
Chapter 2
The Curious History of Quantum Mechanics

We start with an account of the history of physics in the early 20th century as it
applies to the development of quantummechanics and its interpretation. This account
is intended to show how the theory and interpretation were developed and came to
be in the state in which we find them today.

Writing about the development of science can be frustrating to the writer, because
there are so many people involved, so many false starts, so many mistaken ideas,
so much bad data, and a tangled story-line of rejected ideas and falsified theories
left behind. I will attempt to streamline the lines of development by focusing on
the ideas that turned out to be better and more important. I will, for the most part,
ignore the bad ideas, the misconceptions, and the minor contributions. This perhaps
distorts history, but I am not a historian, and I feel no obligation to achieve historical
precision. Rather, I want to communicate the feel of the intellectually turbulent
times when quantum mechanics was emerging. Many individual contributions will
be ignored or neglected, but a picture of the development of quantum mechanics,
with all its triumphs, paradoxes, and problems, should emerge.

2.1 Atomic Theory in the Early 20th Century (1900–1924)

William Thompson, Lord Kelvin (Fig. 2.1), was one of the founders of thermody-
namics and perhaps the most prominent British scientist of his day. In 1900, he is
reputed to have told the British Association for the Advancement of Science that
there was nothing new to be discovered in physics and that all that remained to
do was to make more and more precise measurements. One of his contemporaries,
confident of the universality of Newtonian mechanics, similarly asserted that if one
knew the positions and velocities of all the particles in the universe at one particular
moment, the entire past and future of the universe could be calculated. This con-
fidence in the finality of the physics of the time prevailed, despite the presence of
certain unexplained loose ends. For example, in 1900 there were no good explana-
tions of the line structure of atomic spectra, the energy source that powered stars, or
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Fig. 2.1 William
Thompson, Lord Kelvin
(1824–1907), was one of the
founders of thermodynamics

the nature of radioactivity. These unexplained “details” were clouds on the horizon
that foreshadowed a great intellectual storm, a scientific revolution in the making.

The physics of the 19th century had firmly established that light was an elec-
tromagnetic wave. Thomas Young’s two-slit experiment (see Sect. 6.1) had demon-
strated in the early 1800s that light waves taking two paths to reach a screen could be
made to interfere, canceling at some locations on a screen and reinforcing in others.
In the 1860s James Clerk Maxwell, starting with a set of equations governing the
behavior of stationary or slowly changing electric and magnetic fields, had derived
a wave equation that described self-sustaining coupled electric and magnetic waves
moving through space at the speed of light.

At the beginning of the new 20th century, this widely accepted wave picture of
light was jarred by the work of Max Planck (Fig. 2.2) in 1901. Planck showed that
heated objects could only emit light in “energy chunks” of an energy size given by
the frequency f of the light multiplied by a new physical constant, which we now
call Planck’s constant and denote by the symbol h (see Appendix A.1).

Planck interpreted his results as demonstrating the peculiarities of the emitting
system and insisted that they were not describing an intrinsic property of light itself.
In 1905, however, this viewwas challenged byAlbert Einstein (Fig. 2.3), who showed
that the photoelectric effect, the emission of electrons from metals illuminated by
light, can be consistently explained by assuming that light itself has particle-like
properties, with each particle (or photon) of light carrying an energy Eγ equal to
its frequency f multiplied by Planck’s constant h (i.e., Eγ = h f = �ω, where � =
h/2π and angular frequency ω = 2π f ).
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Fig. 2.2 In 1918, Max
Planck (1858–1947) received
the Nobel Prize in Physics
for his work on black-body
radiation

Fig. 2.3 In 1921, Albert
Einstein (1879–1955)
received the Nobel Prize in
Physics for his work on the
photoelectric effect

The structure and behavior of the atom proved to be particularly vexing problems
for the physicists of the early 20th century. J. J. Thompson (Fig. 2.4) discovered
the negatively charged electron, a fundamental particle that somehow was a part
of atoms. Ernest Rutherford (Fig. 2.5) demonstrated that the mass and the positive
electric charge of atoms were both concentrated in a small central region (the atomic
nucleus)much smaller than the size of the atom.These discoveries led to new insights.
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Fig. 2.4 In 1906, J. J.
Thompson (1856–1940)
received the Nobel Prize in
Physics for the discovery of
the electron

Fig. 2.5 In 1908, Ernest
Rutherford (1871–1937)
received the Nobel Prize in
Chemistry for the discovery
of the atomic nucleus

Rutherford had suggested that each atom might be a tiny solar system, with the
negatively-charged electron “planets” orbiting a central positive nuclear “sun”. How-
ever, electrons in such paths would be continually changing direction with large
accelerations, and the accepted electromagnetic theory of Maxwell required that such
accelerated charges must produce light waves and must radiate away their energy
and angular momentum in microseconds. But instead of continuous light radiation
from unstable atoms, experimentalists observed that atoms in electrical discharges
produced light only at specific narrow frequencies or “spectral lines” and that atoms
were otherwise stable.

In 1913 Niels Bohr (Fig. 2.6) solved a part of the problem by placing constraints
on Rutherford’s solar-system model of the atom. Bohr’s model allowed electrons to
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Fig. 2.6 In 1922, Niels Bohr
(1885–1962) received the
Nobel Prize in Physics for
his atom model

orbit only in paths that had integer multiples of an angular momentum “quantum”
given by Planck’s constant h divided by 2π (which physicists now denote by the
symbol h-bar or �). To change from one such atomic orbit to another, an electron
had to make a “quantum jump”, disappearing from one orbit and appearing in the
other while changing energy and angular momentum and emitting a light photon that
made up the energy difference. Bohr’s model accounted for the stability of atoms
(the electron orbits were stable states that did not radiate) and for spectral lines (as
the photons produced in the well-defined quantum jumps), and it worked very well in
explaining the structure and light radiated from the hydrogen atom, which consisted
of a single electron orbiting a proton nucleus. However, when an atom had two or
more electrons present, Bohr’s model failed miserably. Bohr’s model worked only
for hydrogen and for hydrogen-like ionized atoms with only one orbiting electron. It
was telling a part of the story, but important pieces of the puzzle were still missing.

In his 1924 PhD thesis, the French nobleman Prince Louis de Broglie (Fig. 2.7)
supplied anothermissing piece of the puzzle.He reasoned that since light hadparticle-
like behavior, as shown by Einstein’s analysis of the photoelectric effect, it was
plausible that matter particles like electrons might show an analogous wave-like
behavior. The wavelength λ of a photon can be calculated by dividing Planck’s
constant h by its momentum p (λ = h/p). If electrons showed wave-like behav-
ior, de Broglie reasoned, they might have wavelengths given by the same relation.
He applied his wavelength relation to Bohr’s model of the hydrogen atom, and he
found that a precisely integer number of electron wavelengths, as calculated from
his formula, fitted into the circumference of each stable orbit of Bohr’s model as
“standing waves”. In other words, Bohr’s assumption that each orbit had an integer
number of � units of angular momentumwas completely equivalent to assuming that
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Fig. 2.7 In 1929, Louis de
Broglie (1892–1987)
received the Nobel Prize in
Physics for his work on
particle wavelength

an integer number of de Broglie wavelengths of each electron fitted into its orbit.
Each atomic electron is a stable “particle in a box” standing wave, with the box con-
sisting of the electron’s path bent into a closed circle or ellipse by the electric field of
the nucleus. Later experimental work by Davisson and Germer in 1927 verified the
concept by demonstrating that electrons could be made to show wave interference
effects characteristic of their de Broglie wavelength when scattered from a crystal of
nickel.

