
Chapter 2
The Multiple Flavours of Multilevel
Issues for Networks

Tom A.B. Snijders

Away from Atomistic Approaches

It is strange that the assumption that data obtained from human respondents
represent independent replications has been so pervasive in statistical models used
in sociological research. Sociology, after all, is about the interdependence among
individuals, and about the ways in which individuals make up larger wholes such as
families, tribes, organizations, and societies. Of course we know some of the reasons
for this: statistical models founded on independence assumptions are convenient
and have properties that can be mathematically ascertained; surveys are a major
means of getting social information and ideally are obtained from probability
samples containing a lot of independent operations in obtaining respondents; and,
indeed, independence assumptions may yield good first-order approximations for
statistical modeling. However, as early as 1959 Coleman (1959, p. 36) made an
eloquent plea for taking social structure into account in methods of data collection
and analysis. Coleman writes: “Survey methods have often led to the neglect of
social structure and of the relations among individuals. (. . . ) But (. . . ) one fact
remained, a very disturbing one to the student of social organization. The individual
remained the unit of analysis. (. . . ) Now, very recently, this focus on the individual
has shown signs of changing, with a shift to groups as the units of analysis, or
to networks of relations among individuals”. He goes on to discuss methods for
survey data collection and for data analysis that reflect this change in perspective,
away from the focus on atomistic individuals. The analysis methods he discusses
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include contextual analysis, the precursor of present-day multilevel analysis, and
the study of subgroups and cliques, still now of crucial importance in social network
analysis. He concludes by saying that these methods “will probably represent only
the initial halting steps in the development of a kind of structural research which will
represent a truly sociological methodology”, and mentions the promise of electronic
computers.

In the past half century, since Coleman wrote these words, great advances
have been made in methodologies for analyzing groups, or collectives, along with
individuals; or, more generally, for simultaneously analyzing variables defined
on different domains. The name ‘multilevel analysis’ has replaced1 ‘contextual
analysis’. Great strides also have been taken in the study of relations among
individuals, known now as social network analysis. Network analysis likewise treats
variables defined in various different domains, such as sets of nodes and sets of
node pairs, and it is concerned with groups, but by and large multilevel analysis
and social network analysis have developed separately, meeting each other only
incidentally. Recently, however, developments in social network analysis have led
to combinations of these two strands of methodology. We are still in an early phase
of the junction of multilevel analysis and social network analysis, and we may
echo Coleman in saying that this book presents some ‘initial halting steps’ of this
junction. This chapter gives an overview of some concepts and techniques that now
can be seen as playing important roles in the combination of multilevel and network
analysis.

Multilevel Analysis

To be able to discuss multilevel network analysis, we need to present a sketch about
‘regular’ multilevel analysis.

Origins

Multilevel analysis, as a collection of methods, was born from the confluence of two
streams. On the one hand, sociological methodologists had been developing quite
some conceptual precision for inference relating individuals to collectives, for which
variables need to be combined that are defined in several different domains. On the
other hand, statisticians had already extended analysis of variance and regression
analysis, the general linear model, to linear models combining fixed with randomly
varying coefficients.

Let me first sketch some highlights on the sociological methodology side.
Lazarsfeld and Menzel (1961), in their paper On the relation between individual

1Albeit with a shift of meaning.
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and collective properties—written in 1956, reprinted as Lazarsfeld and Menzel
(1993)—distinguish variables according to the set of units to which scientific
propositions are meant to apply. For propositions about individual and collective
properties, they state that there need to be sets of units both at the individual
and at the collective level. Here ‘individual’ may refer to individual humans, but
also, e.g., individual organizations or other groupings; ‘collective’ refers to sets
of ‘individuals’. Lazarsfeld and Menzel go on to define three types of properties
defined for collectives. Analytical properties are obtained by a mathematical
operation performed on each member, for example the mean of an individual
variable, or the correlation between two variables. Structural properties are obtained
by a mathematical operation performed on the relations of each member to some
or all of the other members, for example the ‘cliquishness’ of a network. Global
properties, finally, are properties of collectives that cannot be directly deduced from
properties of individual members, e.g., the type of government of a city.

As for properties of individuals, Lazarsfeld and Menzel discuss that the cor-
relation between individual variables may be considered as a correlation between
the individuals but also between the collectives, pointing to the ecological fallacy
presented in Robinson (1950): the mistake of regarding associations between
variables at one level of aggregation as evidence for associations at a different
aggregation level; an extensive review was given by Alker (1969). Researchers
became aware of the importance of the different levels, or sets of units, in which
variables are defined, and as suggested here the focus was on nested levels,
representing individuals and collectives.

During the 1970s, methods for contextual analysis were developed taking into
account these levels of analysis, and trying to avoid ecological fallacies. This was
called ‘contextual analysis’ mainly by sociologists (Blalock 1984), and ‘multilevel
analysis’ by educational researchers (Burstein 1980).

Statisticians had a few decades earlier developed models that waited to be
discovered by these social scientists. In the analysis of variance, precursor and
paradigmatic example of the general linear model, models had been developed
where coefficients could themselves be random variables, allowing for the investi-
gation of multiple sources of random variation in, e.g., agricultural and industrial
production. Models with only fixed, fixed as well as random, or only random
coefficients were called fixed, mixed, and random models, respectively (Wilk and
Kempthorne 1955; Scheffé 1959).

In the early 1980s contextual analysis and linear mixed (or generalized linear
mixed) models were brought together by several statisticians and methodologists:
Mason et al. (1983), Goldstein (1986), Aitkin and Longford (1986), and Raudenbush
and Bryk (1986). These researchers also developed estimation algorithms and
implemented them in multilevel software packages, making use of the nested
structure of the random coefficients to achieve efficiency in the numerical algo-
rithms. The scientific gains from the combination of contextual analysis and random
coefficient models are also discussed by Courgeau (2003). A more extensive history
of these developments is given in Kreft and de Leeuw (1998).
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Hierarchical Linear Model

The prototypical statistical model used in multilevel analysis is the Hierarchical
Linear Model, which is a mixed effects linear model for nested designs (Raudenbush
and Bryk 2002; Goldstein 2011; Snijders and Bosker 2012). This generalizes
the well-known linear regression model. It is meant for data structures that are
hierarchically nested, such as individuals in collectives, where each individual
belongs to exactly one collective. The most detailed level (individuals) is called
the lowest level, or level one. The Hierarchical Linear Model is for the analysis
of dependent variables at the lowest level. The basic idea is that studying the
simultaneous effects of variables defined at the individual level, as well as of
other variables defined at the level of collectives, on an individual-level dependent
variable requires the use of regression-type models that include error terms for each
of those levels separately; the Hierarchical Linear Model is a linear mixed model
that has this property.

In the two-level situation—let us say, individuals in groups—it can be expressed
as follows. Highlighting the distinction with regular regression models, the termi-
nology speaks of units rather than cases, and there are specific types of unit at each
level. We denote the level-1 units, individuals, by i and the level-2 units, groups, by
j. Level-1 units are nested in level-2 units (each individual is a member of exactly
one group) and the data structure is allowed to be unbalanced, such that j runs from
1 to N while i runs, for a given j, from 1 to nj. The basic two-level hierarchical linear
model can be expressed as

Yij D ˇ0 C
rX

hD1
ˇh xhij C U0j C

pX

hD1
Uhj zhij C Rij : (2.1)

Here Yij is the dependent variable, defined for level-1 unit i within level-2 unit j;
the variables xhij and zhij are the explanatory variables. Some or all of them may
be defined at the group level, rendering superfluous the index i for such variables.
Variables Rij are residual terms, or error terms, at level 1, while Uhj for h D 0; : : : ; p
are residual terms, or error terms, at level 2. In the case p D 0 this is called a random
intercept model, for p � 1 it is called a random slope model. The usual assumption is
that all Rij and all vectors Uj D .U0j; : : : ;Upj/ are independent, Rij having a normal
N .0; �2/ and Uj having a multivariate normal NpC1.0;T/ distribution. Parameters
ˇh are regression coefficients (fixed effects), while the Uhj are random effects. The
presence of both of these makes (2.1) into a linear mixed model. Similar models
can be defined for nesting structures with more than two levels, e.g., employees in
departments in firms.

