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Abstract The coupled mode formalism is introduced to provide a phenomenolog-
ical understanding of the coupling effects in finite systems of particles. Within this
approach, a metal nanoparticle can be viewed as an optical resonator and the
formation of hybrid modes, resulting from the coupling between particles, can be
anticipated. An efficient numerical algorithm is proposed to extract the character-
istics (complex poles and amplitudes) of each resonance of the system.

The spectral behavior of the eigen modes of a single metal sphere is analyzed.
The redshift and broadening of the different modes with the increase of the particle
size and the local refractive index are characterized. Optimal conditions can be
found to maximize the particle absorption as well as the near-field enhancement.
Sub-radiant and super-radiant hybrid modes of a dimer are identified from the
extinction spectrum of each particle. These hybrid modes have different energetic
behavior depending on the inter-particle distance, and can then be compared to
bounding (attractive) and anti-bounding (repulsive) states. The near-field enhance-
ment resulting from the hybrid mode excitation is maximized by optimizing the
dimer geometry and the surrounding refractive index.

The hybrid modes in a quadrumer are identified. For small particles with a
reduced coupling via scattering, the system exhibits an anti-crossing behavior of
the hybrid modes typical for weakly coupled resonators. When the particles are
sufficiently large to induce a strong coupling in the system, the extinction spectrum
of the quadrumer present Fano-like resonances, i.e. resonances with an asymmetric
line shape. The hybrid modes at the origin of these particular resonances are
identified as sub- and super-radiant modes of the system. The sharp Fano-like
resonance has a high figure of merit, making such system promising for sensing
applications.
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2.1 Introduction

Plasmon resonances induced by the electromagnetic excitation of metal
nanoparticles are generally associated with the presence of resonance bands in
the spectral response of these nanoparticles [1], and lead to an increase in the
local electromagnetic field at resonance wavelengths [2]. Each band corresponding
to a particular mode of resonance is characterized by its spectral position and width.
These spectral characteristics are strongly dependent on the geometry of the
particles as well as on their environment. Changes in the resonance bands result
in a red shift of the resonance position as well as in a broadening of the bands when
the size of the particle or the local refractive index increases.

In general, the optical response of metal nanoparticles is largely dominated by
bands of plasmon resonances. As part of a study of the spectral evolution of these
different bands based on certain geometric and environmental parameters, it may be
more convenient to deal only with resonance parameters (position and width) rather
than considering the whole optical spectra. Different methods allow for retrieving
these parameters; they are based on Mie theory for spheres [3], the eigenvalues of
surface integrals [4], or the hybridization theory for more complex systems
[5, 6]. We propose here to develop a method to extract precisely the resonance
parameters from the total optical response of a system of particles based on the
T-matrix method and its generalization to multi-particle systems [7, 8]. The main
objective of this development is to provide an efficient and flexible numerical tool
for the characterization of plasmon resonances together with a phenomenological
approach to interpret their physical behavior [9-11].

We first introduce the coupled mode model applied to the phenomenological
description of the plasmon resonance amplitudes resulting from an external excitation,
allowing a treatment of metal nanoparticles as optical resonators. This model is applied
to a single resonance mode and extended to a pair of coupled modes, providing a set of
phenomenological parameters including losses, coupling with excitation and mutual
coupling coefficients. This approach anticipates the formation of hybrid modes as
resulting from the coupling between two plasmon modes. The coupled mode model
is applied to the complex valued extinction coefficient of the individual particles,
defined as an extension of the classical extinction cross-section. This coefficient,
having the same phase than the dipolar moment of the particles, appears as a convenient
parameter to identify the nature of the hybrid modes in a coupled system. The solutions
of the coupled mode equations being in the form of a singular function of the pulsation,
we propose an efficient numerical algorithm to extract the characteristics (complex
poles and amplitudes) of each resonance of the system from the rigorous computation
of complex valued extinction coefficients. All phenomenological parameters describ-
ing the coupling between particles can be deduced from these characteristics.

Within this theoretical framework, we first analyze the spectral behavior of the
eigenmodes of a single silver sphere. The redshift and broadening of the different
modes with the increase of the particle size and the local refractive index are
characterized and optimal conditions are found to maximize the particle absorption
as well as the near-field enhancement. The case of a silver dimer is then studied,
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where sub-radiant and super-radiant hybrid modes are identified from the extinction
spectrum of each particle. These hybrid modes have different energetic behaviors
depending on the inter-particle distance, and can then be compared to bounding
(attractive) and anti-bounding (repulsive) states. Local field enhancement resulting
from hybrid mode excitation can be maximized by optimizing the dimer geometry
and the surrounding refractive index. Our method is finally applied to silver
quadrumers, where hybrid modes exhibit an anti-crossing behavior in the case of
weakly coupled small particles. For larger particles, their strong coupling induces
the appearance of a Fano-like resonance in extinction spectra. The hybrid modes at
the origin of this sharp asymmetric resonance line shape are identified and their
behavior is analyzed, showing their potential for sensing applications.

2.2 Coupled Mode Model Applied to Interacting Plasmon
Modes

We determine in this section an equation governing the coupled plasmon mode ampli-
tudes, with a few phenomenological parameters characterizing the coupling behavior
in simple plasmonic systems. The proposed formalism is well known in the classical
coupled mode theory [12] and can be applied to more complex geometries.

A single plasmon mode can be described by a first order differential equation
giving the time variations of the mode amplitude a(f) when excited by an incident
wave with electric field fy(¢)

dc;_it) = —jRe{w, }a(t) — %a(t) +xfo (1) (2.1)

where T is the time decay of the plasmon (representing the total losses in the
resonant system including absorption as well as re-radiation attributed to scatter-
ing), k is the coupling coefficient and w), is the complex resonant angular frequency
of the plasmon mode. The real part of ), corresponds to the resonance position and
the imaginary part to its half width at half maximum (HWHM). When both the
incident radiation and the plasmon amplitude oscillate at angular frequency w, they

can be expressed in terms of their modulation amplitudes fo(t) and a(¢) respectively

fo(t) = Fo(t)exp{—jor}
{ a%z) = Zi(ot)exp{—jw;} (2.2)

Substituting these expressions into Eq. (2.1) and fixing condition fo(t) = 1 which
corresponds to a plane wave with unit amplitude we get the following particular
solution of Eq. (2.1) in steady state
~ JK
aw)=————— 2.3
@ = reaT el (23)
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Final modulation amplitude @ depends on angular frequency ® only and the
obtained expression can be written in a very simple form as:

() = (2.4)

where the coupling coefficient is related with amplitude as a, = jk, and the time
decay corresponds to the imaginary part of the complex pulsation Im{mp} =-1/r
The coupling coefficient quantifies the coupling between the incident excitation and
the plasmon mode. Its amplitude provides the coupling strength and its phase
corresponds to the oscillator phase at resonance relative to the excitation.