In the early 1920s, the stage was thus set for the development of a comprehensive
theory of atomic structure and behavior, i.e., quantummechanics. Some of the pieces
of the puzzle had been provided by Einstein, Bohr, and de Broglie, while many others
remained hidden. It would require at least two more major breakthroughs before the
full theory of quantum mechanics, with all its power and peculiarities, could be
realized.

2.2 Heisenberg and Matrix Mechanics (1925)

In late 1924, youngWerner Heisenberg (Fig. 2.8) found that nothing seemed to make
sense at Niels Bohr’s Institute. The grateful Danish government, with the financial
support of the Carlsberg Brewery, had provided their new Nobel Laureate with an
endowed Institute forTheoretical Physics housed in a three-story building just outside
Copenhagen. Here Bohr had gathered some of theworld’s brightest young theoretical
physicists, including Hans Kramers, Wolfgang Pauli, and Werner Heisenberg, in an
attempt to make sense of the rich data that were coming from the spectral lines of
light emitted by excited atoms. They sought a way of generalizing the Bohr model
so that it worked for all atoms instead of just for hydrogen.
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Fig. 2.8 In 1932, Werner
Heisenberg (1901–1976)
received the Nobel Prize in
Physics for his work on
matrix mechanics

The data from studies of atoms in electrical discharges showed a bewildering array
of spectral lines that changed dramatically from one element to the next. There were
mysterious double values or “doublets” in some lines, and there were strange shifts
and splittings that depended on electric and magnetic fields. Clearly, Nature was
trying to send an important message about the way the universe worked, but Bohr
and his best and brightest had so far been unable to decode it. Starting from Bohr’s
application of angular momentum quantization to the hydrogen atom and his more
recent work with John C. Slater and Hans Kramers attempting to ignore photons and
use “virtual oscillators”, they had tried model after model that would have built on
Bohr’s initial success. However, all attempts to picture what might be going on inside
the atom, and then to develop mathematics appropriate to that picture, had utterly
failed.

By May of 1925, Werner Heisenberg had moved from Copenhagen back to Max
Born’s Institute in Göttingen and was feeling burned out. He had been modeling an
atom as a not-quite-perfect mass-and-charge system, a little anharmonic oscillator
that had exotic Bessel functions instead of sine waves as its vibration modes. He
had generated reams and reams of math, to no avail. The resulting atom orbits made
frequencies that looked nothing like the light from real atoms. Ugly experimental
reality had killed another lovely theoretical idea. The pictures at the heart of the
calculations were somehow wrong.

In desperation, Heisenberg tried another approach, working directly with “laun-
dry lists” of values describing the frequencies and strengths of atomic transitions and
focusing on hydrogen, the simplest of the atoms. Somehow, these concrete variables,
based on direct measurements, seemed to have more meaning as objects of theoret-
ical significance than did the more ephemeral “unseen” variables that were implicit
in the pictures and models behind the calculations. Heisenberg was reaching the
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conclusion that one should perhaps dismiss models altogether and focus exclusively
on relationships between observable quantities.

But just when this new approach seemed to be on the verge of making progress,
disaster struck. Heisenberg had always had problems with allergies, and every year
the spring hay fever season had been a time of particular difficulty. Further, this year
wasmuchworse than usual. There had been a warmwinter, and the pollen-producing
vegetation of Northern Europe had outdone itself in the late spring. Heisenberg,
attempting to work with Max Born in Göttingen, had been laid low with a bout
of hay fever that was worse than anything in his previous 23 years. He could not
sleep, and he walked around with swollen half-closed eyes, feeling as if his head was
trapped inside a specimen bottle. He was unable to concentrate on anything.

A friend recommended Helgoland, a barren grassless island off the northern coast
of Germany. The air there was the purest in Europe, there were few pollen-producing
plants, and the growing season occurred severalmonths later due to the colder climate
of the North Sea. Heisenberg was now ensconced for ten days on the 2nd floor of a
cozy guest cottage, with a nice view of the southern coast of the island. He was alone
with the barren boulders, the pure air, newly cleared sinuses, a book by Goethe, and
his lists and tables of observables.

And then a miracle happened. In later life, Werner Heisenberg was never able to
adequately describe the mental processes that led to his breakthrough. Somehow, he
had discovered a “new math”, a systematic set of procedures that allowed him to
manipulate the lists of numbers that were the focus of his inquiry into new lists that
predicted other experimental observations. The new lists agreed with known data
from the atomic spectroscopy of hydrogen. But Heisenberg’s procedures were pecu-
liar. Among other oddities, they violated the usual commutation rule of mathematics.
Multiplying P by Q gave a different result from multiplying Q by P .

Heisenberg wrote what he considered to be a “crazy” paper describing his new
arcane procedures for producing new experimental results from other experimental
results, and he pondered what to do with it. On his return to Göttingen, he gave
a copy of the paper to his older friend and sometime employer, Max Born. Born
and his mathematically skilled assistant, Pascal Jordan, immediately recognized the
procedures Heisenberg had described as the manipulation of matrices. Heisenberg
was completely unfamiliar with the mathematics of matrices, but nevertheless he had
somehow invented it to fill the needs of his calculations. By November 1925, Heisen-
berg, Born, and Jordan had produced the matrix formulation of quantum mechanics,
a powerful formal approach to making quantum mechanical predictions [1–3] that
is still widely used in atomic and nuclear physics, particularly in shell-model calcu-
lations.

This new matrix approach was abstract (and nearly incomprehensible to the tech-
nically uninitiated). There was no underlying model to illustrate or justify the proce-
dures used. Complex algebra was invoked, so that elements of matrices had both real
and imaginary parts. Every variable and function of conventional atomic physics
had to be reinterpreted as a matrix, a one- or two-dimensional list of values that
was treated as a single object of manipulation. Continuous variables became infinite
matrices. These elements were combined using matrix operations (addition, multi-
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plication, inversion, diagonalization, extraction of eigenvalues, etc.) to yield “matrix
elements” that were squared to make them real instead of complex and to obtain
predictions for experimental observations.

The “why” of this matrix formalism was not apparent. The recommended
approach, grounded in the logical positivism that was philosophically fashionable
in the 1920s, was to “shut up and calculate”. Heisenberg had much accumulated
frustration from the focus on pictures and models at Bohr’s Institute. He now found
it rather liberating to reject such ephemeral pictures and models and to focus exclu-
sively on experimental observations. And matrix mechanics, one flavor of the new
standard theory of quantum mechanics, had emerged.

2.3 Schrödinger and Wave Mechanics (1926)

Erwin Schrödinger (Fig. 2.9) was a physicist on the move in post-WWI Europe. In
early 1920, in rapid succession, he married Annemarie (Anny) Bertel and became
an Assistant to Max Wien in Jena. Then in September, 1920, he became an “AO”
(or associate) Professor in Stuttgart. Shortly afterwards, in early 1921, he became an
“O” (or full) Professor in Breslau. Later in 1921 hemoved to the University of Zurich
and became an “O” Professor there. He stayed in Zurich for the next six years, and
it was there that he made his breakthrough discovery.