In most practical cases, the variables with random effects are a subset of the
variables with fixed effects (xhij D zhij for h � p; p � r). The Hierarchical Linear
Model can then be expressed in the appealing form

Yij D .ˇ0 C U0j/ C
pX

hD1
.ˇh C Uhj/ xhij C

rX

hDpC1
ˇh xhij C Rij ; (2.2a)
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which shows that it can be regarded as a regression model defined for the groups
separately, with group-specific intercept

.ˇ0 C U0j/ (2.2b)

and group-specific regression coefficients

.ˇh C Uhj/ (2.2c)

for h D 1; : : : ; p; variables Xh for p C 1 � h � r have regression coefficients that
are constant across groups. This pictures the Hierarchical Linear Model as a linear
regression model defined by the same model for all groups, but with regression
coefficients that differ randomly between groups.

Going back to the teachings of Lazarsfeld and Menzel, it can be concluded
that multilevel analysis elaborates the inference about individual and collective
properties as a system of nested samples drawn from nested populations: a
population of individuals nested in a population of groups (or collectives). The fact
that, in practice, groups will be finite, whereas the populations are mathematically
considered as if they were infinite, is usually glossed over in research aiming to
generalize to social mechanisms or processes (as distinct from descriptive survey
research about concrete groups, without the aim of generalization to other groups)
(see Cox 1990; Sterba 2009).

Non-nested Data Structures

It soon transpired that the relevant data structures are not always nested, because
social structures often are not. A basic example in studies of school effectiveness
is that neighborhoods may also be an important factor for student achievement,
but schools will have students coming from diverse neighborhoods while neighbor-
hoods will have students attending different schools. This leads to a data set where
students are nested in schools and also nested in neighborhoods, but schools and
neighborhoods are not nested in each other; the term used for non-nested category
systems is ‘crossed’, so that this would be called a cross-nested data structure.
To present an extension of model (2.1) for such a cross-nested data structure,
consider again a data structure with individuals i nested in groups j but now also
nested in aggregates k of a different kind (in the example of the previous sentence,
neighbourhoods). Denote by k.i; j/ the aggregate k to which individual i in group
j belongs. In the simplest extension there is only a random intercept Vk associated
with k, leading to the equation

Yij D ˇ0 C
rX

hD1
ˇh xhij C U0j C

pX

hD1
Uhj zhij C Vk.i;j/ C Rij : (2.3)
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The default assumption for the Vk is that again they are independent and normally
distributed with mean 0 and constant variance, and independent of the U and R
variables. A further extension is to mixed-membership models (Browne et al. 2001),
in which individuals may be partial members of more than one group.

Frequentist and Bayesian Estimation

Multilevel models such as (2.2), in which parameters vary randomly between
groups, provide a natural bridge between the frequentist paradigm in statistics,
which treats parameters as fixed quantities which are unknown, ‘out there’, and
the Bayesian paradigm, which treats parameters as random variables; in both
paradigms, of course, the observations are the material that helps us get a grip on the
values of the parameters. In the multilevel case, the random variation of parameters
can be linked to a frequency distribution of parameters in the population of groups,
which may be estimated from empirical data. Accordingly, this bridging ground is
often called empirical Bayes (see, e.g., Raudenbush and Bryk 2002, and Chapter 5
of Gelman et al. 2014). Bayesian estimators2 for the parameters such as (2.2a)
and (2.2b), using the sample of groups to get information about the corresponding
population, are called empirical Bayes estimators. For the parameters ˇ, �2, and T
in (2.1), frequentist as well as Bayesian estimators have been developed.

Especially for non-nested data structures, Bayesian estimators may have algorith-
mic advantages, and Bayesian Markov chain Monte Carlo (‘MCMC’) algorithms are
often employed (Draper 2008; Rasbash and Browne 2008) for such more complex
models. These are algorithms which use computer simulations, very flexible but also
much more time-consuming than traditional algorithms. Today, Bayesian methods
for multilevel analysis are often proposed and used without much attention paid to
the distinct philosophical underpinnings. This lack of attention does not, however,
take away the differences. The Bayesian approach can be a useful way to account
for prior knowledge; this is discussed for the special case of multilevel analysis
by Greenland (2000), and elaborated more practically in Chapter 5 of Gelman
et al. (2014). Using this approach requires, however, that one pays attention to the
sensitivity of the results to the choice of the prior distribution. In addition there
are interpretational differences, but these may be less important because of the
convergence between frequentist and Bayesian approaches discussed in Gelman
et al. (2014, Chapter 4).

2In frequentist terminology these are not called estimators but predictors, because they refer to
statistics that have the purpose to approximate random variables.
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What Is a Level?

The various extensions of the basic multilevel model have made even more pressing
the question ‘What is a level?’ which has harrowed quite a few researchers even
in the case of the more basic nested models. The mathematical answer is that, for
applications of linear mixed or generalized linear mixed models, a level is a system
of categories for which it is reasonable to assume random effects. More elaborately,
this means that we assume that the categories j on which the variables Uj are defined
(which are latent variables in model (2.1)) may be regarded has having been sampled
randomly from some universe or population G , making the Uj into independent
and identically distributed random variables, and our aim is to say something about
the properties of the population G rather than about the individual values Uj of
the units in our sample. In the case that the Uj are one-dimensional quantities,
the property of interest concerning population G could be, e.g., the variance of
Uj. In practical statistical modeling, the assumption that the units in the data were
randomly sampled from the population is usually taken with a grain of salt (again
cf. Cox 1990; Sterba 2009). The essential assumption is residual exchangeability,
which can be described as follows. The random effects, Rij and Uj in (2.1) and also
Vk in (2.3), are residuals given that the explanatory variables xhij are accounted for;
these residuals are assumed to be exchangeable across i and j (or k) in the sense
that they are random and as far as we know we have no a priori information to
distinguish them for different units in the data. Any Rij could be high or low just as
well as any Ri0j in the same group j or any Ri0j0 in a different group j0; any U0j could
be high or low just as well as any other U0j0 ; etc.

In this sense, multilevel analysis is a methodology for research questions and
data structures that involve several sources of unexplained variation, contrasting
with regression analysis which considers only one source of unexplained variation.
Employing the Hierarchical Linear Model, as in (2.1) or its variants with additional
levels, gives the possibility of studying contextual effects on the individual units.
But also in more complex structures where nesting is incomplete, random effects
will reflect multiple sources of unexplained variation. In social science applications
this can be fruitfully applied to research questions in which different types of actor
and context are involved; e.g., patients, doctors, hospitals, and insurance companies
in health-related research; or students, teachers, schools, and neighborhoods in
educational research. The word ‘level’ then is used for a type of unit, or a category
system, for which a random effect is assumed. The basic phenomenon we are
studying will be at the most detailed level (patients or students, respectively), and
the other levels may contribute to the variation in this phenomenon, e.g., as contexts
or other actors.

Lazarsfeld and Menzel (1961, first page) mentioned that, to be specific about
the intended meaning of variables, we should ‘examine (them) in the context of the
propositions in which they are used’. This focus on propositions also sheds light on
the question about what can be meaningfully considered as a ‘level’ in multilevel
analysis. We have to distinguish between the individual level, which is the level of
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the phenomena we wish to explain, the population of units for which the dependent
variable is defined; and higher, collective levels, which do not need to be mutually
nested, but in which the individuals are nested. To be a level requires, in the first
place, that the category system is a population—a meaningfully delimited set of
units with a basic similarity and for which several properties may be considered,
such as a well-defined set of schools, of companies, of meetings. A category system
then is a meaningful higher level if it is a population that we wish to use to explain3

some of the variability in our phenomenon and also, potentially or actually, we
may be interested in finding out which properties of the categories/units explain
the variability associated with this category system.

