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Abstract This book chapter pertains to the use of statistical methods and soft
computing techniques that can be used in the modelling and optimization of
machining processes. More specifically, the factorial design method, Taguchi
method, response surface methodology (RSM), analysis of variance, grey relational
analysis (GRA), statistical regression methods, artificial neural networks (ANN),
fuzzy logic and genetic algorithms are thoroughly examined. As part of the design
of experiments (DOE) the aforementioned methods and techniques have proven to
be very powerful and reliable tools. Especially in machining, a plethora of works
have already been published indicating the importance of these methods.

1 Introduction

A model can be defined as an abstract system, equivalent to the real system it
represents in respect to its properties and characteristics. It can be used for calcu-
lations, analysis and predictions which would otherwise be expensive or in some
cases impossible to be carried out. The process of optimization is defined generally
as a process or methodology of making something as fully perfect, functional or
effective as possible.

Specifically, in common engineering practice, optimization involves a suitable
mathematical procedure which can provide through a well-ordered way the opti-
mum set of characteristics that is related to the optimum performance of a system.
More specifically, an optimization problem consists of a function, termed the
objective function that describes the goal of the process which needs to be
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minimized or maximized; a set of input variables termed the design variables,
whose optimum combination is required and a set of constraints that may be related
to the configuration of the problem and its physical characteristics. Then, by using
suitable heuristic algorithms, the area of possible solutions is searched in order to
determine the region when the optimum point lies in an ordered and efficient way.
Essentially using numerical optimization methods, the mathematical problem of
optimization, which consists of finding the extreme points of a function, is trans-
formed into a numerical procedure and considering the great amount of computa-
tional power available nowadays, a powerful tool for many applications is created.
It is worth noting that in real-life engineering problems, the evaluation of each set of
possible solutions is much more difficult than in cases of the optimization of
mathematical functions. Specifically, it can involve the numerical modelling and
simulation of a process and its duration can vary from seconds to hours in very
demanding problems. Thus, the optimization procedure has to be able to determine
the optimum with the less possible number of iterations in order to be efficient and
finish within a reasonable period of time.

Machining processes are examples of complicated systems in which modelling
and optimization have already found extended applications [1]. In the next para-
graphs the most commonly used statistical and soft computing methods used for the
modelling and optimization of machining processes are presented. For each method
discussed, the most important features are analysed. Furthermore, at the end of each
section, a list of references involving the application of the specific method in
machining is given. Finally, at the end of the book chapter, for the presentation of
an optimization procedure in a machining problem, a case study is examined.

2 Factorial Design Method

The factorial design method is a general family of statistical methods, employed for
the design of a scientific experiment. When an experiment is conducted using the
factorial design method, the effect of various factors on one or more response
variables can be successfully investigated. Each factor is generally considered as an
independent variable and is studied at various discrete subdivisions or levels,
namely discrete values that lie within a predefined range, appropriate for each
experiment. In early works, the importance and effectiveness of conducting com-
plex, multi-factor experiments were considered important and the basis for the
factorial design methods were set [2]. Fisher was the first to introduce the term
“factorial” in his work [3].

Commonly, the factorial design methods are categorized into full factorial and
fractional factorial designs. Using a full factorial design, the experiment is con-
ducted by assuming the combinations of each factor with all the other factors at all
levels. Thus, in these cases all the possible experiments are conducted. Usually, two
or three levels are considered for each factor and the factorial design is then named
after the number of factors according to the number of levels for each factor, e.g. a
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2 x 2 or a 2° factorial design. A similar notation is employed in cases with factors
with different number of levels, e.g. 3°2 denotes that there are 5 factors with 3 levels
each and one factor with 2 levels, i.e. total 3% x 2 =486 experiments. It is evident,
however, that such a design can easily lead to an unfeasible amount of experiments
to be conducted, resulting in a considerably large amount of work or additional
cost.

On the contrary, fractional factorial design involves a certain subset or fraction
of the total number of experimental runs that would occur as a result of a full
factorial design. This subset is carefully chosen using proper statistical processes in
order to study a subset of the original problem which contains as much information
about the process as possible. When referring to fractional factorial design, a
notation relevant to the full factorial design is employed, e.g. a 2*~% design means
that only the % of the 2* = 16 experiments originally required will be conducted. In
Fig. 1 a schematic of the trial points in a 2 design is presented.

Apart from the two main categories, other types of multi-factor designs are:
randomized block designs (RBD), Plankett—-Burman designs, Taguchi designs and
designs related to the response surface methodology (RSM). The two latter methods
will be discussed separately in the following sections of this book chapter. As for all
families of DOE methods, there is a considerable amount of theoretic work con-
cerning the mathematic foundations of factorial design method. The reader, who is
interested in the mathematical foundations of DOE, should consider studying the
relevant literature; references [4—12] are proposed.

2.1 Description of Factorial Design Method

Factorial designs have common characteristics when they are applied to experi-
mental design. The first fundamental step consists of the choice of factors and their
levels. This step should not be underestimated in any case, as it depends both on
theoretical understanding of the problem parameters and experience on similar
problems. Afterwards, the selection of the suitable response variables, that can
provide adequate information about the process, is required. This selection, how-
ever, depends on the existing equipment of each lab and the level of difficulty for
the conduction of the measurements. When the fundamental choices for the

. . . 2 :
Fig. 1 Trial points of the 2 1,9 ¢

design (1.1

Factor 2

i-1l, 1) (1,1

Factor 1



42 A.P. Markopoulos et al.

experiment are performed, the choice of the details of the experimental design is
made. The number of runs required for each design scheme has to be taken seri-
ously into consideration as well as the actual levels of each factor. It is often
preferable to use a small number of levels, e.g. two, when a thorough study is not
required. After the choice of the experimental design scheme and details has been
completed, the array describing the parameters used in every run is produced. It is a
common practice to code the actual values of experimental factors to levels denoted
as —1 and 1, as it can be also seen in Fig. 1 or with the “+” and “—” signs. Examples
of factorial designs using both notations are presented in Tables 1 and 2 for the case
of a 2> full factorial design, i.e. 3 factors at 2 levels each.

The next step is the conduction of the experiment according to the defined set of
runs. It is important to monitor the process during all stages, as errors in this stage
produce irrelevant output and actually cancel the advantages offered by the
experimental design method concerning the scientific validity of the experiment. If
the experiment is carried out successfully, the statistical analysis of the results can
provide a solid way to determine the effect of each factor to the response or the
effect of the interaction between various factors and whether the results are affected
by experimental errors. Using the factorial design method, the first stage of analysis
comprises of response plots such as histograms, box plots, etc. and main effects and
interaction plots with a view to visualize the experimental outcome and evaluate the
characteristics of the basic findings. Then, regression models can be employed to
determine the relationship between the various experimental factors and statistical

Table 1 Factorial design 2

Trial Factor 1 Factor 2 Factor 3
where the level values are 1 ] 1 1
represented by —1 and 1

2 1 -1 1

3 1 1 1

4 1 1 -1

5 -1 -1 -1

6 -1 -1 1

7 -1 1 1

8 -1 1 -1
Table 2 Factorial design 2 Trial Factor 1 Factor 2 Factor 3
where the level values are 1 — —
represented by — and + +

2 + - +

3 + + +

4 + +

5 — — —

6 - - +

7 - + +

8 - + _
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analysis methods such as analysis of variance (ANOVA) can be applied for a more
detailed analysis of the results. In specific, the ANOVA method is discussed in the
following section.