In September, 1925 Schrödinger had obtained a copy of the 1924 French PhD
thesis of Louis de Broglie, which outlined de Broglie’s matter-wave hypothesis and
showed that treating electrons as orbital standingwaves led to the angularmomentum
quantization constraint that was at the heart of Bohr’s model. Peter Debye, a Pro-
fessor at Zurich’s ETH, persuaded Schrödinger to give a joint colloquium for their
two institutions describing de Broglie’s work. At the end of this colloquium, which
reportedly was a very clear and thoughtful presentation, Debye casually remarked
that he considered de Broglie’s way of discussing waves to be rather naïve. He had
learned as a student of Arnold Sommerfeld in Munich, he said, that to properly deal
with waves, one must have a wave equation. But no wave equation was apparent in
de Broglie’s work (Fig. 2.7).

Schrödinger puzzled over Debye’s remark while on a ski vacation in Arosa, a
village in the Swiss Alps, where he was on holidays with a young lady of his acquain-
tance (while hiswifeAnny stayed in Zurich). He started calculations at their hotel. On
about the third day of the trip, Schrödinger derived the time-independent wave equa-
tion for matter waves, subsequently called the Schrödinger Equation, which became
the foundation for his quantumwavemechanics. Returning toZurich, he gave another
colloquium in which he presented his new formalism of quantum mechanics to his
colleagues.

He published a series of four papers laying out the new quantum formal-
ism in detail in 1926. In the first of these [4], he presented a derivation of the
time-independent Schrödinger equation, which is applicable to stationary states
in which there is no change in energy. In the second paper [5], he re-derived the
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Fig. 2.9 In 1933, Erwin
Schrödinger (1887–1961)
received the Nobel Prize in
Physics for his work on wave
mechanics

time-independent Schrödinger equation and solved the problems of the rigid rotor
(spinning top) and the harmonic oscillator (mass + spring vibrations). The third
paper [6] addressed the equivalence of his wave mechanics and Heisenberg’s matrix
mechanics, and he solved the problem of an atom in an external electric field (the
Stark effect). The fourth paper [7] derived the time-dependent Schrödinger equation
(permitting the investigation of systems with changing energy) and addressed the
problems of atomic transitions and particle scattering.

What is it that Schrödinger did to obtain his equation? A wave equation is a
differential equation (an equation stating a relation between some wave function and
its space and time derivatives) that has as its solutions waves that travel through space
(see Appendix B.4). For light waves, the wave equation of Maxwell required that the
second time-derivative of the wave function was equal to the speed of light squared
times the second space-derivative of the wave function. The solutions of Maxwell’s
wave equation are sinusoidal electromagnetic waves that travel through space at the
speed of light (c). Schrödinger’s problem was to produce a similar wave equation,
but one that would have as its solutions matter waves that had a characteristic mass m
and traveled through space at a slower speed v appropriate to the momentum p = mv
and kinetic energy E = 1

2mv2 of massive particles.
He accomplished this by comparing the relationships between kinetic energy

and momentum that were appropriate for the particle-waves of light and of matter.
For particle-waves of light, the photon’s energy equals the speed of light times the
photon’s momentum (E = cp, or more relevant to Maxwell’s wave equation, E2 =
c2 p2). For particle-waves of matter, kinetic energy equals the momentum squared
divided by twice the mass (E = p2/2m). Starting with the space and time derivatives
that would extract the energy and momentum from the wave function, Schrödinger
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constructed a differential equation that was the equivalent of the latter relation, and
this became the Schrödinger equation (see Appendix B for further details).

We can see from this account that, unlike Heisenberg, Schrödinger started from a
definite picture of the underlying physicswhenhe formulated quantumwavemechan-
ics. His picture was that matter waves were like Maxwell’s electromagnetic waves.
He rejected Bohr’s idea of instantaneous quantum jumps and pictured matter parti-
cles as waves moving through space from one place to another, carrying energy and
momentum with them, just as do photons of light. One could visualize such matter
waves moving on little trajectories through space-time, connecting one interaction
with the next. Schrödinger attempted to form his waves into “wave packets” that
represented particles, but he found that his packets tended to come apart as they
moved.

The problem with this naïve picture is that, when carefully compared with what
is known about quantum behavior, it is not consistent. In September, 1926, Bohr
arranged for Schrödinger to visit Copenhagen. There Bohr, aided by Heisenberg who
came to Copenhagen for the occasion, held lengthy discussions with Schrödinger,
attempting to convince him that while his wave-mechanics formalism was valid, the
naïve picture that he saw behind it was not [8]. Bohr argued that many aspects of
quantum wave behavior, particularly the phenomena of wave function reduction,
probability, and uncertainty, were not consistent with Schrödinger’s simple ideas of
matter waves-in-space as matter analogs of classical electromagnetic waves.

Bohr persisted in these arguments so vigorously that Schrödinger actually became
physically ill, and Bohr’s wife Margrethe had to nurse him back to health. However,
Schrödinger was not convinced that there was any interpretational problems in his
views until after a lengthy correspondence with Bohr and Heisenberg that followed
the visit. He finally acquiesced, but he retained a dislike for the Copenhagen view of
quantum mechanics for the rest of his life. And his new wave mechanics had to go
forward without any underlying picture of what lay behind it.

The upshot of these events was that quantum mechanics, while possessing two
alternative formalisms, was left without any picture of what lay behind the math-
ematics or of the inner mechanisms that produced quantum behavior. A pictorial
interpretation of the formalism was missing, and many believed that none was
possible.

The British electrical engineer and mathematical physicist Paul Dirac, on read-
ing the papers of Schrödinger and Heisenberg describing the two new quantum
mechanics formalisms, quickly recognized the importance of the rival theories and
investigated their relationship. By 1927, he was able to derive a more general quan-
tum formalism and to show that both wave mechanics and matrix mechanics could
be derived from it. The problem of the two competing formalisms had been resolved,
but the question of their interpretation remained.
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2.4 Heisenberg and Uncertainty (1927)

While Heisenberg was the originator of the matrix mechanics formalism of quantum
mechanics, he also carefully studied the rival wave mechanics formalism originated
by Schrödinger and generalized by Dirac and Jordan. In it, he found an interesting
connection that its originators had not appreciated. The wave functions in the for-
malism typically depend on pairs of independent variables, position and momentum
or energy and time, that are multiplied together as they appear in the formalism.
Niels Bohr called these “complementary variables”. This pairing is a precondition
for Fourier analysis, in which a function of one of these variables can be converted
into a function of the other variable by summation or integration.

As a modern example of the Fourier relation between complementary variables,
consider an electronics laboratory experiment in which we use a pulse generator to
produce a Gaussian-shaped electrical pulse of a certain time-width Δt . We view this
pulse on an oscilloscope that has fast Fourier-transform (FFT) capabilities and can
display both the time and the frequency distributions of a given signal. In the time
domain, (see upper Fig. 2.10) the pulse rises smoothly to its peak and then drops to
near zero, showing a definite peak amplitude and time width Δt . If we use the FFT
capabilities of the oscilloscope to view the distribution of frequency components of
the pulse, we find that in the frequency domain (see lower Fig. 2.10) the pulse also
has a Gaussian shape, rising to a peak angular frequency ω0 and then dropping to
near zero, showing a maximum amplitude at ω0 and showing an angular frequency
width Δω around this center. Now if we change the pulse generator to increase the
time width of the pulse, we will find that the frequency width decreases. Conversely,
if we decrease the time width, the frequency width increases.