To illustrate this, suppose we are interested in the phenomenon of juvenile
delinquency as our dependent variable, and we consider neighborhoods as collec-
tives. The individual level is, e.g., a set of adolescents living in a certain area at
a certain time point; the dependent variable is their delinquency as measured by
some instrument. We may observe that neighborhoods differ in average juvenile
delinquency, and we then may wonder about the properties of neighborhoods—
perhaps neighborhood disorder, of which a measurement may be available—that
are relevant in this respect. This step, entertaining the possibility that there might
be specific properties of neighborhoods associated with their influence on juvenile
delinquency, and analyzing this statistically, is the step that makes the neighborhood
a meaningful ‘level’ in the sense of multilevel analysis. In the paradigm of multilevel
analysis we will then further assume that in addition to the effect of disorder there
may be other neighborhood effects, but conditional on the extent of disorder and
perhaps other neighborhood properties that we take into account, the neighborhoods
are exchangeable (as far as we know) in their further, residual, effects.

The fact that we are interested in statistically analyzing the effect of the categories
on the dependent variable also implies that for a level to be meaningful in a practical
investigation, the total number of its units in the data set should be sufficiently large:
a statistical analysis based on a sample of, say, less than 10 units usually makes no
sense.

Dependent Variables at Any Level

The Hierarchical Linear Model is considered a model for dependent variables at the
lowest level of the nesting hierarchy. However, it is so amazingly flexible that it
can just as well be used for complex configurations of multiple dependent variables
defined for several different levels. This was proposed, quite casually, already by

3‘Explaining’ is meant here in the simple statistical sense, without considering deeper questions of
causality.
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Goldstein (1989a,b). It is also explained in Goldstein (2011, Section 5.3). The
basic idea can be made clear by showing, for a two-level structure, the model for
interdependent dependent variables Y.1/ at level 1 and Y.2/ at level 2. Denoting by
xh and zh any explanatory variables and by wh explanatory variables at level 2, the
model reads

Y.1/ij D ˇ0 C
rX

hD1
ˇh xhij C U0j C

pX

hD1
Uhj zhij C Rij (2.4a)

Y.2/j D �0 C
qX

hD1
ıh whj C Vj ; (2.4b)

where .U0j; : : : ;Upj;Vj/ is a .p C 2/-dimensional random residual at level 2, with
a multivariate normal distribution. By using products with dummy variables this
can be written as a single Hierarchical Linear Model, see Goldstein (2011, p. 150).
Not all multilevel modeling software will allow for this complexity, but Goldstein’s
program MLwiN (Rasbash et al. 2014) handles such models straightforwardly.

This model for a two-level nested hierarchy allows studying a dependent variable
Y.2/ at the higher level, and the idea can be extended to other multilevel structures,
not necessarily nested.

An equivalent model was proposed independently by Croon and van Veldhoven
(2007) and further elaborated by Lüdtke et al. (2008). These authors proposed
models where the regression of level-1 variables is on latent level-2 variables, thus
allowing analysis methods that correct for unreliability of measurement of level-
2 variables. They developed and investigated estimators using structural equation
modeling. Recently, similar models were elaborated for latent classes, i.e., discrete
rather than normally distributed latent variables (Bennink et al. 2013).

Models for Social Networks

This section gives an overview of some statistical models for explaining social
networks, as represented by directed graphs; we will focus on models and issues
that are related to the treatment of multilevel networks in the next section. A wider
overview of statistical models for networks is given in Snijders (2011).

The nodes 1; : : : ; n of the digraph refer to social actors, and ties are represented
by tie variables Yij with the value 1 if a tie i ! j exists, and 0 otherwise. The
digraph then can be represented by its adjacency matrix

�
Yij

�
Œ1�i;j�n�. Y denotes the

random digraph and y one outcome, or realization of it; henceforth we shall usually
denote outcomes, or deterministic variables, by small letters and random variables
by capitals.
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The Basic Multilevel Nature of Social Network Analysis

Social network analysis (Wasserman and Faust 1994; Carrington et al. 2005) is
fundamentally a multilevel affair with a focus on relations rather than attributes,
thereby combining the actor level and the dyadic level. A basic issue for social
network analysis is the study of how relations—the dyadic level—and individual
characteristics—the monadic level—impinge on one another. This has led to models
studying how a given, fixed network influences individual actor attributes, with a
variety of network autocorrelation models (e.g. Doreian 1980; Leenders 2002) and
models for social influence (Friedkin 1998). Network autocorrelation models use
correlation structures to represent dependencies between the values of linked actors.
In this volume, they are used in the contributions by Agneessens and Koskinen
(2015) and Bellotti et al. (2015). Another way to model this was proposed by
Tranmer et al. (2014), who used the multiple membership models of Browne et al.
(2001) to represent network effects on individual outcomes. This has the limitation
that the network effects are represented only by additive random effects of the
affiliations of the individual, and the advantages of flexibility in choosing these
affiliations (which can include, e.g., clique or other subgroup memberships) and
the possibility to combine this with other random effects, representing other types
of context. This method is used in this volume in Tranmer and Lazega (2015).

In the literature about social support and social capital, multilevel models have
been used for studying characteristics of ties in egocentric networks, taking into
account the hierarchical structure of ties nested in egocentric networks (van Duijn
et al. 1999). In this field, Wellman and Frank (2001) specifically paid attention to
the importance of including in the model not only attributes calculated for the actor
and the dyadic level, but also for the network level more generally.

This chapter focuses, however, on models for networks where the collection
of ties itself is the dependent variable. While in traditional models for social
networks the focus was on the relations, and individual attributes were considered
quite circumspectly or as an afterthought, modern statistical methods representing
network data are in the realm of generalized linear models and incorporate dyadic
as well as actor attributes in a very straightforward way; we see this, e.g., in
MRQAP modeling (Dekker et al. 2007), the p2 model (van Duijn et al. 2004),
latent space models (Hoff et al. 2002), exponential random graph models (Lusher
et al. 2013), and stochastic actor-oriented models (Snijders 2001). The presence of
variables defined at different levels does not by itself bring these models close to the
Hierarchical Linear Model, however—the exception being the p2 model.

As discussed in Snijders (2011), there are several quite different approaches for
representing network dependencies in probability models that can be used as a basis
for statistical inference. Leaving aside conditionally uniform models (which cannot
incorporate general attributes) and MRQAP (which controls for network structure
but does not represent it), we can distinguish latent variable models, of which the
p2 model, latent space models, and stochastic block models (Nowicki and Snijders
2001) are major representatives; exponential random graph models; and stochastic
actor-oriented models as the main approaches.
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p2 Model

Let us begin with the p2 model. For a network represented by a digraph on n
nodes, it postulates the existence of random sender effects U D .U1; : : : ;Un/ and
random receiver effects V D .V1; : : : ;Vn/. As proposed in van Duijn et al. (2004),
conditionally on .U;V/ and given dyadic covariates xh D �

xhij
�
Œ1�i;j�n�

(some or all
if which may depend only on i or only on j, making them actor covariates), in the p2
model the probability distribution for each dyad .Yij;Yji/ is given by

Pf.Yij;Yji/ D .a; b/ j U; Vg D cij exp
�

a
� X

h

ˇh xhij C Ui C Vj

�

C b
� X

h

ˇh xhji C Uj C Vi

�
C a b �

�
(2.5)

where a; b 2 f0; 1g and cij is a norming constant independent of .a; b/. One of the
covariates will be constant, representing the intercept. � is a reciprocity parameter.
Variables Ui and Vi are, respectively, the latent sender and receiver effects at the
actor level, and can be correlated for the same actor i, but are independent across
different i. Conditional on .U;V/, the dyads .Yij;Yji/ are assumed to be independent
but there is dependence between Yij and Yji with a strength depending on parameter
�. In this way, random effects are used to represent those dependencies between
network ties that follow from actor differences, while the model also represents
tendencies toward reciprocity. In the bestiary of statistical models, this qualifies as
a generalized linear mixed model, and therefore is akin to the Hierarchical Linear
Model.

