
Chapter 1
Introduction

Abstract This chapter gives an introduction to interacting many-body systems.
Interaction effects give rise to collective behavior, dominated by mean field effects,
as well as to correlations. We start from classical systems in thermodynamic equilib-
rium and proceed to relaxation processes following an external excitation. Finally,
we discuss ultrafast relaxation processes that have become of high interest in recent
years in many fields of physics and quantum chemistry, due to the availability of very
short light pulses. Our main conclusion here is that traditional many-body concepts
based on kinetic equations of the Boltzmann-type fail badly: they lead (among other
problems) to unphysically fast relaxations that are in conflict with experiments. This
is illustrated on an example from semiconductor optics in Sect. 1.4. From this we
come to the necessity to derive improved quantum-kinetic equations. This task is
realized in the main part of this book along two lines: reduced density operators,
Chaps. 2–12, and nonequilibrium Green functions, Chap. 13.

Subject of this book. This book is devoted to quantum systems of many particles in
nonequilibrium.More precisely,wewill be interested inmany-body effects (collective
and correlation effects) and, in particular, how these effects showupon very short time
scales. What means “short” depends on the actual system, but also on the observer.
For us, “short” and “ultrafast” will refer to the initial stage of relaxation, to times
shorter than the correlation time of the system, t < τcor , where the conventional
statistical description, the traditional kinetic theory such as the Boltzmann equation,
fails.

Why are these initial or transient processes of interest? The reason is the recent
remarkable progress in short pulse lasers,1 free electron lasers and other coherent
radiation sources, which allow to excite and to probemany-particle systems during an
extremely short time which is often comparable or even shorter than the correlation
time. This yields deep insight into the behavior of matter under conditions very far
from equilibriumwhich have not been accessible for systematic quantitative analysis
before. For example, it is becoming possible to follow in detail the formation of a
plasma, including the buildup of the screening cloud and of the correlations between
the charge carriers.

1Laser pulses as short as 100as= 10−16 s are now available [1], see Sect. 1.3.2.
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2 1 Introduction

Theoretical studies of ultrafast processes started about two decades ago. Only
recently systematic numerical investigations became possible, due to the progress
in, both, theoretical approaches and computational resources. So this book discusses
early and more recent results. More importantly, it outlines the some of the most
important theoretical approaches to ultrafast relaxation phenomena: the density oper-
ator formalism, nonequilibriumGreen functions and classical and quantumdynamics
techniques. Our main focus will be on the first, which will be used to derive gener-
alized quantum kinetic equations, which are applicable to correlated many-particle
systems in general and to the initial stage of relaxation in particular.

Interestingly, related problems have been discussed already as early as in the
1950s by a number of authors in kinetic theory, plasma physics, fluid and condensed
matter theory or nuclear matter. While these had to be purely theoretical studies,
many contain brilliant concepts which are worth to be re-considered today, including
possible extension beyond their original field of application.

1.1 Correlated Many-Particle Systems

Many-body effects.Before considering ultrafast relaxation phenomena in correlated
systems,we briefly discuss themany-body (or nonideality) effectswhich govern their
properties in equilibrium as well as in nonequilibrium. These are effects resulting
from the mutual interaction2 of the particles in the system. Their strength is naturally
measured by the nonideality parameter γa—the ratio of mean potential to mean
kinetic energy of particle species “a”,

γa = | 〈Va〉 |
〈Ta〉 ; 〈Ta〉 E Q

cl = ia

2
kB T ; �a = e2a

d kB T
(1.1)

where 〈Ta〉 E Q
cl denotes the classical mean kinetic energy in equilibrium, ia is the

number of degrees of freedom (which equals three for free elementary particles),
and d denotes the mean interparticle distance which is defined via the density n,
by 4πd3/3 = n−1. For the important case of charged particles interacting via the
Coulomb potential,3 Vab(r) = eaeb/εbr , [εb is the dielectric constant of the medium
surrounding the charges ea and eb], traditionally a slightly modified “coupling para-
meter” is being used which is denoted by �a in (1.1). Throughout this book we will
use �a .4

The coupling parameter allows for a qualitative understanding of the behavior
of nonideal many-body systems in equilibrium. For � → 0, the system is ideal,

2Correlation effects exist also in non-interacting quantum systems where they arise from fermionic
or bosonic exchange.
3Throughout this book, we use Gaussian units.
4Using (1.1), it is straightforward to extend the results for Coulomb interaction to systems with
other pair interactions.
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while for � < 1 (> 1) it is weakly (strongly) nonideal. This means, with increasing
nonideality, all thermodynamic quantities will acquire interaction corrections, and
the system behaviorwill increasingly deviate from that of an ideal gas. Amicroscopic
picture of the role of interaction effects is obtained by considering the pair distribution
function g(r), i.e. the probability to find, for any given particle, a second particle
at the distance r . This function is shown in Fig. 1.1, for a one-component Coulomb
system in a broad range of �-values. In the absence of pair interactions the particles
are independent of each other and, consequently, g(r) is distance-independent. For
increasing (repulsive) interaction, the vicinity of each particle is empty—a so-called
correlation hole forms which grows with �. At the same time, a pronounced peak
emerges in the vicinity of the nearest neighbor distance.

Phase diagram. Interestingly, not only the short-range behavior of the pair distri-
bution is influenced by interactions. For large� there emerges an obvious long-range
structure in g(r) that is characteristic for liquid-like and crystal-like ordering. In fact,
a first-order phase transition is well established in this system around � = 175, e.g.
[15] which is directly linked to the height of the first peak of g(r) [16, 17]. We may
now inquire for what densities and temperatures this behavior will be realized. To this
end, we plot lines of constant �-values in the density-temperature plane, cf. Figs. 1.2
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Fig. 1.1 Pair distribution function of a one-component classical Coulomb plasma in thermody-
namic equilibrium, for different values of the coupling parameter � that are indicated in the figure.
The function g(r) is the probability to find an arbitrary particle pair at the distance r which is
normalized to one,

∫ ∞
0 dr r2g(r) = 1. For an ideal system (� = 0), this function would be a

straight line, g(r) ≡ 1. Increasing correlations lead to formation (and expansion) of a “correla-
tion hole” around zero particle separation as well as to the emergence of long-range liquid-like
and crystal-like order, seen in oscillations of g(r) of increasing amplitude. The largest value of �

is slightly below the crystallization transition. The pair distribution is computed by recording the

distances ri j of all particle pairs and averaging over all realizations: g(r) = 1
Nn

〈 ∑N
i �= j δ[r − ri j ]

〉

and, finally, averaging over all orientations. The results are obtained using first-principle molecular
dynamics simulations. Distances are shown in units of the Wigner-Seitz radius. Figure courtesy of
T. Ott
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Fig. 1.2 Strong coupling region of charged particles in equilibrium. The density-temperature plane
is shown in system-independent dimensionless parameters (d is the dimensionality). The degeneracy
parameter χ, (1.2) divides the plane into classical and quantum systems whereas the classical and
quantum coupling parameters, � and rs , (1.1), (1.3) separate weakly coupled from strongly coupled
systems. The short cuts of the example plasmas denote: SH: shocked plasmas, IBEAMS: ion beam
compressed plasmas, T: tokamaks, ICF: inertial confinement fusion systems, J: plasma in the core
of Jupiter, TR: nonneutral plasmas in traps, I: ion crystals, DWARFS: ion liquids and crystals in the
core of white and brown dwarf stars. Reproduced with permission from [14]. Copyright (2003) by
IOP Publishing. All rights reserved

and 1.4. The line � = 1 gives a qualitative boundary to the region where nonideality
effects are important, see Figs. 1.2 and 1.4. Obviously, many-particle systems are
ideal at sufficiently high temperatures, but also at very low densities, because there
the mean interparticle distance is large and 〈Va〉 → 0. On the other hand, density
increase results in an increase of the interaction energy and of the coupling parame-
ter �. Obviously, this picture breaks down when two particles approach each other
beyond the limit where quantum effects become important.