In the case of close particles, plasmon resonances strongly interact, resulting in
the formation of hybrid modes in the system. To generalize the phenomenological
description to coupled systems, consider first two interacting plasmon modes. One
can write two coupled-mode equations on the basis of Eq. (2.1). Two modes with
amplitudes a;(f) and a,(f) and complex angular eigen frequencies ®; and w, are
coupled to the incident radiation with coupling coefficients k; and k,. Phenomeno-
logical equations managing these modes can be written in the following form:

day (1) = —jRe{w; }a; (t) + Im{w; }a; (¢) + x1f o () + x12a2(7) ns)
d%p = —jRe{w; }ax (1) + Im{w; }ar (1) + xof o (1) + k2141 (7)

where k;, and k,; are the coupling coefficients between the two modes. The
temporal amplitudes of the modes can be expressed in terms of their temporal
envelope similarly to the case of a single mode:

a (1)
a(t)
Substituting expressions (2.6) into Eq. (2.5), we get rid of the fast oscillating term
exp(—jwt). The particular solution of the coupled mode equations is found in steady

state, when f (1) = 1:

1([)6Xp(—joot) (2.6)

n(1)exp(—jor)

al(w):w—a)++w—a) (2.7)

ar(w) = +

The solutions appear as a linear superposition of two singular functions, showing
that the coupling between the plasmon modes results in the formation of two hybrid
modes with complex resonance angular frequencies o™ and w™~ distinct from the
original modal angular frequencies. The values of the phenomenological parame-
ters ay, al, ay, ay, ®" and o~ of these hybrid modes can be found by fitting the
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optical response of the system with a meromorphic function of the pulsation that
has two singular points. All phenomenological parameters introduced in Egs. (2.5)
are then related with the resonance parameters of hybrid modes. The coupling
coefficients depend on the polar amplitudes as:

K __. + —
{ ' J.E“LJF“I) (2.8)
Ky = —jla, —|—a2)

Since these coefficients are intrinsic for the given modes, the sum of hybrid
mode amplitudes @] + a; and a; + a; must remain constant whatever the strength
of the coupling between the modes. The mutual coupling coefficients are

+ -
a,a
24 +
Ky = — ————— TAw
apdy —d;ay (2.9)
+ — .
a9 +
Kip=—F—————Aw

a— — T
aja, —a;a,

with Ao = 0" — w~. Considering that these coupling coefficients reflect the
coupling strength in the system and regarding to their expressions, the difference
between the complex angular frequencies of hybrid modes, Aw®, as well as
products of their amplitudes give a direct estimate of the coupling effects in particle
aggregates. Similarly to the coupling coefficients, the mutual coupling coefficients
are complex parameters whose amplitude provides a direct estimate of the coupling
strength between the particles, and their phase corresponds to the phase detuning
with which one mode acts on the other.
Finally, the initial and hybrid mode angular frequencies are linked as follows:

s

o' = +j-2kp
Zl, (2.10)

® = +j LK
a

These relations show that with given initial modes, the shift in hybrid modes
depends directly on the mutual coupling coefficients, as expected in strongly
coupled oscillators [13].

In the limit of uncoupled modes, e.g. by sufficiently distancing two particles so
that they no longer interact with each other, the mutual coupling coefficients nullify
and the Eq. (2.5) become independent. In this case, vanishing mode amplitudes a;
and a5 ensure that the mutual coupling coefficients become zero and that the hybrid
mode angular frequencies tend to the initial values (0™ — o; and ®~ — ).
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2.3 Definition of the Complex Valued Extinction
of Nanoparticle Assemblies

In the general case of a system whith interacting particles our strategy is to consider
a single parameter characterizing the response of each particle. A practical way to
characterize the optical response of a system of particles is to introduce the optical
cross-sections [14]. In particular, the extinction cross-section C,,,, which expresses
the total optical losses in the system due to absorption and scattering processes. In
the case of a single particle, this quantity is expressed using the optical theorem:

47

mlm [E.EX, (er)] (2.11)

ext = sca

where E (e;) is the far-field scattered in the forward direction e; of the incident
field. The latter is assumed to be a monochromatic incident plane wave E;,. = Eg
exp (Jk; - r) of angular frequency @ propagating in the homogeneous medium of
refractive index n; with wavevector k,. For a multi-particle system, the total
extinction cross-section can be defined as the sum of the individual particle
extinction cross-sections.

In order to generalize the concept of extinction cross-section, we introduce the
complex valued extinction C i, for each particle and C s for the whole system on the
basis of the conventional extinction cross-section defined in Eq. (2.11)

~ ~. iy Lo
Con=» Cli=-Y mEO.E;ﬁj (er) (2.12)
i s |10

i

where E’Mff (er) is the far-field scattered by the i"" particle. The optical theorem
expressed in Eq. (2.11) defines the extinction cross-section as an attenuation of the
incident radiation in the forward direction. In contrast to its conventional analogue,
the complex valued extinction defined in Eq. (2.12) gives access to the phase
information resulting from the interaction of the scattered field with the incident

one. Even if the individual contributions C I to the total extinction do not represent
any measurable quantity, they allow for characterizing contribution of each particle
to the optical response of the whole system. To interpret the resonance curves we
study the phase as well as the real and imaginary parts of the individual complex
valued extinctions, noting that their imaginary parts correspond to the conventional
extinction cross-section. The phase of the complex valued extinction coincides with
that of the dipolar moment oscillation.

Complex partial extinctions provide information about relative oscillations of
the particle dipole moments. When particles are illuminated with a constant phase
of the incident plane wave (Fig. 2.1), the phase difference between their scattering
in the far field (and thus between their partial extinction according to Eq. (2.12))
results from a phase difference in their dipolar moments. The complex extinction
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Fig. 2.1 Schematic Loo*
representation of phase E sca
relations between partial
scattered fields and
oscillating dipolar moments
of a system of particles
(Reprinted with permission
from Ref. [10]. Copyright
2015 American Chemical
Society)
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can therefore be conveniently used to characterize the radiation of each particle in a
coupled system.

