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Modeling and Interpretation
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Systems
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Abstract The coupled mode formalism is introduced to provide a phenomenolog-

ical understanding of the coupling effects in finite systems of particles. Within this

approach, a metal nanoparticle can be viewed as an optical resonator and the

formation of hybrid modes, resulting from the coupling between particles, can be

anticipated. An efficient numerical algorithm is proposed to extract the character-

istics (complex poles and amplitudes) of each resonance of the system.

The spectral behavior of the eigen modes of a single metal sphere is analyzed.

The redshift and broadening of the different modes with the increase of the particle

size and the local refractive index are characterized. Optimal conditions can be

found to maximize the particle absorption as well as the near-field enhancement.

Sub-radiant and super-radiant hybrid modes of a dimer are identified from the

extinction spectrum of each particle. These hybrid modes have different energetic

behavior depending on the inter-particle distance, and can then be compared to

bounding (attractive) and anti-bounding (repulsive) states. The near-field enhance-

ment resulting from the hybrid mode excitation is maximized by optimizing the

dimer geometry and the surrounding refractive index.

The hybrid modes in a quadrumer are identified. For small particles with a

reduced coupling via scattering, the system exhibits an anti-crossing behavior of

the hybrid modes typical for weakly coupled resonators. When the particles are

sufficiently large to induce a strong coupling in the system, the extinction spectrum

of the quadrumer present Fano-like resonances, i.e. resonances with an asymmetric

line shape. The hybrid modes at the origin of these particular resonances are

identified as sub- and super-radiant modes of the system. The sharp Fano-like

resonance has a high figure of merit, making such system promising for sensing

applications.
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2.1 Introduction

Plasmon resonances induced by the electromagnetic excitation of metal

nanoparticles are generally associated with the presence of resonance bands in

the spectral response of these nanoparticles [1], and lead to an increase in the

local electromagnetic field at resonance wavelengths [2]. Each band corresponding

to a particular mode of resonance is characterized by its spectral position and width.

These spectral characteristics are strongly dependent on the geometry of the

particles as well as on their environment. Changes in the resonance bands result

in a red shift of the resonance position as well as in a broadening of the bands when

the size of the particle or the local refractive index increases.

In general, the optical response of metal nanoparticles is largely dominated by

bands of plasmon resonances. As part of a study of the spectral evolution of these

different bands based on certain geometric and environmental parameters, it may be

more convenient to deal only with resonance parameters (position and width) rather

than considering the whole optical spectra. Different methods allow for retrieving

these parameters; they are based on Mie theory for spheres [3], the eigenvalues of

surface integrals [4], or the hybridization theory for more complex systems

[5, 6]. We propose here to develop a method to extract precisely the resonance

parameters from the total optical response of a system of particles based on the

T-matrix method and its generalization to multi-particle systems [7, 8]. The main

objective of this development is to provide an efficient and flexible numerical tool

for the characterization of plasmon resonances together with a phenomenological

approach to interpret their physical behavior [9–11].

We first introduce the coupled mode model applied to the phenomenological

description of the plasmon resonance amplitudes resulting from an external excitation,

allowing a treatment ofmetal nanoparticles as optical resonators. This model is applied

to a single resonance mode and extended to a pair of coupled modes, providing a set of

phenomenological parameters including losses, coupling with excitation and mutual

coupling coefficients. This approach anticipates the formation of hybrid modes as

resulting from the coupling between two plasmon modes. The coupled mode model

is applied to the complex valued extinction coefficient of the individual particles,

defined as an extension of the classical extinction cross-section. This coefficient,

having the same phase than the dipolarmoment of the particles, appears as a convenient

parameter to identify the nature of the hybrid modes in a coupled system. The solutions

of the coupledmode equations being in the form of a singular function of the pulsation,

we propose an efficient numerical algorithm to extract the characteristics (complex

poles and amplitudes) of each resonance of the system from the rigorous computation

of complex valued extinction coefficients. All phenomenological parameters describ-

ing the coupling between particles can be deduced from these characteristics.

Within this theoretical framework, we first analyze the spectral behavior of the

eigenmodes of a single silver sphere. The redshift and broadening of the different

modes with the increase of the particle size and the local refractive index are

characterized and optimal conditions are found to maximize the particle absorption

as well as the near-field enhancement. The case of a silver dimer is then studied,
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where sub-radiant and super-radiant hybrid modes are identified from the extinction

spectrum of each particle. These hybrid modes have different energetic behaviors

depending on the inter-particle distance, and can then be compared to bounding

(attractive) and anti-bounding (repulsive) states. Local field enhancement resulting

from hybrid mode excitation can be maximized by optimizing the dimer geometry

and the surrounding refractive index. Our method is finally applied to silver

quadrumers, where hybrid modes exhibit an anti-crossing behavior in the case of

weakly coupled small particles. For larger particles, their strong coupling induces

the appearance of a Fano-like resonance in extinction spectra. The hybrid modes at

the origin of this sharp asymmetric resonance line shape are identified and their

behavior is analyzed, showing their potential for sensing applications.

2.2 Coupled Mode Model Applied to Interacting Plasmon
Modes

Wedetermine in this section an equation governing the coupled plasmonmode ampli-

tudes, with a few phenomenological parameters characterizing the coupling behavior

in simple plasmonic systems. The proposed formalism is well known in the classical

coupled mode theory [12] and can be applied to more complex geometries.

A single plasmon mode can be described by a first order differential equation

giving the time variations of the mode amplitude a(t) when excited by an incident

wave with electric field f0(t)

da tð Þ
dt

¼ �jRe ωp

� �
a tð Þ � 1

τ
a tð Þ þ κf 0 tð Þ ð2:1Þ

where τ is the time decay of the plasmon (representing the total losses in the

resonant system including absorption as well as re-radiation attributed to scatter-

ing), κ is the coupling coefficient and ωp is the complex resonant angular frequency

of the plasmon mode. The real part of ωp corresponds to the resonance position and

the imaginary part to its half width at half maximum (HWHM). When both the

incident radiation and the plasmon amplitude oscillate at angular frequency ω, they
can be expressed in terms of their modulation amplitudes ef 0 tð Þ and ~a(t) respectively

f 0 tð Þ ¼ ef 0 tð Þexp �jωtf g
a tð Þ ¼ ea tð Þexp �jωtf g

�
ð2:2Þ

Substituting these expressions into Eq. (2.1) and fixing condition ef 0 tð Þ ¼ 1 which

corresponds to a plane wave with unit amplitude we get the following particular

solution of Eq. (2.1) in steady state

ea ωð Þ ¼ jκ
ω� Re ωp

� �þ j
τ

ð2:3Þ
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Final modulation amplitude ~a depends on angular frequency ω only and the

obtained expression can be written in a very simple form as:

ea ωð Þ ¼ ap
ω� ωp

ð2:4Þ

where the coupling coefficient is related with amplitude as ap ¼ jκ, and the time

decay corresponds to the imaginary part of the complex pulsation Im ωp

� � ¼ �1=τ.
The coupling coefficient quantifies the coupling between the incident excitation and

the plasmon mode. Its amplitude provides the coupling strength and its phase

corresponds to the oscillator phase at resonance relative to the excitation.