Quantum effects. Degeneracy parameter χ. Quantum and spin effects will
become important as soon as the mean interparticle distance d approaches the char-
acteristic quantum extension of the particles which is characterized by the DeBroglie
wave length λDB = h/p, where p denotes the momentum. In thermodynamic equi-
librium it is reasonable to use, for the momentum, the thermal momentum. Corre-
spondingly, we define the quantum degeneracy parameter χ as

χa = na�
3
a ∼

(
�a

d

)3

∼
(

EFa

kB T

)3/2

≡ �−3/2
a ; �2

a = h2

2πmakB T
(1.2)

where �a is called “thermal De Broglie wave length” of particle “a”. For χ > 1
(above the line χ = 1 in Figs. 1.2 and 1.4), the interparticle distance is smaller than
�, i.e. particles “feel” their wave nature, and the system is essentially quantum or
degenerate. Notice that these parameters are different for different particle species.
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The degeneracy parameter sensitively depends on the particle mass: heavier particles
become degenerate only at higher densities (lower temperatures) than light particles.
From the definition (1.2) it is obvious that the degeneracy parameters of two particle
species scalewith theirmasses asχa/χb = (mb/ma)

3/2. For the example of hydrogen
this means that proton degeneracy parameter is approximately 80,000 times smaller
than the one of the electrons. In (1.2) we also indicated that the degeneracy parameter
can be expressed in terms of �—the ratio of two characteristic energies: the thermal
energy and the Fermi energy (defined below). This latter expression applies only to
fermions (see Problem 1.1, Sect. 1.6).

Note that the choice of the thermal De Broglie wavelength applies only to free
fermions and bosons. In the case of bound particles (e.g. electrons in atoms) the
proper length scale is the extension of the bound state wave function. Similarly, for
quantum particles confined by some trapping potential the extension of the wave
function is determined by the confinement. In the case of a harmonic oscillator, the
proper scale is the oscillator length l20 = �/(mω).

Correlation effects in quantum systems. To estimate correlation effects in the
case of quantum degeneracy we have to redefine the coupling parameter, (1.1). Most
importantly, the mean kinetic energy has to be evaluated using the correct Bose or
Fermi statistics. In the case of fermions one obtains [β ≡ 1/(kB T ]

〈Ta〉 E Q
q = ia

2
kB T

I3/2(βμid
a )

I1/2(βμid
a )

; �qa ≡
(

�ωpa

EFa

)2

∼ rs ≡ da

aB
∼ n−1/3

a

(1.3)

where 〈Ta〉 E Q
q denotes the mean quantum kinetic energy in equilibrium, involving

the Fermi integral, Iν [see Appendix A], and μid
a the ideal chemical potential.5 In

(1.3) we also defined two commonly used coupling parameters that refer to a Fermi
system at zero temperature: the quantum coupling parameter �q that involves the

plasma frequency,ω2
pa = 4πnae2a/ma , and the Fermi energy, EFa = �

2

2ma

(
3π2na

)2/3
.

One readily verifies the direct proportionality �q ∼ rs , where rs is the so-called

Brueckner parameter, and aB is the Bohr radius,6 aB = �
2

e2me
(see Problem 1.2,

Sect. 1.6).
It is interesting to note that the quantum Coulomb coupling parameter (we will

use rs , in the following) scales with density according to rs ∼ n−1/3. This means, a
Coulomb interacting quantum system becomes ideal, with increasing density. This
trend, which is in contrast to the classical behavior, arises from the strong density
dependence of the quantum kinetic energy (which equals 3/5 of the Fermi energy)

5The ideal chemical potential is given by χa = I1/2(βμid
a ), where χa is the degeneracy parameter

(1.2).
6The Bohr radius is straightforwardly generalized to hydrogen-like bound states of two arbitrary

particles with charges ea and eb and masses ma and mb, according to aH
B = εb�

2

ea ebmab
, where we

introduced the reduces mass, mab = mamb/(ma + mb), and the background dielectric constant,
εb, is included to allow for a medium surrounding the bound states.
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Fig. 1.3 Pair distribution function of a dense two-component electron-ion plasma (hydrogen) in
thermodynamic equilibrium in the quantum regime (for the electrons, χ = 5). The three curves
correspond to the three types of particle pairs. The Coulomb repulsion between two electrons and
two ions gives rise to the “Coulomb hole” at small distances, exactly like in the one-component
case, cf. Fig. 1.1. Note that this hole is narrower for electrons which is due to quantum degeneracy
(finite extension of the electron wave functions). The Coulomb attraction between electrons and
ions gives rise to a maximum of gei around rie = 0. The two plots correspond to two values
of the Coulomb coupling parameter �, at constant electron degeneracy parameter χ = 5. The
corresponding densities and temperatures are: a T = 60.5ER , n = 3.57 · 1026 cm−3 [rs = 0.17]
and b T = 0.94ER , n = 7 · 1023 cm−3 [rs = 1.4]. The results are obtained using path integral
Monte Carlo simulations. Distances are given in units of the Bohr radius aB , the temperature scale
is one rydberg, 1ER = 13.6 eV. Figure reprinted from [18], Copyright (2000), with permission
from Elsevier

that grows faster than the mean interaction energy (which grows only as n1/3).7 It is
instructive to look at the pair distribution function (PDF) of a nonideal system in the
quantum regime. Figure1.3 shows the three pair distributions of a dense hydrogen
plasma gee(r), gii (r) and gei (r), for weak [(a): rs = 0.17] and moderate [(b): rs =
1.4] coupling, respectively. As in the classical case, with increasing coupling, the
Coulomb hole increases, cf. the ion-ion PDF. Note that the Coulomb hole is smaller
for the electrons, compared to the ions. This is due to the larger spatial extension of
the electrons which reduces the e−e repulsionwhereas the ions are still almost point-
like. At weak coupling [cf. Fig. 1.3a], the electron-electron PDF is strongly affected
by fermionic exchange. In the limit of an ideal Fermi gas, due to the Pauli principle,
two electrons with the same spin projection cannot occupy the same position, i.e.
g�

ee (0) = 0, whereas two electrons with opposite spin will be nearly independent,
g↑↓

ee (0) = 1. Therefore, the total PDF which is the superposition of these cases
approaches, for rs → 0, the value g(0) = 0.5, which is in good agreement with the
numerical result in Fig. 1.3a.

Coulomb bound states. In two-component charged particle systems, another
nonideality effect is the formation of bound states—atoms, molecules, clusters etc.

7Strictly speaking, this is true only for fermions and in the non-relativistic limit.
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Solving the quantum-mechanical bound state problem [we consider hydrogen, as an
example8] yields the characteristic binding energy spectrum, with the ground state
energy E1s = −ER = −13.6eV corresponding to a mean electron-proton distance
equal to aB . The average extension of a bound electron is of the same order, i.e.
�bound

e � aB .
Now the interesting question is how bound states will be modified if they are

embedded into a many-particle system in thermodynamic equilibrium. In other
words: for what temperatures and densities will bound states exist? The first effect
is that of temperature. With increasing temperature, electrons bound in atoms will
acquire additional kinetic energy, and already for kB T � 0.2ER the probability to
leave the binding potential will be finite. Correspondingly, the degree of ionization
(fraction of free electrons) will be significant (thermal ionization). An analogous
mechanism exists in a quantum plasma if the system is being compressed. If the
mean interparticle distance becomes comparable to the Bohr radius, i.e. rs ∼ 1,
electron wave functions from neighboring atoms will start to overlap, and electrons
can tunnel out of the atom. This process which occurs even at zero temperature is
called pressure ionization (or Mott effect). This qualitative picture has been con-
firmed by first principle path integral Monte Carlo simulations [19, 20], where the
critical density (Mott density) for the break up of atoms9 was found to be rs ≈ 1.2.

“Corner of correlations”. The dependence of the coupling strength on density
and temperature is summarized in Fig. 1.2. One clearly sees that nonideality effects
are enclosed between the two lines � = 1 and rs = 1. This means that correla-
tion effects, liquid and solid behavior that was discussed above, are confined to this
triangular area. For example, crystal-like long-range ordering in quantum systems
is observed for rs � 100, e.g. [15]. It is this “corner of correlations”10 where the
structure of matter differs from the trivial state of nearly independent elementary
particles or of the ideal quantum Bose or Fermi gas. This region contains all coop-
erative phenomena—from simple bound states such as atoms, excitons or nuclei, to
living organisms.

