Chapter 2
Mathematical Modeling

The governing equations of the helicopter rotor blade enabling piezoceramic-axial,
bending, and shear actuation are derived in this chapter and an outline of the aeroelas-
tic analysis used in this book is given. A background on piezoelectric materials used
in this book is also provided. Section?2.1 begins with an introduction to piezoelec-
tric materials and Sect.2.2 explains the piezoceramic actuation concept. Section 2.3
provides an introduction to terminology used in the helicopter field. In Sect.2.4,
structural modeling is explained. Section2.5 explains the aerodynamic model used
for the aeroelastic analysis. Section 2.6 presents the blade and hub loads. Section2.7
explains the aeroelastic analysis of a rotor. Section2.8 gives the summary of this
chapter.

2.1 Piezoelectric Materials

Piezoelectricity stems from the Greek word piezein, meaning to press or squeeze. It
was found out that quartz changed its dimensions when subjected to an electric field
and conversely generated an electric charge when it was pressed. A piezoelectric
material develops a potential across its boundaries when subjected to a mechan-
ical stress (or pressure), and vice versa, when an electric field is applied to the
material, a mechanical deformation ensues. Piezoelectric materials therefore fall in
the class of smart materials which are typically controllable using some physical
variable such as electric or magnetic fields or temperature. Ferroelectricity is a sub-
group of piezoelectricity, where a spontaneous polarization exists that can be reori-
ented by application of an AC electric field. Two types of piezoceramics exist: Soft
(Ex: PZT-5H, PZT-5A) and hard (Ex: PZT-4D, PZT-8).

Soft piezoceramics are donor-doped PZT (Lead zirconate titanate) and hard piezo-
ceramics are considered to be acceptor-doped PZT’s. Material research says that soft
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Table 2.1 Differences Property Soft PZT Hard PZT

between soft and hard - -

piezoceramics Piezoelectric constants Larger Smaller
Permittivity Higher Lower
Electromechanical coupling Higher Lower
factors
Resistance High Lower
Linearity Poor Better
Polarization/Depolarization Easier Difficult
Hysteresis Greater Lower

PZTs have an exceptionally high-domain wall mobility, while the hard piezoceram-
ics suppress the domain wall response. Regions in the piezoceramic with uniformly
oriented spontaneous polarization are called domains and the region between two
such domains is called a domain wall. This characteristic leads to the following
differences between soft and hard piezoceramics (Table2.1).

When manufactured, a piezoelectric material has electric dipoles arranged in
random directions. In order to avoid a random response from each of these dipoles,
alignment of dipoles is required so that a uniform response is achieved when an
external stimuli is applied as shown in Fig.2.1. For poling (aligning), the material is
heated above its Curie temperature and a strong electric field is applied. The direction
in which the field is applied is the polarization direction, resulting in the alignment
of the dipoles in that direction. For fixing the poling direction permanently, the
material is cooled below its Curie temperature. Every piezoelectric material has a
specific Curie temperature. Polarization never results into a full/perfect alignment of
all dipoles to give the ideal piezoelectric effect; however, the polycrystalline ceramic
exhibits a large piezoelectric effect. While the polarization is being carried out,
the dipoles are properly aligned but as soon as the external stimuli are removed,
there is an introduction of an extremely small amount of randomness in dipoles
once again. This process is depicted in Fig.2.2. During this process, there is a very
small expansion of the material along the poling axis and a contraction in both

il
f\/K \\/ I\/ A Al A o~ Electric field direction
\‘\J/[,U padl il Pl Pl
\ 7] \’ v avavs
///T\///\ PV AP 4P

Microdomain (no electric field) Applied electric field in required direction

Fig. 2.1 Polarization in a piezoelectric domain
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Fig. 2.2 Detailed polarization process

directions perpendicular to it. These dipoles after poling respond collectively to
the external stimuli [1]. Application of an electric field (voltage) to a poled PZT
results in its deformation (straining). Depolarization of the piezoelectric ceramic can
result if it is exposed to excessive heat, electrical drive, or mechanical stress or any
combination thereof. The temperature at which piezoelectric ceramic will be totally
depoled is known as the “Curie point.” The constitutive equations are based on the
assumption that the total strain is the sum of the mechanical strain induced by stress,
the thermal strain induced by temperature, and the actuation strain dependent on
applied electric field. The relation between strain and voltage is linear in the first
order at relatively low electric fields and low mechanical stress levels. In general,
piezoelectric materials are relatively linear at low electric fields and bipolar in nature.
At high levels of electric fields, they exhibit nonlinearity to quite an extent. Although
under an applied electric field they generate very low strains, they cover a wide range
of actuation frequency [2].

Coupled electromechanical constitutive relations [3] for a piezoceramic are given
as follows:

D; = ¢},E; + d},0m + a; AT i=1.3, j=1.3, 2.1)
& = dS Ej + Sp,0m + ek AT k=1.6, m=1.6. (2.2)

Piezoelectric materials have the capability of undergoing strain on the applica-
tion of an electric field. This concept is known as the converse piezoelectric effect
(Eq.2.2) and is exploited in actuators. Examples for the use of converse piezoelectric
effect are sonar, ultrasound generation, positioners, motors, vibration cancelation,
ultrasonic surgery, and so on. It allows the alteration of system characteristics as
well as the system response. The same material (PZT) generates an electric charge
when subjected to a mechanical force or deformation. This is known as the direct
piezoelectric effect (Eq.2.1) and is used in sensors. Examples for the use of direct
piezoelectric effect are accelerometers, hydrophones, ultrasonic transducers, etc. The
piezoelectric converse and direct effect is explained in Fig. 2.3. The microprocessors
analyze the response from the sensors and use distributed parameter control theory
to command the actuators to apply localized stresses to minimize the response of
the system. Hence, piezoelectric materials are utilized either as actuators or sensors
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which ultimately contribute to a structure being smart. Since the structure can sense
its environment and respond in a favorable manner, piezoelectric ceramic materials
are typically employed as actuators (Eq.2.2), while polymeric piezoelectric mate-
rials are typically employed as sensors (Eq.2.1). Equation2.2 could be rewritten in
matrix form as follows:

€1 Si1S283 0 0 0 o1
€ S281 83 0 0 0 lop3
& | _ | Si3Siss 0 0 0 03
€23 - 0O 0 O S44 0 0 3
€31 0 0 0 0 S44 O 731
€12 0O 0 0 0 O 566 T12
0 0 di Qe
8 8 2132 E ZIC2
33 tc3
I Zz +uetar. 2.3)
ds 0 0 } Qres
00 0 Fros

Extension/Contraction in a piezoceramic element depends on the polarity of the
electric filed and the poling direction of the piezoceramic. The piezoceramic will
shorten if a voltage of opposite polarity to the poling direction is applied to the elec-
trode. If the applied voltage has same polarity as the poling voltage, the piezoceramic
will lengthen. But if an AC voltage is applied to the electrodes, the piezoceramic will
grow and shrink at the same frequency as that of the applied voltage. These phenom-
ena are depicted in Fig. 2.4. Piezoelectric solid-state transducers are characterized by
high forces in the range of kilo newtons, with reaction time of the order of a few mil-
liseconds, along with a positioning accuracy of the order of a few nanometers. They
have been successfully used over many years in a wide range of applications such as
ultrasonic transducers, accelerometers, gramophones, resonators, filters, inkjet print-
ers, and as various kinds of sensors in structural problems. Reviews on aerospace
applications are given by [4]. Regarding the availability, there are various manufac-
turers who supply the characteristics of their products. Piezoelectrics are available
in the form of sheets and films.

The advantages of piezoelectric materials being used as sensors and actuators
include ease of integration into existing structures, easy control by voltage, low
weight, low power requirements, low-field linearity, and high bandwidth (allow-
ing large range of applications). In general, piezoelectric materials can be broadly
classified into two groups: piezoceramics and piezopolymers. The most common
piezoceramic is lead zirconate titanate (PZT) and the most common piezopolymer is
Polyvinylidene Fluoride (PVDF). PZT is a ceramic and has high stiffness, while the
PVDF polymer is more flexible and has low stiffness and high damping. The high
stiffness of the PZT makes it a suitable actuator because of its high actuation author-
ity and fast actuation response. In contrast, the flexibility and low stiffness of PVDF
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Fig. 2.3 Direct and converse
piezoelectric effect
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makes it a better sensor. From these two types of piezoelectric material, there exist
a variety of configurations in which they can be manufactured to be used as sensors
and actuators. In terms of handling and practicality, the brittleness of piezoceramics
places a restriction on its minimum thickness. Also, the attachment of piezoelectric
materials to the host structure has to be performed with proper electrical insulation
(Table 2.2).

2.1.1 Single Crystals

In general, relaxor-based ferroelectric single crystals have a different crystal com-
position and orientation as compared to conventional soft or hard piezoceramics.
Physicists and metallurgists consider this structure to be very complex. Nonstoi-
chiometric doping proved to be effective in creating instabilities in the material to
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Fig. 2.4 Dependence of deformation on poling direction

Table 2.2 Nomenclature for the piezoceramic parameters

D = Dielectric displacement (3 x 1) vector Newtons/milliVolts

e = Dielectric permittivity (3 x 3) tensor Newtons/square Volt

E = Applied electric field (3 x 1) vector Volts/meter

d = Piezoelectric coefficients (3 x 1) vector meters/Volt

o = Stress (6 x 1) vector Newtons/square meter

a = Thermal constants (6 x 1) vector Newtons/Volt-meter-degrees Kelvin
AT = Temperature Constant degrees Kelvin

€ = Strain (6 x 1) vector

S = Elastic compliance (6 x 6) matrix square meters/Newton

o = Thermal coefficient (6 x 1) vector 1/degrees Kelvin

generate large responses, making the material “smarter.” The lead zirconate—lead
titanate solid solution (PZT) system is one such successful example. The use of Nb
doping can dramatically increase the value of the piezoelectric property of PZT. Of
this category are (1 —x)Pb(Zn1,3Nby3) O3 — x PbTi O3 (PZN-PT), and lead zinc
niobate—lead titanate crystals. Here x is the percentage of PbTiOs in the crystal.

Domain engineered single-crystal systems (like PZN-PT) exhibit superior electro-
mechanical properties compared to the conventional PZT ceramics. It is natural to ask
the question, “Why the electromechanical properties have such values?”” The answer
to this lies in the crystallographic orientation and phase of the structure. It has been
found that near the morphotropic phase boundary (MPB) between the rhombohe-
dral and tetragonal phases, the levels of strain and the piezoelectric coefficients rise
anomalously. In summary, without going into greater detail regarding the material
configuration, this is the key to the high piezoelectric coefficients in single crystals
like PZN-8 %PT.
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Table 2.3 Comparison of the electromechanical properties

47

Max strain %

Elastic energy

Coupling

Relative speed

density J/cm? efficiency (k?) % | full cycle
PZT 0.2 0.10 52 Fast
PZN-PT 1-1.7 1.0 81 Fast

Single-crystal materials are grown in crucibles at high, very tightly controlled
temperatures using a starting seed to determine the crystallographic orientation.
Orientations can be tailored to optimize response to longitudinal, transverse, and
shear excitations commonly used in transducer designs. A significant reorientation
of domains is achieved during polarization of single-crystal materials, resulting in
higher electromechanical coupling factors (applied electrical energy is converted into
mechanical or acoustic energy) of 90 % or more, as compared to 70 % for polarized
conventional piezoceramics. Single-crystal piezoelectric materials also offer higher
bandwidths, up to 135 %, as compared to 40-45 % for PZT. In actuator applications,
single-crystal materials can achieve field-induced strains three times greater than
those obtained in PZT. The dielectric losses in single crystal are much less than 1 %,
as compared to 2 % for PZT. A quantitative comparison of the properties for general
PZT and PZN-PT ceramics is made in Table 2.3 [5].