2.4 Numerical Extraction of Resonance Parameters

We describe the complex extinction coefficient (or each individual contribution to
the total extinction) by a meromorphic function of angular frequency o, with
m poles corresponding to m resonances:

Con(0) =D ——+> ho' (2.13)
j=1 J k=0

This function is composed of singular and regular parts. Each singular term
corresponds to a particular resonance characterized by its complex amplitude a;
and a complex angular frequency w;. The real part of the latter corresponds to the
spectral position of the resonance and its imaginary part to the HWHM. We propose
a numerical algorithm for the determination of the characteristics of each reso-
nance. The different steps of the approach are the following. First, in order to obtain

an analytical function without singular function, g‘m(m) is multiplied by polyno-
mial P,,(w) which zeros are the poles of C,(®):
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= ﬁ (0 — ;) = ipkmk (2.14)
; k=0

j=1
Then, an (m + n)’h order derivation is applied to this product, with m + n being
sufficiently large to cancel all the regular terms in (2.13) fork < n. The derivation is
performed numerically on product E‘m(w)P(w) atm + ndiscrete values of ®, and by
applying the (m + n)th order Newton divided difference formula:

S Coalodlule) _§5, 89 Cotool g )
=0 H(w — ) = H((o — )

=0 =0
I#i I#i

The relation yields a linear equation on polynomial coefficients p; considered as
unknowns

m—1
S A=~ 2.16)
k=0
where
m+n . m+n |
A = Z w,-kCex,(w,-)H (0; —wy)~ (2.17)
=0 1=0
I£i

Taking m different sets of m + n couples of points (0),- ; C m.,(m,-)) leads to a system

of m linear equations, whose resolution delivers m polynomial coefficients
Pr, k=0,1,2,...,m— 1. The last step consists in searching the roots of polyno-
mial P,,(0) defined by coefficients p;. This can be efficiently done by factorizing the
companion matrix C,, of polynomial P,,(®) using the QR algorithm [15]:

0 0 - 0 —p,
l .. O _pl

C,=|0o 1 - 0 —p, (2.18)
0 0 L =pu

Each eigenvalue of matrix C,, is equal to one of the polynomial roots and,
consequently, to one of the poles of C, (o).

Once the poles of C v (®) known, the amplitude of each singular term is obtained
from the Lagrangian form of the analytical product, using all N = 2m + n discrete
points
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” m N @ — 6
(ut H m_wk :i [ ext 0)1 H (Dk‘|H 0),,‘7—(,0][ (219)

k=1 =0 5;0
1
Resonant amplitude a,, is found in the limit ® — w,:

m N
m N wp —
_ -1 ext (Dl — W —_—

ap = H (@p — o) ZO [ ,Hl 1}1} ®; — 0; (2.20)
k=1 1= A
J#
k#p

The presented algorithm determines efficiently the resonance characteristics, and only
few discretization points are required for one searched pole. In practical application,
two sets of points can differ by only one single point. Therefore, the algorithm can be

implemented by calculating the values g’ex,(m,«) atonly N = 2m + n different angular
frequencies. The first linear equation is constructed using the m + n first values of

C ext(®7), the second equation uses values from the 2" to the (m + n + l)m, and so on.

After truncation of the infinite series in Eq. (2.13) the equation becomes a
rational approximation of the complex extinction function. Formally, it is compa-
rable to the Pade approximation [16] which is designed to approximate analytic
functions. We are looking for a decomposition which better fits a meromorphic
function near its poles. Therefore, we aim at the most accurate search of complex
poles ®; and amplitudes a;, and apply the algorithm based on the numerical
derivation [17] instead of conventionally used Baker’s algorithm designed for the
best analytic function approximation in a fixed spectral interval.

In the simplest case of a single resonance present in the extinction spectrum, the
complex pole w,, related to this resonance can be directly expressed as function of N
discrete values of the complex extinction. Then, taking Eq. (2.15) with
Pnu(0) = ® — o, it follows immediately:

N .
— | =0 H (o0 — ;) Z ;) (2.21)
- T o)
i =0
i

Amplitude a,, of a single mode is found as

N
e oo o T O
Z Cext(ml) (ml 0)1’) H 0; — 0; (222)

i=0

Clp:

In the following examples, the extinction coefficients are computed at N equidistant
wavelengths in a spectral range containing all searched resonances. Computations
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on various systems showed that accurate results (i.e stable resonance poles and
amplitudes) are obtained within a number of discrete points only a little larger than
the number of poles searched: generally from 3 for a single mode and 5 for two or
three modes, to about 15 for about ten modes.

Examples demonstrating capabilities of the method are presented in Fig. 2.2.
The extinction coefficient of a silver sphere in vacuum is calculated using the Mie
theory and a modified Drude model to fit the metal dielectric permittivity (the used
parameters are the same as in Ref. [10]). The plots of extinction denote the presence
of a single dipolar resonance in the case of a 10 nm in radius particle (Fig. 2.2a) and
both dipolar and quadripolar resonances for a 40 nm in radius particle (Fig. 2.2b). In
these two cases, the parameters of equation (2.13) are found using only three
discrete points around the single resonance and six points for the particle exhibiting
two resonance modes. The singular part is also plotted to demonstrate that the
optical response of this system is mainly resonant. The difference between the total
extinction and its singular part correspond to the regular part of the meromorphic
function (2.13). This regular part, which only adds a slow-varying real part of the
extinction, corresponds to non-resonant contributions to the total extinction. Since
our analysis is focused on the purely resonant response of metal particles, this
regular part will be neglected. Another possibility contained in Eq. (2.13) is to
separate the contribution of each mode to the total extinction, as shown in Fig. 2.2¢c
where the extinction due to both dipolar and quadripolar resonance modes are
given.

In the context of the physical interpretation of plasmon resonances and their
coupling behavior, the proposed method not only allows to compute the resonant
parameters of plasmons modes, but also to determine the phenomenological quan-
tities introduced in a previous section. This extraction method combined to the
coupled mode model provides a powerful tool to analyze and interpret the resonant
effects in coupled systems.

2.5 Eigenmodes of Single Spheres

The polar decomposition of the complex extinction previously described is applied
to analyze the resonant behavior of a single silver sphere when its radius R varies.
We can note here that different strategies can be adopted for the determination of
resonant parameters in the case of a single particle. Since the contribution of each
mode to the total extinction can be treated separately by considering the different
electric modes in the spherical wave decomposition of the scattered field, the
analysis can be efficiently performed by searching a single resonance on each
electric mode instead of dealing with several modes in the total extinction of the
particle.