Because the complementary time and frequency variables are connected through
a Fourier transform, the time and frequency widths of the pulse have a “see-saw”
relation, with one increasing as the other decreases and vice versa. Further, because of
the Fourier algebra, the product ΔtΔω of the time and frequency widths of the pulse
is an invariant constant, representing a sort of “uncertainty principle” for pulses. We
can have a pulse that is as sharply defined in time as we wish, but only at the expense
of having a very broad distribution of frequency components. Conversely, we can
have a pulse that has a very narrow band of frequency components, but only at the
expense of having a very broad time width. We emphasize that a pulse with a very
narrow time width is composed of a broad spectrum of frequency components and
does not have a precise frequency.

Heisenberg discovered that when quantum waves are “localized” (see Appendix
B.2) just this relationship exists between the position and momentum and between
the energy and time for a particle described by the formalism of wave mechanics. He
used this relationship to derive the uncertainty principle,which he published in a 1927
paper [9]. In particular, the position width (or uncertainty) Δq of a localized particle
described by wave mechanics is related to its momentum width (or uncertainty) Δp
by the uncertainty relation Δp · Δq ≥ �. Similarly, its time width (or uncertainty)
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Fig. 2.10 Gaussian voltage pulses V (t) produced periodically at angular frequencyω0 with varying
time widths (narrow to broad) and their Fourier frequency transforms V (ω) (broad to narrow)

Δt is related to its energy width (or uncertainty) ΔE by the uncertainty relation
ΔE · Δt ≥ �. This is Heisenberg’s uncertainty principle.1

1More precisely, if σx is the standard deviation of the position x probability distribution function
(PDF) and σp is the standard deviation of the momentum px PDF, then σxσp ≥ �/2. Similarly, if
σE is the standard deviation of the energy PDF and σt is the standard deviation of the time PDF,
then σEσt ≥ �/2.
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Heisenberg asserted that these uncertainty relations, derived for relatively simple
wave function examples, were fundamental properties of all physical systems and
that they represented fundamental limits on our possible knowledge of physical
quantities. We cannot simultaneously know precisely the position of a particle and
its momentum (or speed or wavelength). The more precisely we can determine the
value of one variable, the less precisely we can know the value of its complement. A
particle with a precise position does not have a precise momentum value, and vice
versa. This situation is radically different from that of classical physics, where the
position, momentum, time, and energy of objects are independent variables that can
be separately determined to arbitrary precision.

2.5 Heisenberg’s Microscope (1927)

If Heisenberg had stopped there, it would have been much better for future genera-
tions of physicists. However, in his paper on the uncertainty principle [9], he chose to
illustrate its operation with a gedankenexperiment (i.e., thought experiment), often
called “Heisenberg’s microscope”. He envisioned that there was a particle located
somewhere in empty space, and we wished to measure its position. We could do
this by shooting at it a set of photons that passed through various position possibili-
ties. When we observed that one of the photons had been Compton-scattered by the
particle of interest, we would know that the particle was at the location that cor-
responded to that photon. The position precision of such a measurement would be
restricted to wavelength of the photon. If we used high frequency radio waves, we
could locate the particle with a precision of a few centimeters. If we used light, we
could locate the particle with a precision of a few hundred nanometers. If we used
gamma rays, we could locate the particle with a precision of a few femtometers. But
each of these scattering measurements has another effect on the particle. It changes
the particle’s momentum by recoil, giving it a new momentum that is uncertain
because we do not know all the details of its initial momentum or of the Compton
scattering collision. And the shorter the wavelength of the probing photon, that larger
the momentum disturbance of the particle that is struck, so the more imprecisely we
can know its momentum. Position precision in the experiment is achieved only at the
expense of momentum imprecision (Fig. 2.11).

Heisenberg used the increasing precision in the determination of the particle’s
position and the decreasing precision in our knowledge of its momentum as an
illustration of the operation of the uncertainty principle. This is often called the
“disturbance model”, and, as first pointed out by Bohr, it is wrong. Nevertheless, the
disturbance model is still widely used in physics textbooks by unsuspecting authors
whowish to illustrate the operation of the uncertainty principle, andmanygenerations
of physics students have been led to false conclusions through its use.

The problem with the disturbance model is that it has its head wedged in classical
physics. It assumes that the particle of interest simultaneously possesses a well-
defined position and a well-defined momentum, and that, due to the limitations of
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Fig. 2.11 Heisenberg’s
Microscope
gedankenexperiment: a
scattered photon provides the
location of a particle while
disturbing potential
knowledge of its momentum.
Photon trajectories are one
wavelength λ apart; particle
recoil is proportional to 1/λ

our crude measurement capabilities, we are too clumsy to measure both of them
properly at the same time.

That is not the message from the formalism of wave mechanics that Heisenberg
had discovered. The complementary Fourier relations of wave mechanics tell us that
a particle described by that formalism cannot possess a well-defined position and
a well-defined momentum at the same time, just as our Gaussian pulse in the elec-
tronics lab illustration cannot simultaneously have a narrow time width and a narrow
frequency width. They are complementary quantities, and precision in one domain
makes precision in the other domain impossible. This is a fundamental property of
the particle and has nothing to do with the choice or quality of measurements that
we perform on it. Through measurement, we may choose to restrict the range of
values that a variable may have to some arbitrary precision. The post-measurement
particle, as described by the mathematical formalism, must have the precision of
the complementary variable automatically expanded by the formalism to compen-
sate, as described by Fourier algebra and the uncertainty principle. Mathematics, not
measurement difficulties, is behind the uncertainty principle.

In Copenhagen, Heisenberg’s paper, which had already been submitted for publi-
cation by the timeBohr read it, triggered strong and ongoing arguments at the Institute
between the two theorists. Bohr argued that the aperture restricting the lateral range
of the photon was of key importance, led in a simple way to the uncertainty rela-
tion, and had been ignored in favor of questionable scattering arguments. Reportedly
at one point Heisenberg was reduced to tears by the strength of Bohr’s arguments.
As a result of the lengthy discussions at the Institute, when the page proofs for the
uncertainty principle paper were received from the journal publisher, Heisenberg
appended a “note added in proof”, a long paragraph that rather vaguely outlined
Bohr’s objections to the disturbance model and admitted its inadequacies. That note,
unfortunately, did not discourage later authors from lifting the disturbance model
and Heisenberg’s microscope gedankenexperiment from the publication and using
them widely in the physics literature, particularly in textbooks.
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2.6 The Copenhagen Interpretation (1927)

The quantum theoretical work of the 1924–27 period described in the previous sec-
tions had delivered a new theory of quantummechanics that was unlike any previous
physical theory. It had a well developed formalism (two, in fact), but there seemed
to be no picture behind it that allowed practitioners to visualize the operation of the
system they were describing with mathematics. More disturbing, the new quantum
formalism had brought with it a number of unanswered questions and problems of
interpretation that are still troubling physicists and philosophers, some eight and a
half decades later.

Here we want to introduce these interpretational problems, not all of which were
fully appreciated when Bohr, Heisenberg, and Born first developed and promoted
their interpretation in late 1927. In no particular order, here is at least a partial list of
such interpretational problems.

• The problem of identityWhat is themeaning of thewave function (or state vector)
of wave mechanics and the matrix elements of matrix mechanics and where does
it exist?

• The problem of complexity Why, unlike any other physical theory, are the wave
function and matrix elements of quantum mechanics allowed to be complex, with
both real and imaginary parts?

• The problem of wave-particle duality How can the mutually exclusive particle-
like and wave-like behaviors described by quantum mechanical systems and
observed in experiments be reconciled?

• The problem of indeterminism Why is the quantum formalism able to make
only probabilistic, but not definite and deterministic, predictions of the outcome
ofwell specifiedphysical situations?Howcan identical conditions produce varying
results? What is the source of the intrinsic randomness?