According to Park and Shrout [5], in designing an actuator, the maximum strain
energy density should be as high as possible. Generally, the induced strain due to the
applied field is the most important parameter for an actuators performance. This is
also reflected in the strain energy density function which can be defined as below:

_l l l E(s2 )
emax—p 4 ) Sinax)s

where e, is the strain energy density, E is the actuators elastic modulus, s, is
the maximum field-induced strain, and p is the actuators density. The factor 1/4 in
Eq.2.4 is appropriate for an actuator impedance related to its surroundings.

Piezoelectric properties of PZN-PT-type single crystals with <001>-orientation
have been found to posses large direct piezoelectric coefficients (ds3, d3;) which
are almost of the order of 10-15 times that of a soft piezoceramic such as PZT-5H.
However, the shear coefficient ds of these materials is relatively poor as compared to
soft piezoceramics such as PZT-5H. Liu et al. [6] reported that the piezoelectric shear
coefficient d;s of PZN—4.5 %PT and PZN-8 %PT crystals oriented in <111> is very
high as compared to the conventional soft piezoceramic materials. Here, <001>
and <111> orientations are directions in a crystal. These directions are shown in
Fig.2.5. Such single crystals are now commercially available and should therefore
be evaluated for applications.

2.4)
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Fig. 2.5 The <001> and [001]
<111> orientations in a ‘
crystal
[111]
[000]

2.2 Piezoceramic Actuation

The relationship between induced strain and the applied electric field for piezoelec-
tric materials can be understood with help of the piezoelectric constitutive equations.
Modeling of induced strain actuation was addressed initially by Crawley [7] and
later was discussed and validated in detail by Hong and Chopra [8]. The constitu-
tive equations for piezoelectric material are ‘poling-direction’ dependent; therefore,
appropriate care should be taken when using them. For a piezoelectric segment, there
are three directions in which poling can be established.

e If axial and bending actuation is desired, poling direction should be selected as
‘3.” For a piezo segment shown in Fig.2.6, poling is in the 3 direction and the
constitutive equations can be written as

Fig. 2.6 Configuration of a
piezo segment with poling
direction 3
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At 0 0 ds

A2 0 0 dxp E

Azl | 0 O dss

Az | | 0 du O 22 ' 25)
A3l ds 0 0 3

A2 0 0 O

This relationship is found in most literature where poling in 3 direction is assumed.
Here, A is the actuation strain and in general, the first subscript of the d-constant d
gives the “electrical” direction (field or dielectric displacement) and the second
gives the component of mechanical deformation or stress. The convention is to
define the poling direction as the 3-axis, and the shear planes are indicated by the
subscripts 4, 5, and 6 and are perpendicular to directions 1, 2, and 3, respectively.
The planar isotropy of poled ceramics is expressed in their piezoelectric constants
by the equalities d3, = d3; (an electric field parallel to the poling axis 3 interacts in
the same way with axial stress along either the 2-axis or the 1-axis) and dr4 = d;s.
Similar relations hold for the elastic constants because of the isotropy in the plane
perpendicular to the polar axis. In general, the piezoelectric strain coefficients d;s
and d,4 contribute to shear strains and others to normal strains.

e If shear/torsional actuation is desired, then the poling direction should be selected
in the length direction, which is ‘2’ as shown in Fig. 2.7. For such a piezo segment,
the constitutive equations can be written as

Al 0 d31 O
A2 0 d3 0
A 0dpo | |5
Aoy = 0 0 o gz . (2.6)
Aat 0 0 0 3
Al ds 0 0
Fig. 2.7 Configuration of a —— 2

piezo segment with poling
direction 2

>
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Fig. 2.8 Configuration of a ——— 1
piezo segment with poling
direction 1

One can select the case which corresponds to the poling in the span/length direc-
tion. But the coordinate system that we refer to is different from that mentioned in
the above cases. Thus, we transform case 2 to the following coordinate system

A1 d; 0 0

A2 dy 0 0

A33 dn 0 0 ? 57
[~ 0 000 E2 ' 2.7)
A3 0 0 dy 3

For the piezoelectric segment shown in Fig.2.8, the span and poling direction is
the ‘1’ direction. It can be seen from Eq.2.7 that both A3; and A, utilize d5. In
Chaps. 8-11 of this book, the shear strain 1|, is employed to produce twist in the
structure.

2.3 Key Terminologies and Nondimensional Parameters

Since this book deals with helicopter main rotor, some key terminologies used in this
book are explained first. Figure 2.9 shows the rotor disk. Any point on the rotor disk
can be located based on the polar coordinates (r, ¥). Here, r is the radial location
and varies from r = 0 at the hub to r = R at the tip, where R is the blade radius.
The rotor rotates counterclockwise with a constant rotation speed of 2 and moves
forward with a speed of V. When the blade is at v = 90°, it is at the advancing side
of the rotor. When the blade is at ¢ = 270°, it is at the retreating side of the rotor.


http://dx.doi.org/10.1007/978-3-319-24768-7_8
http://dx.doi.org/10.1007/978-3-319-24768-7_11
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Fig. 2.9 Rotor disk of the
helicopter

270°

Retreating side

90°
Advancing side

Fig. 2.10 Blade cross
section

0, (r,y) = 6,+0

At any section (r,1), the blade section is an airfoil as shown in Fig.2.10. The
angle of attack at any blade section can be written as

a(r, ) =01, ) — o (r, ¥), (2.8)

where 0, (r, ¥) is the local blade pitch and ¢ (r, ¥) is the local inflow angle. The
inflow angle is usually obtained from a wake model. Wake models for helicopters
range from momentum theory which assumes a uniform inflow to free wake models
which account for the nonuniformity in inflow which is characteristic of real rotors.
Blade section loads are calculated using the angle of attack, «(r, ). The local blade
pitch 6, (r, ¥) includes the effect of both pilot control input 6 and elastic twist 43

The nondimensional forward speed (), thrust coefficient (C7), power coefficient
(Cp), lock number, and solidity of a rotor are defined below. Here, u is defined as
the ratio of the forward speed of the helicopter to the rotor tip rotation speed (2R).
Lock number y is defined as the ratio of aerodynamic forces to the inertial forces
and solidity (o) is defined as the ratio of rotor blade area to rotor disk area.
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Here, V is the forward speed of the helicopter, p is the density of air, 2 is the
rotor rotational speed, T is the thrust, P is the power, Cj,, is the lift curve slope, c is
the blade chord, and 1, is the mass moment of inertia about the flapping hinge. Also,
A 1is the rotor disk area and N, is the number of blades.