In the case of close particles, plasmon resonances strongly interact, resulting in

the formation of hybrid modes in the system. To generalize the phenomenological

description to coupled systems, consider first two interacting plasmon modes. One

can write two coupled-mode equations on the basis of Eq. (2.1). Two modes with

amplitudes a1(t) and a2(t) and complex angular eigen frequencies ω1 and ω2 are

coupled to the incident radiation with coupling coefficients κ1 and κ2. Phenomeno-

logical equations managing these modes can be written in the following form:

da1 tð Þ
dt

¼ �jRe ω1f ga1 tð Þ þ Im ω1f ga1 tð Þ þ κ1f 0 tð Þ þ κ12a2 tð Þ
da2 tð Þ
dt

¼ �jRe ω2f ga2 tð Þ þ Im ω2f ga2 tð Þ þ κ2f 0 tð Þ þ κ21a1 tð Þ

8><
>: ð2:5Þ

where κ12 and κ21 are the coupling coefficients between the two modes. The

temporal amplitudes of the modes can be expressed in terms of their temporal

envelope similarly to the case of a single mode:

a1 tð Þ ¼ ea1 tð Þexp �jωtð Þ
a2 tð Þ ¼ ea2 tð Þexp �jωtð Þ

�
ð2:6Þ

Substituting expressions (2.6) into Eq. (2.5), we get rid of the fast oscillating term

exp �jωtð Þ. The particular solution of the coupled mode equations is found in steady

state, when ef 0 tð Þ ¼ 1:

ea1 ωð Þ ¼ aþ1
ω� ωþ þ a�1

ω� ω�

ea2 ωð Þ ¼ aþ2
ω� ωþ þ a�2

ω� ω�

8><
>: ð2:7Þ

The solutions appear as a linear superposition of two singular functions, showing

that the coupling between the plasmon modes results in the formation of two hybrid

modes with complex resonance angular frequencies ωþ and ω� distinct from the

original modal angular frequencies. The values of the phenomenological parame-

ters a�1 , a
þ
1 , a

�
2 , a

þ
2 , ωþ and ω� of these hybrid modes can be found by fitting the
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optical response of the system with a meromorphic function of the pulsation that

has two singular points. All phenomenological parameters introduced in Eqs. (2.5)

are then related with the resonance parameters of hybrid modes. The coupling

coefficients depend on the polar amplitudes as:

κ1 ¼ �j aþ1 þ a�1
� �

κ2 ¼ �j aþ2 þ a�2
� ��

ð2:8Þ

Since these coefficients are intrinsic for the given modes, the sum of hybrid

mode amplitudes aþ1 þ a�1 and aþ2 þ a�2 must remain constant whatever the strength

of the coupling between the modes. The mutual coupling coefficients are

κ21 ¼ � aþ2 a
�
2

aþ1 a
�
2 � a�1 a

þ
2

Δω�

κ12 ¼ aþ1 a
�
1

aþ1 a
�
2 � a�1 a

þ
2

Δω�

8>><
>>: ð2:9Þ

with Δω� ¼ ωþ � ω�. Considering that these coupling coefficients reflect the

coupling strength in the system and regarding to their expressions, the difference

between the complex angular frequencies of hybrid modes, Δω�, as well as

products of their amplitudes give a direct estimate of the coupling effects in particle

aggregates. Similarly to the coupling coefficients, the mutual coupling coefficients

are complex parameters whose amplitude provides a direct estimate of the coupling

strength between the particles, and their phase corresponds to the phase detuning

with which one mode acts on the other.

Finally, the initial and hybrid mode angular frequencies are linked as follows:

ωþ ¼ ω1 þ j
aþ2
aþ1

κ12

ω� ¼ ω2 þ j
a�1
a�2

κ21

8>><
>>: ð2:10Þ

These relations show that with given initial modes, the shift in hybrid modes

depends directly on the mutual coupling coefficients, as expected in strongly

coupled oscillators [13].

In the limit of uncoupled modes, e.g. by sufficiently distancing two particles so

that they no longer interact with each other, the mutual coupling coefficients nullify

and the Eq. (2.5) become independent. In this case, vanishing mode amplitudes a�1
and aþ2 ensure that the mutual coupling coefficients become zero and that the hybrid

mode angular frequencies tend to the initial values (ωþ ! ω1 and ω� ! ω2).
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2.3 Definition of the Complex Valued Extinction
of Nanoparticle Assemblies

In the general case of a system whith interacting particles our strategy is to consider

a single parameter characterizing the response of each particle. A practical way to

characterize the optical response of a system of particles is to introduce the optical

cross-sections [14]. In particular, the extinction cross-section Cext, which expresses

the total optical losses in the system due to absorption and scattering processes. In

the case of a single particle, this quantity is expressed using the optical theorem:

Cext ¼ 4π
ks E0j j2 Im E*

0:E
1
sca ekð Þ� � ð2:11Þ

where E1
sca ekð Þ is the far-field scattered in the forward direction ek of the incident

field. The latter is assumed to be a monochromatic incident plane wave Einc ¼ E0

exp jks � rð Þ of angular frequency ω propagating in the homogeneous medium of

refractive index ns with wavevector ks. For a multi-particle system, the total

extinction cross-section can be defined as the sum of the individual particle

extinction cross-sections.