It should be noted that the p2 model is a close relative of the so-called Social
Relations Model (Kenny and La Voie 1985; Kenny et al. 2006), a random effects
model with a similar structure for continuous relational variables Yij assumed to
have normal distributions. The relation between the Social Relations Model and the
Hierarchical Linear Model was discussed in Snijders and Kenny (1999).

Latent Space Models

Another latent variable model for networks is the latent metric space model,
proposed by Hoff et al. (2002). Here the nodes in the network are assumed to have
locations in a metric space, and the probability of a tie depends on the distance
between the nodes. Denoting the location of node i by ˛i, and the distance between
˛i and ˛j by d.˛i; ˛j/, the probability of a tie in this model is given by

logit
�
PfYij D 1 j ˛g� D �d.˛i; ˛j/ C

X

h

ˇh xhij (2.6)
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where again xhij are values of covariates with logistic regression coefficient ˇh. This
expresses that actors who are closer to each other, controlling for covariates, have
a larger probability of being tied. Although the model was formulated for arbitrary
metric spaces, it is being applied mainly for 2- or 3-dimensional Euclidean spaces.

This model was extended by Handcock et al. (2007) to a random effects model for
the locations according to a mixture model, with the purpose to represent clusters of
actors. Krivitsky et al. (2009) further extended this to a model where also the actors
have main effects for activity Ui and popularity Vj,

logit
�
PfYij D 1 j ˛;U;Vg� D �d.˛i; ˛j/ C

X

h

ˇh xhij C Ui C Vj (2.7)

where the Ui and Vi are (unfortunately!) assumed to be independent.
One of the attractive features of the latent Euclidean space models is their visual

interpretation: an estimated 2-dimensional model corresponds directly to a graphical
layout of the network, where ties will correspond to relatively short distances.

Exponential Random Graph Models

The Exponential Random Graph Model, fondly abbreviated to ERGM, is a general-
ized linear model for graphs and digraphs, representing the dependence between the
ties in a direct way. It was proposed by Frank (1991) and Wasserman and Pattison
(1996), and is treated in the extensive recent textbook by Lusher et al. (2013).

This model is defined by the probability function

P� fY D yg D exp
� X

h

�h uh.y/ �  .�/
�
; (2.8)

where y is the digraph, the uh.y/ (h D 1; : : : ; p) are statistics of the graph, and �
is a p-dimensional parameter. The function  .�/ takes care of the normalization
requirement that the probabilities sum to 1. There may be covariates defined on the
nodes, and on the dyads, on which the uh.y/ may depend. This is still an extremely
general model, and Snijders et al. (2006) discussed how to specify it in practically
feasible and fruitful ways, avoiding the so-called ‘near-degeneracy’. Lusher et al.
(2013, Chapter 6) contains an extensive presentation of statistics uh.y/ that may be
included in the specification of an ERGM.

The dependence on actor and dyadic covariates can be implemented by defining
some of the uh.y/ as sums of ties weighted by covariates, such as

uh.y/ D
X

i;j

vi yij

for the sender effect of an actor covariate V , or

uh.y/ D
X

i;j

vij yij
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Fig. 2.1 Examples of
subgraphs, counts of which
are used in ERG models
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for a dyadic covariate V . Dependence between tie variables, such as reciprocity and
transitivity, is expressed by defining some of the uh.y/ to be counts of subgraphs
like those in Fig. 2.1. The literature mentioned explains this more fully, e.g., Lusher
et al. (2013, Chapter 7).

Stochastic Actor-Oriented Models

Longitudinal network data potentially give much more information about the
antecedents as well as consequences of network configurations than cross-sectional
data. They also require more effort to collect, but there already are a large number
of longitudinal network data sets, and their number is growing.

The Stochastic Actor-oriented Model (‘SAOM’; Snijders 2001) is a statistical
model for network dynamics that has been developed for the interdependent
dynamics of networks and(monadic) actor variables (Steglich et al. 2010) and
various other network structures. We sketch it here for the case of interdependent
networks and actor variables, calling the latter ‘behavior’ just as a general term, and
denoting the ‘behavior’ of actor i by Zi. The network is Y, the vector of behaviors
for all actors is Z D .Z1; : : : ;Zn/. The method assumes that data are available for
a number of discrete observation moments, the panel waves, and that the process
of change in network and behavior runs on in between the observation moments.
The probabilities of changes in network ties depend on the network configurations
in which the actor is involved who sends the ties; this can be formulated in a model
where the changes in network and in behavior result from choices by the actors. The
interpretation is that actors control their outgoing ties and their behavior, subject
to constraints determined by network context, attributes, and path dependence
(inertia).

In the basic model, the network is a directed graph and the behavior is a discrete
variable with a finite number (say, 2–10) of ordered categories, integer coded (1; 2;
etc). The time parameter is continuous, meaning that at any moment between the
observations, a change in tie or behavior is possible. The model is a Markov
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chain, which means that the probabilities of change at any moment depend only
on the current state .y; z/ of the network and behavior, together with the available
covariates. The dynamic process is defined as follows. At random moments, the
frequency of which is determined by ‘rate functions’, a randomly selected actor i
gets the opportunity to change either one outgoing network tie Yij or the behavior
Zi. The behavior can change only by unit steps, C1 or �1. The actor can also let
the network and behavior stay as it is. The network tie to be changed, or the change
in the behavior, is determined probabilistically by the so-called evaluation functions
and the current state of the network and behavior .y; z/. There are separate evaluation
functions for the network and the behavior, and the probability of a particular change
is greater when it would lead to a higher change in the evaluation function.

Specifically, the model has two components, a waiting model for timing of
changes and a choice model for outcome of changes. The timing component is
relatively simple. It must satisfy the consequence of the Markov assumption that
waiting times between changes have an exponential distribution; to this are added
considerations of interdependence between actors, and interdependence between
networks and behavior. The assumption is that each actor has a rate function �Y

i .y; z/
for the network and a rate function�Z

i .y; z/ for the behavior. The waiting time for the
next opportunity for a change in an outgoing tie of actor i is exponentially distributed
with parameter �Y

i .y; z/, and for the next opportunity for a change in behavior of
actor i it is exponentially distributed with parameter �Z

i .y; z/. At any given moment,
the briefest of these waiting times across all actors is selected, the choice model is
activated, which usually will lead to a change in state, and then the model starts
again with the new state.

To define the choice model, suppose that the current state of the network and
behavior combination is .y.0/; z/, and actor i gets the opportunity for a network
change. Then the set C of possible networks that could result from this change
opportunity is composed of all networks y0 for which in comparison with network
y.0/ exactly one outgoing tie i ! j, for some j ¤ i, is either added or dropped; and,
in addition, the network y.0/ itself, representing no change. Denote the evaluation4

function for the network for actor i by f Y
i .y; z/, defined for all possible network-

behavior configurations .y; z/. The probability that the resulting network is y0 is
given by

Pfnext Y D y0g D exp
�
f Y
i .y

0; z/
�

P
y2C exp

�
f Y
i .y; z/

� .y0 2 C / : (2.9)

For behavior changes the set of possible changes has only 3 elements: up, stay,
down; and the evaluation function for behavior is used. For the rest, all is analogous.
The dynamic process then consists of a repetition of these steps, where the result of
the previous step is always he starting point of the next.

