Chapter 2
MPC with No Model Uncertainty

2.1 Problem Description

This section provides a review of some of the key concepts and techniques in classical
MPC. Here the term “classical MPC” refers to a class of control problems involving
linear time invariant (LTT) systems whose dynamics are described by a discrete time
model that is not subject to any uncertainty, either in the form of unknown additive
disturbances or imprecise knowledge of the system parameters. In the first instance
the assumption will be made that the system dynamics can be described in terms of

the LTT state-space model

Xp+1 = Axg + Buy (2.1a)

yi = Caxy (2.1b)

where x; € R™, uy € R™, y, € R"™ are, respectively, the system state, the control
input and the system output, and k is the discrete time index. If the system to be con-
trolled is described by a model with continuous time dynamics (such as an ordinary
differential equation), then the implicit assumption is made here that the controller
can be implemented as a sampled data system and that (2.1a) defines the discrete
time dynamics relating the samples of the system state to those of its control inputs.

Assumption 2.1 Unless otherwise stated, the state x of the system (2.1a) is assumed
to be measured and made available to the controller at each sampling instant k =
0,1,...

The controlled system is also assumed to be subject to linear constraints. In gen-
eral these may involve both states and inputs and are expressed as a set of linear
inequalities

Fx+Gu<1 2.2)
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where F € R'¢*" G € R"*™ and the inequality applies elementwise. We
denote by 1 a vector with elements equal to unity, the dimension of which is context
dependent, i.e. 1 = [1 --- 117 € R"C in (2.2). Setting F or G to zero results in
constraints on inputs or states alone. A feasible pair (xi, uy) or feasible sequence
{(x0, uo), (x1,u1), ...} for (2.2) is any pair or sequence satisfying (2.2). The con-
straints in (2.2) are symmetric if (—xj, —uy) is feasible whenever (xi, uy) is feasible,
and non-symmetric otherwise. Although the form of (2.2) does not encompass con-
straints involving states or inputs at more than one sampling instant (such as, for
example rate constraints or more general dynamic constraints), these can be handled
through a suitable and obvious extension of the results to be presented.

The classical regulation problem is concerned with the design of a controller that
drives the system state to some desired reference point using an acceptable amount
of control effort. For the case that the state is to be steered to the origin, the controller
performance is quantified conveniently for this type of problem by a quadratic cost
index of the form

J o, fuosur,uz ) = 3 (Il + luellf) 23)
k=0

Here ||v ”?9 denotes the quadratic form v” Sv forany v € R and § = ST e R"*"v,
and Q, R are weighting matrices that specify the emphasis placed on particular states
and inputs in the cost. We assume that R is a symmetric positive-definite matrix (i.e.
the eigenvalues of R are real and strictly positive, denoted R > 0) and that Q is
symmetric and positive semidefinite (all eigenvalues of Q are real and non-negative,
denoted Q > 0). This allows, for example, the choice 0 = C TQyC for some
positive-definite matrix Q, which corresponds to the case that the output vector, y,
rather than the state, x, is to be steered to the origin. At time k, the optimal value
of the cost (2.3) with respect to minimization over admissible control sequences
{u, Uk41, U425 - - .} is denoted

J*(xp) = min J(xk, {uk,uk+1,uk+2...}).
Uk U415 Uk 42500
This problem formulation leads to an optimal control problem whereby the controller
is required to minimize at time k the performance cost (2.3) subject to the constraints
(2.2). To ensure that the optimal value of the cost is well defined, we assume that the
state of the model (2.1) is stabilizable and observable.

Assumption 2.2 In the system model (2.1) and cost (2.3), the pair (A, B) is stabi-
lizable, the pair (A, Q) is observable, and R is positive-definite.

Given the linear nature of the controlled system, the problem of setpoint tracking
(in which the output y is to be steered to a given constant setpoint) can be converted
into the regulation problem considered here by redefining the state of (2.1a) in terms
of the deviation from a desired steady-state value. The more general case of tracking
a time-varying setpoint (e.g. a ramp or sinusoidal signal) can also be tackled within
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the framework outlined here provided the setpoint can itself be generated by applying
a constant reference signal to a system with known LTI dynamics.