In order to generalize the concept of extinction cross-section, we introduce the

complex valued extinction eC i
ext for each particle and

eCext for the whole system on the

basis of the conventional extinction cross-section defined in Eq. (2.11)

eCext ¼
X
i

eC i
ext ¼ �

X
i

4π
ks E0j j2 E0:E

i,1*
sca ekð Þ ð2:12Þ

where Ei,1
sca ekð Þ is the far-field scattered by the ith particle. The optical theorem

expressed in Eq. (2.11) defines the extinction cross-section as an attenuation of the

incident radiation in the forward direction. In contrast to its conventional analogue,

the complex valued extinction defined in Eq. (2.12) gives access to the phase

information resulting from the interaction of the scattered field with the incident

one. Even if the individual contributions eC i
ext to the total extinction do not represent

any measurable quantity, they allow for characterizing contribution of each particle

to the optical response of the whole system. To interpret the resonance curves we

study the phase as well as the real and imaginary parts of the individual complex

valued extinctions, noting that their imaginary parts correspond to the conventional

extinction cross-section. The phase of the complex valued extinction coincides with

that of the dipolar moment oscillation.

Complex partial extinctions provide information about relative oscillations of

the particle dipole moments. When particles are illuminated with a constant phase

of the incident plane wave (Fig. 2.1), the phase difference between their scattering

in the far field (and thus between their partial extinction according to Eq. (2.12))

results from a phase difference in their dipolar moments. The complex extinction
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can therefore be conveniently used to characterize the radiation of each particle in a

coupled system.

2.4 Numerical Extraction of Resonance Parameters

We describe the complex extinction coefficient (or each individual contribution to

the total extinction) by a meromorphic function of angular frequency ω, with
m poles corresponding to m resonances:

eCext ωð Þ ¼
Xm
j¼1

aj
ω� ωj

þ
X1
k¼0

bkωk ð2:13Þ

This function is composed of singular and regular parts. Each singular term

corresponds to a particular resonance characterized by its complex amplitude aj
and a complex angular frequency ωj. The real part of the latter corresponds to the

spectral position of the resonance and its imaginary part to the HWHM.We propose

a numerical algorithm for the determination of the characteristics of each reso-

nance. The different steps of the approach are the following. First, in order to obtain

an analytical function without singular function, eCext ωð Þ is multiplied by polyno-

mial Pm(ω) which zeros are the poles of eCext ωð Þ:

Fig. 2.1 Schematic

representation of phase

relations between partial

scattered fields and

oscillating dipolar moments

of a system of particles

(Reprinted with permission

from Ref. [10]. Copyright

2015 American Chemical

Society)
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Pm ωð Þ ¼
Ym
j¼1

ω� ωj

� � ¼ Xm
k¼0

pkω
k ð2:14Þ

Then, an mþ nð Þth order derivation is applied to this product, with mþ n being

sufficiently large to cancel all the regular terms in (2.13) for k < n. The derivation is

performed numerically on product eCext ωð ÞP ωð Þ atmþ ndiscrete values of ω, and by
applying the mþ nð Þth order Newton divided difference formula:

Xmþn

i¼0

eCext ωið ÞPm ωið ÞYmþn

l¼0

l 6¼i

ωi � ωlð Þ
¼

Xm
k¼0

pk
Xmþn

i¼0

eCext ωið Þω k
iYmþn

l¼0

l6¼i

ωi � ωlð Þ
� 0 ð2:15Þ

The relation yields a linear equation on polynomial coefficients pk considered as
unknowns

Xm�1

k¼0

Akpk ¼ �Am ð2:16Þ

where

Ak ¼
Xmþn

i¼0

ω k
i
eCext ωið Þ

Ymþn

l¼0

l 6¼i

ωi � ωlð Þ�1

2
66664

3
77775 ð2:17Þ

Taking m different sets ofmþ n couples of points ωi ; eCext ωið Þ
	 


leads to a system

of m linear equations, whose resolution delivers m polynomial coefficients

pk, k ¼ 0, 1, 2, . . . ,m� 1. The last step consists in searching the roots of polyno-

mial Pm(ω) defined by coefficients pk. This can be efficiently done by factorizing the
companion matrix Cm of polynomial Pm(ω) using the QR algorithm [15]:

Cm ¼

0 0 � � � 0 �p0
1 0 � � � 0 �p1
0 1 � � � 0 �p2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � 1 �pm�1

0
BBBB@

1
CCCCA ð2:18Þ

Each eigenvalue of matrix Cm is equal to one of the polynomial roots and,

consequently, to one of the poles of eCext ωð Þ.
Once the poles of eCext ωð Þknown, the amplitude of each singular term is obtained

from the Lagrangian form of the analytical product, using all N ¼ 2mþ n discrete

points
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eCext ωð Þ
Ym
k¼1

ω� ωkð Þ ¼
XN
i¼0

eCext ωið Þ
Ym
k¼1

ωi � ωkð Þ
" #YN

l¼0

l6¼i

ωp � ωl

ωi � ωl

8>><
>>:

9>>=
>>; ð2:19Þ

Resonant amplitude ap is found in the limit ω ! ωp:

ap ¼
Ym
k¼1

k 6¼p

ωp � ωk

� ��1
XN
i¼0

eCext ωið Þ
Ym
k¼1

ωi � ωkð Þ
" #YN

j¼0

j6¼i

ωp � ωj

ωi � ωj

8>><
>>:

9>>=
>>; ð2:20Þ

The presented algorithm determines efficiently the resonance characteristics, and only

few discretization points are required for one searched pole. In practical application,

two sets of points can differ by only one single point. Therefore, the algorithm can be

implemented by calculating the values eCext ωið Þ at only N ¼ 2mþ n different angular
frequencies. The first linear equation is constructed using the mþ n first values ofeCext ωið Þ, the second equation uses values from the 2nd to the mþ nþ 1ð Þth, and so on.

After truncation of the infinite series in Eq. (2.13) the equation becomes a

rational approximation of the complex extinction function. Formally, it is compa-

rable to the Pade approximation [16] which is designed to approximate analytic

functions. We are looking for a decomposition which better fits a meromorphic

function near its poles. Therefore, we aim at the most accurate search of complex

poles ωj and amplitudes aj, and apply the algorithm based on the numerical

derivation [17] instead of conventionally used Baker’s algorithm designed for the

best analytic function approximation in a fixed spectral interval.

