
Chapter 2
Modeling and Simulation in Service
of Energy Policy: The Challenges

People would rather believe than know
—Edward O. Wilson

Modeling and simulation have long and well served the actors and various decision
makers in the domain of energy policy. Various modeling approaches and models
have been applied to address a variety of energy policy related issues. However, the
journey continues. This chapter provides an overview of these modeling approaches
and models identifying their key challenges in the face of emerging issues.
The identified energy policy modeling related issues include the characterization
of energy systems as complex dynamic systems with numerous uncertainties,
nonlinearities, time lags, and intertwined feedback loops.

2.1 Energy Systems Modeling and Its Challenges

By and large the modeling and simulation community has successfully used a
variety of methods and techniques to serve energy policy needs. For instance,

• Linear programming and dynamic programing: to perform capacity expansion
and energy-economy analysis [e.g., WASP model (Foel 1985), MARKAL
model (Fishbone and Abilock 1981), and RES model (Howells et al. 2011)]

• Mixed-integer linear program: to optimize distributed energy resource system
[e.g., MILP model (Omu et al. 2013)]

• Econometric methods: to produce annual energy outlook and the role of carbon
capture and storage [NEMS model (Kydes and Shah 1997) and SGM model
(Praetorius and Schumacher 2009)]

• Partial equilibrium model: to develop the US Climate Action Plan [e.g., IDEAS
model (Wood and Geinzer 1997)]

• Optimization: to analyze energy–economy interactions and optimize the options
for SO2 control (e.g., Meier and Mubayi’s (1983) model and Islas and Grande’s
(2007) model)
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• Scenario analysis: to analyze energy policies (e.g., Munasinghe and Meier’s
(1993) model

• Agent-based modeling: to provide quantitative support for climate policy for-
mulation and evaluation [e.g., ENGAGE model (Wang et al. 2013)]

have been applied to address various energy policy related issues, be it in a
developing or a developed region or country. Despite the demonstrated applicability
and success of these operational methods over the past several decades (Dyner and
Larsen 2001), emerging issues related to the energy industry (e.g., widespread
deregulated electricity markets and industry, climate change and environmental
concerns, multiple stakeholders, and technological disruptions) require new capa-
bilities of modeling methods to fully capture the dynamics of energy systems.
These energy system modeling1 challenges include modeling the existence of
uncertainties (e.g., fuel prices), time delays (e.g., power plant construction time
lags), nonlinear causal relationships (e.g., between changes in electricity price and
its industrial use), and interacting feedback loops (e.g., additional production ca-
pacity brings in more revenue for the firm, which, in turn, leads to increased
production capacity) in any energy system.

2.1.1 Uncertainties Abound

In general, widespread deregulation and privatization in the energy sector of the
economies has created opportunities as well as challenges for private investors
including independent power producers (IPPs). In the case of developing and
emerging nations including India, China, and Brazil, growing demand and con-
sumption of energy create imbalances providing further impetus for energy sector
investments (IEA 2012). However, the dynamics of the much desired stock of
“investments” in the energy sector are uncertain:

i. The nature and life of incentives and rules keep changing. Although the
learning aspects of these changes are desired, the resulting often costly, lengthy,
and uncertain litigations deter potential new investments in the energy sector of
the host country (e.g., Eberhard and Gratwick 2007).

ii. Technological disruptions can severely impact investments. Costly retrofitting
or installation of new technologies, say for monitoring and control of electricity
production related environmental emissions is becoming common and is highly
unpredictable.

iii. The availability and prices of fuels are rarely in smooth order. This creates
operational and financial difficulties for the energy projects.

1The basic premise of modeling a system is that we are able to identify the forces (i.e., components
or structures of a system) behind the problematic behavior of this system (e.g., the supply of
electricity lags or leads the demand). By controlling/managing the underlying structures of a
system, the problematic behavior can be improved.
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iv. Deregulation has expanded the nature and dimensions of stakeholders.
Compared with the almost monopolized status of regulated regimes, now
multiple stakeholders including competitors, regulators, traders, large institu-
tional investors, shareholders, local communities, end-users, and environment
lobbyists are involved in energy sector investments. Not only are they “many
more” but these stakeholders often come with conflicting objectives, making
energy policy decisions even more complex.

v. Perceptions of people change and sometimes in relatively short order. For
instance, after the Fukushima nuclear accident in Japan in 2011, Germany and
Switzerland decided relatively quickly to close their nuclear power plants (Larsen
and Arrango 2013). Granted that the unpredictability of such external events
is known, the ability of decision makers to conceive and explore such scenarios
can better prepare them to deal with such uncertainties (Wang et al. 2013).