• The problem of measurement and collapseHowandwhy does thewave function
(or state vector) of wave mechanics change abruptly and discontinuously when a
measurement is made? What is the mechanism behind state reduction?

• The problem of nonlocality How and why are separated but entangled parts of a
quantum mechanical system nonlocally connected, so that measurements on one
subsystem somehow influence the outcomes of measurements on the other sub-
system, even when they are out of speed-of-light contact. What is the mechanism
behind nonlocality?

As we observed in Sect. 2.2, the experience of Heisenberg with the intellectual
traps implicit in pictorial models of physical systems had led him to distrust them,
and to focus on the “real” variables of physical systems that could be measured in the
laboratory. He carried over this approach to his interpretation of quantummechanics.
Logical positivism was fashionable in the philosophical circles of Berlin and Vienna
in the late 1920s, and, perhaps influenced by his philosopher colleagues, Heisenberg
adopted positivist thinking to his work [10]. He decided that one should not attempt
to “look behind the scenes” at the inner workings of quantum mechanics that were
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inaccessible to physical measurement. These were “off limits”. One should focus on
observables and on the outcome of real or, if necessary, gedanken measurements. His
uncertainty principle reinforced this view by demonstrating that many of the “virtual
variables” suggested by pictorial models were not only elusive, but were completely
impossible to measure, even in principle. The emerging Copenhagen Interpretation
became essentially a “don’t ask; don’t tell” approach to the quantum formalism
that fulfilled the needs of those who wanted to calculate and make predictions, but
frustrated those who wanted to understand what went on behind the scenes. In later
years, this emphasis onpositivismwas somewhat attenuated inHeisenberg’swritings,
but it never completely disappeared. These interpretational ideas were not explicitly
called “The Copenhagen Interpretation” until 1955, when Heisenberg gave them that
name [11], after which the term was widely adopted.

Niels Bohr focused on thewave-particle duality problem, emphasizing the relation
between the complementarity of these aspects and the complementarity of the con-
jugate variables in the uncertainty principle [12]. He also emphasized the “oneness”
of the system and the measurements performed on it, and insisted that these could
not be separated and analyzed separately. His philosophy of complementarity, the
idea that two seemingly contradictory descriptions together characterized the same
phenomenon, was widely promoted and became an important part of the emerging
Copenhagen Interpretation.

Max Born (Fig. 2.12), in working on the development of matrix mechanics and
investigating its connection towavemechanics, originatedwhat became known as the
“Bornprobability rule”, the assumption that the complexvalues ofwave functions and
matrix elements could be related to physical observables by multiplying the complex
quantity by its complex conjugate [13]. In other words, one added the square of the
real part of the variable to the square of its imaginary part, producing a real positive
number that was interpreted as the probability of making the particular observation

Fig. 2.12 In 1954, Max
Born (1882–1970) received
the Nobel Prize in Physics in
1954 for his contributions to
quantum mechanics
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that had specified what went into the calculation. (P = ψψ∗) This became a central
assumption of the Copenhagen Interpretation and an important guide for quantum
mechanics practitioners who wished to relate calculations to observations. However,
it led to the problem of indeterminism listed above, because, as a probability, it meant
that precisely the same physical situation might have many different outcomes. The
crisp deterministic character of Newtonian dynamics had been replaced by the fuzzy
calculation of probabilities and by varying outcomes from identical initial conditions.

Werner Heisenberg addressed the problem of identity by asserting that the wave
function was not a real wave moving through space-time, but rather was an evolving
mathematical representation of the knowledge of an observer, real or potential, who
was observing a quantum mechanical system and performing measurements on it
[14, 15]. This was Heisenberg’s “knowledge interpretation”, which became a central
element of the Copenhagen Interpretation.

At a stroke, the knowledge interpretation dealt with several of the other interpreta-
tional problems listed above: The wave function was allowed to be complex because
it was an encoding of knowledge and only its absolute square, a real variable, could be
directly observed. Wave-particle duality was allowed because the uncertainty prin-
ciple prevented measurements that revealed particle-like and wave-like behaviors at
the same time (see, however, the Afshar experiment [16] described in Sect. 6.15).
The outcomes of measurements was indeterminate because of the mathematics of
the formalism permitted a measurement to select a particular value from the distrib-
ution of possible values present in the wave function, that distribution representing
the lack of knowledge of the observer as to the value of the measured quantity until
a measurement was made. The wave function “collapsed” when the measured value
became known and the knowledge of the observer changed.

The Freedman–Clauser experimental results [17], an experimental demonstration
onquantumnonlocality,were published in 1972, four years beforeHeisenberg’s death
on February 1, 1976. To my knowledge, he never attempted to apply his knowledge
interpretation to the emerging experimental multi-measurement demonstrations of
EPR-type nonlocality, i.e. the enforced correlation of separate measurements on two
separated but entangled subsystems (see Chap. 3), that implicitly would involve the
knowledge of two separated observers. However, in 1984 I pressed the issue with
the late Sir Rudolf Peierls (1907–1995), a Copenhagenist and skilled practitioner
of Heisenberg’s knowledge interpretation [18], who was visiting the University of
Washington Physics Department at the time. Peierls addressed the problem of EPR
nonlocality in the Freedman–Clauser experiment by observing that there was no real
observer-to-observer communication involved in EPR nonlocality, only correlations.
He went on to point out that the state vector should be allowed to be nonlocal when
describing the observer’s knowledge of the separated parts of the system, because the
observer’s knowledgemust span all of the subsystems. Iwas looking formechanisms,
and I found this to be an interesting but unsatisfying answer.

In any case, the knowledge interpretation is a self-consistent viewpoint, even if it
leaves many tantalizing quantum questions unanswered and raises many other issues

http://dx.doi.org/10.1007/978-3-319-24642-0_6
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(e.g., observer-created reality). The central tenets of the Copenhagen Interpretation
can be summarized as follows:

• A system is completely described by a wave function ψ , which is a solution of
a wave equation characteristic of the system; the wave function is a mathemat-
ical representation of an observer’s knowledge of the system and changes when
knowledge changes.

• One should focus on the observable quantities of a system and avoid asking ques-
tions about aspects that are not subject to measurement.

• The quantum mechanical description of nature is probabilistic and random. The
probability of an event is the absolute square of the amplitude of the wave function
related to it. Identical conditions can produce varying outcomes.

• It is not possible to know the precise values of all of the properties of a system at
the same time; complementary variables are subject to the uncertainty principle;
properties that are not known are described by probabilities.

• Matter and light exhibit wave-particle duality; an experiment can show the particle-
like properties or wave-like properties, but not both at the same time. The uncer-
tainty principle prevents wave versus particle conflicts.

• Measuring devices are essentially classical devices and measure classical proper-
ties such as position and momentum; the quantum system and the apparatus that
makes measurements on it are parts of a unified whole and cannot be separated
and analyzed separately.

• The quantum mechanical description of a system, in the limit of large quantum
numbers, should closely correspond to its classical description.

The Fifth International Solvay Conference on Electrons and Photons, held in
Brussels in October 1927, served as the coming-out party for this new way of inter-
preting quantum mechanics (later given the name Copenhagen Interpretation by
Heisenberg [11]). Bohr, Heisenberg, and Born presented their new interpretation and
defended it against all assaults. Einstein, Schrödinger, and others raised objections
(see Sect. 6.2), but in the end, it was generally acknowledged that the Copenhagen
Interpretation had become the standard way of approaching the quantum formalism,
and that would-be practitioners of the formalism would be best guided by following
its tenets.