2.2 The Unconstrained Optimum

The problem of minimizing the quadratic cost of (2.3) in the unconstrained case
(i.e. when F = 0 and G = 0 in (2.2)) is addressed by Linear Quadratic (LQ)
optimal control, which forms an extension of the calculus of variations. The solution
is usually obtained either using Pontryagin’s Maximum Principle [1] or Dynamic
Programming and the recursive Bellman equation [2]. Rather than replicating these
solution methods, here we first characterize the optimal linear state feedback law that
minimizes the cost of (2.3), and later show (in Sect. 2.7) through a lifting formulation
that this control law is indeed optimal over all input sequences.

We first obtain an expression for the cost under linear feedback, u = Kx, for an
arbitrary stabilizing gain matrix K € R"#*"x using the closed-loop system dynamics

Xk+1 = (A + BK)xy

to write x; = (A + BK)*xg and uy = K(A+ BK)kxo, for all k. Therefore J (x¢) =
J (x0, {Kx0, Kx1, ...}) is a quadratic function of x,

J (x0) = x& Wxo, (2.4a)

W=>"(A+BK)" (Q+KTRK)(A+ BK)". (2.4b)
k=0

If A+ BK is strictly stable (i.e. each eigenvalue of A + BK is strictly less than
unity in absolute value), then it can easily be shown that the elements of the matrix
W defined in (2.4b) are necessarily finite. Furthermore, if R is positive-definite and
(A, Q) is observable, then J(xg) is a positive-definite function of x¢ (since then
J(x9) > 0, for all xg, and J(xp) = O only if xo = 0), which implies that W is a
positive-definite matrix.

The unique matrix W satisfying (2.4) can be obtained by solving a set of linear
equations rather than by evaluating the infinite sum in (2.4b). This is demonstrated
by the following result, which also shows that (A + BK) is necessarily stable if W
in (2.4) exists.

Lemma 2.1 (Lyapunov matrix equation) Under Assumption 2.2, the matrix W in
(2.4) is the unique positive definite solution of the Lyapunov matrix equation

W=(A+BK)W(A+BK)+Q+KT'RK (2.5)
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ifand only if A + BK is strictly stable.
Proof Let W, denote the sum of the first n terms in (2.4b), so that

n—1
Wa =D (A+BK)! (0 + KT RK)(A + BK).
k=0

Then W) = Q+ KTRK and W,,, 1 = (A+ BK)"W,(A+BK)+ Q+ KT RK for
all n > 0. Assuming that A + BK is strictly stable and taking the limit as n — oo,
we obtain (2.5) with W = lim,,_,oc W,,. The uniqueness of W satisfying (2.5) is
implied by the uniqueness of W, in this recursion for each n > 0, and W > 0
follows from the positive-definiteness of J (xp).

If we relax the assumption that A 4+ BK is strictly stable, then the existence of
W > 0 satisfying (2.5) implies that there exists a Lyapunov function demonstrat-
ing that the system x;+1 = (A + BK)xy is asymptotically stable, since (A, Q) is
observable and R > 0 by Assumption 2.2. Hence A + B K must be strictly stable if
(2.5) has a solution W > 0. O

The optimal unconstrained linear feedback control law is defined by the stabilizing
feedback gain K that minimizes the cost in (2.3) for all initial conditions x¢ € R"~.
The conditions for an optimal solution to this problem can be obtained by considering
the effect of perturbing the value of K on the solution, W, of the Lyapunov equation
(2.5). Let W + 0 W denote the sum in (2.4b) when K is replaced by K + K. Then
W + 6W and K + 6K satisfy the Lyapunov equation

W + W = [A+ B(K +5K)]" (W + 6W)[A + B(K + 6K)]
+ 0+ (K+6K) R(K +6K)

which, together with (2.5), implies that §W satisfies

SW = 6K [BTW(A + BK) + RK] + [(A+ BK)TWB + KT R]0K
+(A+BK) WA+ BK)+0KT(BTWB + R)6K
+0KTBT6W(A+ BK) + (A+ BK) 6W B 6K + KT BT6W B K.