4We restrict the discussion to specifications with only an evaluation function; see Ripley et al.
(2015) for more general models.
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The heart of the model is the specification of the evaluation functions. These are
defined as linear combinations of theoretically argued and/or empirically necessary
characteristics of the network and the behavior,

f Y
i .y; z/ D

X

h

ˇY
h sY

ik.y; z/ and f Z
i .y; z/ D

X

h

ˇZ
h sZ

ik.y; z/ : (2.10)

These characteristics sY
ik.y; z/ and sZ

ik.y; z/ are called ‘effects.’ On the network side,
these can be dependent on the network position of actor i. For example, tendencies
toward reciprocity and transitivity, respectively, can be represented by positive
parameters for the reciprocity and transitive triplets effects,

sY
ik.y/ D

X

j

yij yji ; sY
ik.y/ D

X

j;h

yij yjh yih

as in Fig. 2.1; but, contrasting with ERG modeling, the role of actor i is now special,
as it is used to denote the focal actor of whom the evaluation function is being
considered.

The network and behavior dynamics become interdependent when some of the
effects for network change of actor i, sY

ik.y; z/, depend on behavior z, not only on the
behavior of the actor i but also of the other actors. E.g., the cross-product ‘ego �
alter behavior’ interaction term

sY
ik.y; z/ D

X

j

yij zi zj

will reflect (if it has a positive coefficient) that actors who have themselves a higher
value of zi will have a larger probability to create and maintain ties with other actors
j accordingly as these in their turn have a higher zj value. On the other side, some of
the effects for behavior change of actor i, sZ

ik.y; z/, can depend on the network y. An
example is the ‘average behavior alter’ effect

sZ
ik.y; z/ D zi

P
j yij zjP
j yij

;

defining 0=0 D 0. If its coefficient is positive, this effect will imply that actors whose
connections have on average a higher zj value, will themselves tend to increase more,
or decrease less, in their own zi value. In models including such effects, the changes
in the network lead to changes in the change probabilities for behavior and vice
versa: the actors are each others’ changing environment.

These dynamic models can be studied by computer simulation which is also how
parameters are estimated: see the mentioned literature. Further information is at
http://www.stats.ox.ac.uk/~snijders/siena/.

http://www.stats.ox.ac.uk/~snijders/siena/
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Choice of Model

The range of statistical network models is starting to be bewildering and it may
be helpful to point out some differences in their properties. All these models can
incorporate fixed effects of quite arbitrary covariates, so the difference is only in
how they represent structural network features.

The p2 model represents only three aspects of networks: differences between
actors in popularity (indegrees) and activity (outdegrees), and reciprocity. Further
structural features such as transitivity are not modeled.

The latent Euclidean space models represent networks by embedding the actors,
as nodes, in a 2- or 3-dimensional Euclidean space. (More dimensions are possible
but unusual.) This is visually very attractive. Network dependencies such as
reciprocity, transitivity, and higher-order dependencies are represented only as
consequences of this embedding. On the one hand the model is inflexible in the
representation of network dependencies, as there are no free parameters for this
purpose: the tendencies towards reciprocity and transitivity follow jointly from the
spatial arrangement of the nodes, and cannot further be tuned. On the other hand the
model is very flexible in choosing the locations of the nodes. This has a downside:
the likelihood surface for the location of the nodes is often quite multimodal, a
problem that is not really resolved by giving the locations a probability distribution
as in a random effects model. I think it is doubtful that the intricacies of social space
can be well represented by Euclidean space.

The Exponential Random Graph Model represents network dependence directly
by using subgraph count statistics as statistics uh.y/ in (2.8), as discussed in
Lusher et al. (2013, Chapters 6, 7). A large number of triadic and higher-order
structures can be considered, and are indeed used in practical network research,
as is illustrated by the same book. The Stochastic Actor-oriented Model represents
network dependencies, somewhat similarly, by the effects sk.y/ in (2.10), and here
also a large array of structural effects can be considered (Ripley et al. 2015).

An illuminating difference between ERGM and SAOM models on the one
hand, and latent variable models (spatial or otherwise) on the other hand, is the
consequence of restriction to a smaller set of nodes and the importance of network
delineation. The former models do not allow restriction to a random subset of nodes;
for the ERGM this was elaborated in Snijders (2010). The reason is that ERGMs
and SAOMs represent dependencies, and cutting off arbitrary nodes would be an
amputation. For the latent variable models, on the other hand, it is conceptually
unproblematic to consider only a subset of nodes: if a random subset of nodes with
their incoming and outgoing ties is dropped, the information available in the data is
reduced but the model formulation of the rest remains intact. In practice, however,
it appears that working with a somewhat restricted node set in ERGMs and SAOMs
usually does not strongly change results except for the fact that the data set is less
informative, so this difference may be more important theoretically than practically.
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This issue may be regarded as a practical advantage of latent variable models, but
it also highlights that these represent networks in a descriptive way but not in their
essential dependence structure.

In some research the focus is on the structural dependencies directly, and then the
ERGM and SAOM will be preferable. In other research the estimates of the random
effect variances (sources of variability) and the posterior predictions of the random
effects and spatial locations may be important, leading to preference for a latent
variable model.

Whether the latent variable approach or the directly structural approach of the
ERGM and the SAOM yield a better representation of empirical social networks is
still an open question. In a sense this question is ill-posed because both models have
flexible opportunities for model specification, so a poor fit may always be remedied
by a more appropriate specification. Other open questions include: how important
a good fit for such models is in practice; and how robust conclusions can be for a
model that fits poorly on characteristics that has a poor fit on characteristics that are
secondary to the main research questions.

Multilevel Network Analysis

The combination of the terms ‘multilevel’ and ‘social networks’ leads to a multi-
plicity of directions. Above it was mentioned that social networks combine different
types of units—social actors and social ties—and variables can and will be defined
on both of these sets. Varieties of the ERGM (Daraganova and Robins 2013) and
of the SAOM (Steglich et al. 2010) combine dependent network variables with
dependent actor variables. But this volume is about other combinations. The current
section is about multilevel network analysis: the combined network analysis for
several independent groups. Section “Analysis of Multilevel Networks” is about
analysis of multilevel networks: the analysis of structures with nodes of several
types, connected by ties of several types.

Why Combine Several ‘Parallel’ Networks?

Multilevel network analysis, where the term ‘multilevel’ is used in the sense of
hierarchical nesting, is a combined network analysis for several groups, applying
the same model to each group. We then have several networks, with different actor
sets and assumed to be mutually independent, that may be combined in a single
analysis with a common model but allowing parameter values to be different. Why
should we do this?
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In general, multilevel analysis may have several main purposes. I formulate them
for the case where individuals are the lower-level units and groups the higher-level
units. These purposes are entwined, and the salience of each of them will differ
depending on the application considered.

) Obtain results from the combination of data sets about multiple groups, taking
into account the ‘random’ variability between individuals within groups as
well as the ‘random’ variation between groups, with standard errors (or other
measures of uncertainty of the results) that account for these two sources of
variation.

) Increase the amount of information (sample size) compared to analyzing a
single group.

) Generalize to the population of groups.
) Test effects of group-level variables.
) Analyze the groups jointly in a way that allows more detail and precision

than would be possible when analyzing the groups separately. This sometimes is
formulated by saying that the analysis of each group ‘borrows strength’ (Morris
1983) from the other groups, which is possible because of the assumption that
this group is a member of the same population as the other groups. This is related
to the idea of ‘empirical Bayes’ estimates mentioned in section “Frequentist and
Bayesian Estimation”.