2.1.2 Existence of Nonlinear Relationships Is a Reality

In energy systems, there exist nonlinear relationships between variables of the
system that can hardly be analyzed with traditional econometric methods and linear
programming techniques. For instance, when the price of electricity decreases, its
industrial usage can see some growth (as is shown in Fig. 2.1). However, after a
while, when even the price continues to fall, industrial usage of electricity will
saturate (e.g., because the production reaches its maximum capacity). Likewise, the
relationship between an operator’s overtime work and her productivity is nonlinear;
in the beginning, her productivity can increase (e.g., due to learning) but if she
continues to overwork for long then her productivity will fall or even complete
collapse, the burn-out phenomenon, can occur. Productivity gained by experienced
power plant operators rarely follows a proportional path: more experience leads to
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Fig. 2.1 Nonlinear relationship between industrial usage and price of electricity
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increased productivity but after some time productivity reaches a plateau. Such
nonlinear relationships abound in sociotechnical systems such as energy systems.
Therefore, the utility of policy-supporting analysis of an energy system but without
an explicit representation and modeling of its critical nonlinear relationships is
limited, at best.

2.1.3 Time Lags Can’t Be Ignored

Delays are inherent in energy systems. Consider the case of a new investor in, say a
gas-fired power plant. The major milestones of this new project, including approval
of the application, securing project funding, construction, testing, and commis-
sioning of the power plant, not only take time but often are characterized by delays.
In general, these delays are of two kinds: (i) material delays [e.g., delay in the
construction of power plants; e.g., on average it takes 3–4 years to build thermal
power plants and 6–10 years for nuclear and hydro (reservoir-based) power plants
(IAEA 1993)], and (ii) information delays (e.g., delay in the notice of approval of
the application and commissioning permit, etc.). These delays have severe impli-
cations not only for the power plant investors themselves (e.g., delayed operations
mean much delayed earnings leading to, say shareholders’ discomfort) but also for
the relevant energy planners and decision makers (e.g., the concerns of off-the-grid
industry and population). Therefore, the modeling method for energy policy should
have the capability to account for the potential dynamics of these inherent time lags
of energy systems.

2.1.4 Causation Not Correlation Informs Strategic
Decisions

Indeed energy policy decisions are strategic decisions: these decisions dictate the
nature of the future energy supply mix and influence the associated economics for
the region. It is the information about the causal nature of the relationships between
the variables of the energy systems that is useful for enacting an integrated energy
policy. For instance, energy policy makers are interested in knowing the influence
(s) of the various stocks of the energy system, such as how the stock of “electricity
capital” (i.e., various power plants) impacts electricity prices over time. Or which
electricity supply mix can provide affordable and cleaner electricity? What would
be the long-term impact of certain policy regulations and incentives? Therefore, the
candidate modeling method for energy policy should not only be able to represent
such causal relationships in the model but also provide information on the dynamics
of these influences.
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2.1.5 Energy Systems Are Essentially Feedback Systems

Increased economic activities lead to higher electricity demand. Higher electricity
demand requires new investments. New investments, after some delays, provide
more electricity to close the loop (i.e., either the demand is fulfilled or the cycle,
demand → investments → supply → demand, continues until the demand is fully
met). Such a cycle is essentially a feedback loop where three variables of an energy
system, demand, investments, and supply, are responsible for the resulting dynamic
behavior of this feedback loop (as is shown in Fig. 2.2).

There exist several such feedback loops in an energy system and they are interact
with each other to produce the dynamic behavior of the energy system (e.g.,
a particular trajectory of electricity prices, environmental emissions, the stock of
renewable technologies (e.g., windmills), sector-related employment, etc.), much
needed information for the decision makers to enact a systematic and integrated
energy policy. Traditional modeling approaches are hardly adequate for providing
such a feedback-oriented analysis of the energy systems to the energy policy
decision makers.

2.2 Summary

Overall, modeling and simulation have well served the energy domain for well
several decades.

The existence of nonlinear and uncertainty intensive variables, several inherent
time lags, and intertwined feedback loops in an energy system pose serious mod-
eling challenges. Now, the increasing liberalization and privatization, heightened
emphasis on environmental issues including global warming and climate change,
complexity of multidimensional and conflicting interests of stakeholders, and
unprecedented technological disruptions have only added to the complexity of the
task for energy policy decision makers across the globe. In the context of these
forceful developments, the traditional econometric methods and linear
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programming methods alone are not adequate to deal with the complex dynamic
nature of energy policy issues. How do we deal with such complex systems?
System dynamics methodology (Forrester 1961) rises to this challenge. Chapter 3,
provides details on this promising assertion.
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