2.3.1 Nondimensionalization

The entire formulation and all computations are carried out in nondimensional form.
In addition to increase the generality of the analysis, working with nondimensional
quantities can help avoid scaling problems while computing. It should be noted
that the following physical quantities are nondimensionalized by the given reference
parameters. Only nondimensional quantities are used in the analysis (Table 2.4).

Here, m is defined as the reference mass per unit length of an equivalent uniform
blade which has the same flap inertia as the actual (nonuniform) blade. Using this
definition, m can be defined as follows:

R 2
mo = %#dr. (2.9)

Table 2.4 Nondimensionali- Physical quantity Reference parameter
zation

Length R

Time 1/Q

Mass/length mo

Velocity QR

Acceleration Q?R

Force mo$2R?

Moment moS2R3

Energy or work moQ2R3




2.4 Structural Modeling 53

2.4 Structural Modeling

2.4.1 Hamilton’s Principle

The generic governing differential equations are derived for a smart beam/rotor blade
undergoing axial, chord-wise bending, span-wise bending and elastic twist and sup-
porting axial, bending, and torsion actuation. A point P on the undeformed elastic
axis undergoes deflection u, v, w in the x, y, z and moves to a point P' as shown in
Fig.2.11. X and Y are the hub coordinate axes and blade is at a precone angle 8,
from the hub axes. The cross section undergoes a rotation 6, as shown in Fig.2.12.
Here 6 is given as

O = 025 + Oy, (% — 0.75) + 61.c08Y + 61,5, (2.10)

where 675 is the blade pitch at 75 % span of blade, 6,,, is the blade linear pretwist,
and 6, and 6}, are the cyclic pitch controls.
The constitutive equations of an isotropic beam plate [9] can be written as follows:

€xx l1/E —v/E—v/E 0 0 0 Oxx
€ —-v/E 1/E —v/E 0 0 O log™
€xn 0 0 0 1/G 0 0 Ty ’
€nt 0 0 0 0 1/G O Ty¢
€x¢ 0 0 0 0 0 1/G Txt

The following fundamental assumptions are made for the analysis [10]:

(i) Mid-line of a plate segment does not deform in its own plane;
(ii) the normal stress in the contour direction, o,,, is neglected relative to the normal
axial stress o,,; and

z Z
A
'.BP
T P’ ; .
/de;)rmed elastic axis
w
. ’//
o v
o
e P u cans - X i y
et undeformed elastic axis
i »
..... = y: BF

X

Fig. 2.11 Deformation of rotor blade
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Fig. 2.12 Deformation of z
cross section A n

T
Q

(iii) rotor blade is a long slender beam and hence the uniaxial stress assumptions
can be made; 0, = 0, 0,y =0 and 7, =0.

The strain displacement field (accurate up to second order and accounting for mod-
erate deflections) is defined as

/ V, W,Z 17 2 2 / N2
€ =t + o+ —= = Arg" + (7 + )0 + @)*/2)
— V[ cos(f + ¢) — ¢ sin(B + )]
— w[nsin(y + ¢) + ¢ cos(B + )1, (2.12)
€ = —(C+Ar. )¢ = =), (2.13)
e =M —Ar )¢ = ¢ (2.14)

This results into equations being geometrically nonlinear. Here, v, w and é are
axial, chord-wise bending, span-wise bending, and elastic twist, respectively; 6 is the
blade pitch; n and ¢ are the cross-sectional coordinates; and A7 is the cross-sectional
warping function. Also, dA)’ =¢' —whV'andu = u, — % fOX % +wHdx.

Based on these assumptions and strain-displacement relationships (Eqs.2.12—
2.14), Hamilton’s principle is used to derive the system of equations of motion. For
a conservative system, it states that the true motion of a system, between prescribed
initial conditions at time v and final conditions at time 1/,, is that particular motion
for which the time integral for the difference between potential and kinetic energies
is a minimum. The generalized Hamilton’s principle applicable to nonconservative
systems is expressed as

V2
I = U — 86T —§W)dyr =0, (2.15)
12

where §U, 8T, and 6W are virtual variations of strain energy, kinetic energy, and
virtual work done by external force, respectively, and § I represents the total potential
of the system.
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The strain energy of the system can be written as follows:

1 R
U= 5/ / /(ame“ + Opery + Orcerg) dn di dix. (2.16)
0 A

On addition of the smart layer, both the strain and kinetic energy of the existing struc-
ture are modified but the virtual work done due to applied forces remains unchanged.
The kinetic and strain energy terms of the isotropic beam are defined in Appendix A.
The nonlinear equations listed in Appendix A have been derived by Hodges and
Dowell for elastic bending and torsion of twisted nonuniform rotor blades. Appen-
dix B lists the section properties used in Appendix A. This theory was used by Epps
and Chandra [11] to validate the rotating frequencies obtained by experiments. Also,
Ganguli et al. [12] have correlated the analysis with vibration data and found that
the analysis predicts vibration trends properly.

2.4.2 Smart Structure Expressions

The use of piezoceramic actuators changes the strain energy of the rotor blade. In
the framework of above-mentioned assumptions, the equations of motion for a rotor
blade/beam with surface-bonded piezoceramic actuators are derived. This derivation
is generic for axial, bending, and torsion actuation and could be used as per the
requirement of the application. The equations are used in Chaps. 8—11 for the active
twist rotor. On using the variation of strain energy in the Hamilton’s principle, we
get

1 R
8U = E/ //(oxerExx + Oypb€xy + 0xc 06 ) dndl dx. (2.17)
0 Ja

The induced strains due to the bonding of piezoelectric layer were discussed in Eq. 2.7
and now superposition of these two constitutive equations will yield the derivation
of smart terms.