In the simplest case of a single resonance present in the extinction spectrum, the

complex pole ωp related to this resonance can be directly expressed as function of N

discrete values of the complex extinction. Then, taking Eq. (2.15) with

Pm ωð Þ ¼ ω� ωp, it follows immediately:

ωp ¼

XN
i¼0

eCext ωið ÞYN
j¼0

j6¼i

ωi � ωj

� �
2
666664

3
777775

�1

XN
i¼0

ωi
eCext ωið ÞYN

j¼0

j6¼i

ωi � ωj

� � ð2:21Þ

Amplitude ap of a single mode is found as

ap ¼
XN
i¼0

eCext ωið Þ ωi � ωp

� �YN
j¼0

j 6¼i

ωp � ωj

ωi � ωj

2
664

3
775 ð2:22Þ

In the following examples, the extinction coefficients are computed at N equidistant

wavelengths in a spectral range containing all searched resonances. Computations
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on various systems showed that accurate results (i.e stable resonance poles and

amplitudes) are obtained within a number of discrete points only a little larger than

the number of poles searched: generally from 3 for a single mode and 5 for two or

three modes, to about 15 for about ten modes.

Examples demonstrating capabilities of the method are presented in Fig. 2.2.

The extinction coefficient of a silver sphere in vacuum is calculated using the Mie

theory and a modified Drude model to fit the metal dielectric permittivity (the used

parameters are the same as in Ref. [10]). The plots of extinction denote the presence

of a single dipolar resonance in the case of a 10 nm in radius particle (Fig. 2.2a) and

both dipolar and quadripolar resonances for a 40 nm in radius particle (Fig. 2.2b). In

these two cases, the parameters of equation (2.13) are found using only three

discrete points around the single resonance and six points for the particle exhibiting

two resonance modes. The singular part is also plotted to demonstrate that the

optical response of this system is mainly resonant. The difference between the total

extinction and its singular part correspond to the regular part of the meromorphic

function (2.13). This regular part, which only adds a slow-varying real part of the

extinction, corresponds to non-resonant contributions to the total extinction. Since

our analysis is focused on the purely resonant response of metal particles, this

regular part will be neglected. Another possibility contained in Eq. (2.13) is to

separate the contribution of each mode to the total extinction, as shown in Fig. 2.2c

where the extinction due to both dipolar and quadripolar resonance modes are

given.

In the context of the physical interpretation of plasmon resonances and their

coupling behavior, the proposed method not only allows to compute the resonant

parameters of plasmons modes, but also to determine the phenomenological quan-

tities introduced in a previous section. This extraction method combined to the

coupled mode model provides a powerful tool to analyze and interpret the resonant

effects in coupled systems.

2.5 Eigenmodes of Single Spheres

The polar decomposition of the complex extinction previously described is applied

to analyze the resonant behavior of a single silver sphere when its radius R varies.

We can note here that different strategies can be adopted for the determination of

resonant parameters in the case of a single particle. Since the contribution of each

mode to the total extinction can be treated separately by considering the different

electric modes in the spherical wave decomposition of the scattered field, the

analysis can be efficiently performed by searching a single resonance on each

electric mode instead of dealing with several modes in the total extinction of the

particle.

Position and width variations of the dipolar resonance are shown in Fig. 2.3a–b

versus the particle radius for different refractive indexes of the surrounding

medium. These results are in perfect agreement with those obtained in a previous
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numerical study [9]. The resonance position (Fig. 2.3a) is monotonically red-shifted

by increasing the sphere radius or the surrounding refractive index n, with a nearly

linear dependence of the wavelength position with n (at constant sphere radius).

The dipolar resonance bandwidth also exhibits a nearly linear dependence with the

ambient refractive index. Its variations versus the particle radius (Fig. 2.3b) mean-

while shows that the bandwidth passes by a minimum value at a radius between

10 and 15 nm depending on the surrounding refractive index. Since this resonance

bandwidth can be physically related to the damping strength of the resonance mode

due to the absorption and radiative losses, we can deduce that there is an optimal

particle size for which the total losses of a given mode are minimal. This optimal

particle size is reduced when increasing the local refractive index, from R¼ 15 nm

for n¼ 1 to R¼ 10 nm for n¼ 2. The same resonant behavior is observed for higher

order modes. As shown in Fig. 2.3c–d, the quadrupolar mode resonates at lower

wavelength than the dipolar one, with a lower bandwidth and exhibits minimal

losses for higher particle radii.

Once the resonance characteristics are found for a given plasmon mode, we

propose to determine the contribution of this mode to the optical cross-sections. To

do this within the Mie theory, we remind that the lth plasmon mode cross-sections

are easily obtained by considering the lth Lorentz-Mie coefficient corresponding to

Fig. 2.2 Complex extinction coefficient of a single silver sphere of (a) 10 nm in radius and (b)
40 nm in radius, with the its singular part reconstructed after the extraction of resonant character-

istics. Arrows indicate the wavelengths used for the extraction algorithm. The dipolar and

quadripolar contributions to the total extinction in the case of a 40 nm in radius particle are

given in (c) (Reprinted with permission from Ref. [11]. Copyright 2015 Springer)

2 Modeling and Interpretation of Hybridization in Coupled Plasmonic Systems 29



electric modes instead of their infinite sum. The absorption, scattering and extinc-

tion cross-sections computed at the resonance wavelength of the dipolar and the

quadrupolar modes are given in Fig. 2.4a and d in function of the particle radius. It

appears that a sphere radius of R¼ 22 nm gives a maximum absorption cross-

section and in the same time corresponds to the size from which the scattering

cross-section becomes greater than the absorption. This particular behavior is

observed whatever the mode and the value of the surrounding refractive index. It

then appears that an optimal absorption coincides with equal absorption and

scattering cross-sections. This result has been pointed out in the case of point

dipoles [18] and for realistic particles [19]. In Ref. [19], the following condition

has been established to obtain the lth plasmon resonance mode of a sphere as an

ideal absorber:

Fig. 2.3 (a) Position and (b) half-bandwidth of the dipolar resonance computed for a single silver

sphere versus its radius, for various surrounding medium refractive indexes n. (c) Position and (d)
half-bandwidth of the quadrupolar resonance computed for a single silver sphere versus its radius,

for various surrounding medium refractive indexes n (Reprinted with permission from Ref.

[11]. Copyright 2015 Springer)
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ε1ejl k2Rð Þ
ε2jl k2Rð Þ �

eh 1ð Þ
l k1Rð Þ

h
1ð Þ
l k1Rð Þ

¼ 0 ð2:23Þ

where jl(x) is the spherical Bessel function, h
ð1Þ
l (x) is the spherical Hankel function

of the first kind, ejl and eh 1ð Þ
l are the derivatives ejl xð Þ ¼ xjl xð Þ½ �0 and eh 1ð Þ

l xð Þ ¼
xh

1ð Þ
l xð Þ

h i0

. ε1 and k1 are the dielectric permittivity and the wavenumber of the

surrounding medium, ε2 and k2 are the dielectric permittivity and the wavenumber

of the particle. For a fixed permittivity of the ambient medium and particle, and

considering the wavenumbers at resonance position depending on the sphere radius,

the condition (2.23) is never strictly satisfied but it has been verified that the optimal

absorption of each plasmon mode observed in Fig. 2.4 corresponds to a particle size

that minimizes the left-hand of Eq. (2.23).