(2.6)

For given 6 K| € R™>*"x consider a perturbation of the form
0K =¢ 5K1 s

and consider the effect on §W of varying the scaling parameter ¢ € R. Clearly
K is optimal if and only if xOT (W + 0W)xg > xOT Wxo, for all xo € R, for all
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0Ky € R"™>*"x and for all sufficiently small e. It follows that K is optimal if and only
if the solution of (2.6) has the form

W =€>6Wr+ W3+ - -

for all e € R, where W, is a positive semidefinite matrix. Considering terms in
(2.6) of order ¢ and order ¢, we thus obtain the following necessary and sufficient
conditions for optimality:

BT"W(A+ BK) + RK =0, (2.7a)
W, = 0, (2.7b)
Wy = (A+ BK)6Wa(A+ BK) + KT (BT WB + R)JK;. (2.7¢)

Solving (2.7a) for K gives K = —(BTWB + R)~'BT W A as the optimal feedback
gain, whereas Lemma 2.1 and (2.7¢) imply that

oo
W2 = (A+BK)! 6K] (BT WB + R)6K (A + BK)*
k=0

and therefore (2.7b) is necessarily satisfied since A 4+ BK is strictly stable and
BT W B + R is positive-definite.
These arguments are summarized by the following result.

Theorem 2.1 (Discrete time algebraic Riccati equation) The feedback gain matrix
K for which the control law
u=Kx

minimizes the cost of (2.3) for any initial condition xo under the dynamics of (2.1a)
is given by

K=-B"WB+R)'BTwaA, (2.8)
where W > 0 is the unique solution of

W=ATWA+0—-ATWBB"WB+ R 'BTWA. (2.9)

Under Assumption 2.2, A + BK is strictly stable whenever there exists W > 0
satisfying (2.9).
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Proof The optimality of (2.8) is a consequence of the necessity and sufficiency of the
optimality conditions in (2.7a), (2.7b) and (2.7c). Equation (2.9) (which is known
as the discrete time algebraic Riccati equation) is obtained by substituting K in
(2.8) into (2.5). From Lemma 2.1, we can conclude that, under Assumption 2.2, the
solution of (2.9) for W is unique and positive-definite if and only if A+ BK is strictly
stable. ]

2.3 The Dual-Mode Prediction Paradigm

The control law that minimizes the cost (2.3) is not in general a linear feedback law
when constraints (2.2) are present. Moreover, it may not be computationally tractable
to determine the optimal controller as an explicit state feedback law. Predictive control
strategies overcome this difficulty by minimizing, subject to constraints, a predicted
cost that is computed for a particular initial state, namely the current plant state. This
constrained minimization of the predicted cost is solved online at each time step in
order to derive a feedback control law. The predicted cost corresponding to (2.3) can
be expressed

o0

T e Qo wnges ) = > (el + eI (2.10)
i=0

where x;|x and u;|x denote the predicted values of the model state and input, respec-
tively, at time k + i based on the information that is available at time k, and where
X0k = Xk is assumed.

The prediction horizon employed in (2.10) is infinite. Hence if every element of the
infinite sequence of predicted inputs {uq, U1k, . . .} were considered to be a free vari-
able, then the constrained minimization of this cost would be an infinite-dimensional
optimization problem, which is in principle intractable. However predictive control
strategies provide effective approximations to the optimal control law that can be
computed efficiently and in real time. This is possible because of a parameterization
of predictions known as the dual-mode prediction paradigm, which enables the MPC
optimization to be specified as a finite-dimensional problem.

The dual-mode prediction paradigm divides the prediction horizon into two inter-
vals. Mode 1 refers to the predicted control inputs over the first N prediction time
steps for some finite horizon N (chosen by the designer), while mode 2 denotes the
control law over the subsequent infinite interval. The mode 2 predicted inputs are
specified by a fixed feedback law, which is usually taken to be the optimum for the
problem of minimizing the cost in the absence of constraints [3—6]. Therefore the
predicted cost (2.10) can be written as

N-1

Ik (o s - = 2 (Il + el ) + el @10
i=0
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where, by Theorem 2.1, W is the solution of the Riccati equation (2.9). The term
| BINT ||%,V is referred to as a terminal penalty term and accounts for the cost-to-go
after N prediction time steps under the mode 2 feedback law.