Position and width variations of the dipolar resonance are shown in Fig. 2.3a-b
versus the particle radius for different refractive indexes of the surrounding
medium. These results are in perfect agreement with those obtained in a previous
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Fig. 2.2 Complex extinction coefficient of a single silver sphere of (a) 10 nm in radius and (b)
40 nm in radius, with the its singular part reconstructed after the extraction of resonant character-
istics. Arrows indicate the wavelengths used for the extraction algorithm. The dipolar and
quadripolar contributions to the total extinction in the case of a 40 nm in radius particle are
given in (c¢) (Reprinted with permission from Ref. [11]. Copyright 2015 Springer)

numerical study [9]. The resonance position (Fig. 2.3a) is monotonically red-shifted
by increasing the sphere radius or the surrounding refractive index n, with a nearly
linear dependence of the wavelength position with n (at constant sphere radius).
The dipolar resonance bandwidth also exhibits a nearly linear dependence with the
ambient refractive index. Its variations versus the particle radius (Fig. 2.3b) mean-
while shows that the bandwidth passes by a minimum value at a radius between
10 and 15 nm depending on the surrounding refractive index. Since this resonance
bandwidth can be physically related to the damping strength of the resonance mode
due to the absorption and radiative losses, we can deduce that there is an optimal
particle size for which the total losses of a given mode are minimal. This optimal
particle size is reduced when increasing the local refractive index, from R = 15 nm
forn=1to R =10 nm for n = 2. The same resonant behavior is observed for higher
order modes. As shown in Fig. 2.3c—d, the quadrupolar mode resonates at lower
wavelength than the dipolar one, with a lower bandwidth and exhibits minimal
losses for higher particle radii.

Once the resonance characteristics are found for a given plasmon mode, we
propose to determine the contribution of this mode to the optical cross-sections. To
do this within the Mie theory, we remind that the /" plasmon mode cross-sections
are easily obtained by considering the /”* Lorentz-Mie coefficient corresponding to
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Fig. 2.3 (a) Position and (b) half-bandwidth of the dipolar resonance computed for a single silver
sphere versus its radius, for various surrounding medium refractive indexes n. (¢) Position and (d)
half-bandwidth of the quadrupolar resonance computed for a single silver sphere versus its radius,
for various surrounding medium refractive indexes n (Reprinted with permission from Ref.
[11]. Copyright 2015 Springer)

electric modes instead of their infinite sum. The absorption, scattering and extinc-
tion cross-sections computed at the resonance wavelength of the dipolar and the
quadrupolar modes are given in Fig. 2.4a and d in function of the particle radius. It
appears that a sphere radius of R=22 nm gives a maximum absorption cross-
section and in the same time corresponds to the size from which the scattering
cross-section becomes greater than the absorption. This particular behavior is
observed whatever the mode and the value of the surrounding refractive index. It
then appears that an optimal absorption coincides with equal absorption and
scattering cross-sections. This result has been pointed out in the case of point
dipoles [18] and for realistic particles [19]. In Ref. [19], the following condition
has been established to obtain the /" plasmon resonance mode of a sphere as an
ideal absorber:
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=0 (2.23)

where j,(x) is the spherical Bessel function, hf”(x) is the spherical Hankel function

of the first kind, j,and Z;l) are the derivatives j,(x) = [le(x)]/ and Z,(I)(x) =

{th)(x)] . €1 and k; are the dielectric permittivity and the wavenumber of the

surrounding medium, &, and k, are the dielectric permittivity and the wavenumber
of the particle. For a fixed permittivity of the ambient medium and particle, and
considering the wavenumbers at resonance position depending on the sphere radius,
the condition (2.23) is never strictly satisfied but it has been verified that the optimal
absorption of each plasmon mode observed in Fig. 2.4 corresponds to a particle size
that minimizes the left-hand of Eq. (2.23).

Other interesting features of the radiative and non-radiative processes at reso-
nance can be drawn from the analysis of the optical efficiencies, i.e. the optical
cross-sections normalized by the physical cross-section of the particle (nR?).
Figure 2.4b shows that the absorption and scattering efficiencies for the dipolar
mode are maximum for two different radii, R=17 nm and with R =30 nm,
respectively. When calculating the maximum near-field intensity produced on the
particle surface at dipolar resonance, we observe that its value passes by a maxi-
mum in coincidence with the absorption efficiency. This property is quite interest-
ing since it provides an easy way to optimize the near-field enhancement.
Complementary calculations prove that variations of the maximum near-field
intensity are correlated to variations of the absorption efficiency whatever the
considered mode and refractive index of the surrounding medium. Figure. 2.4e—f
shows that the sizes for which the optical efficiencies and the maximum near-field
intensity of the quadrupolar resonance are maximum, are larger than those calcu-
lated for the dipolar resonance and decrease when increasing the surrounding
refractive index. Interestingly, the maximum near-field intensity can also be opti-
mized by varying the surrounding refractive index. So, the maximal near-field
intensity produced by the dipolar mode is obtained for n=1.5 and R =13 nm.

2.6 Hybrid Modes in Dimers

2.6.1 Hybrid Modes and Their Energetic Behavior

We start the analysis of plasmon modes in dimers by first considering two spheres
of 20 nm (S1) and 10 nm (S2) in radius, with a gap of 5 nm between their surfaces
and illuminated by a plane wave polarized parallel to the dimer axis. These particles
are small enough to mainly exhibit a dipolar resonance when taken separately. We
compute separately, from the rigorous resolution of the multiple scattering problem,
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the partial complex extinctions 661,” and Z‘f,ﬂ of S1 and S2. Each of these complex
quantities exhibits two resonances expected to correspond to hybrid modes
resulting from the coupling between the dipolar modes of particles. Fitting their
spectral variations with a meromorphic function (being the sum of two singular
functions), as described in Eq. (2.7), gives the values of the hybrid pulsations o™
and ®~ and amplitude parameters a; , a; , a, and a; (Fig. 2.5a). The reconstruction
of each singular function of Eq. (2.7) from the extracted parameters is shown in
Fig. 2.5¢c—d. These curves correspond to the contribution of each particle to each
hybrid mode. The sum of all these functions, which corresponds to the total
complex valued extinction of the system, is compared to the spectral variations
calculated rigorously in Fig. 2.5b. The good agreement between the curves proves
that the phenomenological approach is accurate for this system.

Looking at the separated contributions of S1 and S2 to each hybrid mode in
Fig. 2.5c—d also inform on the nature of these modes. When the phase of the
singular functions corresponding to S1 and S2 are the same their mode can be
interpreted as resulting from dipoles oscillating in phase (Fig. 2.5¢). We can note
here that the same sign of the real and imaginary part of the singular functions can
also be interpreted as in phase dipolar oscillations. This results in a large dipolar
moment and a highly radiative system whose mode is qualified of super-radiant.
When the real or the imaginary parts have opposite signs (Fig. 2.5d), the dipolar
moments of both particles oscillate out-of-phase leading to a small resulting dipolar
moment of the dimer and to a poorly radiative system. The mode is then said
sub-radiant. The resonance bandwidth of a given mode is related to the total losses
in the system. In the case of a sub-radiant mode, the reduced resulting dipolar
moment results in lower radiative losses, leading to a sharper resonance bandwidth.
For a super-radiant mode the opposite effect is observed, and the highly radiative
behavior results in high radiative losses and hence to a broader resonance band-
width. These behaviors appear in the two hybrid modes of the dimer.