While we have considered so far a hydrogen plasma, as an example, the corre-
lation effects discussed above are essentially universal in charged particle systems.
Details of the specific system, such as the charges and masses of the constituents and
properties of the background medium (e.g. the background dielectric function εb)
are “absorbed” in the dimensionless coupling parameters, �a, rsa and the degener-
acy parameter χa . Thus, the phase diagram and the characteristic phase boundaries
shown in Fig. 1.2 have an almost universal form.

Naturally, for two specific system, the phase boundaries will be displaced from
each other if one uses, instead, dimensional densities and temperatures which is done
in Fig. 1.4. The range of temperatures and densities where charged particles exist is
astonishingly broad. Aside from plasmas occuring in the universe or in laboratory

8It is straightforward to extend this to other hydrogen-type bound states by properly rescaling the
Rydberg energy ER and the Bohr radius.
9This was defined by the density where the degree of ionization reaches 10%.
10The term was introduced by Ebeling et al. [21].
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Fig. 1.4 Extended density-temperature plane of a one-component charged particle system. The
dimensionless form of Fig. 1.2 is here converted into dimensional densities and temperatures. The
“corner of correlations” (bounded by the lines � = 1 and rs = 1) is shown by the green area.
The pink layer marks the region of break up of nuclear matter either at high temperature exceeding
the deconfinement temperature or at high density (see text). QGP denotes the quark gluon plasma
that has been produced in heavy ion collisions at Brookhaven National Laboratory and at CERN.
From [22]

setups there exists a variety of artificial “non-neutral” plasmas which are confined
by external potentials. Examples are electrons in semiconductor quantum dots, ions
in traps or complex (dusty) plasmas. In the latter case, the charged particles carry
between thousand and one hundred thousand elementary charges giving rise to huge
coupling parameters. As a result the phase boundaries (lines of constant �) move
up to high temperatures.

Ultra-high temperature or densities. It the temperature is increased beyond the
atomic binding energy, electrons are freed one by one from molecules and atoms,
and the system transforms into the fully ionized plasma state. For the case of atoms
with charge number Z , this process continues until all Z electrons are ionized and a
Z -fold charged nucleus is left. An analogous sequence of transitions is observed for
a density increase, along lines of constant temperature. If rs becomes smaller than
1.2, atoms break up via tunnel ionization. Further compression will lead to the break
up of ions until only electrons and bare Z -fold charged nuclei remain.

Further temperature increase (or compression) will ultimately lead to kinetic ener-
gies that are sufficient for protons and neutrons to leave the atomic nucleus. This
occurs at densities for which the average distance between two nuclei becomes of
the order of the average distance of nucleons in the atomic nucleus. The average
density of nuclear matter is about nNM = 0.16 fm−3 = 0.16 · 1039 cm−3, where
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one Fermi (or femtometer) equals 1 fm= 10−13 cm. Even this is not the end of the
story: At further compression, nucleons will break up into quark triplets. The same
processes of deconfinement of quarks occurs at ultrahigh temperatures, where the
deconfinement temperature has been established to be around Td � 175MeV. The
quark deconfinement transition is depicted by the pink band in Fig. 1.4.

1.2 Thermodynamic Properties of Correlated Systems

Although equilibrium properties are not our main subject, it is important to under-
stand the effect of correlations first for this simplest case. The simple reason is that
the thermodynamic equilibrium state is often the end point of relaxation processes of
a system that is externally excited. In this case a key requirement for the theory of the
nonequilibrium dynamics should be that it guarantees that the evolution converges
to the correct thermodynamic state.

In a correlated system, the ground state as well as the thermodynamic equilib-
rium state may be strongly modified compared to an ideal gas. In particular, the
thermodynamic functions, such as free energy, internal energy, chemical potential,
pressure and so on contain additional interaction contributions, e.g. F = F id+Fnonid,
μ = μid + μnonid.

Energy of the electron gas. As an example, we consider the total energy of the
uniform electron gas (“jellium”). This model system has been well studied theoreti-
cally, and there exist many semi-analytical fits for the energy as a function of rs , see
[23], for an overview. In addition, benchmark results have been produced using path
integral Monte Carlo (PIMC) simulations, e.g. [24]. These data have been of central
importance for applications to real materials because the total energy for T = 0
serves as a key input for density functional theory simulations. Here we extend this
to finite temperatures which is currently of substantial importance to highly excited
materials, as well as to dense plasmas (“warm dense matter”). In Fig. 1.5 we show
PIMC results for the total energy of the uniform electron gas at a finite temperature
corresponding to � = 0.0625. The left part shows the total energy as the function
of the Brueckner parameter rs , compared to the energy of an ideal Fermi gas. The
difference between the two—the correlation energy—is plotted in the right figure.
It is obvious that correlation contributions play a crucial rule for this system. The
discrepancy between the two sets of simulations indicates that these quantities are
still under investigation, in particular in the range of low rs . Additional simulations
that are more accurate for weakly coupled electrons (rs < 1) have been reported by
Schoof et al. [25, 26] using the recently developed configuration PIMC approach
[27].

Partial ionization. Chemical composition.Correlation effectsmayhave a drastic
impact on the equation of state p = p(n, T ) = pid+ pnonid, aswell as on the chemical
composition of partially ionized or partially dissociated systems. Figure1.6 shows,
as an example, the chemical potential of electrons and protons in a partially ionized
hydrogen plasma. At low densities the plasma is fully ionized and electrons and
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Fig. 1.5 Energy of the uniform unpolarized degenerate electron gas (jellium) at a finite temperature,
� = kB T/EF = 0.0625. E0: ideal energy. DPIMC: direct fermionic PIMC simulation; RPIMC:
restricted PIMC [28]. All energies are in units of Hartree (1Ha= 2ER). Left figure: Total energy;
Right figure: Correlation energy. Reprinted with permission from [29]. Copyright (2015) by the
American Physical Society

protons behave classically (χe < 1), as can be seen in Fig. 1.4. The chemical potential
shows the behavior well-known for an ideal gas, βμ ∼ − ln n�3. In contrast, at high
densities, n � 1024 cm−3, we observe the behavior resembling an ideal Fermi gas
where βμ ∼ I−1/2(χ). For the density region between these two limits correlation
effects are important, at low temperatures. Indeed, this density interval is just inside
the “corner of correlations”, see above. Correspondingly, we observe a lowering of
the chemical potential below the ideal curve,11 as in the case of the energy of the
electron gas above, cf. Fig. 1.5.

In the present case of a plasma with attractive interactions the strongest correla-
tion effect is the formation of atoms and molecules. This can be described theoret-
ically using a chemistry-motivated approach: formation of an atom is described as
a chemical reaction of the recombination of an electron and a proton.12 In thermo-
dynamic equilibrium the chemical composition follows from the condition of equal
chemical potentials of the reactants. For example, the detailed balance in the ioniza-
tion/recombination of atomic hydrogen as well as molecular dissociation is given by
μe + μp = μH , and 2μH = μH2 where all chemical potentials contain interaction
contributions. This leads to the mass action law (Saha equation) for nonideal sys-
tems which is readily solved numerically for the density of free electrons (degree of
ionization) [32]. Results for hydrogen are shown in Fig. 1.6 along various isotherms.
At low densities, first atoms are formed, whereas molecules appear at higher densi-
ties. All bound states vanish due to weakening of the binding energy in the plasma
(screening and quantum effects) leading to pressure ionization (Mott effect), as was

11The intermittent monotonic decrease of the chemical potential as a function of carrier density may
be related to a phase transition (the hypothetical plasma phase transition) [30], for a discussion, see
e.g. [31, 32]. This issue is still controversially discussed, e.g. [33, 34] including recent predictions
of a substantially lower critical temperature [35].
12This is just the net balance. The true process is, of course, three-body recombination or photo-
recombination.
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Fig. 1.6 Chemical composition of partially ionized hydrogen. Left figure: Correlated equilibrium
chemical potentials of electrons and protons (divided by kB T ) versus free electron density, for
T = 14,000K (a), 17,000K (b) and 20,000K (c). The minimum is due to correlations, (1Ryd =
EH = 13.6eV). Right figure: Fractions of electrons which are free or bound in atoms or molecules
versus total electron density. The region of bound states indicates the influence of correlations. At
high densities the effective binding energy I eff of atoms and molecules decreases due to screening,
and bound states are no longer stable (Mott effect, see text). Reprinted with permission from [32].
Copyright (1995) by WILEY

discussed above. Similar effects are found in partially ionized electron-hole-exciton
plasmas in semiconductors, e.g. [21, 36], and in nuclear matter.