All except the last purpose are also, potentially, goals of meta-analysis (e.g.,
Hedges and Olkin 1985). The main difference between multilevel analysis and
meta-analysis is that, usually, meta-analysis is a two-step procedure, using finished
analyses of the single groups and combining these in overall conclusions, whereas
multilevel analysis usually unites these two parts of the analysis. Meta-analysis
also can be more liberal with respect to the model assumptions concerning the
group level. The correspondence between meta-analysis and multilevel analysis is
discussed in Raudenbush and Bryk (2002), Chapter 7, and Snijders and Bosker
(2012), Section 3.7. A two-step approach can also be used in multilevel analysis
provided that the groups individually are large enough, cf. Achen (2005).

While we assume that the same model applies to all groups, they will have
different parameter values. In addition, groups will usually have different sizes and
different distributions of explanatory variables; in consequence, the standard errors
resulting from analyses per single group will also differ across groups. To be used
in a valid way, meta-analytic and two-step approaches should take these differences
into account—which is automatic in multilevel analysis via the Hierarchical Linear
Model.

For multilevel network analysis, any or all of these purposes may apply. One
major purpose is to generalize to a population of networks. It was noted by Snijders
and Baerveldt (2003) and Entwisle et al. (2007) that traditional social network
analysis focused on the analysis of single networks, while nevertheless usually
implying that the mechanisms and processes uncovered have a larger validity than
only for the particular group under study. But these authors also noted that more
and more studies are being done where data is collected for multiple networks
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considered to be similar. On the level of networks, traditional social network
research mostly was based on N D 1 studies. To have a statistical basis for
generalizing to a wider population, however, one needs to analyze data for several
networks that may be regarded, in some sense, as replications of each other. The
target population then will be a population of networks, and almost always will be
somewhat vaguely described and perhaps have a somewhat hypothetical nature. This
is often the case for the populations at higher levels in multilevel analysis. Above,
Cox (1990) and Sterba (2009) were already mentioned as references about this topic;
some further philosophical considerations about the use of probability models for
multilevel and network data are presented in Sections 1.1.1 and 14.1.1 of Snijders
and Bosker (2012) and on pages 135–137 of Snijders (2011). The practical question
is whether a particular collection of networks is homogeneous enough with respect
to the social processes taking place to justify pursuing a common conclusion by
using all of them together; as well as to justify applying a common statistical model,
with parameters that are allowed to vary from group to group according to a joint
probability distribution in the population of groups.

The ‘replications’ may be network studies in several similar schools, several
similar companies, etc. The Adolescent Society study of Coleman (1961) was based
on detailed investigations of friendship networks in 10 schools, juxtaposed as 10
interconnected case studies. More recent examples such as the PROSPER study
(Moody et al. 2011), the ASSIST study (Campbell et al. 2008; Steglich et al. 2012),
and the School Social Environments study (Light et al. 2013) have provided network
data to be analyzed by multilevel or meta-analytic means.

Two-Step Meta-for-Multilevel Network Analysis

In the following model for two-step meta-analysis, the population at the higher level
is made explicit. It is assumed that independent groups—in the meta-analysis case
these may be individual studies or publications—are combined, being regarded as
a sample from a population of groups. The focus often is on one parameter at a
time, so that the parameter is one-dimensional and denoted by � . The dependent
variable at the group level is the parameter estimate from group k, denoted by O�k. The
assumption of the random effects model for meta-analysis (cf. p. 210 in Raudenbush
and Bryk 2002; Snijders and Bosker 2012, p. 37) is

O�k D �k C Rk D �� C Ek C Rk : (2.11)

Here �k is the true parameter in group k; Rk is the estimation error within this study;
�� is the mean of parameter � in the population of groups; and Ek is the deviation
of this group from the population mean. Rk reflects within-group variability and Ek

reflects between-group variability. From the point of view of estimating �k, Rk is
regarded as error variation and Ek as true variation.
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These are independent residuals both with expected value 0. The secret of this
analysis method is that the within-group analysis provides us with an estimate of
the standard error �k D s:e:. O�k/ which is the standard deviation of Rk, and we act
(almost always) as if we know this standard error exactly. Armed with this extra
information we can estimate not only �� but also var.Ek/ D var.�k/ without the
‘hat’ on top of � , the ‘true between-group variance’ of �k; as opposed to

var. O�k/ D var.Rk/ C var.Ek/ ;

which is the ‘observed between-group variance’.
If the number of groups is large enough, such a study also permits the assessment

of effects of variables Xh at the group level, by entering them in the model as
predictor variables:

O�k D �� C
X

h

ˇh xhj C Ek C Rk ; (2.12)

where xhj is the value of Xh for group k. In most practical cases the number of
networks in a data set for a multilevel network analysis will be not very large, so the
number of variables Xh of which the effect can be studied will be low.

For model (2.11) an explicit estimator in a network context was suggested by
Snijders and Baerveldt (2003), using a method derived by Cochran (1954). The
maximum likelihood (ML) or restricted maximum likelihood (REML) estimators
under the assumption that Rk and Ek have normal distributions will usually be more
efficient. This can be calculated by multilevel software such as HLM (Raudenbush
et al. 2011) and MLwiN (Rasbash et al. 2014), and by R packages such as metafor
(Viechtbauer 2010). This two-step approach was used for multilevel network
analysis, e.g., by Lubbers (2003) and Schaefer et al. (2011) who combined ERGM
analyses for several groups; and by Mercken et al. (2012) and Huitsing et al. (2014)
who combined Stochastic Actor-oriented Models for several groups.

Integrated Multilevel Network Analysis

The other possibility is to integrate the within-network and between-network models
in one joint model and analyze this in one simultaneous analysis. The generic
way to do this is by postulating a between-network probability model, where the
parameters of the within-network model are supposed to be drawn independently
from a common across-network distribution: in other words, a random effects
model. This is more complicated than the two-step approach, and for every type
of within-network model a multilevel model has to be specifically elaborated. The
integrated approach is sketched in Sweet et al. (2013, Section 2), who call this the
Hierarchical Network Model.

The great potential advantage to this is the possibility of ‘borrowing strength’
as was mentioned above. In many settings where network data are collected, the
groups are rather small—e.g., school classes with sizes between 20 and 40—and
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for each group separately an analysis might be possible only with a quite meagre
model specification. The consequence then is that various effects of focal interest
may have to be left out because the data for each individual group does not support
parameter estimation for a truly interesting model, or the possibilities of controling
for additional or competing mechanisms are reduced. In such a case, a random
effects multilevel model can be very helpful; sometimes the analysis may even be
impossible without it. In addition, an integrated random effects multilevel model
will often be more efficient, and an integrated analysis may be in itself more
attractive than a two-step analysis.

The first multilevel network analysis model of this kind was presented by Zijlstra
et al. (2006), a multilevel version of the p2 model. To define this extension, indicate
the groups by k and the tie variable from actor i to actor j in group k by Ykij. The
simplest multilevel version of the p2 model (2.5), containing random intercepts Wk

for the groups, then is given by

Pf.Ykij;Ykji/ D .a; b/ j U; V; Wg
D ckij exp

�
a

� X

h

ˇhxhij C Wk C Ui C Vj

�

C b
� X

h

ˇhxhji C Wk C Uj C Vi

�
C a b �

�
; (2.13)

again for a; b 2 f0; 1g, where ckij does not depend on a or b. This means that (on
the logistic scale) there is a random main effect for the groups, but further they are
similar. More elaborate models can be obtained by adding random slopes for some
of the Xh, and the reciprocity coefficient � may also get a random effect.

Several applications of this model were published, e.g., by Vermeij et al. (2009)
and Rivellini et al. (2012).

There is a lot of recent and current activity in extending other network models
to multilevel versions. Sweet et al. (2013) elaborated their ‘Hierarchical Network
Model’ for the case of the latent Euclidean space model, and presented an applica-
tion with a random intercept and an (unfortunately, uncorrelated) random slope.
In another publication (Sweet et al. 2014) these authors elaborated a multilevel
version of the hierarchical mixed membership latent block model of Airoldi et al.
(2008). Koskinen and Snijders (2016) are working on a multilevel extension of
the Stochastic Actor-oriented Model, and a brief documentation of this is given in
Ripley et al. (2015).