1 R
U= 5/ //{axx(exx—A11)+axn(exn—klz)+ax;(ex;—?m)}dnd;“ dx. (2.18)
0 A

Here, we utilize only A1 and X, in the above equation. The required bending and
axial actuation can be obtained from A;; and shear/torsion actuation is achievable
from Aqs.

where Se, = Su' + V8V +wow + (> + (O + ¢))8P' — rrdd”
— [ncos(@ + @) — ¢ sin(@o + )18V + w'8¢)
— [nsin(@o + @) + ¢ cos(fy + ) 1w — v'5), (2.19)


http://dx.doi.org/10.1007/978-3-319-24768-7_8
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Sexy = —C 8¢, (2.20)
Sexe =1 8¢, (2.21)
where ¢ =§+?—;andﬁ=n—%.

Performing the variation in strains and then nondimensionalizing with respect to
‘R’ (Radius of rotor), the following smart strain energy contributions are obtained:

1 1
U, .= —/ Apdx, (2.22)
2 Jo
1 /! ~
Ud;’ = 5/ {A; B0+ ¢ +w V') — Ay} dx, (2.23)
0

1! . .
U,n= > / {—As(costy — ¢ sinby) + As(sinfy + ¢ cosby) + Agw'}dx,
0

1 1
Ugr =3 /O —As dx, (2.24)

1! . .
U = 5/ {[A2(sin By + P cosBy) + Az(cosBy — ¢ sinby)] v’
0
+[—Ax(cosfy — sinby) + As(sinby + G cosby)] w'ldx, (2.25)
1 /! A o
U, = 5/ [—A>(sinfy + ¢ cosGy)] — Asz(cosby — ¢ sinby)] dx. (2.26)
0

Hence, evaluating and deriving the new terms which arise due to surface bonding
of the smart layer with appropriate substitution by section integrals yields

3Usmar
my Qz R3

1
_ / (Ao (Gl) + Ay (B + 658/
0

1+ (—Ay cos(By + @) + Az sin(@y + @) (8" + w'8¢)
+ (—As sin(@ + @) — Az cos(@y + B)) (Gw” — V" 5¢)
— (A4 8¢') — (A5 84")] dx, (2.27)

where Ao, Ay, Az, A3, A4 and As are the section properties due to piezoceramic
actuation and are defined in Appendix B. The above derivation is generic for a beam
undergoing displacements (axial, transverse bending, inplane bending, and torsion);
also, it is generalized for axial, bending, and torsional actuation. Ay and A; contribute
to axial actuation, A3 to bending actuation, and A4 to shear actuation.
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2.4.3 Identification of Smart Terms

The governing equations derived in Eq. 2.27 and shown in Appendix A contain a very
large number of terms and are complicated to understand as they are derived for a
generic cross-sectional beam with pretwist. To explain the physical significance, a
symmetric section is taken as an example with 6y and 8, assumed to be zero. This
simulates a rotating beam. In this case, the equations become simpler and hence the
following element stiffness, damping, and mass matrices are obtained. The linear

and nonlinear element force vectors are also shown for the same case.

[ Jo EAH,TH, ds 0 0 0
Jo ELHTH ds
0 +Jy FAH'TH'ds| [} AsH'TH ds +Jy AsH'T Hyds
—fol mHT Hds
K- 0 Jo AsH'TH ds | ] ll:"IyH//TH//ds 0
2 +Jy FAH'TH ds
Jo mkn2® — knt® H] Hyds
0 — Jo AsH'T Hyds 0 +Jy GIH] Hds
i + 1y AH Hids
0 — Jy 2mH," H,ds 0 0
cl Jo 2mH," H,ds 0 0 0
2 0 0 0 0
0 0 0 0
o mH,"” H,ds 0 0 0
0 u uds
- 0 Jo mHT Hds 0 0
2 0 0 Jy mHT Hds 0 ’
0 0 0 Jo mho H] Hyds
fol mxH,Tds + fol AoH,Tds
1 0
FL=7> — Jo AsH'Tds '

+ fol Aq H(;gT

(2.28)

. (229

(2.30)

2.31)
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— |y GI¢'WHTds — [} (EL, — EI,)yw'¢H Tds
+ fol AW +wYH Tds + fol Zm[fo)C 0V +wWw)dEIHT ds

1 — Jy@v [P midg)HTds
FnL =5 — [ GI v HTas = [fow [Tmide)H'T ds - (2.32)
— JoEL — ELyw'W Hd{ds
- fol(EAkAzzz:/ue, + GJw,v”)Hd%Tds
1 R 1 AT
+f0 Awv H¢3 ds-i—fo Azw ¢H¢3ds

The first, second, third, and fourth row and column in the matrix K and rows in F
represent the axial, lag, flap, and torsion displacements. The off-diagonal terms in K
introduce couplings between the displacements. Depending on the type of actuation
given, the smart terms get activated. For a symmetric section, Ay and A get activated
in extension actuation, Az in bending actuation, and A4 in torsion actuation. It should
be noted that A, and As are zero for a symmetric section. For bending actuation (As3),
lag bending—torsion and flap bending—torsion couplings are introduced through the
stiffness matrix. Linear forcing is introduced into flap and lag bending equations
and nonlinear forcing in the torsion equation. For torsion actuation (Ay4), lag—flap
bending coupling is introduced through the stiffness matrix and a linear forcing in
the torsion equation.

Here, Fs(x) = flx mx d& is the centrifugal axial force due to rotation. We observe
that smart actuation terms cause inplane bending—transverse bending coupling and
inplane bending—torsion coupling through the stiffness terms. The mass matrix does
not contain any specific smart structure terms. The damping matrix shows the pres-
ence of the antisymmetric Coriolis effect, but no influence of smart terms. The linear
force vector shows the influence of smart actuation on the axial, transverse bend-
ing, and torsion directions. Nonlinear smart terms are present in the force vector for
inplane bending and torsion forces. The above equations of motion can be used to
identify terms that can be tailored by designing a beam cross section to maximize
the smart actuation effect and minimize the centrifugal stiffening effect.