Similar results are obtained when considering an incident polarization perpen-
dicular to the dimer axis, where both sub-radiant and super-radiant modes are
identified from the fitted resonance characteristics.

An important feature in coupled systems is the dependence of the coupling
strength with the distance separating the particles. Following the phenomenological
analysis in the previous section, the mutual coupling coefficients can serve to
quantify the interaction between nanoparticles. Figure 2.6 depicts the modulus of
both coupling and mutual coupling coefficients as a function of the gap between the
particles, for an incident polarization parallel or perpendicular to the dimer axis.
Coupling coefficients k; and k; are intrinsic characteristics of each sphere and then
are expected to be independent of the dimer configuration. However, the plotted
values show a slight decrease of these coefficients with increasing the gap. This can
be interpreted as a consequence of coupling between dipolar modes and higher
order modes. Indeed, the phenomenological analysis of the system only consider
the ideal case of coupling between two (here dipolar) modes. Actually, coupling
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Fig. 2.6 Coupling (on the left y-axis) and mutual coupling (on the right y-axis) coefficients versus
the gap between particles for an incident polarization (a) parallel or (b) perpendicular to the dimer
axis (Reprinted with permission from Ref. [10]. Copyright 2015 American Chemical Society)

between dipolar and quadrupolar modes also occurs, inducing disparities between
expected and computed phenomenological values.

The computed mutual coupling coefficients k;, and x,; show for each incident
polarization a fast decreasing coupling strength when increasing the gap between
particles. By comparing the amplitudes for each polarization, the coupling strength
in the case of a parallel polarization appears to be larger (by a factor of about 3) than
in the perpendicular case. When considering each sphere as oscillating dipoles, this
result indicates a better coupling in the case of parallel dipolar moments. Regarding
again the coupling coefficients, their values are more perturbed for a parallel
incident polarization. In this case and for close particles, relatively strong coupling
effects can be expected between dipolar and higher order modes, compared with a
perpendicular polarization where the coupling coefficients are more stable.

We can note here the different orders of magnitude between the coupling and
mutual coupling coefficients. This difference comes from the different physical
inputs to which they apply: k1fo(?), Kofo(?), K12a2(f) and k,1a1(f). These terms have
the same dimension and their comparison could inform about the relative impor-
tance of the coupling and mutual coupling effects in the resonant behavior of the
system.

The hybrid modes resulting from the coupling between particles resonate at
complex pulsations " and o™~ different from the pulsation of initial modes ®, and
®,. Their determination gives an energetic diagram of the system, as shown in
Fig. 2.7a. The latter highlights different behaviors of hybrid modes. The two modes
resonating at higher wavelengths (and lower energy) are red-shifted when increas-
ing the inter-particle coupling. They correspond to an energetically favorable
configuration of the dipolar moments of the particles, i.e. when the dipoles are
attractive. These modes can be seen as bounding states of the system (Fig. 2.7c).
The modes resonating at lower wavelengths correspond to a repulsive configuration
of dipoles and can be seen in turn as anti-bounding states of the system. Another
interesting feature is that the resonance position of bounding states tends to the
dipolar mode position of the larger particle, whereas the resonance position of anti-
bounding states tends to dipolar mode position of the smaller particle.
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Fig. 2.7 Resonance position of hybrid modes versus the gap between particles for a dimer
composed of (a) 10 and 20 nm in radius spheres and (b) identical spheres 20 nm in radius. (c)
Schematic representation of the energetic repartition of hybrid modes (Reprinted with permission
from Ref. [10]. Copyright 2015 American Chemical Society)

Consider now the special case of homo-dimers, composed of identical particles.
In such a case, the initial modes have identical coupling coefficients k, with the
incident excitation and resonate at the same pulsation ®,. Anticipating the mutual
coupling coefficients to be equal (k1 = kp; = x) as well as the mode amplitudes (
a1(t) = ax(t) = a(t)) the coupled mode equations (2.5) can be simplified in a single
equation:

da(r)
dt

= —jRe{w, }a(t) + Im{w, }a(t) + xa(t) + xo fo(t) (2.24)

Including in Eq. (2.24) the expression of the mode amplitude given by Eq. (2.4),
yields in steady-state with the condition f(¢) = 1

jKO a’

() = (2.25)

O—0,—jK o—0"

As a consequence, the coupling between two identical particles leads to a single
excited hybrid mode with a complex pulsation ®* = ®, + jk and a resonance
amplitude @ = jiig. This hybrid mode has the same amplitude as the initial
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mode, and the resonance pulsation is only shifted from the initial position w,, by the
mutual coupling term jk. Obviously, the resonant response of both particles is
exactly the same and the hybrid mode corresponds systematically to a super-
radiant mode (in-phase oscillations). Out-of-phase oscillations of dipolar moments
appear as forbidden (i.e. dark) modes.

The energetic diagram of a homo-dimer composed of 20 nm in radius spheres is
plotted in Fig. 2.7b. In addition to the identified hybrid modes, different modes
resulting from a coupling between dipolar and quadrupolar initial modes are also
represented. For a complete description of these interactions with higher modes, the
phenomenological description used has to be generalized to the case of M cross-
coupled modes.

2.6.2 Near-Field Enhancement

Let us characterize the spectral behavior of hybrid modes in a silver homo-dimer.
Figure 2.8a provides the optical cross-sections of a silver dimer composed of 10 nm
in radius spheres with a gap of 5 nm between the particles and illuminated with an
incident plane wave polarized with an angle of 45° relative to the dimer axis. These
spectra show the presence of three distinct resonance modes. The mode resonating
at the lowest energy is identified as the longitudinal hybrid mode with in-phase
oscillation of the dipolar moments oriented along the dimer axis. The second
marked peak corresponds in turn to the transverse hybrid mode with in-phase
oscillation of dipolar moments oriented perpendicularly to the dimer axis. The
third mode, not studied in following, resonating at the highest energy originates
from a quadrupolar mode. The resonance position and half-bandwidth of the
transverse and longitudinal dipolar hybrid modes are reported in Fig. 2.8b—c in
function of the gap between the spheres and for various surrounding medium
refractive indexes. As expected from the previous analysis, the parallel hybrid
mode is red-shifted and slightly broadened when decreasing the inter-particle
distance, and therefore when increasing the coupling strength between the particles.
By contrary, the parallel dipolar hybrid mode is blue-shifted and slightly narrowed
when decreasing the particle gap between the particles. As in the case of a single
particle, the resonance position of each hybrid mode has an almost linear depen-
dence with the variation of the local refractive index.