Other interesting features of the radiative and non-radiative processes at reso-

nance can be drawn from the analysis of the optical efficiencies, i.e. the optical

cross-sections normalized by the physical cross-section of the particle (πR2).

Figure 2.4b shows that the absorption and scattering efficiencies for the dipolar

mode are maximum for two different radii, R¼ 17 nm and with R¼ 30 nm,

respectively. When calculating the maximum near-field intensity produced on the

particle surface at dipolar resonance, we observe that its value passes by a maxi-

mum in coincidence with the absorption efficiency. This property is quite interest-

ing since it provides an easy way to optimize the near-field enhancement.

Complementary calculations prove that variations of the maximum near-field

intensity are correlated to variations of the absorption efficiency whatever the

considered mode and refractive index of the surrounding medium. Figure. 2.4e–f

shows that the sizes for which the optical efficiencies and the maximum near-field

intensity of the quadrupolar resonance are maximum, are larger than those calcu-

lated for the dipolar resonance and decrease when increasing the surrounding

refractive index. Interestingly, the maximum near-field intensity can also be opti-

mized by varying the surrounding refractive index. So, the maximal near-field

intensity produced by the dipolar mode is obtained for n¼ 1.5 and R¼ 13 nm.

2.6 Hybrid Modes in Dimers

2.6.1 Hybrid Modes and Their Energetic Behavior

We start the analysis of plasmon modes in dimers by first considering two spheres

of 20 nm (S1) and 10 nm (S2) in radius, with a gap of 5 nm between their surfaces

and illuminated by a plane wave polarized parallel to the dimer axis. These particles

are small enough to mainly exhibit a dipolar resonance when taken separately. We

compute separately, from the rigorous resolution of the multiple scattering problem,
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the partial complex extinctions eC1
ext and

eC2
ext of S1 and S2. Each of these complex

quantities exhibits two resonances expected to correspond to hybrid modes

resulting from the coupling between the dipolar modes of particles. Fitting their

spectral variations with a meromorphic function (being the sum of two singular

functions), as described in Eq. (2.7), gives the values of the hybrid pulsations ωþ

and ω� and amplitude parameters a�1 , a
þ
1 , a

�
2 and aþ2 (Fig. 2.5a). The reconstruction

of each singular function of Eq. (2.7) from the extracted parameters is shown in

Fig. 2.5c–d. These curves correspond to the contribution of each particle to each

hybrid mode. The sum of all these functions, which corresponds to the total

complex valued extinction of the system, is compared to the spectral variations

calculated rigorously in Fig. 2.5b. The good agreement between the curves proves

that the phenomenological approach is accurate for this system.

Looking at the separated contributions of S1 and S2 to each hybrid mode in

Fig. 2.5c–d also inform on the nature of these modes. When the phase of the

singular functions corresponding to S1 and S2 are the same their mode can be

interpreted as resulting from dipoles oscillating in phase (Fig. 2.5c). We can note

here that the same sign of the real and imaginary part of the singular functions can

also be interpreted as in phase dipolar oscillations. This results in a large dipolar

moment and a highly radiative system whose mode is qualified of super-radiant.

When the real or the imaginary parts have opposite signs (Fig. 2.5d), the dipolar

moments of both particles oscillate out-of-phase leading to a small resulting dipolar

moment of the dimer and to a poorly radiative system. The mode is then said

sub-radiant. The resonance bandwidth of a given mode is related to the total losses

in the system. In the case of a sub-radiant mode, the reduced resulting dipolar

moment results in lower radiative losses, leading to a sharper resonance bandwidth.

For a super-radiant mode the opposite effect is observed, and the highly radiative

behavior results in high radiative losses and hence to a broader resonance band-

width. These behaviors appear in the two hybrid modes of the dimer.

Similar results are obtained when considering an incident polarization perpen-

dicular to the dimer axis, where both sub-radiant and super-radiant modes are

identified from the fitted resonance characteristics.

An important feature in coupled systems is the dependence of the coupling

strength with the distance separating the particles. Following the phenomenological

analysis in the previous section, the mutual coupling coefficients can serve to

quantify the interaction between nanoparticles. Figure 2.6 depicts the modulus of

both coupling and mutual coupling coefficients as a function of the gap between the

particles, for an incident polarization parallel or perpendicular to the dimer axis.

Coupling coefficients κ1 and κ2 are intrinsic characteristics of each sphere and then

are expected to be independent of the dimer configuration. However, the plotted

values show a slight decrease of these coefficients with increasing the gap. This can

be interpreted as a consequence of coupling between dipolar modes and higher

order modes. Indeed, the phenomenological analysis of the system only consider

the ideal case of coupling between two (here dipolar) modes. Actually, coupling
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between dipolar and quadrupolar modes also occurs, inducing disparities between

expected and computed phenomenological values.

The computed mutual coupling coefficients κ12 and κ21 show for each incident

polarization a fast decreasing coupling strength when increasing the gap between

particles. By comparing the amplitudes for each polarization, the coupling strength

in the case of a parallel polarization appears to be larger (by a factor of about 3) than

in the perpendicular case. When considering each sphere as oscillating dipoles, this

result indicates a better coupling in the case of parallel dipolar moments. Regarding

again the coupling coefficients, their values are more perturbed for a parallel

incident polarization. In this case and for close particles, relatively strong coupling

effects can be expected between dipolar and higher order modes, compared with a

perpendicular polarization where the coupling coefficients are more stable.

We can note here the different orders of magnitude between the coupling and

mutual coupling coefficients. This difference comes from the different physical

inputs to which they apply: κ1f0(t), κ2f0(t), κ12a2(t) and κ21a1(t). These terms have

the same dimension and their comparison could inform about the relative impor-

tance of the coupling and mutual coupling effects in the resonant behavior of the

system.

The hybrid modes resulting from the coupling between particles resonate at

complex pulsations ωþ and ω� different from the pulsation of initial modes ω1 and

ω2. Their determination gives an energetic diagram of the system, as shown in

Fig. 2.7a. The latter highlights different behaviors of hybrid modes. The two modes

resonating at higher wavelengths (and lower energy) are red-shifted when increas-

ing the inter-particle coupling. They correspond to an energetically favorable

configuration of the dipolar moments of the particles, i.e. when the dipoles are

attractive. These modes can be seen as bounding states of the system (Fig. 2.7c).