2.4.4 Finite Element—Spatial Discretization

Each of the N beam elements has fifteen degrees of freedom as shown in Fig.2.13.
These degrees of freedom are distributed over five element nodes (2 boundary nodes
and 3 interior nodes). There are six degrees of freedom at each element boundary
node. These six degrees of freedom correspond to u, v, v, w, w’, and a There are
two internal nodes for axial deflection # and one internal node for elastic twist
5. Between elements, there is continuity of displacements and slope for flap and
lag bending deflections, and continuity of displacement for elastic twist and axial
deflections. These elements ensure physically consistent linear variations of bending
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Fig. 2.13 The 15-DOF finite element used for spatial discretization of rotor blade

moments and torsional moment, and quadratic variation of axial force within each
element. Using the interpolating polynomials, the distribution of deflections over a
beam element is expressed in terms of the elemental nodal displacements q;. The
shape functions used are Hermite polynomials for lag and flap bending, and Lagrange
polynomials for axial and torsion deflection. For the itk beam element, the elemental
nodal displacement vector is defined as

, N
q; = [u1, uz, u3, ua, vi, Vi, v, vy, Wi, Wi, wo, Wy, d1, ¢2, $31. (2.33)

Assembling the blade finite element equations and applying boundary conditions
results in Eq. (2.16) becoming,

M) + Cq(¥) + Kq(y) =F(q. 4. ¥). (2.34)

The nodal displacement vector q is a function of time and all nonlinear terms have
been moved into the force vector on the right-hand side. The spatial functionality has
been removed using finite element discretization and partial differential equations
have been converted into ordinary differential equations.

2.4.5 Normal Mode Transformation

The finite element equations representing each rotor blade are transformed to normal
mode space for efficient solution of blade response using modal expansion. Typically,
6—10 modes are used. The displacements are expressed in terms of normal modes as

q= op. (2.35)
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Substituting Eq.2.35 into Eq.2.34 leads to the normal mode equations of the
following form:

Mp(¥) + Cp(¥) + Kp(¥) = F(p, p, ¥). (2.36)

These equations are nonlinear ODEs but their dimensions are much reduced com-
pared to the full finite element Eq. 2.34. The normal mode mass, stiffness and damping
matrix, and force vectors are defined as

M=&"M®, C=d"Co, K=d"KP, F=>'F. (2.37)
The mode shapes or eigen vectors in Eqs.2.35 and 2.37 are obtained by solving the
general eigenvalue problem:

K,® = *M, . (2.38)

Here, w are the natural frequencies of the rotating blade.

2.4.6 Finite Element—Temporal Discretization

The blade normal mode Eq.2.36 can be written in the following variational form:

2w _ _ _ _
/0 5p" ( M) + Ch(y) +Rp(w) —Fp.p.¥) ) dy = 0. (239)

Integrating Eq.2.39 by parts, we obtain

/Zn [3p]7 [F—C_}')—I_(p]dw _ [3p]7 [1\7[1')]

o sp Mp sp 0
Since the helicopter rotor is a periodic system with a time period of one revolution,

we have p(0) = p(27). Imposing periodic boundary conditions on Eq.2.40 results

in the right-hand side becoming zero and yields the following system of first-order
ordinary differential equations:

2
(2.40)

0

2
/ 8y" Qdyr =0, (2.41)
0

where

_|p . F—C_p—l_(p
[g)- o[ )
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The nonlinear, periodic, ordinary differential equations are then solved for blade
steady response using the finite element in time in conjunction with Newton—Raphson
method [13]. Discretizing Eq. 2.41 over N, time elements around the rotor disk (where
Y1 =0, ¥n,,, = 27) and taking first-order Taylor series expansion about the steady-
state value yo = [py pg1" yields the following algebraic equations.

Vit

N Yis1 N

> / 8y} Qi(yo + Ay)dyr = D / 8y/ [Qi (yo) + Kii (Yo) Ayldy = 0,
i= i i= ‘//

1 1 (2.42)

i

where

Here, K; is the tangential stiffness matrix for time element i and Q; is the load
vector. Behavior of the modal displacement vector can be approximated in terms of
shape functions and a vector of temporal nodal coordinates as follows:

p;(¥) = H(s)r;, (2.43)

where H(s) are time shape functions (in terms of the element coordinate s) used for
approximating the normal mode coordinate p. Here r is the temporal nodal coordi-
nate. In this book, mixed Lagrange—Hermite polynomials are used for interpolation
within the time element [14]. Substituting Eq.2.43 and its derivative into Eq.2.42
yields the time discretized blade response.

Q¢ + KAr® =0, (2.44)

where

ArC = Z Ar;.

i=I

Solving the above equations iteratively yields the blade steady response.
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2.5 Aerodynamic Models

The aerodynamic environment of a helicopter rotor in forward flight is extremely
complex involving transonic flow on advancing blades and reversed flow on retreating
blades. The blade is also exposed to unsteady variations in angle of attack and free-
stream velocity. Because of the complexity of the flow, accurate modeling of the
unsteady flow field on the blade requires a sophisticated analysis. This section deals
with aerodynamic loads due to blade/airfoil motion only. The aerodynamic loads
enter the blade governing equations through their contribution to the external virtual
work in Hamilton’s principle.

The aerodynamic modeling of a rotor can be divided into two parts: a local blade
element model and a global wake model. In this book, an unsteady aerodynamic
model proposed by Leishman and Beddoes [15] is used to estimate the aerodynamic
loads due to blade motion. The flow is assumed to be under a linear attached potential
flow regime. Separated flow and dynamic stall effects are not modeled.

2.5.1 Attached Flow Formulation

The attached flow formulation is based on the work of Leishman and Beddoes
[16]. This model implicitly includes the effects of compressibility. Also, this model
requires few empirical constants which can be derived from static airfoil data. In
this formulation, the unsteady lift, drag, and pitching moment are assumed to con-
sist of circulatory and impulsive (noncirculatory) components. These airloads are
calculated using an indicial response representation implemented in the form of a
finite-difference discretization of integral equations. This method determines the
aerodynamic loadings due to a step change in the downwash at the three-quarter
chord position. The circulatory loads include the effects of the near shed wake. The
impulsive loads are due to the presence of propagating pressure waves.