At the Sixth International Solvay Conference on Magnetism held in Brussels in
1930, Einstein confronted the Copenhagen view by presenting his clock paradox, an
ingenious gedankenexperiment involving a photon in a box that seemed to violate
the uncertainty principle between time and energy. Leon Rosenfeld, a scientist who
had participated in the Congress, described the event several years later: [19]

It was a real shock for Bohr…who, at first, could not think of a solution. For the entire
evening, he was extremely agitated, and he continued passing from one scientist to another,
seeking to persuade them that it could not be the case, that it would have been the end of
physics if Einstein were right; but he could not come up with any way to resolve the paradox.
I will never forget the image of the two antagonists as they left the club: Einstein, with his
tall and commanding figure, who walked tranquilly, with a mildly ironic smile, and Bohr
who trotted along beside him, full of excitement.

http://dx.doi.org/10.1007/978-3-319-24642-0_6
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The next morning brought Bohr’s triumph. He presented his solution to the puz-
zle, an intricate account of the necessary measurements and their uncertainties that
invoked Einstein’s own equivalence principle to establish that the time-energy uncer-
tainty principle was indeed preserved. Einstein conceded defeat on that occasion,
but five years later in 1935 he made another assault on quantum mechanics and the
Copenhagen Interpretation with the famous Einstein, Podolsky, and Rosen paper.

2.7 Einstein, Podolsky, and Rosen; Schrödinger
and Bohm (1935–1963)

In 1935, five years after his clock paradox at the 6th Solvay Conference had failed to
demonstrate the inadequacies of the uncertainty principle and Copenhagen quantum
mechanics, Einstein made another foray against quantum mechanics. This time,
he collaborated with colleagues Boris Podolsky and Nathan Rosen at Princeton’s
Institute for Advanced Studies in producing a succinct 4-page paper that described
two things that he regarded as fatal flaws in quantummechanics. They published this
in the journalPhysical Review onMay 15, 1935 [20]. Thework received considerable
attention and soon became known as “the EPR paper”. The first section of the EPR
paper raised an objection to the role of the uncertainty principle in the description of
quantum systems. The authors argued that if knowledge of one member of a pair of
conjugate physical quantities precludes knowledge of the other quantity, then either
(1) the description of reality given by the wave function in quantum mechanics is
not complete, or (2) the two conjugate quantities cannot have simultaneous reality.

The second section of the EPR paper raised the issue of making quantummechan-
ical predictions about the states of two systems that have previously been in physical
contact and are then separated. Their arguments, based on momentum conserva-
tion, focused on the choice of momentum or position measurements made on one
of the systems and its effect on the quantum mechanical state of the other system.
The authors argued that the choice of which quantities are measured in one system
affects the outcomes of possible measurements made on the other systems. They
then argued that “since the systems no longer interact, no real change can take place
in the second system in consequence of anything that may be done to the first sys-
tem.” This seeming contradiction leads them to assert that possibility (2) cannot be
true, and therefore quantum mechanics must be incomplete. The issues raised in the
second section of the paper have become know as “the EPR paradox” and arise from
a previously ignored aspect of the quantum mechanics formalism, its nonlocality or
enforcement of correlations between measurements in spatially separated systems.
(See Chap.3.) In a letter to Max Born [21, 22], Einstein dismissively referred to
quantum nonlocality as “spooky actions at a distance”.

Niels Bohr responded to the EPR paper by defending the uncertainty principle,
focusing on the simultaneous reality and indefiniteness of complementary variables
like momentum and position, and discussing the Copenhagen view of wave-particle
duality, while essentially ignoring the nonlocality issue that the EPR paper had

http://dx.doi.org/10.1007/978-3-319-24642-0_3
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raised [23]. Heisenberg’s reaction to the EPR paper, as reported by his close associate
C. F. von Weizsäcker [24], was: “Now, after all, Einstein has understood quantum
mechanics. I am sorry for him that he still does not like it.”

Schrödinger, on the other hand, took the EPR paradox and the discovery of non-
locality very seriously. He published a two-part paper in 1935-36 in which he agreed
that standard quantum mechanics did indeed exhibit the property of nonlocality
[25, 26]. He analyzed its aspects and implications in considerable detail. In these
papers, he introduced the term entanglement to describe the condition of a pair of
quantum systems that have interacted and then separated. He concluded that the
quantum state of one of an entangled pair of systems cannot be described without
making reference to the quantum state of the other member of the entangled pair.
He ended by stating that “these conclusions, unavoidable within the present the-
ory but repugnant to some physicists including the author, are caused by applying
non-relativistic quantum mechanics beyond its legitimate range.” In other words,
Schrödinger took the demonstrated presence of entanglement and nonlocality in the
formalism of quantum mechanics as indications that the theory must be incorrect
when applied to systems where nonlocality is important.

In principle, the theory of quantum mechanics, at that point, could have been
subjected to experimental testing to determine if it was indeed “being applied beyond
its legitimate range”. Someconservedquantity likemomentumor angularmomentum
under different localization conditions could have been measured in two subsystems
to reveal EPR correlations. In practice, in part because of the formidable experimental
challenges of such tests, in part because of the lack of a crisp and falsifiable theoretical
prediction, in part because World War II was in the making, and in part because of
a lack of interest in such tests among experimental physicists and their sources of
funding, it required almost four decades for such testing to begin.

We note, in this context, amissed opportunity: the pair of back-to-back 0.511MeV
gamma rays produced in electron-positron annihilation formapolarization-entangled
photon pair because the annihilation process has zero net angular momentum and
negative parity. As predicted in a calculation by John Wheeler [27], this leads to
planes of linear polarization of the two photons that must be 90◦ apart (see Eq.2.2).

Therefore, this system could, in principle have provided a test-bed for the testing
and demonstration of EPRquantumnonlocality. C. S.Wuand I. Shaknov in 1950 [28]
used a β+-radioactive 64Cu source to measure the polarization correlations of the
gamma ray pair from the e+e− annihilation that followed the positron decay. They
showed that, after efficiency and geometrical corrections, the ratio of counts with the
polarimeter planes perpendicular versus parallel agreed with Wheeler’s predictions
based onquantummechanics.However, since thiswork preceded that of J. S.Bell by a
decade and a half, themeasurementswere onlymade at polarimeter angle-differences
of 0◦, 90◦, 180◦, and 270◦, and no one realized the very fundamental significance of
the measurements. No connection between these experimental results and Einstein’s
EPR arguments or nonlocality was made at the time or later in Bell’s papers.
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About 1951, EPR supporter David Bohm introduced the idea of a “local hidden
variable” theory that could replace standard quantum mechanics with a theoretical
structure that omitted the paradoxical features of quantum mechanics to which the
EPR paper had objected. In Bohm’s hidden-variable alternative to quantummechan-
ics, all correlationswere established locally at sub-light speeds. Position andmomen-
tum were permitted to have simultaneous precise values, values that were real but
were “hidden” and inaccessible to direct measurement.

Practicing physicists, however, paid little attention to such hidden variable theo-
ries. Bohm’s approach was less useful than orthodox quantum mechanics for calcu-
lating the behavior of physical systems. Since the theories seemed to make the same
predictions, it was apparently impossible to resolve the EPR/hidden-variable debate
by performing an experiment, so the general physics community tended to ignore
the whole controversy and leave it to the philosophers.