The modes resonating at lower wavelengths correspond to a repulsive configuration

of dipoles and can be seen in turn as anti-bounding states of the system. Another

interesting feature is that the resonance position of bounding states tends to the

dipolar mode position of the larger particle, whereas the resonance position of anti-

bounding states tends to dipolar mode position of the smaller particle.

Fig. 2.6 Coupling (on the left y-axis) and mutual coupling (on the right y-axis) coefficients versus

the gap between particles for an incident polarization (a) parallel or (b) perpendicular to the dimer

axis (Reprinted with permission from Ref. [10]. Copyright 2015 American Chemical Society)
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Consider now the special case of homo-dimers, composed of identical particles.

In such a case, the initial modes have identical coupling coefficients κ0 with the

incident excitation and resonate at the same pulsation ωp. Anticipating the mutual

coupling coefficients to be equal (κ12 ¼ κ21 ¼ κ) as well as the mode amplitudes (

a1 tð Þ ¼ a2 tð Þ ¼ a tð Þ) the coupled mode equations (2.5) can be simplified in a single

equation:

da tð Þ
dt

¼ �jRe ωp

� �
a tð Þ þ Im ωp

� �
a tð Þ þ κa tð Þ þ κ0 f 0 tð Þ ð2:24Þ

Including in Eq. (2.24) the expression of the mode amplitude given by Eq. (2.4),

yields in steady-state with the condition ef 0 tð Þ ¼ 1

ea ωð Þ ¼ jκ0
ω� ωp � jκ

¼ aþ

ω� ωþ ð2:25Þ

As a consequence, the coupling between two identical particles leads to a single

excited hybrid mode with a complex pulsation ωþ ¼ ωp þ jκ and a resonance

amplitude aþ ¼ jκ0. This hybrid mode has the same amplitude as the initial

Fig. 2.7 Resonance position of hybrid modes versus the gap between particles for a dimer

composed of (a) 10 and 20 nm in radius spheres and (b) identical spheres 20 nm in radius. (c)
Schematic representation of the energetic repartition of hybrid modes (Reprinted with permission

from Ref. [10]. Copyright 2015 American Chemical Society)
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mode, and the resonance pulsation is only shifted from the initial position ωp by the

mutual coupling term jκ. Obviously, the resonant response of both particles is

exactly the same and the hybrid mode corresponds systematically to a super-

radiant mode (in-phase oscillations). Out-of-phase oscillations of dipolar moments

appear as forbidden (i.e. dark) modes.

The energetic diagram of a homo-dimer composed of 20 nm in radius spheres is

plotted in Fig. 2.7b. In addition to the identified hybrid modes, different modes

resulting from a coupling between dipolar and quadrupolar initial modes are also

represented. For a complete description of these interactions with higher modes, the

phenomenological description used has to be generalized to the case of M cross-

coupled modes.

2.6.2 Near-Field Enhancement

Let us characterize the spectral behavior of hybrid modes in a silver homo-dimer.

Figure 2.8a provides the optical cross-sections of a silver dimer composed of 10 nm

in radius spheres with a gap of 5 nm between the particles and illuminated with an

incident plane wave polarized with an angle of 45� relative to the dimer axis. These

spectra show the presence of three distinct resonance modes. The mode resonating

at the lowest energy is identified as the longitudinal hybrid mode with in-phase

oscillation of the dipolar moments oriented along the dimer axis. The second

marked peak corresponds in turn to the transverse hybrid mode with in-phase

oscillation of dipolar moments oriented perpendicularly to the dimer axis. The

third mode, not studied in following, resonating at the highest energy originates

from a quadrupolar mode. The resonance position and half-bandwidth of the

transverse and longitudinal dipolar hybrid modes are reported in Fig. 2.8b–c in

function of the gap between the spheres and for various surrounding medium

refractive indexes. As expected from the previous analysis, the parallel hybrid

mode is red-shifted and slightly broadened when decreasing the inter-particle

distance, and therefore when increasing the coupling strength between the particles.

By contrary, the parallel dipolar hybrid mode is blue-shifted and slightly narrowed

when decreasing the particle gap between the particles. As in the case of a single

particle, the resonance position of each hybrid mode has an almost linear depen-

dence with the variation of the local refractive index.

A particular interest of hybrid modes in coupled particle systems relies on the

large near-field enhancement that occurs at resonance compared to a single particle.

Especially, the hot-spot resulting from the parallel hybrid mode excitation and

located in the dimer gap may reach several thousand times the incident wave

intensity. Still considering the same dimer with the same illumination condition,

the variation of the near-field enhancement at the gap center, obtained at the

longitudinal mode resonance position and for various local refractive indexes is

reported in Fig. 2.9a. A maximum field enhancement occurs for n¼ 1.5, which

corresponds to the surrounding medium refractive index maximizing the dipolar
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mode near-field intensity for a single particle. As in the same way as for uncoupled

modes, the local field enhancement varies when considering different particle sizes.

Figure 2.9b plots the near-field intensity for various particle sizes and local refrac-

tive indexes, keeping the ratio R/gap¼ 2. An optimal condition to optimize the

hot-spot intensity is then found for R¼ 11 nm and n¼ 1.5.

2.7 Weak and Strong Coupling in Quadrumers

2.7.1 Weak Coupling in Small Size Systems

Here we consider a quadrumer composed of two pairs of homo-dimers. This system

is schematically described in Fig. 2.10. The first dimer D1 is composed of two

20 nm in radius spheres disposed vertically with a gap of 20 nm. The second dimer

Fig. 2.8 (a) Optical cross-sections of a silver dimer composed of 10 nm in radius spheres with a

gap of 5 nm between the particles and illuminated with an incident plane wave polarized with an

angle of 45� relative to the dimer axis. The instantaneous dipolar moment orientations of the two

dipolar hybrid modes are represented on their respective resonance peak. Resonance (b) position
and (c) half-bandwidth of the dipolar hybrid modes versus the gap between the particles, for

different local refractive indexes. Lines correspond to the longitudinal hybrid mode and dotted
lines correspond to the transverse one (Reprinted with permission from Ref. [11]. Copyright 2015

Springer)
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Fig. 2.9 (a) Near-field enhancement versus the local refractive index, at the gap center (shown in

inset) of a dimer composed of 10 nm in radius spheres with a gap of 5 nm between the particles and

obtained at the longitudinal hybrid mode resonance position and for various local refractive

indexes. (b) Near-field intensity versus radius for different surrounding medium refractive

indexes. The ratio between the particle radius and the gap is kept equal to 2. In all cases, the

incident plane wave is polarized with an angle of 45� relative to the dimer axis (Reprinted with

permission from Ref. [11]. Copyright 2015 Springer)

Fig. 2.10 Extinction cross-

section of the system

sketched on the right

composed of two

interacting dimers, versus

the gap of the horizontal

dimer (Reprinted with

permission from Ref.