2.5.2 Reverse Flow

In forward flight, an inboard region of the retreating side of the rotor disk experiences
reverse flow. In this reverse flow region, the forward speed component of the total
velocity relative to the blade becomes larger than the velocity component due to the
rotational speed. Therefore, the velocity relative to the blade is directed from the
trailing edge to the leading edge. If the blade dynamics are neglected, the reverse
flow region is given by Eq.2.45, which represents a circular region (Fig.2.14).

r < —p siny. (2.45)
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Fig. 2.14 Reverse flow region

The reverse flow boundary is thus a circle of diameter p, centered atr = /2 for
the azimuth station of 270° on the retreating side. Reverse flow causes the aerody-
namic center of the airfoil to shift from x,, to (c — x,.), where x,. is the aerodynamic
center of the airfoil.

2.5.3 Inflow and Rotor Wake Modeling

The wake behind the rotor disk determines the induced inflow distribution over the
disk and plays a very important role in the prediction of blade response, vibration,
and rotor performance. An accurate modeling of the induced inflow is essential,
especially at low-speed flight condition. At low speed, the wake stays close to the
disk and has a dominating influence on blade airloads. There are many wake models
available with varying levels of complexity and accuracy. Two inflow models are
used. One is the simple linear inflow model and the other is the elaborate free wake
model.
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Linear Inflow Model

In a linear inflow model, the induced velocities are assumed to vary linearly across
the rotor disk:

Cr/2
/ )\'2 + MZ
where A is the total inflow ratio, A; is the induced inflow ratio, and «; is the forward

tilt of the rotor disk plane. There are many forms of this model available in literature.
One form is called Drees [17] model, where k, and « are defined as

A = tanag + A; = u tano + (I + kxx cosyr + kyx sinyr),  (2.46)

4 A\ A
Ky == | (1= 1.8u2 1+(—) - =,
3 ( ) 7 7
Ky = =2/ (2.47)

This simple inflow model captures the global effects of rotor wake and is usually
satisfactory for high-speed flight condition, more so for rotor performance and stabil-
ity predictions. However, this model becomes much less accurate at low-speed flight
or hover condition when the inflow distribution becomes highly nonuniform over the
rotor disk. The linear inflow model can be easily implemented in rotor aeroelastic
analysis due to its simplicity.

Free Wake Model

The free wake model used was developed by Bagai and Leishman [17]. The wake
is divided into three distinct regions: near wake, rolling-up wake, and far wake.
The near wake is of prime importance to its generating blade due to its proximity.
The most difficult part of the wake analysis is to calculate the wake geometry. In
the present wake model, the wake is modeled as a finite number of vortex filaments,
which are trailed and shed into the wake. These filaments are convected with the local
flow velocity, which consists of the free-stream velocity and the wake self-induced
velocity. Since the self-induced velocity is, in turn, a function of the wake geometry,
the analysis is highly nonlinear in nature. A rigid wake geometry, which consists of a
simple helix convected by the free stream and the mean inflow, is used to initialize the
calculation, and then the wake geometry evolves until it is stabilized. The vorticity
strength is determined by the bound circulation which in turn is calculated from the
lift distribution along the rotor blade. Once the vorticity strength and wake geometry
are known, the induced velocity can be evaluated using the Biot—Savart law. Free
wake models can capture nonuniform inflow distributions expected at low forward
speeds but at the cost of much greater computational effort compared to linear inflow
models.
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2.5.4 Dynamic Stall Formulation

This is characterized by separation at the leading edge and the shedding of con-
centrated vorticity from the leading edge region. The vorticity is swept downstream
chord-wise and significantly affects the load distribution on the airfoil. The vortex
convection rate is calculated using a nondimensional time parameter based on the dis-
tance traveled by the airfoil in terms of semi-chord length. By monitoring the excess
lift and the center of pressure movement, the vortex-induced pitching moment is
computed. As the vortex reaches the trailing edge, the model assumes rapid decay
of the increment lift.

Inflow distribution over the rotor disk can be computed using either a simple
uniform linear inflow model or a free wake model. Typically, the actual wake of a
rotor is quite nonuniform and requires a free wake model for accurate vibratory load
predictions.

2.6 Blade and Hub Loads

Once the blade steady-state response is obtained, the loads acting at any section of
the blade are calculated by summation of the aerodynamic and inertial loads. The
blade root loads are given by

FxR Lu
FyR R Lv
FzR Lw

= dx. 2.48
M. /0 Lo+ Lo+ M, [P (2:48)
Mg L,w—Ly,(x+u)+ M,
MZR _LuV+Lv(x+M) +MW

Here, L,, L,, and L,, are the forces acting on element dx along the x, y, and z
directions and M,,, M,,, and M,, are the moments along the x, y, and z directions,
respectively. The section loads are in the rotating frame and are directed toward the
undeformed blade axes. In the fixed frame, the rotor hub loads can be expressed as

Np

FE@) =D (Fl'cosyr, — FJ'sing,, — FI"cosymBp),

m=1

Np
FL () = D (FY'siny, + FJ'cosy — FI"sinyn ),

m=1

Ny
FJ () =D (F'B, + F), (2.49)

m=1
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Np
MY () =D (M]'cosy, — M}'sinyr, — MY cosyBy),
m=1
Npy
H _ m: m m:
MY () = D (MJ'sing,, + M cosy, — M'siny,, B,),

m=1

Ny
MY () =D (MI'B, + MI").

m=1

The hub loads are expanded in a Fourier series and the steady and harmonic
components are calculated. The steady hub loads are required to calculate the steady
rotor forces which are in turn utilized for trim equilibrium equations to obtain the trim
controls. After trim controls have been calculated, the blade response for the current
trim solution is calculated using an iterative process. For a N,-bladed rotor, the fixed
frame hub loads contain only steady and integer multiples of N,/rev harmonics. In
general, the Nj/rev harmonics are the dominant vibratory components. The analysis
of hub loads is needed for both trim and vibration predictions.