2.8 Bell’s Theorem and Experimental EPR Tests
(1964–1998)

In 1964, the testability situation changed. In a series of publications, John Stuart Bell
(Fig. 2.13), a Scottish theoretical particle physicist working at the CERNhigh-energy
physics laboratory in Geneva, proved an amazing theorem demonstrating that exper-
imental tests could distinguish the predictions of quantum mechanics from those of
any local hidden-variable theory [29, 30]. Bell, following the lead of Bohm [31], had
based his calculations not on measurements of position and momentum, the focus
of the arguments of Einstein and Schrödinger, but on measurements of the linear
polarization of photons of light when considerations of angular momentum conser-
vation constrained them.

Before discussing Bell’s theorem further, we pause to consider the polarization
of light. The phenomena we refer to as light: visible light, invisible infrared or
ultraviolet rays, radio waves, X-rays, or gamma rays, all are aspects of the same
basic physics, differing only in frequency. They are traveling waves produced when
electric and magnetic fields vibrate together at right angles to each other as they
move through space at the speed of light. The direction in which the electric field
of a light wave vibrates determines the polarization of the wave. If the electric field
vibrates always in the same plane, we say that this is the plane of polarization and
that the wave has linear polarization in that plane. There is another polarization
basis, circular polarization, in which the electric field corkscrews through space
to the right or left as the light wave moves forward. Circular polarization can be
produced by superimposing states of vertical and horizontal linear polarization with
appropriate phase, and linear polarization can be produced by superimposing left and
right circular polarization. (See Eqs. 6.2–6.5.) Most of the work with Bell’s theorem
has been focused on states of linear polarization.

http://dx.doi.org/10.1007/978-3-319-24642-0_6
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Fig. 2.13 John Stuart Bell
(1928–1990)

It is quite easy to measure the linear polarization of visible light. Special optical
filters, for example the lenses of polarized sunglasses, absorb light polarized in one
direction while transmitting the light polarized in the perpendicular direction. There
are also polarization-sensitive splitters that divide one beam of light into two beams,
for example with one linear polarization state reflected and the other transmitted.

Using such devices, a particular polarization component of incident light can be
transmitted and the other component absorbed or diverted. If a beam of unpolarized
light is passed first through one such polarization filter and then through another,
the intensity of the transmitted beam varies in accordance with Malus’ Law, which
states that the transmitted light intensity I (α) is proportional to the square of the
cosine of the angle α between the polarization direction of the first filter and that of
the second filter, i.e., I (α) = I0 cos2(α), where I0 is the intensity observed when the
polarization directions of the filters are parallel. Malus’ Law is shown in Fig. 2.14
This equation tells us that when the planes of polarization of the two filters are at
90◦, the crossed filters look black and no light is transmitted. When the planes of
polarization make an angle of 45◦, half the light intensity passing the first filter is
transmitted by the second, and so on.

In an atom, if an orbital electron is kicked from its lowest energy level into a
higher orbit by an energetic photon or an electrical discharge, the electron may
return to its lowest energy state by a process called a “cascade”, a series of quantum
jumps to lower orbits, each jump producing a single light photon of a wavelength
that depends on the energy gap of the jump. A two-photon cascade in which the
atom as a whole begins and ends with no net angular momentum (i.e., no rotational
motion) and no change in parity (the mirror-symmetry of the system is unchanged)
is of particular interest, because the cascade produces an entangled pair of photons
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Fig. 2.14 Malus’ Law: Linearly polarized light is transmitted through two polarizing filters with
intensity I (α) = I0 cos2(α), where α is the angle between the polarizing axes of the filters

that have correlated polarizations due to angular momentum conservation. When
the photons from the cascade travel back-to-back in opposite directions, angular
momentum conservation requires that if one of the photons is measured to have some
definite linear polarization state, the other photon is required to have exactly the same
linear polarization state. Kocher and Commins [32] used this technique to produce
entangled photon pairs and to demonstrate the polarization correlation predicted
by quantum mechanics, but they did not attempt a test of Bell’s theorem. The first
experimental tests of Bell’s theorem in the 1970s, often called “EPR experiments”,
used the entangled photon pairs from such cascades.

First, a word about notation: in the discussions that follow we will explicitly
indicate wave functions ψ using the Dirac “ket” state vector notation; a ket is a
vertical bar | and an angle bracket 〉 that enclose some symbol that distinguishes
one wave function from another. For example, a wave function that is characteristic
of system 1 in a state of horizontal linear polarization might be represented by
ψH1 =| H〉1, and so on. Later we will also use the complex conjugate of the Dirac
ket state vector, which is called a bra and for the ket above would be denoted by the
symbol 〈H |1.

The wave function that describes such an entangled pair of photons is said to
describe a “Bell state”, and, for zero initial and final angular momentum, if there is
no change in parity it has the symmetric form:

| S〉+ = 1√
2
(| H〉1 | H〉2 + eiφ | V 〉1 | V 〉2), (2.1)
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or if parity changes, it has the anti-symmetric form:

| S〉− = 1√
2
(| H〉1 | V 〉2 − eiφ | V 〉1 | H〉2), (2.2)

where φ is an arbitrary phase angle that depends on geometry and is usually 0 or
π , and H and V describe horizontal and vertical linear polarization, respectively, of
the entangled photons moving on paths 1 and 2. When a Bell-state wave function
described byEq.2.1 is collapsed by a linear polarizationmeasurement of the photons,
it will be found that either both photons have H polarization or that both photons
have V polarization, each with a 50% probability.

These EPR experiments measured the coincident arrival of entangled photons at
opposite ends of the apparatus, as detected by quantum-sensitive photomultiplier
tubes after each photon had passed through a polarizing filter. The photomultipliers
at opposite ends of the apparatus produce electrical pulses that, when they occur
at the same time, are recorded as a “coincidence” or two-photon event. The rate of
such coincident events is measured while varying the polarization “pass” directions
of the two filters, characterized by transmission-axis angles α1 and α2. The two
transmission angles are systematically varied and the rate measurement is repeated
until a complete map of rate versus the two angles is developed.

Bell’s theorem deals with the way in which the coincidence rate of an EPR exper-
iment falls off when the two transmission angles α1 and α2 are not equal. Bell proved
mathematically that for all local hidden-variable theories [31] the magnitude of the
decrease in coincidence rate must be linear (or less) as it depends on the angular
difference Δα between the two filters. Suppose, for example, that we misalign the
angles of the two polarization filters so that the angle between the polarization direc-
tions of the two filters is Δα = α1 − α2. We measure the coincidence rate R(Δα),
as compared to the rate R0 when the filters are perfectly aligned. That rate drops by
an amount Δ1 = R0 − R(Δα). Now we double the amount of the misalignment, so
that the decrease in rate is Δ2 = R0 − R(2Δα). For this situation, Bell’s theorem
requires that Δ2 must be less than or equal to twice Δ1 (Δ2 ≤ 2Δ1).

This prediction of Bell’s theorem is one of the so-called “Bell inequalities”. It can
be thought of in the following way. Consider that the coincidence rate R0 when the
polarizing filters are aligned (Δα = 0) is a “signal”, to which “noise” is added when
a misalignment is introduced. If the noise Δ1 introduced by moving one filter an
amount α to the right is not correlated with the noise Δ′

1 introduced by moving the
other filter by the same angle to the left, then at most, when both sources of noise are
present, the noise Δ2 from a 2α misalignment should be twice Δ1. However, the two
uncorrelated noise sources may occasionally cancel, permitting Δ2 to be less than
twice Δ1. Therefore, the Bell inequality states that Δ2 must be less than or equal to
twice Δ1.