Furthermore, after the analysis of results is performed, soft computing and
optimization methods can be applied to the experimental results in order to create
models that describe the behaviour of a studied system and investigate its perfor-
mance in various ranges of operating parameters. Usually, the experimental design
using factorial designs is carried out using suitable statistical and experimental
software such as Minitab, Design-Expert and SPSS. These software packages
provide users with sufficient guiding on the conduction of the whole process and are
highly reliable.

2.2 Applications of Factorial Design Method in Machining

There are numerous examples of applications of the factorial design method in
scientific experiments. Specifically in machining experiments, a wide range of
processes are designed using factorial design. Studies generally on machining
[13-18], milling [19-21], drilling [22], laser-assisted machining [23], electrodis-
charge machining (EDM) [24-26], ultrasonic machining [27] and abrasive waterjet
machining [28] have been conducted using these design schemes. The main
advantages of this method are proven to be its reliability in creating a
well-structured experimental process and its easiness to combine with various
statistical, soft computing and optimization methods and subsequently increase
their effectiveness and accuracy.

3 Taguchi Method

The Taguchi method is one of the most frequently employed DOE methods.
Essentially, this category of DOE methods can be considered as a special category
of fractional factorial designs. Although Taguchi methods derive from factorial
designs, their development introduced several new concepts on the design and
evaluation of experiments, which provide valuable help both to scientific and
industrial applications. As with the other fractional factorial designs, the Taguchi
method was developed in order to overcome the large number of experiments
associated with multi-factor, full factorial designs. The reduction of the number of
experiments required for a study is usually performed by ignoring some of the
interactions between the parameters of the problem, an assumption also employed
in Plackett—-Burman designs. Taguchi method is often employed as first step of an
optimization process, in which the factors studied in the experiment are also used as
design variables for the optimization of a system or a process.



44 A.P. Markopoulos et al.

Taguchi methods allow for a strict guideline and a well-defined methodology for
the determination of the choice of a sufficient subset of the total number of
experiments to be conducted using the full factorial method. Using Taguchi
method, orthogonal arrays are created and employed with a view to reduce sig-
nificantly the number of experiments even when a large number of variables are
studied. Taguchi designs can be performed at two or more levels for each factor and
it is even possible to choose mixed configurations. Once the appropriate Taguchi
orthogonal array is selected, the experiments are carried out using the predefined
values, in a random sequence.

3.1 Description of the Method

The Taguchi design method can be applied at certain distinct steps, similar to the
other experimental design methods. After the independent variables of the exper-
iment, i.e. factors, are carefully chosen, the selection of the appropriate number of
levels for each factor must be determined. This is a crucial part of the Taguchi
method, as it is related to the type of orthogonal array and determines the number of
experimental runs. Examples of two cases of different orthogonal arrays, namely the
L9 orthogonal array and the L27 orthogonal array, can be seen in Tables 3 and 4.
The next step consists of the encoding of the actual values of each factor level by
assigning to them a specific value such as: —1, 0 and 1 which represents the
minimum, centre and maximum level of a factor, respectively. When these steps are
completed, the experiment can take place.

After the experiments are conducted in the ordered way, data analysis for the
experimental results is performed. Traditionally, the Taguchi method employs the
calculation of the signal-to-noise ratio (S/N ratio) as a means to determine the effect
of each factor to the final output of the process. The S/N ratio is associated with one
of the basic goals of the Taguchi method, the reduction of variability by minimizing

Table 3 Taguchi L9 No. of
orthogonal array

Factor 1 Factor 2 Factor 3 Factor 4
experiment

O (0| Q||| |W (|~
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Table 4 Taguchi L27 orthogonal array

[\
[o)}

No. |F1 |F2 |F3 |F4 |F5 |F6 |F7 |F8 |F9 |F10 |F11 |F12 |F13
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
3 3 2 1 2 1 3 1 3 2 3 2 1
3 3 2 1 3 2 1 2 1 3 1 3 2

[\
~

the effect induced by noise factors in the experiment and it is generally defined as
follows:

u
NR =~ 1
SNR =4 (1)

where u is the signal mean or the expected value and o is the standard deviation of
the noise. In some cases, the S/N ratio can be defined as the square of the above
fraction.

More specifically, using the Taguchi method, optimization methods can be
categorized into two distinct groups: the static and the dynamic problems. The static

problems are related to the determination of the best control factor levels for a
process so that the output has a desired value, while the dynamic problems involve
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the determination of the best control factor levels so that the ratio of an input signal
and its output is closest to a desired value. In static problems the signal (input)
factor has a fixed value, while in the dynamic problems a relationship between the
input and output signal is required.

In the case of static problems, the S/N ratio can be defined in three different ways
according to the optimization target of the process in the study. More specifically,
these ratios are defined as follows:

¢ Smaller-the-better (often abbreviated as STB or SNj):

1 n
=—10 log| =) y? 2
n og <n ;:1 y,) 2)

where the quantity inside the summation symbol represents the mean of sum of
squares of measured data. This ratio is usually employed when the value of the
“noisy” characteristic should ideally have a value of zero or when the desired
value is defined as a difference of the current value and the optimal one.

e Larger-the-better (often abbreviated as LTB):

n=—10 log <’11i12> (3)

i=1 71

¢ Nominal-the-best (NTB):
2
7 = 10 log <“) 4)
o

This ratio is often employed when the desired value does not appear in an
expression that requires minimization or maximization.

In the case of dynamic problems, a desired type of relationship between an input
and an output signal is required to be attained. Two ratios are generally considered,
namely the slope of the input/output characteristics and the linearity of the
input/output characteristics. The slope of the input/output characteristics should
have a certain value and has two alternative definitions, the one based on a LTB
ratio and the second one based on a STB ratio:

n=10 log(ﬁz) (5)
n = —10 log(p*) (6)

where /7 represents the square of slope of the input/output relationship.
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The linearity is often considered as a LTB ratio and is related to deviations from
a purely linear relationship between input and output:

n =10 log <ﬁ2> )

K
Furthermore, other statistical analysis tools such as ANOVA are often employed
for the analysis of results. Using the analysis results and by determining the effects

between the factors of the experiments, the optimization process can be effectively
conducted.

3.2 Application of Taguchi Method in Machining

The Taguchi method was successfully applied in a wide range of machining pro-
cesses and experiments. Both conventional machining including turning [29—40],
milling [41-43], drilling [44, 45] and non-conventional machining processes such
as EDM [46-54], laser-assisted machining [S5, 56], abrasive jet polishing [57],
ultrasonic machining [58], high-pressure jet machining [59] and micromachining
[60] are designed using Taguchi method with a view to optimize the parameters of
these processes and determine the effect of various parameters to their outcome.

4 Response Surface Methodology

RSM is a group of mathematical and statistical techniques, often employed in
engineering studies with regard to model problems, whose underlying structure is
unknown and also optimize the desired output of these problems. The term
Response Surface is employed to describe the surface that represents the output of a
process when input parameter values vary within specified ranges. This method is
of great importance specifically for machining problems, as it can be seen from the
considerable amount of scientific works employing this method in the literature
[61-88].

The first step for the RSM method is to determine a suitable function that
represents the relationship between input and output variable and is, in general,
unknown. If the response of the examined system can be sufficiently modelled
using a linear function of the input variables, a so-called first-order model can be
employed. If the response is more complex, a second-order model is usually
employed or even a combination of a first-order model and a second-order model.

The parameters in the approximation models are determined using the least
square method, as it also happens in the case of statistic regression models. The
goodness of fit of the response surfaces indicates the validity of the study of the
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modelled system. More accurate estimation of the model parameters is achieved
only if the corresponding experiment was conducted using a suitable DOE method.
For most RSM studies, a special case of factorial design, the central composite
design (CCD) method, is employed; however, Taguchi orthogonal arrays can also
be applied. In Sect. 11 an actual example of the application of RSM method to a
machining problem is presented as a case study in order to further clarify the
procedure.