2.6.1 Coupled Trim

Once the hub loads are obtained, the helicopter needs to be trimmed. Trim is defined
as the condition where the steady forces and moments acting on the helicopter sum
to zero and simulate the condition for steady level flight. The trim solution for the
helicopter involves finding the pilot control angles 6 at which the six steady forces
and moments acting on the helicopter are zeros:

F©) =0, (2.50)

where

F" =[F, F», F3, Fy, Fs, Fg). (2.51)

The following equations are derived from the force equilibrium of a helicopter in
steady level flight.

F1 = DpcosOpp + Hcosoy — T'sinay,
F, = Yp + Ycosgs + Tsingg + Ty,
F3 = Tcosagcosps — Dpsinfpp + Hsinay — Ysingg — W — Ly,
Fy = Mg+ Myr + YF(flCOS(ps + Yegsingy) + W(h_Sin¢s — Yeg€0sds) + Ty (h — 21r), (2.52)
Fs = Mygr + Myp + W (hsinag — x¢cgcosag) — D (hcos(as + Opp)
+xchin(as +60Fp)) + Lt (Xpe — Xcg)s
Fo = M:gp + Mp + Tir (Xer — xc'g) - DFY(rgcosas - YxchOSgbs,
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where F), F,, and F3 are, respectively, the vehicle force equilibrium residuals in
the X, Y, and Z directions in the fuselage axes; and Fy, Fs, and Fg are the vehicle
rolling, pitching, and yawing moment equilibrium residuals about the vehicle cg,
respectively. Also, H, Y, and T are, respectively, rotor drag, side force, and thrust;
and Dp, Y, and W are, respectively, fuselage drag, side force, and gross weight.
The terms T;,, x;,, and 7z, denote the tail rotor thrust, the distance of the tail rotor
hub behind the vehicle cg, and the distance of the tail rotor hub above the vehicle cg.
The horizontal tail is located at a distance x;, behind the vehicle cg. The terms in the
three moment, M, g and M, r, denote the rotor and fuselage moments, respectively.
The forces act on the rotor hub and the moments act about the rotor hub. In addition,
Xce and y., and h are, respectively, the relative location of the rotor hub center
with respect to the vehicle center of gravity in the X, Yr, and Zp directions; o
(positive for forward flight) and ¢ (positive advancing down) are the longitudinal
and lateral shaft tilts, respectively, and 6 p is the flight path angle relative to an axis
perpendicular to the gravity vector.
The forces acting on the fuselage are calculated using

be f 2

Dy =Y2tre
F 6ao A"

Y Np

Yp = 6a_oCyFM2’
N,

MxF = %melﬁuza

VCJI\C’Z (2.53)
MyF = @CmyFH27

Y Np
M,r = 6Cl—o_cszM2,

be 2 2
W = 3a_o_(CW = Cirp/2)p”,

where y is the lock number, N, is the number of blades, a is the reference lift curve
slope, o is the solidity, /A is the fuselage flat plate area, C, r is the fuselage side force
coefficient, C,,, r is the fuselage yawing moment coefficient, Cy is the helicopter
weight coefficient, and C;r is the lift coefficient.
For propulsive trim, the unknown quantities to be determined from the equilibrium
equations are
6" = las, ¢, 60, ic, 1, Ouail], (2.54)

where the rotor trim parameters 6y, 0;., and 6;; govern the main rotor blade.

The trim equations are solved iteratively using a Newton—Raphson procedure. A
coupled trim procedure is carried out to solve the blade response, pilot input trim
controls, and vehicle orientation, simultaneously. This procedure is called coupled
trim since the blade response Eq.2.44 and trim Eq.2.50 are simultaneously solved
thereby accounting for the influence of elastic blade deflections on the rotor steady
forces:
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A&——[E}l F(6;) (2.55)
T 30 Jgg ’

For a converged solution, the A@ and F are zero. The controls are updated as
follows:
01 =0, + AG;. (2.56)

The trim Jacobian, [0 F/d6], is calculated using a forward finite-difference
approximation at 6 = 6y, and it is generally held constant throughout the analy-
sis to save computational time.

The coupled trim is solved iteratively until convergence. The coupled trim pro-
cedure is essential for elastically coupled blades since elastic deflections play an
important role in the net steady forces and moments generated by the rotor.

2.7 Organization of Aeroelastic Analysis

Figure2.15 shows the flow of the aeroelastic formulation and analysis which was
discussed in previous sections. Starting with the input to the analysis, structural
modeling is carried out as the first step. The governing differential equations thus
obtained are space and time dependent. These equations are nonlinear and periodic in
nature. These equations are discretized using FEM (Finite element method) in space
and rotating blade natural frequencies and mode shapes are found. Normal mode
transformation is done to reduce the number of degrees of freedom and thus reduce
the computational time. Aerodynamic modeling is the next major step. Here, the
type of aerodynamic model is decided and the governing equations are discretized in
time. Thus, both space and time dependencies are removed, resulting into nonlinear,
algebraic equations which are solved using the Newton—Raphson method. Blade
loads and the helicopter steady loads are calculated which are in turn required for
performing trim calculations. Blade steady-state response, vehicle orientation, and
trim control angles are solved for iteratively using a coupled trim procedure.

2.8 Summary

The baseline aeroelastic analysis for a helicopter rotor is discussed in this chapter
along with the basic physics of piezoelectric materials. The approaches for determin-
ing the blade response, blade and hub loads, and vehicle trim are highlighted. The
influence of piezoelectric material on the smart rotor equations is highlighted. These
equations are used for the active twist rotor. For the active flap rotor, the ‘non-smart’
equations will be used and the piezoelectric actuator is addressed separately.



References 69

Structural model

FEM in space

Rotating blade
natural frequencies

Normal mode transformation

Aerodynamic modeling

Rotor response, blade loads
and helicopter steady loads

FEM in time

Trim

Blade steady response
& converged trim solution

Fig. 2.15 Organization of aeroelastic analysis
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