[10]. Copyright 2015

American Chemical

Society)
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D2, composed of two 10 nm in radius spheres disposed horizontally, is placed in the

gap of D1. When illuminating this system with an incident plane wave polarized

along the D2 axis, the original dimer modes are strongly coupled. The original

mode in each dimer results in one hybrid mode where the spheres composing the

dimer act as dipoles oscillating in-phase, with dipolar moments oriented parallel to

the incident polarization. Then each dimer can be viewed as a single dipole with a

given resulting dipolar moment.

The rigorously calculated extinction spectra are plotted in Fig. 2.10 versus the

gap of D2. Two hybrid modes appear in the extinction cross-section. As in the case

of simple dimers, the coupling between the two dimer modes leads to the formation

of hybrid modes with distinct resonance positions.

In order to determine the coupling characteristics of such a quadrumer, we

compute the partial complex extinction cross-sections of each dimer eCD1
ext andeCD2

ext . As expected, each partial cross-section exhibits two modes located at the

same pulsations, which can be fitted with the meromorphic functions of Eq. 2.7.

The resonance parameters of the hybrid modes (for a gap of 8 nm in D2) are

gathered in Fig. 2.11a and the reconstructed singular functions corresponding to the

contribution of each dimer to both hybrid modes are shown in Fig. 2.11c–d. The

sum of all these contributions, deduced from the phenomenological approach, is in

good agreement with the total complex valued extinction cross-section calculated

rigorously (Fig. 2.11b). This proves the validity of the coupled-mode approach for

this kind of system too.

As previously, the nature of hybrid modes can be identified through the phase

shifts between the dipolar oscillations deduced from the comparison of the sign of

the real part of singular functions plotted in Fig. 2.11c–d. For the hybrid mode

resonating at pulsation ω�, the dipolar modes associated to D1 and D2 oscillate in

phase (Fig. 2.11c). This hybrid mode corresponds therefore to a high resultant

dipolar moment making this mode highly radiative and can be qualified as super-

radiant. The hybrid mode resonating at ωþ is characterized by a π/3 phase shift

between the dipolar oscillations of the two dimers. This configuration is less

radiative than a super-radiant mode, and then will be qualified as a

sub-radiant mode.

When decreasing the gap between particles in D2, the resonance position of the

dimer original mode is red-shifted due to an increase in the coupling strength

between particles. This shift changes the position of hybrid resonances. Figure 2.12a

shows the energetic diagram of both coupled and isolated dimers in function of the

gap in D2. The hybrid modes in the coupled system exhibit an anti-crossing

behavior of the energy branches at a gap around 11 nm, where the difference

between the two hybrid mode positions presents a minimum. For gaps below

11 nm, the extracted resonance parameters indicate that the super-radiant mode

resonates at the lowest wavelengths and conversely for the higher frequency mode.

The anti-crossing point induces an energy inversion of the hybrid modes and for

higher gaps, the situation is reversed. This behavior is characterized by a sign

inversion in the mutual coupling coefficients at crossing point. Since the hybrid
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pulsations are directly related to these mutual coupling coefficients (see Eq. (2.10)),

a sign inversion in the latter induces an energy inversion in the former. As

illustrated in Fig. 2.12b, a qualitative interpretation of the energy inversion is

given by considering changes in Coulomb interactions between the particles

[20]. For short gaps between the particles in D2, repulsive forces act between D1

and D2 particles. When increasing the gap in D2, the electrostatic interactions are

reversed, leading to attractive forces between spheres of D1 and D2.

2.7.2 Hybridization and Fano-Like Resonances in Strongly
Coupled Systems

We deal now with a quadrumer composed of larger particles where stronger

coupling between plasmon modes occurs. This system is schematically described

in Fig. 2.13, and consists in a quadrumer composed of identical spherical particles

30 nm in radius. As previously, this system can be viewed as a pair of vertical

(D1) and horizontal (D2) homo-dimers. The extinction spectra of the quadrumer are

plotted in Fig. 2.13 versus the gap of D2, when illuminating with an plane wave

polarized along the D2 axis. These spactra exhibit Fano resonances, i.e. asymmetric

resonant line profiles, noting also the presence of a quadrupolar resonance at about

360 nm.

In order to analyze the coupling effects in the quadrumer, we consider Eqs. (2.5)

extended to four coupled equations to describe the mutual coupling between the

four particles. Due to the symmetry of this system and considering the given

incident polarization, these equations can be reduced into two coupled equations

describing the resonance behavior of the quadrumer

Fig. 2.12 (a) Energetic diagram of coupled and isolated dimers and (b) an illustration of Coulomb

interactions between the particles for a small and a large gap of D2 (Reprinted with permission

from Ref. [10]. Copyright 2015 American Chemical Society)
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da1 tð Þ
dt

¼ �jRe ω0f ga1 tð Þ þ Im ω0f ga1 tð Þ þ κ0f 0 tð Þ þ κ11a1 tð Þ þ 2κ12a2 tð Þ
da2 tð Þ
dt

¼ �jRe ω0f ga2 tð Þ þ Im ω0f ga2 tð Þ þ κ0f 0 tð Þ þ κ22a2 tð Þ þ 2κ12a1 tð Þ

8><
>:

ð2:26Þ

where a1(t) and a2(t) are the resonance amplitudes in the dimers D1 and D2,

respectively. ω0 is the original complex pulsation of the particles’ dipolar resonance
and κ0 is their coupling coefficient with the incident radiation. κ11 and κ22 are the

mutual coupling coefficients between the particles in the dimers D1 and D2

respectively, κ12 is the mutual coupling coefficient between the D1 and D2 parti-

cles. The coupled equations (2.26) describing the system anticipates the formation

of two different hybrid modes from the coupling of the initial dipolar resonances of

the particles.