4.1 Description of Response Surface Methodology

The optimization process using the RSM method is a sequential procedure. The
start point is often a point of the response surface, which is far from the optimum
point and corresponds to the existing operating conditions of a system.
Subsequently, the optimization procedure leads to the determination of the vicinity
of the optimum point and then a higher order model is applied in this area. After
further analysis the optimum point is determined. For simplicity reasons the initial
optimization procedure is conducted using a first-order model, as it is assumed that
the start point is far from the optimum point. A suitable method for the rapid
convergence to the optimum point is the method of steepest descent, in case of
minimization problems or steepest descent, in case of maximization problems. This
method consists of a numerical procedure of moving along the path of steepest
descent/ascent that leads to the area around the optimum point. The next step of the
optimization process is to fit a second-order model in the experimental results. The
experimenter may need to conduct additional experiments, in order to improve the
accuracy of the second-order model. The optimum point in a second-order surface
is called the stationary point; in this point all partial derivatives are zero. However,
it must be determined whether this point is actually a point of maximum, a point of
minimum response or a saddle point.

Using a DOE method for the experiment is necessary in order to apply the RSM
method. This leads to a better distribution of points, reduces the error and results to
a more accurate estimation of the coefficients of the regression function. Orthogonal
first-order designs are often used when first-order models are considered and CCD
method is used in the case of second-order design. The CCD method is a special
case of fractional factorial designs that includes also centre and axial points in the
design, as it can be seen in Fig. 2. More specifically, a CCD involves three sets of
experiments: a factorial design set, a set of centre points and a set of axial points.
The centre points have values equal to medians of value used in the factorial design
set and allow for an improvement of the precision of the experiment, while the axial
points set involve points outside the range of factorial design points for all factors.
An example of a CCD is presented in Table 5. Thus, using the CCD method two
parameters must be specified: the distance of the axial runs, i.e. the proposed
experiments, from the design centre and the number of centre points. These two
parameters should be selected in such a way that they ensure rotatability of the



Modelling and Optimization of Machining ...

Fig. 2 A schematic of the

trial points used in a

two-factor central composite

design

Table 5 An example of
central composite design for a

two-factor experiment

(aB)]

. 0,1.4142)

01

Factor 2

49

(-1.4142,0)

0,0)

11

. -1

0,-1.4142)

Factor 1

(1.4142,0)

Trial Factor 1 Factor 2
1 -1 -1

2 -1 1

3 1 -1

4 1 1

5 —1.4142 0

6 1.4142 0

7 0 —1.4142
8 0 1.4142
9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0

composite design. A rotatable design is defined as a design that provides the same
variance of predicted response for points that lie at the same distance from the
design centre. The Box—Behnken design can be employed as an alternative to the
CCD method. The difference of the Box—Behnken design is that corner points and
out-of-boundary points are omitted in the design. However, the mid-points of edges
of the experimental space are employed in the design, as it can be seen in Fig. 3.
Box—Behnken design involves fewer points than the CCD, but at least three factors
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Fig. 3 A schematic of the
trial points in a three-factor
Box—Behnken design

)
0.5
()
S
o Oe
AN ° '3
0.5
1 ®
1
1
0 0
Factor 2 1A Factor 1
Table 6 Box-Behnken Trial Factor 1 Factor 2 Factor 3
parameters for a three-factor
. 1 -1 -1 0
experiment
2 -1 1 0
3 1 -1 0
4 1 1 0
5 -1 0 -1
6 -1 0 1
7 1 0 -1
8 1 0 1
9 0 -1 -1
10 0 -1 1
11 0 1 -1
12 0 1 1
13 0 0 0
14 0 0 0
15 0 0 0

should be used in this method. For example, for a three-factor experiment, CCD
would require 20 trial points, while Box—Behnken design would require 15 trial
points. The latter method has a smaller cost but should be employed only if the
experimental boundaries are supposed to be known. An example of the Box—
Benhken design is given in Table 6.

The RSM method can be also applied to multi-response problems. In this case,
the regions of optimum results are found by considering the optimum regions of
each response and then the area that contains together all these optimum points.
This problem is also considered as a constrained optimization problem or desir-
ability functions are employed in order to determine the optimum using a single
function.
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4.2 Application of RSM to Machining

As mentioned before, the RSM method has been applied to a wide range of
machining processes. In specific, RSM method has been applied to the following
processes: turning [61-71], milling [72-78], EDM [79-85], abrasive waterjet
turning [86], abrasive assisted electrochemical machining [87] and wire electro-
chemical micromachining [88]. In these investigations several parameters con-
cerning the machining processes have been successfully analysed and simulated
using the RSM method, such as surface roughness [61, 69, 73, 74, 79, 88], tool
geometry optimization [65, 75], tool performance [62], tool wear [66, 67] and tool
life prediction [72], optimal machining parameters selection [68, 71, 76, 86], energy
consumption in turning [71] and cutting forces prediction [67, 77].

5 Analysis of Variance

ANOVA is an important analysis tool for scientific experiments and it is also one of
the most widely used statistical analysis methods. It is often used as a supple-
mentary means of studying the variability of the means of experimental observa-
tions or to examine the significance of factors in a multi-factor experiment.

The simplest case of ANOVA test is called the one-way ANOVA test and is
related to one factor experiment, where multiple experiments are conducted for each
factor level. For a problem of one factor at various levels, the observations can be
expressed using a suitable model. Two of the most common methods are the means
model and the effects model. The means model considers each observation as the
sum of the mean of the corresponding factor level and a random error component
that includes all other sources of variability that appear in the experiment. The
effects model considers each experimental observation as the sum of the overall
mean of all observations and a parameter associated with effects due to each factor
level. In cases that it is desired to test hypotheses about the level means, concerning
only the factor levels that appear in the analysis, a fixed effects model is employed.
Thus, for a fixed effects model statistical tests for the equality of level means are
conducted.

In order to conduct the ANOVA test, at first, the total variance can be decom-
posed into terms: a term related to each factor level and a term related to errors. The
statistic test for the ANOVA is an F-test. F-test is a statistical test in which the test
statistic is considered to follow an F-distribution under the null hypothesis.
A schematic of the F-distribution is presented in Fig. 4. This test is usually used in
order to determine which model fits more accurately the population from which the
data from an experiment were sampled. In fact ANOVA is the best known case of
an F-test.

Beginning with the two terms of variance (sum-of-squares terms), the mean
squares of these terms according to the degrees of freedom are calculated and then
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Fig. 4 The F-distribution in various cases (v/ degrees of freedom of nominator,
freedom of denominator)

Table 7 A typical table for analysis of variance results

10

v2 degrees of

Source of Sum of Degrees of Mean Fy P-value
variation squares freedom square

A 20.52 2 10.26 41.58 | 0.00006
B 12.30 4 3.075 12.46 | 0.0016
Error 1.97 8 0.24675

Total 34.79 14

the value for the F-test is obtained by the ratio between them to determine if the null
hypothesis is rejected or not. In case of rejection of the null hypothesis the mean
values for each level are found to differ significantly. An example for a problem
concerning two parameters is shown in Table 7. The ANOVA test can be gen-
eralized to a two-way test or an N-way test that involves N factors. In these cases,
the interaction effect between various factors can be examined. Furthermore,
ANOVA tests are widely employed as a means of identifying the significance of
parameters of a regression equation or other soft computing methods.