To simplify notation we express the predicted cost as an explicit function of the
initial state of the prediction model and the degrees of freedom in predictions. Hence
for the dual-mode prediction paradigm in which the control inputs over the prediction
horizon of mode 1 are optimization variables, we write (2.11) as

N-1

J (g, w) = ||xi|k||2 ”ui\k”%e ||xN\k||zw~ (2.12)
Q
i=0

where wy = {uok, u1jk, ..., UN—1jk}-

The receding horizon implementation of MPC stipulates that at each time instant &
the optimal mode 1 control sequence uj = {ué| ko U ) is computed, and only
the first element of this sequence is implemented, namely u; = uél - Thus at each
time step the most up-to-date measurement information (embodied in the state xj)
is employed. This creates a feedback mechanism that provides some compensation
for any uncertainty present in the model of (2.1a). It also reduces the gap between
the optimal value of the predicted cost J (xi, ug) in (2.12) and the optimal cost for
the infinite-dimensional problem of minimizing (2.10) over the infinite sequence of
future inputs {uok, U1k, - - -J-

The rationale behind the dual-mode prediction paradigm is as follows. Let
{u8| © u?‘ i» - - -} denote the optimal control sequence for the problem of minimizing
the cost (2.10) over the infinite sequence {uq, 41|k, - - .} subject to the constraints
Fxjjx + Gujp < 1, for all i > 0, for an initial condition xox = xx such that this
problem is feasible. If the weights Q and R satisfy Assumption 2.2, then this notional
optimal control sequence drives the predicted state of the model (2.1a) asymptoti-
cally to the origin, i.e. x;x — 0 asi — oo. Since (x, u) = (0, 0) is strictly feasible
for the constraints Fx + Gu < 1, there exists a neighbourhood, S, of x = 0 with the
property that these constraints are satisfied at all times along trajectories of the model
(2.1a) under the unconstrained optimal feedback law, u = K x, starting from any ini-
tial condition in S. Hence there necessarily exists a horizon N, (Which depends on
xx) such that x;x € S, for all i > N. Since the optimal trajectory for i > N is
necessarily optimal for the problem with initial condition xy_ x (by Bellman’s Prin-
ciple of Optimality [7]), the constrained optimal sequence must therefore coincide
with the unconstrained optimal feedback law, i.e. ”?lk = Kxj, forall i > Ne.
It follows that if the mode 1 horizon is chosen to be sufficiently long, namely if
N > N, then the mode 1 control sequence, u,f, that minimizes the cost of (2.12)

subject to the constraints Fx;|x +Gu;jx < 1fori =0, 1, ..., N —1mustbeequal to
the first N elements of the infinite sequence that minimizes the cost (2.10), namely
”?lk =u?|kfori =0,...,.N—1.

For completeness we next give a statement of this result; for a detailed proof and
further discussion we refer the interested reader to [4, 5].
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Theorem 2.2 There exists a finite horizon Noo, which depends on xi, with the prop-
erty that, whenever N > Nyo: (i). the sequence uz that achieves the minimum
of J(xk,w) in (2.12) subject to Fxjjx + Gujp < 1fori =0,1,...,N —1is
equal to the first N terms of the infinite sequence {uglk, ”(1)\ s - - -} that minimizes
J (xi, {uok, w1k, - - .}) in (2.10) subject to Fxjjx + Gu;j < 1, foralli > 0; and (ii).
J O, w) = J (g, (g uf)ys D

It is generally convenient to consider the LQ optimal feedback law u = Kx as
underlying both mode 1 and mode 2, and to introduce perturbations ¢;x € R,
i =0,1,..., N — 1 over the horizon of mode 1 in order to meet constraints. Then

the predicted sequence of control inputs is given by
ujjk = Kxijk + cik, i=01,....,N—1 (2.13a)

uilk = Kxjjk, i=N,N+1,... (2.13b)

with xox = xi. This prediction scheme is sometimes referred to as the closed-loop
paradigm because the term Kx provides feedback in the horizons of both modes 1
and 2.