A particular interest of hybrid modes in coupled particle systems relies on the
large near-field enhancement that occurs at resonance compared to a single particle.
Especially, the hot-spot resulting from the parallel hybrid mode excitation and
located in the dimer gap may reach several thousand times the incident wave
intensity. Still considering the same dimer with the same illumination condition,
the variation of the near-field enhancement at the gap center, obtained at the
longitudinal mode resonance position and for various local refractive indexes is
reported in Fig. 2.9a. A maximum field enhancement occurs for n= 1.5, which
corresponds to the surrounding medium refractive index maximizing the dipolar
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Fig. 2.8 (a) Optical cross-sections of a silver dimer composed of 10 nm in radius spheres with a
gap of 5 nm between the particles and illuminated with an incident plane wave polarized with an
angle of 45° relative to the dimer axis. The instantaneous dipolar moment orientations of the two
dipolar hybrid modes are represented on their respective resonance peak. Resonance (b) position
and (c) half-bandwidth of the dipolar hybrid modes versus the gap between the particles, for
different local refractive indexes. Lines correspond to the longitudinal hybrid mode and dotted
lines correspond to the transverse one (Reprinted with permission from Ref. [11]. Copyright 2015
Springer)

mode near-field intensity for a single particle. As in the same way as for uncoupled
modes, the local field enhancement varies when considering different particle sizes.
Figure 2.9b plots the near-field intensity for various particle sizes and local refrac-
tive indexes, keeping the ratio R/gap =2. An optimal condition to optimize the
hot-spot intensity is then found for R=11 nm and n=1.5.

2.7 Weak and Strong Coupling in Quadrumers

2.7.1 Weak Coupling in Small Size Systems

Here we consider a quadrumer composed of two pairs of homo-dimers. This system
is schematically described in Fig. 2.10. The first dimer D1 is composed of two
20 nm in radius spheres disposed vertically with a gap of 20 nm. The second dimer
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D2, composed of two 10 nm in radius spheres disposed horizontally, is placed in the
gap of D1. When illuminating this system with an incident plane wave polarized
along the D2 axis, the original dimer modes are strongly coupled. The original
mode in each dimer results in one hybrid mode where the spheres composing the
dimer act as dipoles oscillating in-phase, with dipolar moments oriented parallel to
the incident polarization. Then each dimer can be viewed as a single dipole with a
given resulting dipolar moment.

The rigorously calculated extinction spectra are plotted in Fig. 2.10 versus the
gap of D2. Two hybrid modes appear in the extinction cross-section. As in the case
of simple dimers, the coupling between the two dimer modes leads to the formation
of hybrid modes with distinct resonance positions.

In order to determine the coupling characteristics of such a quadrumer, we
compute the partial complex extinction cross-sections of each dimer 63‘, and
6% As expected, each partial cross-section exhibits two modes located at the
same pulsations, which can be fitted with the meromorphic functions of Eq. 2.7.
The resonance parameters of the hybrid modes (for a gap of 8 nm in D2) are
gathered in Fig. 2.11a and the reconstructed singular functions corresponding to the
contribution of each dimer to both hybrid modes are shown in Fig. 2.11c—d. The
sum of all these contributions, deduced from the phenomenological approach, is in
good agreement with the total complex valued extinction cross-section calculated
rigorously (Fig. 2.11b). This proves the validity of the coupled-mode approach for
this kind of system too.

As previously, the nature of hybrid modes can be identified through the phase
shifts between the dipolar oscillations deduced from the comparison of the sign of
the real part of singular functions plotted in Fig. 2.11c—d. For the hybrid mode
resonating at pulsation @~, the dipolar modes associated to D1 and D2 oscillate in
phase (Fig. 2.11c). This hybrid mode corresponds therefore to a high resultant
dipolar moment making this mode highly radiative and can be qualified as super-
radiant. The hybrid mode resonating at " is characterized by a w/3 phase shift
between the dipolar oscillations of the two dimers. This configuration is less
radiative than a super-radiant mode, and then will be qualified as a
sub-radiant mode.

When decreasing the gap between particles in D2, the resonance position of the
dimer original mode is red-shifted due to an increase in the coupling strength
between particles. This shift changes the position of hybrid resonances. Figure 2.12a
shows the energetic diagram of both coupled and isolated dimers in function of the
gap in D2. The hybrid modes in the coupled system exhibit an anti-crossing
behavior of the energy branches at a gap around 11 nm, where the difference
between the two hybrid mode positions presents a minimum. For gaps below
11 nm, the extracted resonance parameters indicate that the super-radiant mode
resonates at the lowest wavelengths and conversely for the higher frequency mode.
The anti-crossing point induces an energy inversion of the hybrid modes and for
higher gaps, the situation is reversed. This behavior is characterized by a sign
inversion in the mutual coupling coefficients at crossing point. Since the hybrid
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Fig. 2.12 (a) Energetic diagram of coupled and isolated dimers and (b) an illustration of Coulomb
interactions between the particles for a small and a large gap of D2 (Reprinted with permission
from Ref. [10]. Copyright 2015 American Chemical Society)

pulsations are directly related to these mutual coupling coefficients (see Eq. (2.10)),
a sign inversion in the latter induces an energy inversion in the former. As
illustrated in Fig. 2.12b, a qualitative interpretation of the energy inversion is
given by considering changes in Coulomb interactions between the particles
[20]. For short gaps between the particles in D2, repulsive forces act between D1
and D2 particles. When increasing the gap in D2, the electrostatic interactions are
reversed, leading to attractive forces between spheres of D1 and D2.

2.7.2 Hybridization and Fano-Like Resonances in Strongly
Coupled Systems

We deal now with a quadrumer composed of larger particles where stronger
coupling between plasmon modes occurs. This system is schematically described
in Fig. 2.13, and consists in a quadrumer composed of identical spherical particles
30 nm in radius. As previously, this system can be viewed as a pair of vertical
(D1) and horizontal (D2) homo-dimers. The extinction spectra of the quadrumer are
plotted in Fig. 2.13 versus the gap of D2, when illuminating with an plane wave
polarized along the D2 axis. These spactra exhibit Fano resonances, i.e. asymmetric
resonant line profiles, noting also the presence of a quadrupolar resonance at about
360 nm.