Hierarchical Structures

Much like the situation of multilevel analysis with the Hierarchical Linear Model
and its variants, multilevel network analysis is also a hierarchical type of model
for a hierarchical data structure. Estimation for this hierarchical data structure again
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may be regarded as empirical Bayes estimation, where the group-level parameters �k

have a frequency distribution about which we get information thanks to the observed
sample of groups. The analysis of each group borrows strength from the data of the
other groups. Therefore, multilevel network analysis is particularly appropriate for
combining the data of many small networks, each of which would be too small to
permit analysis by a suitably specified ERGM or SAOM.

For single-level as well as multilevel network analysis, frequentist as well as
Bayesian estimation methods have been proposed. Bayesian methods are potentially
more compatible with the hierarchical nature of multilevel network analysis, and
may be helpful for incorporating prior knowledge in cases where the number of
groups is rather small. More research is needed to make meaningful comparisons
between estimation methods, be they Bayesian or frequentist, for these complicated
models.

Analysis of Multilevel Networks

Brass et al. (2004) proposed that for network studies in organizational research,
it is important to consider both intra-organization and inter-organization networks.
Lazega et al. (2008) pioneered a study with a linked intra- and inter-organizational
design. Models and methods for the complex network structures that are necessary
for the analysis of such designs are now in an early stage of development, and this
volume aims to contribute to this domain.

A multilevel network (Wang et al. 2013) can be defined as a network with nodes
of several types, where a distinction is made between types of ties according to the
types of nodes that they connect. Thus, if types of nodes are A, B, C, etc., there is a
distinction between A � A, B � B, C � C ties, etc., and also between A � B, A � C,
etc., ties. The first are intra-type, the second inter-type ties. Some of the networks
may be the networks of interest, others may be fixed constraints, still others
may be non-existent or otherwise outside of consideration. The intra- and inter-
organization network of Brass et al. (2004) and Lazega et al. (2008) is composed
of organizations (type A) and their members (type B), where A � A ties can be
organizational cooperation, competition, etc., while B � B ties can be interpersonal
collaboration, acquaintance, etc. The primary two-mode A � B network then will
be the membership or affiliation network, where the simplest situation is one of
complete nesting, and each individual is a member of exactly one organization; the
B � A network may be superfluous, and then could be defined formally as an empty
network. The design will be especially interesting if B � B ties between members
of different organizations are also recorded, so that interpersonal ties within as well
as between organizations can be included in the analysis. Another example is the
co-evolution of a one-mode and a two-mode network as studied by Snijders et al.
(2013), where A is a set of individual students, B a set of companies, the A � A
network represents friendship or advice ties, while the two-mode A � B network
represents that the student is potentially interested to work for this company; B � B
and B � A networks were not used.
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Fig. 2.2 Adjacency matrix
for combined node set

A
A

(
one-mode A×A two-mode A×B

)
B two-mode B×A one-mode B×B

B

This kind of multilevel network can potentially be studied by extensions of
the models mentioned above. This is sketched in the following sections for the
Exponential Random Graph Model and the Stochastic Actor-oriented Model.

A representation that is quite generally useful for handling multilevel relational
structures was proposed by Wasserman and Iacobucci (1991). This defines a
combined node set as the union or disjoint union of the A, B, etc., node sets. The
combined node set allows treating the various one-mode and two-mode networks as
subgraphs of an overall graph, with its associated adjacency matrix as in Fig. 2.2.

If some of the within-type or between-type networks are undefined, meaningless,
or not studied for other reasons, the corresponding sub-matrices can be defined as
structurally null blocks, i.e., having all entries equal to 0.

Exponential Random Graph Models for Multilevel Networks

Mathematically, model (2.8) can be used straightforwardly for multilevel networks,
because it defines a general exponential family of graphs (directed or non-directed),
and the node set can be taken as the union or disjoint union of the A, B, etc.,
node sets, as mentioned above. The outcome space of graphs can be restricted so
that certain blocks in the adjacency matrix are fixed; e.g., a two-mode network of
affiliations of individuals to organizations might be considered an exogenously fixed
datum of the analysis.

Of course, turning the general ERG model into a model for multilevel networks
in this way is not as easy as it might seem from the previous sentences. The model
must be specified in a way that corresponds to the differences between the node
sets; and the existing algorithms must be tuned for the estimation of parameters in
the model. This was accomplished by Wang et al. (2013). The following is a very
brief sketch.

To express the ERGM for a multilevel network with two node sets A and B, let us
refer to the one-mode A�A and B�B networks by A and B (a manageable misuse of
notation) and to the two-mode A � B cross-level network by X. Then the multilevel
network can be denoted by .yA; yB; yX/, and the vector of statistics s.y/ in (2.8) can
be split into parts depending on each of yA, yB, and yX separately, and each of their
combinations; leading to the formulation of the multilevel ERGM as

P� f.YA;YB;YX/ D .yA; yB; yX/g D exp
�
�A sA.yA/ C �B sB.yB/

C �X sX.yX/ C �AX sAX.yA; yX/

C �BX sBX.yB; yX/ C �ABX sABX.yA; yB; yX/ �  .�/� ; (2.14)
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where � D .�A; �B; �X; �AB; �AX; �BX; �ABX/. The � and s symbols all denote vectors.
This decomposes the model in parts with the following statistics:

sA.yA/ internal dependence of the one-mode network A, specified as in Lusher
et al. (2013, Chapter 6).

sB.yB/ internal dependence of the one-mode network B, analogous.
sX.yX/ internal dependence of the two-mode network X, specified as in Lusher

et al. (2013, Section 10.2).
sAX.yA; yX/ bivariate interdependence between the A and X networks; interdepen-

dence between a one-mode and a two-mode network is not treated specifically
in the ERGM literature (as far as I know), but since two-mode networks have
less structural features than one-mode networks, the directions for specifying
bivariate networks given in Lusher et al. (2013, Section 10.1) can be followed.

sBX.yB; yX/ bivariate interdependence between the B and X networks, analogous.
sABX.yA; yB; yX/ three-way interdependence between the A, B, and X networks, to

which Wang et al. (2013) is specifically devoted. For example, a basic three-
way effect expressing the multilevel structure is the effect that ties between
individuals will tend to go together with ties between the organizations they are
members of. This is the C4AXB effect discussed in their Section 6.5.

In practice, all cross-level dependencies will be crucial in giving a meaningful
representation of the multilevel network, and the three-way interdependence rep-
resented by sABX.yA; yB; yX/ will often be the main point of scientific interest. The
other parameters are also interesting in their own right. Wang et al. (2013) find that
including three-way and other between-level dependencies may simplify the intra-
network models compared to modeling the A, B, and X networks independently,
which reflects the theoretical notion that internal structure will be shaped depending
on external or contextual demands, pressures, and possibilities, and ‘controlling
for’ the between-level dependencies gives a purified view of the intra-network
mechanisms.

As is mentioned in the discussion of Wang et al. (2013), the determination of
the levels in a multilevel network can be done in several ways, depending on the
aims of the research. One possibility is to define node sets based on their different
nature and way of connecting to other nodes, such as individuals and organizations.
Another possibility is to distinguish nodes of the same basic kind by attributes, thus
permitting a model with arbitrary differences between the ways in which the nodes
relate to other nodes, depending on these attributes. The discussion above focuses
on the first method, but the multilevel ERG model can be applied also to the other
way of determining node sets.

In this volume, this model is applied in several varieties. Two chapters in
this volume provide examples of the nested case. Both are about managers in
companies. The study by Brennecke and Rank (2015) is concerned with the
interdependence of the knowledge sharing network between managers (B) and the
R&D collaboration network between the companies (A). Zappa and Lomi (2015)
study advice and communication relations between managers (B) in subsidiaries
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(A) of an international multi-unit industrial group. The cross-level relation (X) is
membership affiliation, the within-A relation is the hierarchical reporting relation
between the subsidiaries.