5.1 Application of ANOVA to Machining Problems

Although ANOVA is performed in almost every experimental results analysis and
numerous applications of this method can be found in the literature of this chapter, a



Modelling and Optimization of Machining ... 53

brief selection of several notable cases was made. ANOVA method is applied to
analyse results from machining [89-95], milling [96], drilling [97], EDM [98-101],
high-pressure jet assisted turning [102], laser micro-turning [103] and water abra-
sive jet machining [104].

6 Grey Relational Analysis

The grey system theory has been applied successfully in many scientific fields, such
as finance, engineering and even social sciences. Grey relational analysis (GRA) is
derived from grey system theory and is proven to be an efficient statistic tool for the
analysis of experimental results and system optimization [105-108].
Although GRA is not a method for experimental design, it can be easily combined
with one of the available experimental design methods to form a powerful exper-
imental analysis tool.

Grey theory is related to the concept of information. A system for which no
available information exists is considered as a “black™ system, while a system
whose parameters are completely known is considered as a “white” system. In fact,
as these two extreme conditions are almost unlikely to happen, the real-system
systems are classified according to the level that their properties are known and they
are assigned a value corresponding to a certain level of “grey” such as the values
assigned to pixels in greyscale images.

6.1 Presentation of the Method

GRA is performed at various steps. At first, a suitable pre-processing of the input
data is required in order to modify them according to the grey theory. For this
reason, several methods exist, such as: higher-the-better, lower-is-better and
transformation using a desired value, similar to those presented for S/N ratio.
However, sometimes a simple normalization process is applied. In fact, using the
grey analysis method, the input is at first transformed using relevant formulas so
that it can be more easily compared to other experimental results. This
pre-processing step is called grey relational generating and is conducted using one
of the three aforementioned methods:

e Higher-is-better:

x(0> — min x(o)
K ij ij 8)
Yij = © .0 (
max x — minx..

ij ij
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o Lower-is-better:

maX.X(O) — .X'(O)
K ij ij 9)
Xy = ©) ) (
max 'xij — min xij

e Desired value x:

=l — (10)
! max xg)) — x(0)

where x;; is the generated value of GRA and Xx;; are in general experimental

results from a given set; i denotes a group of experimental results and j an
experiment.

In the next step, the grey relational coefficient is calculated using the
pre-processed values from the following formula:

0

X —x

min; min;

0 * . . *
X — x| + ¢ max; max; f

5= 11
i = o (11)

¥ i

x|+ ¢ max; max;
where ¢ is the so-called distinguishing coefficient and is defined in the range of 0—1
and x? is the ideal value for the ith performance characteristic.

Then, the grey relational grade is calculated as the average of the grey relational
coefficient. If this value is equal to 1, two sequences are considered identical. The
formula for the calculation of the grey relational grade for each experiment j is the
following:

1 m
%‘2%;50‘ (12)

where m is the number of performance characteristics considered.

The grey relational grade also denotes the significance of the influence of a
sequence to another sequence. This is one of the most significant advantages of the
GRA method, as multiple responses are transformed in a single measure and the
optimization of multiple criteria is reduced to the optimization of a single quantity.
Moreover, by grouping the relational grades for each factor and experimental level,
grey relational grade graphs can easily be obtained and the correlations between the
studied variables, as well as the optimum parameters for a process can be
determined.
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6.2 Application of GRA to Machining Problems

The GRA is applied in various machining processes studies, usually as a part of a
general experimental design and optimization study. More specifically, GRA was
employed in studies pertaining to turning [109—115], milling [116-119], drilling
[120-124], EDM [125-131], laser machining and micro-machining [132-135] and
electrochemical machining and polishing [136, 137].

7 Statistical Regression Methods

Regression analysis is a general statistical process for the determination of rela-
tionships among various variables studied in a particular problem. Regression
analysis provides information about how the values of a dependent variable change
when the value of one or different independent variables change by estimating their
relationship by means of a function called generally the regression function. The
variation of the dependent variable around the computed regression function is
often estimated using a suitable probability distribution. Moreover regression
analysis can be employed as a predictive tool in order to predict the behaviour of a
system in conditions for which no experimental data are available. The most widely
employed method for data fitting into regression models is the method of least
squares.

Based on the kind of regression function employed, regression methods can be
categorized into linear regression methods and nonlinear regression methods. In
linear regression, it is required for the dependent variable to be a linear combination
of the parameters of the regression function. However, the dependent variables can
be a nonlinear combination of the independent variable; that means that
fix) = byx® + box® + byx + by is still a linear regression function as the relationship
between f(x) and the parameters b; is linear. Linear regression in case of a single
independent variable is termed simple linear regression, whereas in case of multiple
independent variables, this process is termed as multiple linear regressions. In order
to fit experimental results into linear regression models, the least square or other
minimizing approaches are employed. Various linear regression models have been
developed with a view to extend the capabilities of the method, such as: general
linear models, where the response variable is generally considered as a vector,
generalized linear models, where the response variable is assumed to be bounded or
discrete and hierarchical linear models, where the regression model consists of
various levels.

Nonlinear regression models involve a modelling function which is a nonlinear
combination of the model parameters. Generally, this category of regression models
is more preferable in cases where there is physical evidence that dictates the use of a
function that describes a nonlinear relationship of unknown parameters. For
example, in biology, that is the case of the famous Michaelis—-Menten model for
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enzyme kinetics. As it can be seen in the following formulas, this model can be
written in the form of a nonlinear function as the unknown parameters exist both in
the nominator and the denominator of the fraction:

Vinax [S ]

v= K+ 5] (13)
flo) = (14)

where the parameters V.« and K;,, have been substituted by «; and a, respectively.

Some types of nonlinear functions used in nonlinear regression are: exponential
functions, logarithmic functions, power functions, trigonometric functions. In some
cases, the Gaussian function, Lorenz curves or other probability distributions, e.g.
Weibull, can also be employed, as it can be seen in Fig. 5. It is noteworthy that
some of these functions can be properly linearized using different variables and then
the linear regression model can be employed on this transformed function. Iterative
methods are often employed for the fitting process such as Newton—Raphson or
Gauss methods. Moreover, the fit of models is assessed by similar statistical tests as
in the case of linear regression models but measures such as R* are argued to be
inadequate in the case of nonlinear regression.

After the process of fitting has finished, the regression function should be tested
using various measures in order to determine the validity of the fitting process.
Some general measures usually employed in various applications are the multiple
correlation coefficient R, the coefficient of determination Rz, the adjusted R? and the
root-mean-squared error (RMSE). The coefficient of determination is defined from
the following formulas.
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Fig. 5 Experimental data fitted into Weibull distribution
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If y denotes the mean of the observed data in an experiment, then:

1<
)’:;Z)’i (15)
i=1

Then, the total sum of squares, related to the variance of the experimental data, is
defined as:

n

SSiot = Z ()’i *)7)2 (16)

i=1
And the sum of squares of residuals can be defined as:
Ssres = Z (yi 7ﬁ)2 (17)

i=1

Based on the previous definitions, the coefficient of determination can be defined
as:

SS
RP=1-"X 18
SSiot (18)
The adjusted Rz, denoted also as R2, can then be defined as:
Rzzl_(l_RZ)L (19)
n—p-—1

where p is the total number of regressors in the model and n is the size of the
sample.
Furthermore, the RMSE can be defined as:

n ~ 2
RMSE = M (20)
n

where y; denotes a predicted value, y; an experimental value and 7 is the size of the
sample.