We argue in Sect. 3.1 (in the context of robustness to model uncertainty) that (2.13)
should be classified as an open-loop prediction scheme because K is fixed rather
than computed on the basis of measured information (namely xi). Nevertheless, the
feedback term Kx forms a pre-stabilizing feedback loop around the dynamics of

(2.1a), which assume the form
xi+1|k=@xi\k+Bci\k, i=0,1,...,N—1 (2.14a)

Xit1k = Pxik, i=N,N+1,... (2.14b)

where @ = A 4+ BK, with xox = xi. The strict stability property of @ prevents
numerical ill-conditioning that could arise in the prediction equations and the asso-
ciated MPC optimization problem in the case of open-loop unstable models [8].
For the closed-loop paradigm formulation in (2.13), the predicted state trajectory
can be generated by simulating (2.14a) forwards over the mode 1 prediction horizon,
giving
Xp = Myxp + Mg, (2.14¢)


http://dx.doi.org/10.1007/978-3-319-24853-0_3

2.3 The Dual-Mode Prediction Paradigm 21

where
X1k Colk
k= |, &= :
XNk CN—1lk
@ B 0 -0
@2 ®B B -0
Mx = , Mc =
N ®N-1p oN—2p... B

On the basis of these prediction equations and the fact that the predicted cost over
mode 2 is given by ||xyk ||%V (where W is the solution of the Lyapunov equation
(2.5)), the predicted cost of (2.11) can be written as a quadratic function of the
degrees of freedom, namely the vector of predicted perturbations ¢;. The details of
this computation are straightforward and will not be given here. Instead we derive an
equivalent but more convenient form for the predicted cost in Sect. 2.7. For simplicity
(but with a slight abuse of notation) in the following development, we denote the cost
of (2.11) evaluated along the predicted trajectories of (2.13a) and (2.14a) as J (xx, ¢x),
thus making explicit the dependence of the cost on the optimization variables ck.

2.4 Invariant Sets

The determination of the minimum prediction horizon N which ensures that the
predicted state and input trajectories in mode 2 meet constraints (2.2) is not a trivial
matter. Instead lower bounds for this horizon were proposed in [4, 5]. However such
bounds could be conservative, leading to the use of unnecessarily long prediction
horizons. This in turn could make the online optimization of the predicted cost
computationally intractable as a result of large numbers of free variables and large
numbers of constraints in the minimization of predicted cost. In such cases it becomes
necessary to use a shorter horizon N while retaining the guarantee that predictions
over mode 2 satisfy constraints on states and inputs. This can be done by imposing
a terminal constraint which requires that the state at the end of the mode 1 horizon
should lie in a set which is positively invariant under the dynamics defined by (2.13b)
and (2.14b) and under the constraints (2.2).

Definition 2.1 (Positively invariant set) A set X € R" is positively invariant under
the dynamics defined by (2.13b) and (2.14b) and the constraints (2.2) if and only if
(F+GK)x <land ®x € X, forall x € X.

The use of invariant sets within the dual prediction mode paradigm is illustrated
in Fig.2.1 for a second-order system. The predicted state at the end of mode 1 is
constrained to lie in an invariant set X7 via the constraint xyx € X7. Thereafter, in
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To ™ mode 1 - mode 2 —»
A
Predicted state ’,' %
trajectory g X
I
o | L'_
+ I + L : N
0 1 2 " N +N+1 .- Prediction
! : time step

.
Terminal /“ e

constraint set, X

Fig.2.1 The dual-mode prediction paradigm with terminal constraint. The control inputs in mode 1
are chosen so as to satisfy the system constraints as well as the constraint that the N step ahead
predicted state should be inside the invariant set X7. Over the infinite mode 2 prediction horizon
the predicted state trajectory is dictated by the prescribed feedback control law u = Kx

mode 2, the evolution of the state trajectory is that prescribed by the state feedback
control law u; = K x.

In order to increase the applicability of the MPC algorithm, and in particular to
increase the size of the set of initial conditions xo; for which the terminal condition
XNk € X7 can be met, it is important to choose the maximal positively invariant set
as the terminal constraint set. This set is defined as follows.

Definition 2.2 (Maximal positively invariant set) The maximal positively invariant
(MPI) set under the dynamics of (2.13b) and (2.14b) and the constraints (2.2) is the
union of all sets that are positively invariant under these dynamics and constraints.

It was shown in [9] that, for the case of linear dynamics and linear constraints
considered here, the MPI set is defined by a finite number of linear inequalities. This
result is summarized next.

