottoms(i,2)¼1;

end

end

P_Indx¼find(Peaks_Bottoms(:,1));

B_Indx¼find(Peaks_Bottoms(:,2));

Peaks¼[ys(P_Indx),P_Indx];

Bottoms¼[ys(B_Indx),B_Indx];

if pflag¼¼1

plot(ys),hold on

plot(Peaks(:,2),Peaks(:,1),’ro’)

plot(Bottoms(:,2),Bottoms(:,1),’r*’)

legend(’Price series’,’Peaks’,’Bottoms’), hold off

end

end
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Appendix 2: PIPs Function

2.1. The Function

PIPxy½ � ¼ PIPs ys, n of PIPs, type of dist, pflagð Þ

2.2. Description

This function identifies the Perceptually Important Points (PIPs) on a price series.

Inputs

1. ys: Price series (Column Vector).

2. n of PIPS: Number of requested PIPs.

3. type of dist: 1¼ (Euclidean Distance) ED, 2¼ (Perpendicular Distance) PD and

3¼ (Vertical Distance) VD.

4. pflag: If 1, the function generates a plot.

Outputs

1. PIPxy: A nof PIPs � 2ð Þ matrix containing the coordinates of PIPs. The first

(second) column presents the x-coordinates (y-coordinates).

2.3. Code

function [PIPxy]¼PIPs(ys,nofPIPs,typeofdist,pflag)

l¼length(ys);

xs¼(1:l)’;% Column vector with xs

PIP_points¼zeros(l,1);% Binary indexation

PIP_points([1,l],1)¼1;% One indicate the PIP points.The first two

PIPs are the first and the last observation.

Adjacents¼zeros(l,2);

currentstate¼2;% Initial PIPs

while currentstate<¼nofPIPs

Existed_Pips¼find(PIP_points);

currentstate¼length(Existed_Pips);

locator¼nan(l,currentstate);

for j¼1:currentstate

locator(:,j)¼abs(xs-Existed_Pips(j,1));

end

b1¼zeros(1,l);b2¼b1;
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for i¼1:l

[~,b1(i)]¼min(locator(i,:));% Closer point

locator(i,b1(i))¼nan; % Do not consider Closer point

[~,b2(i)]¼min(locator(i,:));% 2nd Closer Point

Adjacents(i,1)¼Existed_Pips(b1(i));%x-coordinates of the

closer point

Adjacents(i,2)¼Existed_Pips(b2(i));%x-coordinates of the

2nd closer points

end

%% Calculate Distance

Adjx¼Adjacents;

Adjy¼[ys(Adjacents(:,1)),ys(Adjacents(:,2))];

Adjx(Existed_Pips,:)¼nan;% Existed PIPs are not candidates for

new PIP.

Adjy(Existed_Pips,:)¼nan;

if typeofdist¼¼1

[D]¼EDist(ys,xs,Adjx,Adjy);

elseif typeofdist¼¼2

[D]¼PDist(ys,xs,Adjx,Adjy);

else

[D]¼VDist(ys,xs,Adjx,Adjy);

end

[~,Dmax]¼max(D);

PIP_points(Dmax,1)¼1;

currentstate¼currentstate+1;

end

PIPxy¼[Existed_Pips, ys(Existed_Pips)];

%% Plot

if pflag¼¼1

plot(ys), hold on

plot(Existed_Pips,ys(Existed_Pips),’r*’),hold off

end

end

%% Distance measures

% Euclidean Distance

function [ED]¼EDist(ys,xs,Adjx,Adjy)

ED¼((Adjx(:,2)-xs).^2+(Adjy(:,2)-ys).^2).^(1/2)+. . .

((Adjx(:,1)-xs).^2+(Adjy(:,1)-ys).^2).^(1/2);

end

% Perpendicular Distance

function [PD]¼PDist(ys,xs,Adjx,Adjy)

slopes¼(Adjy(:,2)-Adjy(:,1))./(Adjx(:,2)-Adjx(:,1));

constants¼Adjy(:,2)-slopes.*Adjx(:,2);

PD¼abs(slopes.*xs-ys+constants)./(slopes.^2+1).^(1/2);

% line function: y¼kx+m (1)
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% the perpendicular distance (PD) from a point p(x1,y1) to a line

% is given by the following formula:

% PD¼abs(k*x1-y1+m)/sqrt(k^2+1)

end

% Vertical Distance

function [VD]¼VDist(ys,xs,Adjx,Adjy)

slopes¼(Adjy(:,2)-Adjy(:,1))./(Adjx(:,2)-Adjx(:,1));

constants¼Adjy(:,2)-slopes.*Adjx(:,2);

Yshat¼slopes.*xs+constants;

VD¼abs(Yshat-ys);

end
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