Generally, a value of R indicates the correlation between the predicted and
observed values, R? indicates the fraction of the variability of the results obtained
by the regression model, the adjusted R? alters the R* value when extra explanatory
variables are added to the model and the RMSE indicates the standard deviation of
data about the regression model. Regression methods can be easily coupled with
various statistical methods such as ANOVA in order to perform a more detailed
statistical analysis of the results and to check the validity of the regression model.
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7.1 Applications of Statistical Regression Methods
in Machining

Regression methods are among the first methods to be applied to the modelling of
machining processes [138]. Several machining processes, namely turning [139—
151], milling [152-155], boring [156] and EDM [157] are investigated with these
methods. Furthermore, various aspects such as tool wear and tool condition mon-
itoring [138, 140, 141, 145-147, 151, 156], machinability [139], surface roughness
[142, 144, 148-150, 153-155, 157] and process cost estimation [152] are analysed.
In several of these studies [140-144, 152], the efficiency of a regression model is
compared to that of soft computing methods, such as artificial neural networks
(ANN). From the aforementioned studies it was concluded that, although regression
methods exhibit their mathematical background and possess a clear explanatory
value, it is generally proven that regression models can perform well when the
relationships are almost linear [141], while the ANN give more accurate predictions
also in complex, nonlinear cases with a large number of variables [140, 141, 144].

8 Artificial Neural Networks

ANN are a group of machine learning algorithms, originating from the concept of
biological neural networks. Essentially, they constitute one of the most widely used
soft-computing algorithms, as they can easily be used in many scientific fields.
More specifically, this method is of particular interest in engineering simulations
and optimization problems as it involves the determination of outputs of an
unknown system without the need to have absolute knowledge of its physics or the
exact relations between different its parameters, but considers it only as a “black
box”. A system of layers of interconnected neurons that convey information from
inputs to outputs and adequate learning algorithms are employed for ANN simu-
lation, following the example of an information processing system, which involves
a number of interconnected processing elements, that are working combined to
solve a complex problem and gain knowledge by studying an adequate amount of
relevant examples.

8.1 Description of Artificial Neural Networks

As mentioned before, some of the basic characteristics of a simple ANN are the
layers, the neurons and the learning algorithms. When employing ANN as a means
of simulating a system using experimental data, the collection of a sufficient amount
of experimental data is needed at first. Then, the neural network is constructed using
a suitable architecture. The term architecture is employed to describe the
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configuration of neurons and layers and the interconnections between neurons of
different layers. In a multi-layer configuration usually an input layer, an output layer
and one or more middle layers, called hidden layers constitute the neural network.
In a feedforward ANN, as it will be discussed afterwards, the input layer is asso-
ciated directly to the information that is fed into the network, the behaviour of the
hidden layers is determined by the activities of the input neurons and the inter-
connections with them and finally the behaviour of the output layer is determined
by the activity in the hidden layer and the interconnection with it. Various
parameters concerning the components of the neural networks must be taken into
consideration from this early step, such as: the number of inputs, the number of
outputs, the number of hidden levels, the neurons in each hidden level and the
interconnections between neurons. In most cases these parameters are experimen-
tally calculated by conducting several runs with different values but there are also
specific rules that indicate a better choice of these parameters. However, this choice
depends on each problem and so it is difficult to create rules that apply to every
case. Often, when the inputs have not been obtained by measurements or calcu-
lation as in the case of pattern recognition, the inputs and the outputs need to be
normalized in the range 0-1.

The most common network is a feedforward network. The architecture of a
feedforward network is depicted in Fig. 6. Each artificial neuron, according to its
position in the network receives some inputs and produces some outputs. A weight
is associated with each input into the neuron. This weight can be a real number and
it will be adjusted to a desirable value after the learning process. Each input is
multiplied by the weight of the relevant neuron before entering the neuron and all
input values are summed to compute the total activation value that enters the
neuron. Usually, an additional weight referred as bias is employed as a threshold
value and is added to the total output of the neuron. Then, a special function called
the activation function is used to transform the input values to the neuron’s output.
This function can be a linear, step or a sigmoid-like function. Various sigmoid-like

Fig. 6 The architecture of a
feedforward ANN

INPUT HIDDEN OUTPUT
NEURONS LAYERS NEURONS
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functions can be employed as activation functions provided that they produce
output values in the range 01, in a way similar to the step or threshold function.
This is often done in most engineering applications in order to have a smoothed
response and allow for a continuous output variable, something that resembles
closely to the function of real neurons. In a feedforward network, as it is expected,
the neurons in each level feed their output forward to the next layers up to the
output layer; no loops, involving a backward movement, exist in the network.

The next step involves the initialization of the neural network using random
weights. Then, the training process can start. During this stage of the algorithm, the
network is fed with a series of inputs obtained by experiments, i.e. the training set.
Each training set represents a certain pattern or combination of inputs along with
the relevant outputs. Subsequently, by observing the output of the network, the
weights of each neuron should be accordingly altered in order to produce the
desired result; this is the so-called supervised learning. Thus, supervised learning is
a learning method that involves the use of an external means of learning that
indicates to the output units the desired output to specific inputs. On the other hand,
unsupervised learning involves no external supervision of the learning process, and
this process is entirely based on local information, so that the network is trained in a
self-organized way.

There are many ways of adjusting the weights and the most common is the
backpropagation method, which is related to the computation of the error derivative
of each weight. In every step or epoch a better approximation of the actual desired
value is obtained. A suitable method is used to monitor the error convergence
between the computed and desired output values, e.g. the least mean square
(LMS) method, the mean square error (MSE) method, etc. The MSE can be defined
as:

n

MSE =3~ i~ ) @

i=1

The backpropagation algorithm first computes the error between the actual and
the desired output in the output layers. Then, using the weights between the hidden
and the output level, the error of the output level is propagated back to the hidden
level. Accordingly, the error propagates back to the input level and subsequently the
error derivative for each neuron can be calculated.

A set of validation data, originating from experimental results is used to measure
the level of network generalization, which is one of the basic requirements for a
neural network in order to avoid the problem of overfitting; that is when the
network has great performance near well-known values but poor performance
otherwise. Often, these sets of results constitute a small percentage of the original
result set. When generalization stops improving the training process is stopped and
adjustments are made. An additional step is the testing step, in which another set of
results is used not to train the network but to provide another way to measure its
performance.
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After the network has been trained and its accuracy has been tested, the network
can be used in similar problems as a predictive tool or in conjunction to other soft
computing or optimization techniques. Nowadays numerous specialized software
packages for ANN are also incorporated into toolboxes of numerical analysis
software such as MATLAB, as they are applied in various scientific fields.

8.2 Applications of ANN in Machining

ANN have been extensively used in modelling of machining processes within the
last few decades. More specifically, a variety of machining processes, have been
investigated using ANN, such as turning [158-164], milling [165], drilling [166],
EDM [167-172], ultrasonic machining [173], abrasive flow machining [174-176]
and abrasive waterjet machining [177, 178]. Furthermore, ANN are combined with
several soft computing and optimization methods such as fuzzy logic [164], genetic
algorithms [170] and simulated annealing method [171, 178]. Finally, another
important application of ANN is online monitoring of machining processes [158].