Hollway and Koskinen (2015) apply the multilevel ERGM to a study about
multilateral fisheries treaties, where the node sets are the countries (A) and the
multilateral treaties (B). This is a crossed rather than nested design because countries
can be members of several treaties. The chapter by Brailly et al. (2015) considers
one node set of buyers and another of sellers, where moreover the buyers as well
as the sellers are nested in their respective organizations. This is analyzed as two
separate bipartite buyer � seller networks, one for the organizations and one for
the individuals, where some of the variables of the other level of aggregation
(individuals and organizations, respectively) are obtained by projection (aggregation
or disaggregation).

The second way of determining the levels is represented by Wang et al. (2015),
who present an application of the multilevel ERG model where the two node
sets are entrepreneurial and non-entrepreneurial farmers, who differ so strongly
in their network structures that a multilevel ERGM is able to give a much better
representation than a regular one-mode network analysis. An exploratory method
for derivation and specification of hypotheses in multilevel ERG models is proposed
by Zhu et al. (2015).

Stochastic Actor-Oriented Models for Multilevel Networks

For the Stochastic Actor-oriented Model likewise, the basic mathematical model
explained in section “Stochastic Actor-Oriented Models” can be used,5 if it is
specified in accordance with the multilevel structure. The actor-oriented nature of
this model requires specifying something about agency: which sets of actors will
be specified as those making the choices? In the standard actor-oriented model for
two-mode networks (Koskinen and Edling 2012; Snijders et al. 2013) with node sets
A and B, there is agency in only one node set, so ties are regarded as being directed
from A to B and determined by the actors of type A.

Again, we consider a multilevel network with two node sets, A and B. In this
discussion we leave out the dependent behavioral variable, but it could be added in
a rather direct way. In the general situation there could possibly be ties from A to B
as well as ties from B to A; for the current exposition the second kind of tie will be
ignored, so that again we consider two one-mode networks internal, respectively, to
the actor sets A and B; and one two-mode network X supposed to be directed from
A to B, with agency in the A nodes.

The specification of the model for the RSiena package (Ripley et al. 2015) is
possible by employing the representation with a combined node set A [ B as above

5I thank James Hollway for pointing out this possibility.
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Fig. 2.3 Two dependent networks for combined node set

but now with two dependent networks, as displayed in the block structure for the
adjacency matrices shown in Fig. 2.3. The reason why the data must be separated
and treated as two dependent networks instead of one as in the ERGM (Fig. 2.2) will
be explained further below.

To avoid confusion, in the rest of this section we shall refer to the original
networks as the one-mode and two-mode networks, and to the two constructed
networks used for the analysis in RSiena as the multi-networks. Both multi-
networks have node set A [ B. The multilevel network is specified as a multivariate
network of two multi-networks, consisting of

(1) a one-mode multi-network containing the two one-mode networks as diagonal
blocks, and off-diagonal blocks that are structurally 0;

(2) another one-mode multi-network containing the A � B network as an off-
diagonal block; all the rest are structurally zero blocks. If the data structure
would also include a B � A two-mode network with agency in the B nodes, this
could be included as the B � A off-diagonal block in the second multi-network.
If the A � B network would be a fixed context and not a dependent variable
(e.g., if it denotes an externally given membership structure), then the second
multi-network would be replaced by a dyadic covariate.

The rate functions and evaluation functions have to be differentiated according to
the node sets. For the evaluation functions, this differentiation leads to the following
structure, where f A

i .yAI yB; yX/ is the evaluation function for actors in A for their ties
with other A actors, relevant for YA as the dependent variable; f B

i .yBI yA; yX/ the
evaluation function for actors in B for their ties with other B actors, for dependent
variable YB; and f X

i .yXI yA; yB/ the evaluation function for actors in A for their ties to
B actors, relevant for dependent variable YX:

f A
i .yAI yB; yX/ D �AsA.yA/ C �AXsAX.yAI yX/ C �ABXsABX.yAI yB; yX/

f B
i .yBI yA; yX/ D �BsB.yB/ C �BXsBX.yBI yX/ C �BAXsBAX.yBI yA; yX/

f X
i .yXI yA; yB/ D �XsX.yX/ C �XAsXA.yXI yA/

C �XBsXB.yXI yB/ C �XABsXAB.yXI yA; yB/ : (2.15)

The functional dependence of these evaluation functions on the other one-or
two-mode networks reflects inter-network dependence. The arguments before the
semicolon have the role of dependent variable, those after the semicolon are the
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explanatory variables. Because of the endogeneity according to the Markov model,
the state of the Markov process being .yA; yB; yX/, the dependent variables also
are used as explanations for their own further changes. This model contains more
terms compared to the decomposition (2.14) of the ERG model for multilevel net-
works, because the multivariate associations between two networks are represented
in the SAOM—with its ‘co-evolution’ aspect—as two interdependent one-sided
influences.

The separation into two multi-networks (or more, for structures with more than
two actor sets) is necessary to separate the choice models. In the SAOM for one
network the changes in all the outgoing ties of an actor are considered together,
as options in one choice process. Putting the ties of A actors to other A actors in
a different network than their ties to B actors means that the ties are chosen in
separate, interdependent choice processes; if these ties were put into one multi-
network the choices of ties to A would be weighed against ties to B and vice versa,
and this would be less natural, given that node sets A and B are of a different nature
and A � A ties are conceptually different from A � B ties. The construction of two
multi-networks represents that for the A actors there are two distinct but interrelated
choice processes, corresponding to the two dependent variables YA and YX in (2.15),
for both of which the agency is with the A actors.

This implies that the multilevel SAOM, contrasting with the multilevel ERGM,
is aimed firstly at representing network structures where the several node sets, and
especially the ties between several different node sets, are of a different nature. It is
less suitable for representing node sets of the same basic kind, differentiated only
by an attribute. The different kinds of ties in the multilevel SAOM are distinguished
also by having their own timing models, which play no role in the multilevel ERGM.
The notion that compensation between different outgoing ties of one actor (e.g., a
collaboration tie from i to j1 may serve the same purpose for i as a collaboration tie
from i to j2) is meaningful for ties of the same kind, but less so between the different
sets of ties A � A versus A � B, is built into the choice model and also in the model
specification for the SAOM—the choice of the effects in (2.15)—, whereas for the
ERGM it is only built into the choice of the effects (2.14).

A Forward Look

Multilevel analysis of networks (section “Multilevel Network Analysis”) is a natural
and important development as more and more data sets are collected that contain
similar ‘parallel’ networks in multiple groups—disconnected groups, or at least, sets
of groups for which the inter-group connections are being ignored in the analysis.
One of its great advantages is that it allows the study of contextual effects at the
network level, i.e., the effects of network-level variables. The analysis of multilevel
networks (section “Analysis of Multilevel Networks”), on the other hand, is a dif-
ferent and greater conceptual step. It permits studying in one model the structure of
ties between several different node sets, which has some similarity to developments
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in multilevel analysis that permit studying dependent variables at any level, as
discussed in section “Dependent Variables at Any Level”. Thereby it enables the
representation of social systems with multiple agency and of the structural effects
of combined agency patterns. Applications of multilevel ERGMs have started to
appear and are contained in this volume; applications of multilevel SAOMs will be
coming. These new techniques may well have interesting repercussions on theory
development.

The research program heralded by Coleman (1959) has flourished in the past half
century with the development of multilevel analysis and social network analysis.
Their combination is a young branch on this tree, or rather two branches, one being
multilevel analysis of networks and the other the analysis of multilevel networks.
This book reflects some of its recent developments and hopefully contributes to
further blossoming.
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