In order to determine the coupling characteristics of such a quadrumer, we

compute the partial complex extinction cross-sections of each dimer eCD1
ext andeCD2

ext . The resonance parameters of the hybrid modes (for a gap of 60 nm in D2)

are gathered in Fig. 2.14a and the reconstructed singular functions corresponding to

Fig. 2.13 Extinction cross-section of the system sketched on the right composed of two

interacting dimers, versus the gap of the horizontal dimer. The dashed line indicates the position
of the Fano dips in the extinction spectra (Reprinted with permission from Ref. [10]. Copyright

2015 American Chemical Society)
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the contribution of each dimer to both hybrid modes are shown in Fig. 2.14c–d. The

sum of all these contributions, deduced from the phenomenological approach, is in

good agreement with the total complex valued extinction cross-section calculated

rigorously (Fig. 2.14b), except for the quadrupolar mode (at about 355 nm) not

taken into account in our model.

As previously, the nature of hybrid modes can be identified through the phase

shifts between the dipolar oscillations deduced from singular functions plotted in

Fig. 2.14c–d. For the hybrid mode resonating at angular frequency ωþ, the dipolar
modes associated to D1 and D2 oscillate nearly in phase (Fig. 2.14c). This hybrid

mode corresponds therefore to a high resultant dipolar moment making this mode

highly radiative and qualified of super-radiant. The hybrid mode resonating atω� is

characterized by an out-of-phase oscillation of the dipolar moments, making this

mode poorly radiative that can be qualified of sub-radiant. A particular feature of

this system comes from highly asymmetric line profiles in the contribution of both

dimers to the sub-radiant mode. The superposition of these asymmetric line profiles

with the contribution of the super-radiant mode explains the Fano line-shape in the

total extinction of the quadrumer.

Figure 2.15b shows the plot of relative dipolar moment phases for the two hybrid

modes in function of the gap in D2, revealing two different coupling regimes. When

increasing the gap between the particles in D2 (corresponding to weak coupling),

the super-radiant mode tends to a zero phase shift between all the dipolar moments

resulting in a large bandwidth (Fig. 2.15c), and the sub-radiant mode tends to a π
phase shift with a reduced bandwidth. This regime results in a sharp Fano resonance

in the extinction spectra (Fig. 2.13). In the strong coupling regime, i.e. when
reducing the gap in D2, a reduction in the phase shifts of the super-radiant mode

is observed while its bandwidth is reduced. Contrariwise, the phase difference

between the dipolar moments of the sub-radiant mode tends to be reduced and its

bandwidth increases. Then under this regime the super-radiant and sub-radiant

modes become respectively less and more radiative. Moreover, the plot of the

spectral position of these hybrid modes (Fig. 2.13b) shows that the difference

between their spectral positions decreases with the gap in D2. The combination

of these two modes forms a broader Fano resonance in the structure total extinction

spectrum.

An actual interest of Fano resonances in plasmonic structures lies in their

extreme sensitivity to the local environment, making such resonances well suited

for sensing applications. The sensing capabilities of plasmon resonances can be

evaluated through their Figure of Merit [21] (FoM) defined as the ratio of the

plasmon energy shift per refractive index unit change in the surrounding medium,

divided by the width of the resonance band. Since the FoM of a given mode mainly

depends on its spectral width, the Fano resonance of the quadrumer in the weak

coupling regime appears as the best configuration for sensing because of its sharp

width compared to the Fano resonance in the strong coupling regime. The plot of

the quadrumer extinction spectra in the weak coupling regime (Fig. 2.16a) shows

the redshift of the asymmetric Fano line profile when increasing the local refractive
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index. The plot of the two hybrid modes resonance positions in Fig. 2.16b exhibits a

nearly identical energy shift when increasing the surrounding medium refractive

index, while the spectral width of the super-radiant mode increases much more

significantly than the sub-radiant one (Fig. 2.16c). The latter then retains its low

radiative behavior. Using a linear regression of the energy shift versus the local

refractive index and the sub-radiant mode FWHM in vacuum, the FoM of the Fano

resonance in the weak coupling regime is estimated to 19.4, which is much larger

than in previously studied finite structures [22, 23]. By comparison, the FoM in the

strong coupling regime is estimated to 6.7, demonstrating the advantage of a weak

coupling configuration for sensing applications.

2.8 Conclusion

In this chapter we developed an efficient method for analyzing natural resonant

modes of unique particles and their coupling in simple structures. The principle of

this method is based on an analytical representation of the optical response of

nanostructures, as a unique function of the angular frequency. Thus, each mode of

resonance is characterized by a complex pole in the optical response corresponding

Fig. 2.16 (a) Extinction spectrum of the quadrumer for different surrounding medium refractive

indexes. (b) Resonance position and (c) half-bandwidth of the hybrid modes versus the local

refractive index. A gap of 60 nm in the dimer D2 is fixed (Reprinted with permission from Ref.

[10]. Copyright 2015 American Chemical Society)
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to its frequency and amplitude. An extraction algorithm is described first for the

determination of the characteristics in the case of single resonances, then it is

generalized to the presence of multiple resonances in the extinction spectrum of a

multi-particle system.

The analytical representation of singular functions of resonance modes allows to

establish phenomenological equations describing these resonances in the time

domain. In the case of single particles, temporal modal amplitude can be described

through a first-order differential equation with phenomenological parameters real-

izing losses and coupling with the incident excitation. This approach can also be

extended to the interacting modes by introducing a system of coupled equations

where mutual coupling terms are involved to account for interaction between

modes. The formation of hybrid modes in coupled systems can be predicted

according to this formalism.

The method for the extraction of resonance characteristics was first applied to

single silver particles with the determination of the position, spectral width and

resonance amplitude of eigenmodes of spheres as a function of the sphere radius.

Hybrid modes of dimers were then studied. The initial dipole modes of two spheres

form in the general case four hybrid modes of the dimer differentiated by the

direction of the resulting dipole moment and phase relationships between the

oscillations of the dipole moment of each particle. From energetic point of view,

these hybrid modes can be seen as bounding and anti-bounding states, characterized

by red and blue spectral shifts, respectively, and their resonance positions gives the

measure of the power coupling between particles.

Finally, a more complex system consisting of two dimer in interaction was

studied. The optical response of this system has asymmetric resonance profiles of

Fano type very well taken into account by the singular representation of our model

and perfectly characterized by the extraction method.

We conclude that the numerical extraction method of resonance characteristics

combined with the phenomenological approach enables efficient characterization

and physical interpretation of plasmon resonances and of coupling of their different

modes.
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