9 Fuzzy Logic

Fuzzy logic is an alternative form of logic that involves not only two possible states,
i.e. true or false, but the logic variables can have a value that ranges between 0 and
1. While the traditional binary or bivalent logic deals with discrete logic states, in
fuzzy logic an approximate value for the logic state such as 0.65 or 0.1 can exist,
thus extending the concept of truth/falsity to the concept of partial truth/partial
falsity state. Fuzzy logic, as most soft computing methods, has a wide range of
applications, extending from artificial intelligence and robotics to machining.
Fuzzy logic originates from the fuzzy set theory developed by Zadeh [179]. In
mathematics, a “set” is defined as a collection of distinct objects which can be
considered as a single object. So, in the classical sense an object can belong or not
to a second set. On the contrary, using the concept of a “fuzzy set”, an object can
belong to a set partially, fully or not, according to its membership function, an
important element of the fuzzy set theory. Using the membership function, each
member of a fuzzy set is assigned to a membership degree that denotes how much
this member belongs to the specific set. The membership function can have various
shapes as long as its values range from O to 1. Another important aspect of fuzzy
logic is the fuzzy operators such as equality, subset, union, etc. which can be
defined in a similar way like operators on classical sets. These operators combine to
form complex events and sets of rules that describe various possible activities. The
fuzzy sets and fuzzy rules constitute finally the knowledge base of the fuzzy system.
After the fuzzy system is implemented, three others stages are observed in fuzzy
systems, namely fuzzification, inferencing and defuzzification. During the
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Fig. 7 Configuration of a fuzzy logic system

fuzzification stage, input values are transformed into objects of fuzzy sets, or they
are fuzzified as this procedure is usually called in the relevant terminology, using
membership functions. During the inference stage, the fuzzified inputs are trans-
formed into fuzzified outputs taking into consideration the fuzzy rules of the sys-
tem. The inference step is essentially the main step of this method. Defuzzification
constitutes the last stage of the process, where the fuzzified outputs of the inference
stage are converted into scalar or general non-fuzzy values. In Fig. 7, the config-
uration of a fuzzy logic system can be seen.

9.1 Description of Fuzzy Logic Method

When modelling a problem using the fuzzy logic method, the whole process can be
divided into discrete steps. The first step consists of the determination of the degree
of membership of each input to each of the defined fuzzy sets using the membership
function; various types of membership functions can be seen in Fig. 8. The input is
usually an actual numerical value and the output a value in the range 0-1 called
fuzzy degree of membership. The determination of this output depends on the
membership function and the fuzzification process is required to be conducted for
all the linguistic sets that appear in the fuzzy rules. The next stage of the process
involves the evaluation of fuzzy rules. If the input or antecedent for a rule involves
more than one part, a suitable fuzzy operator must be applied to the antecedent. The
implementation of the various fuzzy logic operators, such as AND and OR can be
conducted in various ways. For example, two simple methods for implementing
AND are minimum and product (of multiplication).

When this operation is performed, a single truth value is obtained for the
antecedents of each rule. Afterwards, an optional further step consists of applying a
specific weight in the range 0-1 to each rule, which is performed by applying that



Modelling and Optimization of Machining ... 63

Types of membership functions

S —

-

membership grade
© © o o
N » o @

- . .
0 20 40 60 80 100
tnangular

— .

membershi

20 40 60 80 100
generalised bell

Fig. 8 Various types of membership functions

value to the output of the antecedent of each rule. Essentially, this is performed
when it is desired for certain rules to have more contribution to the result.
Thereafter, an implication method is applied to obtain the fuzzified output for each
rule, based on the result of the previous step. As with the fuzzy operators, there are
various operators for the implication process, such as min, which truncates the
output, product, which scales the output, etc. Subsequently, all the fuzzy outputs for
each rule are required to be summed, in order to obtain an aggregate final result and
thus make the appropriate decision. The aggregation process provides a fuzzy set
for each output variable. Various aggregation methods can be employed, such as
max or sum of the fuzzy outputs and then the results are placed together to form a
polygon shape. In the last step of the overall process, the fuzzy aggregated output is
defuzzified, with a view to obtain a single number representing the actual desired
output in a way that it can be easily understood. The defuzzification process is often
conducted using the centroid method; that means that the centroid of the polygon
obtained in the precedent step is calculated and this numerical value is actually the
defuzzified output.

9.2 Applications of Fuzzy Logic Method in Machining

The application of the fuzzy logic method in machining has proven to be very
important [180, 181] with applications in turning [182-193], milling [194-198],
grinding [199-202], EDM [203-205], abrasive waterjet machining [206] and
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assisted abrasive finishing [207]. As it can be deduced by examining the relevant
literature, the use of the fuzzy logic method can be invaluable for a wide range of
applications such as control of chip form [182], prediction and control of cutting
forces [187, 197], design of operation and selection of cutting parameters [183—186,
201, 206, 208-210], surface roughness prediction and improvement [193, 207],
residual stresses prediction [199], development of a tool breakage detection system
[194], decision-making tools for machining processes [211-213]. Furthermore, the
fuzzy logic method can be combined with other methods such as Taguchi method
[191, 198], genetic algorithms [201] or GRA [204] to compose a complex pre-
dictive and decision-making software.

10 Other Optimization Techniques

In general, optimization algorithms are divided into two categories: stochastic and
deterministic algorithms. More specifically, stochastic optimization algorithms
involve stochastic process in several parts of the process, not only in order to select
the initial solution and often can make a more extensive search of the area of
possible solutions. These algorithms are generally more suitable to determine the
global optimum for a given system, in spite of their relatively high computational
cost when the system is complex or has a great number of local minima/maxima.
Another important advantage of the stochastic optimization method is that no
knowledge of the exact mathematical description is required and closed-source
proprietary software can be used in the solution evaluation process without prob-
lems. So it is a process that considers the system as a “black box” and does not
require complex mathematical computations from the user, e.g. computation of
derivatives. On the other hand, algorithms such as the gradient descent or the
conjugate gradient method are considered non-stochastic methods in the sense that
they do not involve process related to randomized values. These algorithms require
the calculation of derivative of the objective function, are capable to determine the
optimum point with significantly smaller computational cost but they are more
prone to reach a locally optimum point rather than the globally optimum.

A common characteristic of many stochastic optimization algorithms is that their
creation was inspired by natural processes such as the evolution of species, the
behaviour of animals or the characteristics of insect colonies which are shown to
exhibit features that lead to the optimal design of a process. Although it may seem
to be quite irrelevant to engineering and machining processes, these algorithms
perform sufficiently well in a great variety of cases [214]. Some of these algorithms
are examined in the following part.
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10.1 Genetic Algorithms

The genetic algorithms are essentially a subcategory of evolutionary algorithms.
Using this method, the possible solutions are termed as individual atoms of a
general population, which are comprised of chromosomes. The first step is the
creation of the initial population, which are the initial candidate solutions. In this
step the various solutions are generated through a random number generator with
values within a predefined range. In the second step, a proportion of the initial
population is employed in order to create the next generation. The individual
solutions which will be employed in this step are chosen according to the value of
objective function associated to them. Several processes related to the improvement
of solution, which are termed operators, exist such as crossover and mutation,
which are employed in order to determine the next-generation atoms. The crossover
process consists of an exchange of chromosomes between two atoms, namely the
exchange of parameters values between two possible solutions. The mutation
process consists of the alteration of some chromosomes of atoms, namely a possible
change of value of some parameters for several solutions. Both processes are
performed with a certain degree of possibility, defined at the beginning of the
algorithm, e.g. there is 95 % possibility of conducting crossover between 2 atoms,
0.4 % possibility for a mutation to happen in an atom, etc. Sometimes, a selection of
several solutions that exhibit objective function values near to the optimum one are
kept unchangeable with a view to match with other similar atoms and produce
better offspring. This process is termed as “elitism” and the related solutions as
“elite” atoms.

It is important to note that all the parameters employed in the optimization
process need to be chosen carefully according to the characteristics of each prob-
lem. Accordingly, parametric studies need to be conducted in order to determine the
appropriate crossover and mutation possibilities that produce the optimum solution
at the lower computational cost. Finally, the optimization algorithm stops when a
termination criterion is reached. Some of these criteria are: a fixed total function of
generations, a certain number of iterations where no better results are produced, etc.
After the algorithm is stopped, several measures can be used to indicate the effi-
ciency of the optimization process, e.g. the convergence plot. In multi-objective
cases, the optimal value is determined from a Pareto chart.