In order to analyze the coupling effects in the quadrumer, we consider Egs. (2.5)
extended to four coupled equations to describe the mutual coupling between the
four particles. Due to the symmetry of this system and considering the given
incident polarization, these equations can be reduced into two coupled equations
describing the resonance behavior of the quadrumer
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Fig. 2.13 Extinction cross-section of the system sketched on the right composed of two
interacting dimers, versus the gap of the horizontal dimer. The dashed line indicates the position
of the Fano dips in the extinction spectra (Reprinted with permission from Ref. [10]. Copyright
2015 American Chemical Society)

d%p = —jRe{wo }a;(t) + Im{wo }a; (1) + xof o (2) + k1101 (1) + 2K1202 (1)
da;t(t) = —jRe{wo }ay (1) + Im{wo }ay (1) + kof o (1) + ka2 (1) + 2x12a: (¢)

(2.26)

where a,(f) and a,(f) are the resonance amplitudes in the dimers D1 and D2,
respectively. wg is the original complex pulsation of the particles’ dipolar resonance
and kg is their coupling coefficient with the incident radiation. x;; and x,, are the
mutual coupling coefficients between the particles in the dimers D1 and D2
respectively, k;, is the mutual coupling coefficient between the D1 and D2 parti-
cles. The coupled equations (2.26) describing the system anticipates the formation
of two different hybrid modes from the coupling of the initial dipolar resonances of
the particles.

In order to determine the coupling characteristics of such a quadrumer, we

D1

oq and

compute the partial complex extinction cross-sections of each dimer C
633,. The resonance parameters of the hybrid modes (for a gap of 60 nm in D2)
are gathered in Fig. 2.14a and the reconstructed singular functions corresponding to
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the contribution of each dimer to both hybrid modes are shown in Fig. 2.14c—d. The
sum of all these contributions, deduced from the phenomenological approach, is in
good agreement with the total complex valued extinction cross-section calculated
rigorously (Fig. 2.14b), except for the quadrupolar mode (at about 355 nm) not
taken into account in our model.

As previously, the nature of hybrid modes can be identified through the phase
shifts between the dipolar oscillations deduced from singular functions plotted in
Fig. 2.14c—d. For the hybrid mode resonating at angular frequency o™, the dipolar
modes associated to D1 and D2 oscillate nearly in phase (Fig. 2.14c). This hybrid
mode corresponds therefore to a high resultant dipolar moment making this mode
highly radiative and qualified of super-radiant. The hybrid mode resonating at o™~ is
characterized by an out-of-phase oscillation of the dipolar moments, making this
mode poorly radiative that can be qualified of sub-radiant. A particular feature of
this system comes from highly asymmetric line profiles in the contribution of both
dimers to the sub-radiant mode. The superposition of these asymmetric line profiles
with the contribution of the super-radiant mode explains the Fano line-shape in the
total extinction of the quadrumer.

Figure 2.15b shows the plot of relative dipolar moment phases for the two hybrid
modes in function of the gap in D2, revealing two different coupling regimes. When
increasing the gap between the particles in D2 (corresponding to weak coupling),
the super-radiant mode tends to a zero phase shift between all the dipolar moments
resulting in a large bandwidth (Fig. 2.15c), and the sub-radiant mode tends to a z
phase shift with a reduced bandwidth. This regime results in a sharp Fano resonance
in the extinction spectra (Fig. 2.13). In the strong coupling regime, i.e. when
reducing the gap in D2, a reduction in the phase shifts of the super-radiant mode
is observed while its bandwidth is reduced. Contrariwise, the phase difference
between the dipolar moments of the sub-radiant mode tends to be reduced and its
bandwidth increases. Then under this regime the super-radiant and sub-radiant
modes become respectively less and more radiative. Moreover, the plot of the
spectral position of these hybrid modes (Fig. 2.13b) shows that the difference
between their spectral positions decreases with the gap in D2. The combination
of these two modes forms a broader Fano resonance in the structure total extinction
spectrum.

An actual interest of Fano resonances in plasmonic structures lies in their
extreme sensitivity to the local environment, making such resonances well suited
for sensing applications. The sensing capabilities of plasmon resonances can be
evaluated through their Figure of Merit [21] (FoM) defined as the ratio of the
plasmon energy shift per refractive index unit change in the surrounding medium,
divided by the width of the resonance band. Since the FoM of a given mode mainly
depends on its spectral width, the Fano resonance of the quadrumer in the weak
coupling regime appears as the best configuration for sensing because of its sharp
width compared to the Fano resonance in the strong coupling regime. The plot of
the quadrumer extinction spectra in the weak coupling regime (Fig. 2.16a) shows
the redshift of the asymmetric Fano line profile when increasing the local refractive
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Fig. 2.16 (a) Extinction spectrum of the quadrumer for different surrounding medium refractive
indexes. (b) Resonance position and (c) half-bandwidth of the hybrid modes versus the local
refractive index. A gap of 60 nm in the dimer D2 is fixed (Reprinted with permission from Ref.
[10]. Copyright 2015 American Chemical Society)

index. The plot of the two hybrid modes resonance positions in Fig. 2.16b exhibits a
nearly identical energy shift when increasing the surrounding medium refractive
index, while the spectral width of the super-radiant mode increases much more
significantly than the sub-radiant one (Fig. 2.16c). The latter then retains its low
radiative behavior. Using a linear regression of the energy shift versus the local
refractive index and the sub-radiant mode FWHM in vacuum, the FoM of the Fano
resonance in the weak coupling regime is estimated to 19.4, which is much larger
than in previously studied finite structures [22, 23]. By comparison, the FoM in the
strong coupling regime is estimated to 6.7, demonstrating the advantage of a weak
coupling configuration for sensing applications.

2.8 Conclusion

In this chapter we developed an efficient method for analyzing natural resonant
modes of unique particles and their coupling in simple structures. The principle of
this method is based on an analytical representation of the optical response of
nanostructures, as a unique function of the angular frequency. Thus, each mode of
resonance is characterized by a complex pole in the optical response corresponding
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to its frequency and amplitude. An extraction algorithm is described first for the
determination of the characteristics in the case of single resonances, then it is
generalized to the presence of multiple resonances in the extinction spectrum of a
multi-particle system.

The analytical representation of singular functions of resonance modes allows to
establish phenomenological equations describing these resonances in the time
domain. In the case of single particles, temporal modal amplitude can be described
through a first-order differential equation with phenomenological parameters real-
izing losses and coupling with the incident excitation. This approach can also be
extended to the interacting modes by introducing a system of coupled equations
where mutual coupling terms are involved to account for interaction between
modes. The formation of hybrid modes in coupled systems can be predicted
according to this formalism.