The main task to compute the chemical composition consists in finding appro-
priate approximations for the interaction contributions of the chemical potentials of
electrons, protons, atoms and molecules. While this is rather successful at low and
high density, fundamental difficulties in this “chemical picture” [8, 21, 31] arise in
the intermediate density range that is shown in Fig. 1.6. Here the distinction between
bound and free particles is, to somedegree, arbitrary, and amore appropriate approach
is the “physical” picture where no such subdivision is introduced. Examples are
thermodynamic (Matsubara) Green functions methods, e.g. [8] and quantum Monte
Carlo, e.g. [37, 38]. In the former, bound and free electrons are described by a single
Green function (spectral function), and appear in different parts of the spectrum. In
the latter, only elementary particles (electrons and protons or electrons and holes in
semiconductors) are simulated, and bound states appear “spontaneously” as spatially
tightly bound pairs of elementary particles, see below.

Theoretical approaches to equilibrium properties. Following these examples,
we now list important theoretical methods that were developed in recent years to
describe the equilibrium properties of correlated many-particle systems.13 We first
list methods for classical systems.

13This list is by no means complete but rather based on personal experience of the author.
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1. Integral equation techniques: These techniques and approximations such as the
hypernetted chain (HNC) approximation have been developed in the theory of
classical fluids and have proven to be very efficient to describe strong correlation
effects, also in partially ionized dense plasmas. For a text book overview see [39];

2. Stochastic modeling: First principle simulations of classical nonideal equilibrium
systems are possible using Monte Carlo methods, following the classical algo-
rithm of Metropolis et al. [40] or similar concepts, for an overview see [38, 41];

3. Dynamic (classical or quantum mechanical) modeling: Molecular Dynamics
techniques allow to perform first-principle simulations for classical systems by
solving Newton’s equations with a suitable thermostat. Thermodynamic quanti-
ties are computed using Green-Kubo-type (fluctuation dissipation) relations. For
details see, e.g. [42].

4. Variational quantum approaches: Various methods, in particular, Thomas-Fermi
theory and density functional theory [43] are very successful in many fields of
physics and chemistry, including condensed matter, materials and complex sys-
tems. The difficulty here is the treatment of finite temperatures and of correlation
effects.

5. Quantum statistics: Field-theoretical concepts such as equilibrium (Matsubara)
Green functions theory involving diagrammatic expansions are particularly suc-
cessful, for textbook discussions of these methods, see [8, 21, 31, 44, 45]. An
introduction is presented in Chap. 13;

6. Density operators: This is themain topic of this book, and the special case of equi-
librium density operators and correlation functions is briefly covered in Sect. 2.7;

7. Path integral methods: Here the idea is to evaluate the N -particle density oper-
ator. For an overview, see the classical monographs of Feynman and Hibbs [46]
and Kleinert [47]. Modern applications of this interesting approach to quantum
systems concentrate on path integral Monte Carlo methods. Some results were
presented in Figs. 1.3 and 1.5 above, for an overview see [38].

These methods are often highly specialized for the investigation of equilibrium prop-
erties of various many-particle systems. For more details and further references, see
e.g. [31]. But we will see below that not all of these concepts are applicable to
situations far from equilibrium.

1.3 Ultrafast Nonequilibrium Phenomena

Let us now assume that our equilibrium N -particle system at some moment t = t0
is influenced by an external excitation. This can be the compression of the system, a
heating process, the penetration of a particle beam into the system or the applications
of an external field.As a result, the systemwill respond to the excitation—by reaching
a new pressure, temperature or chemical composition, or it will adapt by assuming
a new charge distribution—until it, eventually, comes to a new equilibrium state. It
is the main subject of nonequilibrium theories, to understand this relaxation process

http://dx.doi.org/10.1007/978-3-319-24121-0_13
http://dx.doi.org/10.1007/978-3-319-24121-0_2
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and to predict how the final state will look like. Based on this knowledge, one may
suggest a specific form of excitation which allows to reach a well-defined desired
state.

Thus, nonequilibrium theories have to solve two problems: (1) What are the
properties of various external excitations, what are their time scales, how do they
interact with the particle system and how much energy in what spectral composition
do they allow to “feed” into the system? And (2), what are the dominant relaxation
mechanisms in a given many-particle system, how can they be activated, how much
momentum and energy do they allow to transform? Obviously, both questions are
closely related and require a detailed knowledge of the microscopic properties of
many-particle systems and of the character of the interaction of the particles with the
excitation under nonequilibrium conditions.

Before answering these questions we briefly consider a different case—that of an
isolated system. This has, traditionally been considered an idealized case, because
effects of the coupling to the environment are always thought to be present. How-
ever, in recent years isolated few-particle systems have come into the focus of various
experiments and stimulated theoretical developments.We return to the issue of relax-
ation processes in Sect. 1.3.2.

1.3.1 Dynamics of Isolated Systems

Electrons in an atom can be easily excited by an electromagnetic field. In many cases
their dynamics is very weakly coupled to the environment. This means these dynam-
ics are (almost) dissipationless and time-reversible and can be studied theoretically
using standard quantum mechanics in the framework of the Schrödinger equation.
For the coupled dynamics of several electrons this equation is numerically very chal-
lenging, and exact solutions (exact diagonalization or “configuration interaction”,
CI) are limited to simple problems. In addition, in physics and quantum chemistry,
numerous approximate solution schemes have been developed that allow for time-
dependent solutions for the dynamics of correlated electrons. A recent overview on
various methods can be found in [48].

Another type of isolated few-body system are ultracold atoms in optical lattices.
There has been remarkable experimental and theoretical progress in this field over
the last decade which, however, is outside the focus of the present book. Here we
note that the methods being in the focus of the present book—density operators
and nonequilbrium Green functions—are well suited to study these systems as well.
Among recent references discussing such applications we point out [11] and [49]
and references therein.

Isolated pure state dynamics is, of course, a model situation. Already in the case
of small molecules and, much more importantly, in larger aggregates of atoms such
as clusters or condensed matter systems, the electron dynamics are not isolated but
coupled to other degrees of freedom such as inter-nuclear vibrations, phonons and
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Fig. 1.7 Duration of the shortest available laser pulses of the recent half century. The recent
15years have witnessed a dramatic decrease of pulse durations to about 100as, which is achieved by
high-harmonics generation. This time is comparable with characteristic electronic scales in atoms
and condensed matter. Such pulses will allow to study electronic processes in atoms, molecules
and materials. Reprinted with permission from [1]. Copyright (2008) by the Canadian Science
Publishing or its licensors

other quasiparticles. This will, ultimately, lead to a loss of quantum coherence, to
dissipation or dephasing. This is the situation we will be studying below.

1.3.2 Interaction of Matter with Short Laser Pulses

Femtosecond and attosecond lasers. To be more specific, we will mainly be inter-
ested in the excitation of correlated matter by electromagnetic fields, including lon-
gitudinal electric fields and the radiation field of a laser or free-electron laser (FEL).
Especially lasers have, due to recent developments become a quite unique excitation
source, supplying energy in an extraordinarily wide range of time duration, photon
energy and power (intensity). Of particular importance is the availability of ultra-
short radiation pulses. The development of pulse durations of the recent half century
is illustrated in Fig. 1.7. While the first lasers had pulse durations in the range of
nanoseconds to picoseconds, pulse durations fell continuously to about 6 fs, in 1986
[2] after which they remained nearly constant over 15years.

The next breakthrough came in the early 2000s with the use of high-harmonics
generation that brought pulses down to about 100as, e.g. [1]. These are fields with
photon energies in the ultraviolet (several tens of eV) of rather low intensity. An
alternative route to short pulses in the UV to soft x-ray range is provided by FEL
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radiation.14 While these fields have higher intensity, the pulse durations are still in
the range of a few to several ten femtoseconds.