10.2 Applications of Genetic Algorithms in Machining

In the last three decades, genetic algorithms have been employed in many cases of
machining experiments. A considerable amount of work concerning genetic algo-
rithms and machining processes has been conducted, some of which are studies on
turning [215-219], milling [220-225], drilling [226], grinding [227, 228], EDM [229,
230], electrochemical machining [231] and abrasive waterjet machining [232, 233].



66 A.P. Markopoulos et al.

As it can be seen in the aforementioned literature, genetic algorithms can easily be
combined with other soft computing methods and DOE methods in order to form
general analysis tools. Specifically, genetic algorithms can be combined with
the Taguchi method [223], RSM method [223, 225, 228], ANN [222, 229, 230],
simulated annealing method [232] and fuzzy logic method [233].

10.3 Other Stochastic Algorithms

Apart from the well-established method of genetic algorithms, other stochastic
algorithms have been successfully employed for machining optimization problems,
namely artificial bee colony method [234, 235], artificial ant colony [236-238],
particle swarm optimization method [239-242] and simulated annealing method
[243-245]. Despite the fact that these algorithms seem exotic for a machining
process optimization problem, they are proven to be robust and efficient methods.
The increasing interest in the development and application of these methods is
observed also by the amount of scientific work carried out in these areas within the
last decade.

11 A Case Study

This case study presents an example of using the RSM method for the modelling of
end milling process of titanium alloy Ti6Al4V and the analysis of results with
ANOVA. For the presented implementation of DOE technique, Design-Expert
8.0.7 software was employed. Obtaining the appropriate functional equations
between the effects of the cutting process and adjustable parameters usually requires
a large number of tests for different tool-workpiece configurations. The large
number of experimental studies significantly increases the cost of the experiment
which is particularly important in relation to the difficult-to-cut alloys, such as
titanium alloys. A solution of this problem is mathematical and statistical tools for
DOE. Choosing the right tool remains at the knowledge of researcher, who must be
aware of the benefits and limitations that arise from each potential method of
approximation.

Among conventional DOE techniques RSM is widely used for machining pro-
cesses. Experiments based on RSM technique relate to the determination of
response surface based on the general equation:

y=bo+br-xi+ - +boxit+br-xi-xo+bizxi ot
tbr g X1 X+ by 0+ b x; (22)
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where by, b;, b;, b;; are regression coefficients for intercept, linear, quadratic and
interaction coefficients, respectively, and x; are independent input variables. RSM
requires a quantitative response affected by continuous factors. It works best with
only a handful of critical factors, namely those that survive the screening phases of
the experimental programme. RSM produces an empirical polynomial model which
gives an approximation of the true response surface over a factor region.

Many input variables may affect the measured response of the process; it is
practically impossible to identify and control a small contribution from each one.
Therefore, it is necessary to select those variables with major effects. Screening
designs should be carried out to determine which of the numerous experimental
variables and their interactions present statistically significant effects. Full or
fractional two-level factorial designs may be used for this objective.

11.1 Definition of the Input Variables and the Output
Responses

In the case study, the effects of three cutting parameters, namely cutting speed v,
depth of cut a, and feed rate f have been experimentally sought upon three per-
formance responses: temperature in cutting zone 7" and two components of total
cutting force—tangential force F; and radial force F;. The levels for each factor are
tabulated in Table 8.

The temperature measurements were carried out with the use of a thermal
imaging camera. Tangent F, and radial F, components of cutting force were cal-
culated based on measurement results obtained from a dynamometer measuring F,
Fy, Fz force components and geometric relationship presented in Fig. 9.

11.2 DOE and Response Data Implementation

For the experiment design CCD-Rotatable was selected, in which standard error
remains the same at all the points which are equidistant from the centre of the
region. The upper and lower limits and their levels of the parameters are given in
Fig. 10, as they are entered to the software.

Table 8 Factors for response  pycqor Unit Low level High level
surface study -1) (1)
Cutting speed | m/min 60 80
VC
Depth of cut mm 1 25
Db
Feed f mm/tooth 0.1 0.15
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Fig. 9 The relationships between the components of cutting forces

Name Units Low High -alpha +alpha
A [Numeric] |cutting speed v \mVmin 60 80 |53.1821 |86.8179
B [Numeric] |pepth of cut ap \mm " |25 [0.488655  |3.01134
C [Numeric] |Feed f mmftooth 0.1 0.15 0.0829552  |0.167045

Fig. 10 Definition of cutting condition as numeric factors in Design-Expert

Fig. 11 The dialog box for
definition replication points
and “alpha” parameter

Repiication —
Replicates of factorial points: 1
Replicates of axial (star) points: 1
Center points: €
Alpha
(@) Rotatable (k < 6) 1.68179
(7) Spherical 1.73205
() Orthogonal Quadratic 1.52485
(7) Practical (k > 5) 131607
() Face Centered 1.0
(T) Other: 1.31607
20 Runs

CCD is composed of a core factorial that forms a cube with sides that are two
coded units in length, from —1 to +1. The distance out of the cube, designated as
distance “Alpha” and measured in terms of coded factor levels, is a matter for much
discussion between statisticians. Design-Expert software offers a variety of options
for Alpha, as it can be seen in Fig. 11.
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Table 9 The CCD-Rotatable matrix with entered results of experiment
Std | Run | Factor 1 Factor 2 Factor 3 | Response 1 |Response 2 | Response 3
cutting depth of cutting temp. 7' (°C) | tangent radial force
speed cut @, (mm) | speed v, force F; (N) | F, (N)
ve (m/min) (m/min)
9 1 53.18 1.75 0.125 721 551.2 396
13 2 |70 1.75 0.08 768 408.8 292.3
11 3 |70 0.48 0.125 685 159.5 153.3
18 4 |70 1.75 0.125 775 491.7 414.5
20 5 |70 1.75 0.125 766 499 379.4
6 6 |80 1 0.15 723 301.8 260.2
15 7 |70 1.75 0.125 762 489.4 389.6
14 8 |70 1.75 0.167 730 558.3 434.7
2 9 |80 1 0.1 741 189.2 162.4
12 |10 |70 3.01 0.125 785 843.9 619.7
19 |11 |70 1.75 0.125 769 486 392.1
8 12 |80 2.5 0.15 798 701.7 501.4
10 |13 |86.82 1.75 0.125 803 441.7 392.7
1 14 |60 1 0.1 717 293.5 173.1
4 15 |80 2.5 0.1 785 670.3 453.8
17 |16 |70 1.75 0.125 776 521.8 400.8
3 17 |60 2.5 0.1 759 759.7 436.3
5 18 |60 1 0.15 674 347.1 270.8
16 |19 |70 1.75 0.125 772 512.3 4241
7 20 |60 2.5 0.15 758 813.6 495.4

The CCD-Rotatable matrix is given in Table 9.

11.3 Analysis of Results and Diagnostics of the Statistical
Properties of the Model

ANOVA is commonly used to summarize the test for significance of the regression
model and test for significance on individual model coefficients. The models
summary statistics are shown in Table 10. In this case, coefficient of determination,
“Adjusted R-Squared” and “Predicted R-squared” values are higher for “Quadratic”

model. This model is suggested for analysis.

The analysis of the experimental data was performed to identify statistical sig-
nificance of the parameters cutting speed v., depth of cut a, and feed f on the
measured response temperature 7. The model was developed for 95 % confidence
level and the results are summarized in Table 11.
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Table 10 Models summary statistics

A.P. Markopoulos et al.