The method for the extraction of resonance characteristics was first applied to
single silver particles with the determination of the position, spectral width and
resonance amplitude of eigenmodes of spheres as a function of the sphere radius.
Hybrid modes of dimers were then studied. The initial dipole modes of two spheres
form in the general case four hybrid modes of the dimer differentiated by the
direction of the resulting dipole moment and phase relationships between the
oscillations of the dipole moment of each particle. From energetic point of view,
these hybrid modes can be seen as bounding and anti-bounding states, characterized
by red and blue spectral shifts, respectively, and their resonance positions gives the
measure of the power coupling between particles.

Finally, a more complex system consisting of two dimer in interaction was
studied. The optical response of this system has asymmetric resonance profiles of
Fano type very well taken into account by the singular representation of our model
and perfectly characterized by the extraction method.

We conclude that the numerical extraction method of resonance characteristics
combined with the phenomenological approach enables efficient characterization
and physical interpretation of plasmon resonances and of coupling of their different
modes.

References

1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Series in Materials
Science. Springer, Berlin/New York. doi:10.1007/978-3-662-09109-8

2. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J
Chem Phys 120:357-366. doi:10.1063/1.1629280

3. Kolwas K, Derkachova A (2010) Plasmonic abilities of gold and silver spherical nanoantennas
in terms of size dependent multipolar resonance frequencies and plasmon damping rates. Opto-
Electron Rev 18:429-437. doi:10.2478/s11772-010-0043-6

4. Mayergoyz ID, Fredkin DR, Zhang Z (2005) Electrostatic (plasmon) resonances in
nanoparticles. Phys Rev B 72:155412. doi:10.1103/PhysRevB.72.155412


http://dx.doi.org/10.1007/978-3-662-09109-8
http://dx.doi.org/10.1063/1.1629280
http://dx.doi.org/10.2478/s11772-010-0043-6
http://dx.doi.org/10.1103/PhysRevB.72.155412

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modeling and Interpretation of Hybridization in Coupled Plasmonic Systems 49

. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon

response of complex nanostructures. Science 302:419—422. doi:10.1126/science.1089171

. Nordlander P, Oubre C, Prodan E et al (2004) Plasmon hybridization in nanoparticle dimers.

Nano Lett 4:899-903. doi:10.1021/n1049681¢

. Mackowski DW (1991) Analysis of radiative scattering for multiple sphere configurations.

Proc R Soc Lond Ser Math Phys Sci 433:599-614. doi:10.1098/rspa.1991.0066

. Mackowski D (2012) The extension of Mie theory to multiple spheres. In: Hergert W, Wriedt

T (eds) Mie theory. Springer, Berlin/Heidelberg, pp 223-256

. Bakhti S, Destouches N, Tishchenko AV (2014) Analysis of plasmon resonances on a metal

particle. J Quant Spectrosc Radiat Transf 146:113-122. doi:10.1016/j.jgsrt.2014.01.014
Bakhti S, Destouches N, Tishchenko AV (2015) Coupled mode modeling to interpret
hybrid modes and Fano resonances in plasmonic systems. ACS Photonics 2:246-255.
doi:10.1021/ph500356n

Bakhti S, Destouches N, Tishchenko AV (2015) Singular representation of plasmon resonance
modes to optimize the near- and far-field properties of metal nanoparticles. Plasmonics,
10:1391-1399. doi:10.1007/s11468-015-9937-y

Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall series in solid state
physical electronics. Prentice-Hall, Englewood Cliffs

. Novotny L (2010) Strong coupling, energy splitting, and level crossings: a classical perspec-

tive. Am J Phys 78:1199-1202. doi:10.1119/1.3471177

Mackowski DW (1994) Calculation of total cross sections of multiple-sphere clusters. J Opt
Soc Am 11:2851-2861. doi:10.1364/JOSAA.11.002851

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University
Press, Baltimore

Baker GA (1974) Essentials of padé approximants. Academic Press, New York

Tishchenko AV, Hamdoun M, Parriaux O (2003) Two-dimensional coupled mode equation
for grating waveguide excitation by a focused beam. Opt Quant Electron 35:475-491.
doi:10.1023/A:1022921706176

Tretyakov S (2014) Maximizing absorption and scattering by dipole particles. Plasmonics
9:935-944. doi:10.1007/s11468-014-9699-y

Grigoriev V, Bonod N, Wenger J, Stout B (2015) Optimizing nanoparticle designs for ideal
absorption of light. ACS Photonics. doi:10.1021/ph500456w

Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in
coupled plasmonic systems. ACS Nano 7:4527-4536. doi:10.1021/nn401175j

Sherry LJ, Chang S-H, Schatz GC et al (2005) Localized surface plasmon resonance spectros-
copy of single silver nanocubes. Nano Lett 5:2034-2038. doi:10.1021/nl0515753

Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregatest.
J Phys Chem A 113:4028-4034. doi:10.1021/jp810411q

Lassiter JB, Sobhani H, Fan JA et al (2010) Fano resonances in plasmonic nanoclusters:
geometrical and chemical tunability. Nano Lett 10:3184-3189. doi:10.1021/n1102108u


http://dx.doi.org/10.1126/science.1089171
http://dx.doi.org/10.1021/nl049681c
http://dx.doi.org/10.1098/rspa.1991.0066
http://dx.doi.org/10.1016/j.jqsrt.2014.01.014
http://dx.doi.org/10.1021/ph500356n
http://dx.doi.org/10.1007/s11468-015-9937-y
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1364/JOSAA.11.002851
http://dx.doi.org/10.1023/A:1022921706176
http://dx.doi.org/10.1007/s11468-014-9699-y
http://dx.doi.org/10.1021/ph500456w
http://dx.doi.org/10.1021/nn401175j
http://dx.doi.org/10.1021/nl0515753
http://dx.doi.org/10.1021/jp810411q
http://dx.doi.org/10.1021/nl102108u

2 Springer
http://www.springer.com/978-3-319-24604-8

Reviews in Plasmonics 2015
Geddes, C.D. (Ed.)

2016, W, 453 p. 237 illus,, 682 illus, in color., Hardcover
ISBN: 978-3-319-24604-8



	Chapter 2: Modeling and Interpretation of Hybridization in Coupled Plasmonic Systems
	2.1 Introduction
	2.2 Coupled Mode Model Applied to Interacting Plasmon Modes
	2.3 Definition of the Complex Valued Extinction of Nanoparticle Assemblies
	2.4 Numerical Extraction of Resonance Parameters
	2.5 Eigenmodes of Single Spheres
	2.6 Hybrid Modes in Dimers
	2.6.1 Hybrid Modes and Their Energetic Behavior
	2.6.2 Near-Field Enhancement

	2.7 Weak and Strong Coupling in Quadrumers
	2.7.1 Weak Coupling in Small Size Systems
	2.7.2 Hybridization and Fano-Like Resonances in Strongly Coupled SystemsFano-like resonances

	2.8 Conclusion
	References