Low-intensity lasers, mostly in the visible and infrared range, have been a key
tool for time-resolved studies of semiconductors for a long time, e.g. [50, 51], where
picosecond and femtosecond pulses have provided detailed information on themicro-
scopic properties of bulkmaterials and low-dimensional nanostructures. XUV pulses
are used to diagnose dense plasmas using Thomson scattering [52]. The reason is
that these pulses have a duration which is comparable to typical response and relax-
ation times in these materials. With the availability of femtosecond and attosecond
pulses completely new regimes are becoming accessible. It is now becoming pos-
sible to probe the electron dynamics in atoms where characteristic time scales are
on the order of 20as. With pulses of a few femtoseconds duration one can study
the dynamics of chemical reactions involving molecules. Similar time scales are of
relevance for electronic processes in condensed matter. Thus, accurate time resolved
measurements are now a key tool for both fundamental research and technological
applicaionts. At the same time short-pulse lasers allow not only to probe but also to
excite matter into a strong nonequilibrium state in a very well defined way.15

Finally, we mention a different route of progress—the evolution towards higher
field intensities. Starting in the 1980s novel technical concepts,16 have allowed
to steadily increase the power concentrated in a single pulse to terawatts and
petawatts (1012 . . . 1015)W and the corresponding intensities to the range of
1019 . . . 1022W ·cm−2. The associated electromagnetic field strength by far exceeds
the binding energies of solids and even that of heavy atoms. As a result it is pos-
sible to ionize any atom, up to Uranium, within the duration of a single oscillation
cycle. This has an exceptional potential for many applications, including generation
of relativistic electron and ion beams, the study of nuclear reactions, creation of
electron-positron pairs, creation of ultradense matter or inertial confinement laser
fusion.

Figure1.8 summarizes the range of temporal and energetic parameters of laser
pulses and compares them to relevant scales of various materials. Typical binding
energies of different systems are shown in the right part of the figure.

Field–matter interaction processes.This interaction is readily understoodwithin
the photon picture: Field energy can be absorbed bymatter in portions of�ω. The pho-
ton energy determines what kind of absorption process is possible, while the field
intensity determines the average number of photons which can interact with the
material simultaneously. Obviously, multiphoton processes become relevant only at
sufficiently high intensities. On the other hand, there is the inverse mechanism possi-

14This remarkable development was achieved using the SASE (Selfamplification by spontaneous
emission) scheme where coherent radiation with photon energies from the UV to soft X-rays has
become available.
15The photon energy, laser intensity andpulse duration canbe chosen accurately in a broadparameter
range.
16This includes, in particular, “chirped” pulse amplification, where the frequency of the field varies
in time. One succeeds in generating very short and intense pulses without damage to the optical
system by dispersively stretching the pulse, and compressing it again only after amplification [53].
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Fig. 1.8 Typical energy and time scales of relaxation in various systems. Along right border range
of binding energies of solids, atoms, molecules, nuclei and elementary particles, arrows correspond
to excitons (ex), hydrogen (H), electron and proton rest mass and typical band gap in semiconduc-
tors. Along left border typical energies of photons and plasmons in semiconductors (e–h), metals
and dense plasmas. Along lower border life time of e-h plasmas and typical relaxation time in semi-
conductors, dense plasmas and nuclear matter (for different densities, increasing inside each box
from right to left). Dash-dotted line corresponds to Heisenberg’s principle: for a given observation
time, the energy uncertainty is above (or on) this line. At the same time, this line relates energies
and oscillation periods for photons (frequency ranges are indicated). Dotted lines indicate constant
power (in Watts). The laser area indicates energy versus pulse duration (below one picosecond) of
modern lasers

ble, where particles emit radiation. There is a large variety of interactionmechanisms,
among them are

(i) free charge acceleration in the oscillating electric field of the wave: The aver-
age oscillation energy of an electron (“quiver” or ponderomotive energy) in
the field of amplitude E and frequency ω follows from Newton’s equation17:
Upond = e2E2/(4meω). With modern high-intensity lasers electrons are easily
accelerated up to relativistic energies18;

(ii) carrier-photon scattering: In scattering processes with photons electrons may
gain (lose) energy, re-emitting a photon of lower (higher) energy (Thomson
scattering). At relativistic energies this process is called “Compton scattering”,
which may also involve multiple photons;

17See Problem1.3, cf. Sect. 1.6.
18For a laser wavelength λ = 1μm and an intensity of 1013W/cm2, Upond ≈ 1eV, the electron rest
mass (about 0.5MeV) is reached at an intensity of 1.37 · 1018W/cm2, see e.g. [54]. The relativistic
average oscillation energy is Eosc = mec2

([1 + Upond/mec2]1/2 − 1
)
[55].
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(iii) excitation of collective plasma oscillations of the charge carriers: This is an
efficient absorption mechanism for photons with an energy in resonance with
the plasma (Langmuir) frequency ω2

pl = (4πne2/m) or, similarly, for other
collective plasmon modes. At high laser intensities the plasma wave will have
very high field amplitudes and may itself act as an accelerator for electrons
(“wake field” accelerator);

(iv) emission of radiation by moving charges: Freely moving charges emit
Cherenkov radiation19 while charges which are slowed down, e.g. in the field
of an ion, emit “bremsstrahlung”20;

(v) excitation processes in atoms or molecules or interband transitions in solids:
This is the most important mechanism at low field intensities, which is widely
used in spectroscopy of atomic or condensed matter systems. The excited
electrons gain a kinetic energy of Ekin = �ω − �E , where �E is the energy
difference of the final and initial energy level;

(vi) the inverse processes of (v): de-excitation of bound particles or interband tran-
sitions to lower lying bands which is associated with the emission of a photon.
These processes may occur spontaneously or coherently by many electrons,
where it leads to lasing;

(vii) Ionization of atoms or molecules: If in (v) electrons are excited into the contin-
uum, bound states become ionized. The kinetic energy of electrons and ions is
given by Ekin = �ω − I eff , where the ionization potential I may be modified
by medium effects (screening, selfenergy etc. [56]);

(viii) Ionization of condensed matter: Similarly as in the case of atoms, photons
may kick out one or several electrons from a solid. The photoelectrons can be
accurately detected, and their energy spectrum gives detailed information on
the band structure of the material21

(ix) Multi-photon ionization: At high intensities,multiple photonsmay be absorbed
simultaneously by the atom to bridge the ionization gap. On the other hand,
ionization is possible also off-resonance [57]: for photon energies below the gap
(“tunnel ionization”) and also far above the gap (“above threshold ionization”).
The kinetic energy of the electrons is Ekin = n�ω − I eff − Upond;

(x) Relativistic photon–particle transitions: Photons with energies above
2mec2 ≈ 1MeV (γ quants) may generate electron-positron pairs. On the other
hand, one also expects pair creation from lasers of ultra-high intensity in multi-
photon processes,22 e.g. [54].

Obviously, at relativistic energies a clear separation of some processes is no longer
possible. There, a unified treatment of charge carriers and electromagnetic radiation
is necessary, which is given by relativistic quantum electrodynamics (see Chap.13).

19Charges moving with the velocity v emit radiation of frequency ω and wave vector k on a cone
around v, ω = v · k.
20For sufficiently high velocities, the frequencies easily reach the range of x-rays.
21The method of angle-resolved photoelectron spectroscopy (ARPES) is a powerful tool for basic
physics and material science.
22Pair creation in a two-photon process was already discussed by Breit and Wheeler [58].

http://dx.doi.org/10.1007/978-3-319-24121-0_13
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Modifications on short times. As noted before, traditional concepts have to be
revised if ultrafast processes are being considered. The most striking effect results
from Heisenberg’s uncertainty principle: The picture of electromagnetic radiation
consisting of portions with a sharp energy �ω breaks down on short times. Laser
pulses with a duration of only a few femtoseconds or a hundred attoseconds which,
in the optical range, corresponds to only a few oscillation periods, consist of photons
which are “smeared out” energetically. [The corresponding relation between energy
and time scales is shown in Fig. 1.8 by the line Et = h: For processes with a given
time duration t , the minimal energy uncertainty is given by the crossing point with
this line, and real processes are confined to the range above this line.] Instead of a
photon with a fixed energy, an electron or atom will interact with radiation in a broad
spectral range around �ω. Obviously, distinctions between resonant and off-resonant
processes, above or below threshold etc. become meaningless.