Sequential Lack of fit Adjusted Predicted

Source p-value p-value R-Squared R-Squared
Linear <0.0001 0.0051 0.7753 0.7070
2F1 0.4064 0.0044 0.7771 0.5790
Quadratic <0.0001 0.2265 0.9641 0.8939 Suggested
Cubic 0.1721 0.3670 0.9765 0.7218 Aliased
Table 11 ANOVA for response surface quadratic model for temperature T
ANOVA for response surface quadratic model
Source Sum of df Mean F-value p-value

squares square prob > F
Model 23,050.87 9 2561.21 57.73 <0.0001 Significant
A-v, 5614.58 1 5614.58 126.55 <0.0001
B-a, 12,500.47 1 12,500.47 281.75 <0.0001
C-f 933.47 1 933.47 21.04 0.0010
AB 6.13 1 6.13 0.14 0.7180
AC 190.13 1 190.13 4.29 0.0653
BC 666.13 1 666.13 15.01 0.0031
A? 172.62 1 172.62 3.89 0.0768
B? 2438.11 1 2438.11 54.95 <0.0001
c? 935.56 1 935.56 21.09 0.0010
Residual 443.68 10 44.37
Lack of 297.68 5 59.54 2.04 0.2265 Not
fit significant
Pure 146.00 5 29.20
error
Cor 23,494.55 19
total

Model “F-value” of 57.73 implies that the model is significant. There is only a
0.01 % chance that a model “F-value” this large could occur due to noise. Values of
“Prob > F” less than 0.05 indicate that model terms are significant; in this case A,
B, C, BC, Bz, C? are significant model terms. Values greater than 0.10 indicate the
model terms are not significant. If there are many insignificant model terms,
excluding those required to support hierarchy, model reduction may improve the
model. The “Lack of Fit” “F-value” of 2.04 implies the “Lack of Fit” is not
significant relative to the pure error. There is a 22.65 % chance that a “Lack of Fit”
“F-value” this large could occur due to noise; non-significant lack of fit is desired.
Next step is the reduction of the model to only significant terms by backward
selection, after the p-value of the model terms. The results are presented in
Table 12.
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Table 12 ANOVA for response surface reduced quadratic model for temperature T

ANOVA for response surface quadratic model
Source Sum of df Mean F-value p-value
squares square prob > F
Model 22,682.00 6 3780.33 60.48 <0.0001 Significant
A-v, 5614.58 1 5614.58 89.83 <0.0001
B-a, 12,500.47 1 12,500.47 199.99 <0.0001
C-f 933.47 1 933.47 14.93 0.0020
BC 666.13 1 666.13 10.66 0.0062
B? 2333.98 1 2333.98 37.34 <0.0001
C? 865.99 1 865.99 13.85 0.0026
Residual 812.55 13 62.50
Lack of 666.55 8 83.32 2.85 0.1316 Not
fit significant
Pure 146.00 5 29.20
error
Cor 23,494.55 19
total
Table 13 Regression Std. Dev. 791 R-Squared 0.9654
Zf;ljgiiscfgfoi{i‘l’pwd reduced - can 75335 | Adj R-Squared 0.9495
C.V. % 1.05 Pred R-Squared 0.9045
PRESS 2242.79 Adeq precision 26.169

Table 13 shows the regression statistics. The coefficient of determination is high
and close to 1, namely R-Squared equals to 0.9654, which is desirable. “Pred R-
Squared” of 0.9045 is in reasonable agreement with the “Adj R-Squared” of 0.9495.
“Adeq Precision” measures the S/N ratio. A ratio greater than 4 is desirable. In this
case the ratio of 26.169 indicates an adequate signal. This model can be used to
navigate the design space.

The adequacy of the model should be checked by the examination of residuals.
Residual analysis is necessary to confirm that the assumptions for the ANOVA are
met. Other diagnostic plots may provide interesting information in some situations.
The residuals are examined using the normal probability plots of the residuals and
the plot of the residuals versus the predicted response. Normal plot of residuals,
shown in Fig. 12, should be in a straight line. The residuals generally fall on a
straight line implying that the errors are distributed normally. Nonlinear patterns,
such as an S-shaped curve, indicate non-normality in the error term, which may be
corrected by a transformation.

Residuals versus predicted response should be randomly scattered without pat-
tern or “megaphone” shape, as shown in Fig. 13.
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Normal Plot of Residuals
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Fig. 12 Normal probability plot of residuals for temperature T
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Fig. 13 Residuals versus predicted response for temperature 7'
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Fig. 14 Residuals versus run for temperature T
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Residuals versus run tests should be randomly scattered without trend, see

Fig. 14.

In order to determine the quality of the adopted model, it needs to be checked
whether points of predicted response versus actual values are randomly scattered

along the 45° line like in Fig. 15.
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This implies that the proposed model is adequate and there is no reason to
suspect any violation of the independence or constant variance assumptions.

11.4 Final Equations and Models Graphs

For the analysed example the final equation in terms of actual factors was deter-
mined, which determines the temperature 7 from the input factors, namely the
cutting parameters:

T =440.75 4+ 2.03 - v, + 58.30 - ap, + 1903.04 - f + 486.67 - a,, - f

—22.51-a; — 12341.64 - f* (23)

Figures 16 and 17 show the response surfaces describing the temperature
T dependence on the depth of cut and cutting speed for this case study.

Next, the final equations and examples of response surfaces for the remaining

measured responses are shown. The analysis was performed in analogy to the

temperature 7. To approximate the result for tangential force F,, the linear model

Design-Expert® Software
Factor Ceding: Actual
Temperature T

# Design Points

803
674

X1 = A: Cutting speed vc
X2 = B: Depth of cut ap

Temperature T

Actual Factor
C:Feedf=0.13

B: Depth of cut ap

60.00 65.00 70.00 75.00
A: Cutting speed vc

Fig. 16 Response surface contour plot representing the temperature 7 dependence on the depth of
cut a, and cutting speed v, for feed f= 0.13 mm/tooth
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Temperature T
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B: Depth of cut ap 1.30 85.00  A: cutting speed ve

1.00 60.00

Fig. 17 Response surface 3D representing the temperature 7 dependence on the depth of cut a,
and cutting speed v, for feed f = 0.13 mm/tooth

was chosen and an ANOVA followed. The final model of tangential force F is the
next function of adjustable parameters of the process:

>F;=85.61 —3.92.v. +289.44 - a, + 147284 - f (24)

Figure 18 contains the 3D response surface representing the effect of cutting
parameters on tangential force F.

Similarly, to approximate the result for radial force F,, the reduced quadratic
model was chosen. The final model of radial force F, is:

F, = —586.04 — 176.20 - a, + 9013.28 - f — 29,706.86 - f (25)

Figure 19 depicts the 3D response surface representing the effect of cutting
parameters on radial force F,.

Furthermore, based on the data from multifactor RSM it is possible to obtain the
numerical optimization of the process, i.e. the optimum cutting conditions.
Design-Expert allows setting criteria for all variables, including factors and prop-
agation of error. The programme restricts factor ranges to factorial levels, plus one
to minus one in coded values, the region for which this experimental design pro-
vides the most precise predictions.
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Force Ft
r-
8

7000 —

A: Cutting speed vc A
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Fig. 18 Response surface 3D representing the tangential force F, dependence on the depth of cut
a, and cutting speed v, for feed f= 0.13 mm/tooth
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wop Depth of cut ap
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Fig. 19 Response surface 3D representing the radial force F; dependence on the depth of cut a,
and feed f
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