Theorem 2.3 ([9]) The MPI set for the dynamics defined by (2.13b) and (2.14b) and
the constraints (2.2) can be expressed

AMPL = (x  (F+ GK)®'x <1, i=0,...,v} (2.15)

where v is the smallest positive integer such that (F + GK)®"tx < 1, for all x
satisfying (F+GK)®'x <1,i =0, ..., v. If ® is strictly stable and (@, F + GK)
is observable, then v is necessarily finite.

Proof Let Y™ = {x : (F+ GK)®'x <1, i =0,...,n} forn > 0, then it can be
shown that (2.15) holds for some finite v using Definition 2.2 to show that the MPI
set YMPL s equal to X'V for finite v.
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In particular, if xox ¢ X' for given n, then the constraint (2.2) must be violated
under the dynamics of (2.13b) and (2.14b). By Definition 2.2 therefore, any x ¢ X'
cannot lie in YMPI g0 X™ must contain XMP!, for all n > 0.

Furthermore, if (F + GK)®"*!x < 1, for all x € X", then dx € X®
must hold whenever x € X (since x € X® and (F + GK)®"*'x < 1 imply
(F + GK)®'(®x) < 1fori = 0, ...v). But from the definition of X¥*) we have
(F + GK)x < 1forall x € X, and therefore X is positively invariant under
(2.13b), (2.14b) and (2.2). From Definition 2.2 it can be concluded that X is a
subset of, and therefore equal to X’ MPT

Finally, for v > n,, the set X ™) is necessarily bounded if (@, F + GK) is
observable, and, since @ is strictly stable, the set {x : (F + GK)®¥+Dx < 1}
must contain X' for finite v; therefore YMP! must be defined by (2.15) for some
finite v. O

The value of v satisfying the conditions of Theorem 2.3 can be computed by
solving at most vnc linear programs (LPs), namely

maximize (F + GK);®""'x subjectto (F +GK)®'x <1,i=0,...,n
X

forj=1,...,nc,n=1,...,v,where (F+GK); denotes the jthrow of F+GK.
The value of v clearly does not depend on the system state, and this procedure can
therefore be performed offline. In general v > n,, and (2.15) defines the MPI set as a
polytope. Therefore if X7 is equal to the MPI set, the terminal constraint xy|x € X7
can be invoked via linear inequalities on the degrees of freedom in mode 1 predictions.
It will be convenient to represent the terminal set X7 in matrix form

Xr ={x:Vrx <1},
so that with X7 chosen as the MPI set (2.15), Vr is given by
F+GK
(F+GK)®
Vr = )
(F+ GK)®"

Example 2.1 Figure?2.2 gives an illustration of the MPI set for a second-order system
with state-space matrices

112 0
AZ[O 0-95]’ F= [0.0787:|’ c=[-11] (2.16a)

and constraints —1 < x/8 < 1, —1 < u < 1, which correspond to the following
constraint matrices in (2.2),
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Fig.2.2 The maximal positively invariant (MPI) set, X’ MPIL for the system of (2.16a), (2.16b). Each
of the inequalities defining XM*! is represented by a straight line on the diagram

0 1/8 0
1/8 0 0
o —18 lo
F=|_15 o | =1 (2.16b)
0 0 1
0 0 -1

The mode 2 feedback law is taken to be the optimal unconstrained linear feedback
law u = Kx, with cost weights Q = CTCand R = 1,forwhich K = — [1.19 7.88].
The MPI setis given by (2.15) with v = 5. After removing redundant constraints, this
set is defined by 10 inequalities corresponding to the 10 straight lines that intersect
the boundary of the MPI set, marked XMP! in Fig.2.2. O

2.5 Controlled Invariant Sets and Recursive Feasibility

Collecting the ideas discussed in the previous sections we can state the following
MPC algorithm:

Algorithm 2.1 (MPC) At each time instantk =0, 1, ...:
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(1) Perform the optimization

minimize J(xg, k) (2.17a)

ck
subjectto (F + GK)xjx +Geijg <1,i =0,...,N — 1 (2.17b)
VTxN|k <1 (2.170)

where J (xi, ¢x) is the cost of (2.11) evaluated for the predicted trajectories of
(2.13a) and (2.14a).