An interesting implication for the theory of nonequilibrium processes is that, in
such situations, also energy conservation has to be reconsidered. Results that involve
the well-known “Fermi’s golden rule” may lose their validity, as will be discussed in
Chap.6. All these effects will be an important issue in the short-time investigations,
of the present book. To gain first insight, our analysis will concentrate on the simplest
types of field-matter interaction, mainly on processes (iii)–(vi), in the nonrelativistic
limit.

1.3.3 Overview of Relaxation Processes

Excitation and relaxation. Let us now return to the investigation of many-particle
systems being brought out of equilibrium by some external excitation (e.g. a laser
pulse) and consider the relaxation into a new stationary state. The character of this
process depends strongly on the relevant time scales τp, trel and τcor—the duration
of the excitation (pulse duration) and the relaxation and correlation time23 of the
particle system. If τp 
 τcor, the excitation is “instantaneous”, and the relaxation
starts from some initial state created by the excitation. In the opposite limit, τp � trel,
the excitation is quasistationary, and the system is effectively in equilibrium at all
times,where the equilibrium state changes slowlywith the excitation. Inbetween both
limits, excitation and relaxation cannot be separated. This is themost interesting, but,
at the same time, the most difficult situation.

Time scales of relaxation processes. While τp is determined by the technical
characteristics of the exciting laser, the relaxation time varies from one system to
another and also with the parameters, such as density, chemical composition (e.g.
degree of ionization) etc. Figure1.8 shows typical values of the relaxation time for
different systems (see bottom). For example, electron-hole plasmas in semiconduc-

23There may be various relaxation times, each related to another relaxation mechanism. Here, we
have in mind the relaxation time of the momentum distribution. Typically τcor < trel. We will
discuss these time scales more in detail in Chap.5.

http://dx.doi.org/10.1007/978-3-319-24121-0_6
http://dx.doi.org/10.1007/978-3-319-24121-0_5
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tors have a lifetime24 in the range of 10−9 . . . 10−6 s. Typical relaxation times are in
the range from 100 fs (at high densities of the order of 10a−d

B , where d is the dimen-
sionality of the structure) to several picoseconds (at low densities, n < 0.1a−d

B ).
On the other hand, dense plasmas have a very broad range of relaxation times: for
example, for fully ionized hydrogen trel ∼ 10 fs at a density of about 1020 cm−3, and
it decreases continuously with increasing density. The shortest relaxation times are
found in nuclear matter, they are around 10−23 . . . 10−22 s. Thus, interesting over-
lap of relaxation (and correlation) times with the pulse duration of modern lasers
is observed in plasmas of moderate density and, especially, in condensed matter
systems.

Relaxation mechanisms. In general, a laser pulse activates several relaxation
mechanisms of the many-particle system at once. This depends mainly on the kinetic
energy gained by the electrons and other particles during the excitation. For many
processes, a threshold energy is required. This includes photo-ionization or impact
ionization of bound states (atoms ormolecules—in gases or plasmas; excitons, impu-
rities and so on—in solids) or excitation of collective modes, such as vibrations of
atoms in a molecule or in the crystal lattice (phonons) or of the charged particle gas
(plasmons). Here, the typical energy exchanged between the electrons and the scat-
tering partner is the phonon energy �ωph or the plasmon energy, �ωpl , respectively.

The most important and general mechanism in a many-particle system is carrier–
carrier scattering, e.g. electron-electron, electron-ion(or hole) and hole-hole (ion-
ion) scattering. Here, the typical scattering energies are proportional to the scattering
cross section σ, e.g. for Coulomb interaction in second Born approximation,25 σ ∼
V 2

ab(q) = [4πeaeb/εq]2. From this expression it is clear that in systems with large
background dielectric constant, εb, (e.g. fluids or dielectrics) the energy exchange
is strongly reduced and, therefore, the relaxation towards equilibrium takes longer.
Another carrier-carrier scattering mechanism is the excitation of collective modes of
the plasma (plasma oscillations, instabilities and so on), where the energy transfer is
of the order of the plasmon energy �ωpl . Typical values for the plasmon and phonon
energies are indicated in Fig. 1.8. (lower left part). In this book,wewill concentrate on
carrier–carrier scattering and the underlying correlations. For a discussion of other
scattering mechanisms in semiconductors and plasmas, see, respectively [63] and
[31].

Finally we mention that, usually, there exists a hierarchy of relaxation processes
with respect to the typical time, length or energy scales, which greatly simplifies the
theoretical treatment of the relaxation, for details see Chap. 5.

24This is the time that proceeds, on average, until an electron recombines from the conduction band
to the valence band. Note that drastically increased exciton life times exist in the case of “indirect
excitons” predicted by Lozovik [59] where electrons and holes are spatially separated, either by an
electric field [60] or by a buffer layer [61, 62].
25An improved treatment leads to cross sections in T-matrix approximation, see Chap.9.

http://dx.doi.org/10.1007/978-3-319-24121-0_5
http://dx.doi.org/10.1007/978-3-319-24121-0_9
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1.4 The Boltzmann Equation–Successes and Failure

The first in-depth analysis of the relaxation of a many-body system to equilibrium
was performed by Ludwig Boltzmann [13] who derived an equation of motion
for the single-particle probability density, f (r, p, t). More precisely, d f (r, p, t) =
f (r, p, t)d3rd3 p is the number of particles that occupies the phase space
volume element d3rd3 p at the point (r, p) at time t . The total probabiity density
is normalized to the particle number,

∫
d3 p d3r f (r, p, t) = N .

1.4.1 An Elementary Introduction
to the Boltzmann Equation

The equation of motion of the statistical quantity f (r, p, t) is readily formulated,
starting from the N -particle distribution function fN . This function is similar to f
with the difference that it depends on the phase space coordinates of all N particles,
fN = fN (r1, p1, . . . rN , pN , t). This function is well known from classical statistical
mechanics, and it is equivalent to the exact solution of the N -particle problem for a
given Hamiltonian of N identical particles

HN =
N∑

i=1

p2
i

2m
+

N∑

i=1

V (ri ) + 1

2

∑

i

∑

j �=i

W (ri , r j , ) (1.4)

that are subject to an external potential V and interact via a pair potential W . The
equation of motion of fN follows from particle number conservation: its total differ-
ential vanishes26

0 = d fN

dt
= ∂ fN

∂t
− {HN , fN }, (1.5)

{A, B} =
N∑

i=1

[
∂ A

∂ri

∂B

∂pi
− ∂B

∂ri

∂ A

∂pi

]

, (1.6)

where in (1.6) we introduced the Poisson bracket. Using the Hamiltonian (1.4), we
readily obtain the derivatives27

∂HN

∂pi
= pi

m
= vi ,

∂HN

∂ri
= −dV (ri )

dri
−

∑

j �=i

dW (ri , r j )

dri
= Fext

i + Fint
i ,

(1.7)

26This is the case if there are no particle creation or annihilation processes in the system.
27We assume W (ri , r j ) = W (r j , ri ).
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where we introduced the forces acting on particle “i” that are created by the external
potential and all other particles, respectively.

Let us start by considering the case N = 1. Then, of course, interaction terms are
missing, i.e. W ≡ 0 and F int ≡ 0. Introducing the results (1.7) in (1.5) we obtain

0 =
{

∂

∂t
+ v1

∂

∂r1
− 1

m
Fext
1

∂

∂v1

}

f (r1, p1, t). (1.8)

This can be interpreted as a continuity equation in phase space: the probability density
at point (r1, p1) changes in time due to particle fluxes (the termwith ∂r1 f ) and due to
the external force (flux inmomentum space, termwith∂v1 f ). This picture is complete
for just a single particle.