Quantum mechanics, on the other hand, predicts that the coincidence rate
R(α1, α2) depends only on the relative angle Δα = α1 − α2 between the two
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polarization directions, and that R(Δα) obeys Malus’ Law. In other words, quan-
tum mechanics predicts that R(α1, α2) = R(Δα) = R0 cos2(Δα). Therefore, Δ1 =
R0[1 − cos2(Δα)] and Δ2 = R0[1 − cos2(2Δα)]. When the misalignment angle α

is fairly small, this means thatΔ2 is about four timesΔ1, which is clearlymuch larger
than twice Δ1 (i.e., Δ2 ≈ 4Δ1 so Δ2 > 2Δ1). This is a clear violation of Bell’s the-
orem, because the coincidence rate predicted by quantum mechanics falls off much
too fast with increasing angle to be consistent with Bell’s theorem, which predicts
an approximately linear decrease, as shown in Fig. 2.15.

What is the essential difference between quantum mechanics and local hidden-
variable theories that causes their distinguishable predictions of the relation between
Δ1 andΔ2? As pointed out by Herbert [33], in the local hidden-variable theories, the
photons leaving the source are required to be in a definite (but possibly random and
unknown) state of linear polarization, leading to noiseΔ roughly proportional toΔα.
For quantum mechanics, the state of polarization of entangled photons leaving the
source is indefinite and is not fixed until a polarization measurement is made, leading
to Malus’ Law and Δ roughly proportional to Δα2. (See the discussion of “realism”
in Sect. 6.18). That essential difference between linear and quadratic behavior lies at
the root of Bell’s inequalities.

We note that Bell did not consider the less-than-100% efficiency of real single
photon detectors and the less-than-perfect behavior of real polarization analyzers. A
group led by John Clauser [34] generalized Bell’s theorem to take these effects into
account, producing the CHSH inequality, which is used in real experimental tests
and is essentially Bell’s inequality cast in a more realistic experimental context.

Fig. 2.15 Plot of “noise” rate Δ(Δα) versus polarimeter angle difference Δα for small angles.
Local hidden variable prediction (blue/dashed) rises linearly, while quantummechanical prediction
(red/solid) rises quadratically. If the rates are equal atΔα = 0.05 (black dot), the quantummechan-
ical prediction (red dot) is twice the local hidden variable prediction (blue dot) at Δα = 0.10 and
four times the rates at Δα = 0.05
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Thefirst unambiguous experimental results fromEPRexperiments, the pioneering
work of John Clauser (Fig. 2.16) and his student Stuart Freedman (Fig. 2.17) at UC
Berkeley,was performed in the early 1970s and published in 1972 [17]. They reported
a 6.7 standard deviation violation of Bells’ inequalities and consistency with the
predictions of quantummechanics. A decade later, in 1982, the EPRmeasurements of
the Aspect group [35, 36] in France used newly developed apparatus and techniques
andwere able to eliminate several “loophole” scenarios thatmight constitute unlikely
ways of preserving classical locality (see Sect. 3.2). They demonstrated consistency
with quantum mechanics and inconsistency with local hidden-variable theories, this
time with a 46 standard deviation violation of Bell’s inequalities [35, 36]. A more
recent EPR experimental example is the 1998 work of the Gisin group in Switzerland
[37, 38]. They used fiber-optics cables owned by the Swiss Telephone System to
demonstrate the nonlocal connection between EPR measurements made at locations
in Geneva and Bern, Swiss cities with a line-of-sight separation of 156km. Their
work constitutes a direct demonstration, if one was required, that not only is quantum
mechanics nonlocal, but that such nonlocality can operate over quite large spatial
separations.

Such EPR results were initially interpreted as a demonstration that hidden variable
theories like those of Bohm had been falsified. That view changed when it was
realized that Bell’s theorem was based on local hidden variable theories, and that
nonlocal hidden variable theories could also be constructed to violate Bell’s theorem
and agree with the experimental measurements. The assumption made by Bell that
had been put to the test was the assumption of locality, not hidden variables.

Do these EPR experiments constitute a solid demonstration of the existence of
quantum nonlocality? There is more than one way of interpreting the implications
of the experimental results, and one can find much discussion in the literature as

Fig. 2.16 John F. Clauser
(1942–)
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Fig. 2.17 Stuart J.
Freedman (1944–2012)

to whether it is locality or “realism” (the objective observer-independent reality of
external events) that has been refuted by these EPR measurements. We here adopt
the view that reality should be taken as a given, and so we regard these experiments
as direct demonstrations of the intrinsic nonlocality of standard quantummechanics.
(See Sect. 6.18 for further discussion of the realism issue.)

The EPR experiments demonstrate the quantum enforcement of a correlation
between measurement results in the two separated arms of the experiment. Let us try
to clarify the nature of that correlation with an example. Suppose that you are given
a gold coin, and you use a fine jeweler’s saw to cut it in half along the plane of the
coin, placing the “head” side in one pink envelope and the “tail” side in another. You
do the same thing with another coin, separating it with a horizontal cut into a top half
and a bottom half and placing these in green envelopes. And you cut a third coin,
separating it with a vertical cut into a left half and a right half and placing these in blue
envelopes. Now you shuffle the envelopes and send one set of colors to an observer
in Boston and the other set to an observer in Seattle. Each observer is allowed to
choose one of the envelopes and to open only that one. If the Seattle observer opens
his pink envelope and finds the head, he knows that the Boston observer, if he also
opens his pink envelope, will find a tail. But he is unable to predict what the Boston
observer will find if he opens the green or the blue envelope.

That is classical physics. The difference in the EPR quantum situation is that there
is only one coin, and that each observer decides the direction in which his half of the
single coin should have been be cut only after the single white envelope has arrived.
And yet, he observes the same correlations as described above. If both observers
choose the same cut directions, their halves are opposites. If they choose differ-
ent cut directions, they are unable to predict the observation of the other observer.
Here the correlated coin-halves correspond to entangled photons and the cut direc-
tions to the choice of measurements of polarization bases (circular right/left, linear
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vertical/horizontal, linear 45◦ diagonal/anti-diagonal, and others). See the quantum
games described in Appendix C for further analogies to EPR correlations.

We note that the several polarization bases used in these kinds of polarization EPR
experiments make it straightforward to demonstrate the quantum nonlocal connec-
tions but also make it effectively impossible to use those connections for observer-
to-observer signaling, because one would need to deduce from the arriving photons
the polarization basis that was being used in the distant measurements. While each
observer is free to choose the polarization basis (e.g., circular right/left, linear hor-
izontal/vertical, linear 45◦ diagonal/anti-diagonal) for the measurement, he is not
free to force the photon into a particular state of that basis, as would be required for
nonlocal communication. Thus, while polarization-based EPR experiments may be
taken as demonstrations that Nature is using some nonlocal mechanism to arrange
the correlations of the separated measurements, such a “superluminal telegraph line”
is not accessible to the experimenters for sending their own messages. See Chap. 7
for further discussion of the suppression of nonlocal signaling.

To put it another way, the intrinsic nonlocality of quantum mechanics had been
tested by the experimental EPR tests of Bell’s theorem. It has been experimentally
demonstrated that Nature arranges the correlations between the polarizations of the
two entangled photons at separatedmeasurement sites by somenonlocal (and perhaps
retrocausal) mechanism that violates Einstein’s intuitions about the intrinsic locality
of all natural processes. What Einstein called “spooky actions at a distance” are in
fact an important part of the way Nature works at the quantum level.
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