(i1) Apply the control law uy = Kx; + ca‘lk, where ¢ = (cak, e C;FV—Hk) is the
optimal value of ¢; for problem (2.17). <

The terminal condition (2.17c) is sometimes referred to as a stability constraint
because it provides a means of guaranteeing the closed-loop stability of the MPC
law. It does this by ensuring that the mode 2 predicted trajectories (2.13b) and (2.14b)
satisfy the constraint (F 4+ GK)x;x < 1, thus ensuring that the predicted cost over
mode 2 is indeed given by [|xy ||%,V, and also by guaranteeing that Algorithm 2.1
is feasible at all time instants if it is feasible at initial time. The latter property of
recursive feasibility is a fundamental requirement for closed-loop stability since it
guarantees that the optimization problem (2.17) is solvable and hence that the control
law of Algorithm 2.1 is defined at every time instant if (2.17) is initially feasible.

Recall that the feasibility of predicted trajectories in mode 2 is ensured by con-
straining the terminal state to lie in a set which is positively invariant. The feasibility
of Algorithm 2.1 can be similarly ensured by requiring that the state xj lies in an
invariant set. However, since there are degrees of freedom in the predicted trajec-
tories of (2.13a) and (2.14a), the relevant form of invariance is controlled positive
invariance.

Definition 2.3 (Controlled positively invariant set) A set X C R™ is controlled
positively invariant (CPI) for the dynamics of (2.1a) and constraints (2.2) if, for all
x € X, there exists u € R" suchthat Fx +Gu < 1and Ax + Bu € X. Furthermore
X is the maximal controlled positively invariant (MCPI) set if it is CPI and contains
all other CPI sets.

To show that Algorithm 2.1 is recursively feasible, we demonstrate next that its
feasible set is a CPI set. Algorithm 2.1 is feasible whenever x; belongs to the feasible
set F defined by

Fn = {xk :deg such that (F + GK)xjjp + Gejg <1, i =0,...,N -1

and Vrxyk < 1}. (2.18)
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Clearly this is the same as the set of states of (2.1a) that can be driven to the terminal
set X7 = {x : Vrx < 1} in N steps subject to the constraints (2.2), and it therefore
has the following equivalent definition:

Fn ={x0:3{ug, ..., un—_1} suchthat Fx; + Gu; <1, i =0,...,N —1,

ande EXT}. (219)

Theorem 2.4 If X7 in (2.19) is positively invariant for (2.13b), (2.14b) and (2.2),
then Fy C Fn41, forall N > 0, and Fy is a CPI set for the dynamics of (2.1a)
and constraints (2.2).

Proof If xo € Fu, then by definition there exists a sequence {ug, ..., uy—_1} such
that Fx; + Gu; <1,i =0,..., N — 1 and xy € Xr. Also, since Xt is positively
invariant, the choice uy = Kxy would ensure Fxy + Guy < 1and xy4+1 € &7,
and this in turn implies xg € Fy+1 whenever xo € Fy. Furthermore if xo € Fy,
then by definition ug exists such that Fxo + Gup < 1 and x; € Fy_1, and since
Fn_1 C Fy, it follows that Fy is CPI. [l

Although the proof of Theorem 2.4 considers the sequence of control inputs
{uo, ..., un—1}, the same arguments apply to the optimization variables ¢, in (2.17),
since for each feasible uy, k = 0, ..., N — 1, there exists a feasible c; such that
ur = Kxyp + c. Therefore, the fact that 7y is a CPI set for (2.1a) and (2.2) also
implies that Fy is CPI for the dynamics (2.14a) and constraints (2.17b). Hence
for any x; € Fy there must exist ¢; such that (F + GK)xx + Gcx < 1 and
Xp+1 = Pxx + Bey € Fn. Furthermore, the proof of Theorem 2.4 shows that if
k= cglk (where ¢; = (ca"lk, e cj‘\,_llk) is the optimal value of ¢ in step (ii) of
Algorithm 2.1), then the sequence

Cr+1 = (CT\k’ -~-,C*N,”k,0) (2.20)

is necessarily feasible for the optimization (2.17) at time k + 1, and therefore Algo-
rithm 2.1 is recursively feasible.