However, if we consider a particle in the presence of other particles, the balance
equation (1.8) will change. We can easily understand the qualitative structure of the
equation in this case. The first effect is that the total force on particle “1” now is the
sum of external force plus all interaction forces, cf. (1.7). This means, particle “1”
(and any other) moves in a total field created by the force Fext

1 + Fint
1 . The field due

to Fint
1 is usually called “mean field”, as it describes the action of all particles in an

average way.28 Obviously, this mean field force of all particles cannot capture their
total action on particle “i”, in particular, it neglects collision effects that take place
upon close encounters. These collision effects will lead to an additional temporal
change of the distribution function f which is denoted by ∂ f

∂t |coll and is usually
called “collision integral”. This effect “beyond mean-field” is called “correlation
effect”, cf. Sect. 2.5. Thus the final form of the equation of motion of the one-particle
distribution function–the kinetic equation–is

{
∂

∂t
+ v1

∂

∂r1
− 1

m
Fext
1

∂

∂v1

}

f (r1, p1, t) = ∂ f

∂t
|coll = I (r1, p1, t). (1.9)

The collision integral takes into account all possible two-particle scattering events
where the two particles that have, originally, the momenta pin

1 , pin
2 scatter into the

momenta p f inal
1 , p f inal

2 . Since we want to know how the number of particles in
momentum state p1 changes, one of the momenta is fixed correspondingly. Thereby
the momentum of the scattering partner (which will be denoted by p2) is arbitrary,
so we have to sum (integrate) over all possible values. Similarly we have to integrate
over the momenta of the two particles (p̄1, p̄2) following the scattering event. Since
this process reduces the number of particles in the state p1, this term enters with a
sign minus. By symmetry, we also have to consider processes starting with momenta
p̄1, p̄2 and ending in the states p1, p2 which will increase the population of state
p1 and, therefore, enter with the plus sign. The final step is to count the number
of different microscopic scattering events which is easily done by multiplying with
f (r, p, t) – the number of particles occupying the corresponding momentum state

28How exactly this averaging procedure is performed will be discussed in detail in Chap.2, and the
definition of the mean-field potential will be given in Sect. 2.5.

http://dx.doi.org/10.1007/978-3-319-24121-0_2
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I (r1, p1, t) =
∫

d3 p2

∫
d3 p̄1

∫
d3 p̄2 P(p1, p2; p̄1, p̄2)

× { f (r1, p̄1, t) f (r1, p̄2, t) − f (r1, p1, t) f (r1, p2, t)} . (1.10)

Here we introduced an additional function P that properly accounts for the fact that
different scattering processes may have different probabilities.29

Equation (1.9)with the collision integral (1.10) is a very general result for classical
many-particle systems and has been used very successfully during the recent century.
At the same time, these equations miss key features of quantum many-body systems
in general and correlated systems, in particular. The main problems are

1. For quantum systems the mean fiel term on the l.h.s. of (1.8) has a more compli-
cated form (it is non-local) due to the finite extension of quantum particles.

2. Indistinguishability of quantum particles gives rise to an additional mean field-
type term—the exchange (Fock) contribution.

3. Quantum exchange also affects the form of the collision integral (1.10). There
appear additional factors of the form 1± f that take into account that, for fermions
(minus sign), occupied states cannot be occupied by a second particle the Pauli
principle.

4. An even more fundamental problem is that the collision integral (1.10) does not
satisfy the correct conservation laws of a nonideal system.

Finally, these equations are not applicable to ultra-short time scales and ultrafast
processes, as will be shown in Sect. 1.4.2. So there is more than enough reason to
look for generalizations of these equations which is the subject of the present book.
The problems related to the non-locality (1. above) will be solved in Sect. 2.3.2
whereas exchange effects (points 2. and 3.) are the subject of Chap. 3. The issue of
the conservation laws for quantum kinetic equations will be analyzed in Chap.8.

While we have written down a rather general form of the collision integral, (1.10),
the explicit form of the probability P may strongly vary, depending on the physical
system. It crucially depends on the type and range of interaction and on the coupling
strength. Various important cases will be studied in detail in the various chapters of
this book. Here we consider, as an example, the case of charged particles that interact
via the Coulomb potential. In this case, straightforward application of perturbation
theory yields30

P ∼ W̃ 2δ(p̄1 + p̄2 − p1 − p2)δ(Ē1 + Ē2 − E1 − E2), (1.11)

where W̃ (q) = 4πe2

q2 is theFourier transformof theCoulombpotential.Hereq = p̄−p
is the momentum transferred between the particles during the scattering event, and
the delta functions indicates that the total momentum of the two particles and their
total energy, E1 + E2, are conserved. However, using this result for P it was quickly

29For simplicity we assumed that P is symmetric with respect to the exchange p1, p2 ↔ p̄1, p̄2
and does not explicitly depend on the position and time instance of the scattering process.
30This will be derived in Chap.6.
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observed thatthe collision integral (1.10) diverges. The reason is the long range of
the Coulomb interaction which falls of like one over the distance. This divergance
is not a true physical effect but a deficiency of the approximation: in a plasma, the
long-range Coulomb force gives rise to accumulation of oppositely charged particles
around a given charge—i.e. to screening.As a consequence, the net potential becomes
modified according to31 W̃ (q,ω) → W̃ s(q) = W̃ (q)/ε(ω, q). The screening effect
of the surrounding plasma is captured by the dielectric function ε. It reduces the range
of the original potential and, at the same time, takes into account collective properties
of the plasma (plasma oscillations) which are related to the frequency dependence.32

1.4.2 Unphysical Ultrafast Relaxation in Charged Particle
Systems

A kinetic equation with the dynamically screened potential W s was first derived
in 1960 by Balescu [64] and Lenard [65] and analyzed by many plasma physicists
in detail. However, a full numerical solution of the corresponding kinetic equation
with a collision integral involving W s turned out to be very difficult due to the
existence poles of W s . The first solutions for a two-component quantum system
(electron-hole plasma) in optically excited semiconductors were reported by Binder
et al. 30years later [66, 67]. They made an unexpected observation: the distribution
function of electrons and holes which is created by a laser pulse relaxed, in some
cases, extremely fast to equilibrium. The character (relaxation) time was found to be
as short as few tens of femtoseconds and even several femtoseconds, an example is
shown in Fig. 1.9. This was in striking contrast experiments with optically excited
semiconductors showing relaxation times in the range of 100–500 fs.

This discrepancy between experiment and theory has triggered a large amount
of theoretical work during the next decade. This obvious failure of the Boltzmann
equation33 was unexpected since it was thought to be the most advanced quantum
kinetic approach available. The solution of this dilemma is the following: during the
laser excitation, electrons (holes) are gradually created in the conduction (valence)
band. During this finite time also the rearrangement of particles takes place that
gives rise to the formation of the screening “cloud” around each individual particle.
This means the dielectric function is also gradually being built up during this time.34

However, this process of the formation of screening (and more generally, formation
of correlations) is neglected in the Boltzmann equation with the collision integral
(1.10) because all scattering events are treated as instantaneous.

31The dynamically screened collision integral will be studied in Chap.10.
32This will be studied in detail in Chap.4.
33The kinetic equation with the Lenard-Balescu collision term involving W s is often called Boltz-
mann equation, in the semiconductor community.
34The first numerical treatment of this process was accomplished by Banyai et al. [68] and verified
experimentally by Leistenstorfer et al. [69]. We will discuss this issue in detail in Chaps. 10 and 13.

http://dx.doi.org/10.1007/978-3-319-24121-0_10
http://dx.doi.org/10.1007/978-3-319-24121-0_4
http://dx.doi.org/10.1007/978-3-319-24121-0_10
http://dx.doi.org/10.1007/978-3-319-24121-0_13
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Fig. 1.9 Relaxation of the electron disribution function in an optically excited semiconductor. The
initial distribution has a double peak structure where the high-momentum peak is determined by
the photon energy in excess to the band gap. Due to electron-electron scattering the distribution
relaxes towards a Fermi function. Consecutive times are t = 21 fs (short-dashed line), t = 75 fs
(long-dashed line), and t = 147 fs (dash-dotted line), and the final time t = 796 fs. Solutions of the
quantum Lenard-Balescu equation. Figure reprinted with permission from [67]. Copyright (1992)
by the American Physical Society

From this example we conclude that the kinetic equations (classical or quantum)
with such Boltzmann-type collision intergals are not applicable to ultrafast processes
or to the early stage of time evolution. It is one of the main subjects of this book
to derive generalized quantum kinetic equations that overcome these limitations. As
we will see, there exists a straightforward way to accomplish this goal. At the same
time, there exists a strict theoretical procedure with a clear set of approximations that
are required in order to recover the conventional Boltzmann equation.

1.5 Improved Theoretical Concepts

The theoretical analysis of nonequilbrium behavior of many-particle systems is
essentially more involved than the description of its equilibrium properties. There-
fore, many of the methods discussed in Sect. 1.2 are not applicable to time dependent
phenomena. Depending on the dominating relaxation mechanism, the theoretical
treatment of the evolution towards equilibrium varies greatly. For situations which
are close to equilibrium, onemayuse rate equations or hydrodynamic equations. If the
momentum distributions of the particles deviate significantly from the equilibrium
distribution, the appropriate concept are kinetic equations, such as the Boltzmann
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equation discussed above in Sect. 1.4. However, as was mentioned in the beginning,
conventional kinetic equations have two major deficiencies:

A. They assume implicitly that all correlations have already reached their equi-
librium form (in particular, they assume that initial correlations are completely
weakened), and thus they are not applicable to times shorter than the correlation
time, and

B. They conserve only kinetic (single-particle) energy and are, therefore, not
applicable to correlated many-particle systems. In particular, they yield the equi-
librium distribution of an ideal gas, completely neglecting correlation correc-
tions.

In fact, wewill see that both points are very closely related. Therefore, the description
of ultrafast processes (t < τcor ) as well as the relaxation of strongly coupled systems,
both, require generalized kinetic equations. Derivation, investigation and numerical
solution of these equations is the main topic of this book. But before we give an
outline, it is appropriate to summarize some of the important early results in this
field.

Historical remarks. A straightforward extension of equilibrium theories to non-
equilibrium is the Linear response approach developed by Kubo, Mori, Zubarev and
others, e.g. [70, 71]. This approach uses a generalized equilibrium statistical operator
which depends on additional observables. This method has been very successful for
the description of transport processes in correlated systems close to equilibrium, see
also [31, 72, 73, 74, 75].

A very general nonequilibrium method is based on the hierarchy of equations
for the reduced density operators, the BBGKY-hierarchy, which was developed by
Bogolyubov, Born, Green, Kirkwood, Yvon and others, e.g. [76, 77] and which
was lateron generalized to quantum systems. It is well suited for the derivation of
generalized quantum kinetic equations. Furthermore, there have been proposed other
concepts to derive Generalized (non-Markovian) kinetic equations, by Prigogine
[78], Resibois [79], Zwanzig [80], Balescu [81], Klimontovich and Silin [82] and
others.35 Klimontovich developed the method of microscopic phase space densities
[83] which proved to be very general36 and allowed him to derive a great variety of
generalized kinetic equations for nonideal gases and plasmas [72]. Bärwinkel and
Grossmann were the first to show that total energy conservation in kinetic equations
is closely related to the time structure (non-Markovian or retardation effects) of the
collision integral [84, 85].

35In particular, the kinetic equations derived by Prigogine contain an initial correlation term and a
non-Markovian scattering term d F(t)/dt = II C (t − t0) + ∫ t

t0
dτ K (t − τ )F(τ ). It could be shown

in very general form that the initial correlation term is damped. We will recover this general form
from the BBGKY-hierarchy in Chap.7.
36The fluctuating phase space density is defined in the 6N−dimensional phase space [x = (r, p)]
according to N (x, t) = ∑N

i=1 δ[x − xi (t)], where xi (t) is the exact trajectory of particle “i”. This
method straightforwardly incorporates density and field fluctuations and is, in fact, the classical
analogue to the second quantization method of field theory.

http://dx.doi.org/10.1007/978-3-319-24121-0_7
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A powerful approach to generalized quantum kinetic equations which derived
from field theory is the method of Nonequilibrium Green functions. Here, major
contributions are due toMartin and Schwinger [86, 87], Kadanoff and Baym [45, 88],
Keldysh [89]. The incorporation of electromagnetic fields was studied by Korenman
[90] and Dubois [91]. Extensions to the relativistic case have been developed by
Akhiezer and Berestezki [92] as well as Dubois and Bezzerides [91, 93], following
the early papers of Schwinger [94, 95].

Finally, nonequilibrium processes are successfully treated within purely mechan-
ical concepts, i.e. by Molecular Dynamics simulations. These methods are very
straightforward in application to classical particles where they yield very high accu-
racy results. The extension of these techniques to quantum systems is currently
actively discussed.37

Summarizing these developments, we conclude that today there exist three major
approaches that are applicable to ultrafast phenomena:

I. Density operator techniques. BBGKY-hierarchy;
II. Nonequilibrium Green functions theory;
III. Classical and Quantum Dynamics simulations.

Naturally, we canmention only a very small part of the tremendous literature. Further
references will be given in the chapters below (for additional literature on correlation
effects in strongly coupled plasmas, solids and nuclear matter, see, respectively, [23,
31, 63, 96]. For completeness, we mention that there exist excellent investigations
of ultrafast phenomena which use Monte Carlo techniques, which we cannot discuss
here, see e.g. [97] and references therein. This approach is closely related to points I.
or II., since it is based on quantum kinetic equations too. Other rapidly developing
approaches are time-dependent density functional theory [98] or time-dependent
extensions of the density renormalization group approach [99], for an overview, see
[100].

1.5.1 Outline of this Book

We will consider all three methods highlighted above, although we focus on the
density operator approach, because it is conceptually simple. In Chaps. 2 and 3, we
give a detailed introduction into the method of reduced density operators, based
on the BBGKY-hierarchy, discuss its properties, the treatment of correlations and
important decoupling approximations. In Chap.3 we generalize these results by the
incorporation of spin statistics effects.

In Chaps. 4–11, we discuss important approximations, beginning with the mean-
field (Hartree/Vlasov) approximation, which describes collective phenomena
(plasmons) in the absence of correlations. Correlation effects are introduced in

37In the first edition of this book we have compared the underlying concepts of the dynamical and
the statistical approaches in detail. In the mean time there has been ongoing acitivity in this rapidly
growing field which cannot be adequately covered here.

http://dx.doi.org/10.1007/978-3-319-24121-0_2
http://dx.doi.org/10.1007/978-3-319-24121-0_3
http://dx.doi.org/10.1007/978-3-319-24121-0_3
http://dx.doi.org/10.1007/978-3-319-24121-0_4
http://dx.doi.org/10.1007/978-3-319-24121-0_11
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Chaps. 5 and 6 and discussed further in Chap. 7, where we focus on Non-Markovian
behavior and selfenergy. In Chap. 8 we discuss important properties of quantum
kinetic equations before the discussion is extended to more complex correlation phe-
nomena in Chaps. 9–11. This will include strong correlations and bound states as
well as dynamical screening and screening buildup.

The consistent incorporation of electromagnetic fields into the BBGKY-hierarchy
and the derivation of generalized Bloch equations is the subject of Chap.13 and
concludes our discussion of the density operator approach.

Themethod of nonequilibriumGreen functions is summarized in Chap.13, where
we start from a fully relativistic formulation. We derive the relativistic Keldysh-
Kadanoff-Baym equations for particles and photons and their nonrelativistic limit
and compare the Green functions results to those of the density operator theory.

1.6 Problems

Problem 1.1 Find the connection between the two quantum degeneracy parame-
ters, χ and �, cf. (1.2).

Problem 1.2 Find the relation between the two quantum coupling parameters, �q

and rs , cf. (1.3).

Problem 1.3 Compute the average energy gain of a classical charged particle in the
field of a monochromatic linearly polarized laser field .

http://dx.doi.org/10.1007/978-3-319-24121-0_5
http://dx.doi.org/10.1007/978-3-319-24121-0_6
http://dx.doi.org/10.1007/978-3-319-24121-0_7
http://dx.doi.org/10.1007/978-3-319-24121-0_8
http://dx.doi.org/10.1007/978-3-319-24121-0_9
http://dx.doi.org/10.1007/978-3-319-24121-0_11
http://dx.doi.org/10.1007/978-3-319-24121-0_13
http://dx.doi.org/10.1007/978-3-319-24121-0_13
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