The candidate feasible sequence in (2.20) can be thought of as the extension to
time k 4 1 of the optimal sequence at time k. It is in fact the sequence that generates,
via (2.13a), the input sequence

{1k, .o, un—11k, Kxnk}

at time k + 1. For this reason, it is sometimes referred to as the tail of the solution of
the MPC optimization problem at time k, or simply the tail. As well as demonstrating
recursive feasibility, the tail is often used to construct a suboptimal solution at time
k 4+ 1 based on the optimal solution at time k. This enables a comparison of the
optimal costs at successive time steps, which is instrumental in the analysis of the
closed-loop stability properties of MPC laws.
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Theorem 2.4 shows that the feasible sets corresponding to increasing values of N
are nested, so that the feasible set F necessarily grows as N is increased. In practice
the length of the mode 1 horizon is likely to be limited by the growth in computation
that is required to solve Algorithm 2.1 (this is discussed in Sect. 2.8). However, given
that F increases as N grows, the question arises as to whether there exists a finite
value of N such that Fy is equal to the maximal feasible set defined by

oo
Foo=|J Fn.
N=1

Here F~ is defined as the set of initial conditions that can be steered to X7 over an
infinite horizon subject to constraints. However, F« is independent of the choice of
Xr; this is a consequence of the fact that, for any bounded positively invariant set
Xr, the system (2.1a) can be steered from any initial state in X7 to the origin subject
to the constraints (2.2) in finite time, as demonstrated by the following result.

Theorem 2.5 Let 7 = {xo : {uo, ..., un—_1} such that Fx; + Gu; < 1,i =
0,....,.N—1, and xy = 0}. If Xt in (2.19) is positively invariant for (2.13b),
(2.14b) and (2.2), where @ is strictly stable and (®, F 4+ GK) is observable, then
foo:UIOvozlfNZU?vtl}-]%'

Proof First, note that any positively invariant set X7 must contain the origin because
@ is strictly stable. Second, strict stability of @ and boundedness of X7 (which fol-
lows from observability of (@, F + GK)) also implies that, for any ¢ > 0, the
set B, = {x : |lx|| < €} is reachable from any point in A7 in a finite number of
steps (namely for all xo € Ar there exists a sequence {ug, ..., u,—1} such that
Fx;i +Gu; <1fori =0,...,n—1andx, € B,)since |®"x|| < ¢, forall x € X7
for some finite n. Third, since (A, B) is controllable and (0, 0) lies in the interior
of the constraint set {(x, u) : Fx + Gu < 1}, there must exist € > 0 such that the
origin is reachable in n, steps from any point in B, i.e. B, C .7-—,?)( . Combining these

observations we obtain {0} C Ay C ]—",? i, and hence ]—']?, C Fny C _7-',? N

for some finite n and all N > 0. From this we conclude that J5_; Fy =

U= 73 A

A consequence of Theorem 2.5 is that replacing the terminal set X7 by any
bounded positively invariant set (or in fact any CPI set) in (2.18) results in the same
set Foo. Therefore Fo is identical to the maximal CPI set or infinite time reachability
set [10, 11], which by definition is the largest possible feasible set for any stabilizing
control law for the dynamics (2.1a) and constraints (2.2). In general Fy does not
necessarily tend to a finite limit! as N — oo, but the following result shows that
under certain conditions F is equal to Fy for finite N.

UIf for example the system (2.1a) is open-loop stable and F = 0, then clearly the MCPI set is the
entire state space and Fn grows without bound as N increases. In general the MCPI set is finite if
and only if the system (A, B, F, G), mapping input u; to output Fx; + Guj has no transmission
zeros inside the unit circle (see, e.g. [11, 12]).
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Theorem 2.6 If Fyi1 = Fn for finite N > 0, then Foo = Fn.

Proof An alternative definition of Fx 1 (which is nonetheless equivalent to (2.18))
is that Fy1 is the set of states x for which there exists a control input u such that
Fx 4+ Gu < 1and Ax + Bu € Fy.If Fyy1 = Fy, then it immediately follows
from this definition that Fx42 = Fn+1. Applying this argument repeatedly we get
Fn+i = Fn,foralli = 1,2, ... and hence Foxc = Fy. O

Example 2.2 Figure 2.3 shows the feasible sets Fn of Algorithm 2.1 for the system
model and constraints of Example 2.1, for a range of values of mode 1 horizon N.
Here the terminal set X7 is the maximal positively invariant set XYMP! of Fig.2.2;
this is shown in Fig.2.3 as the feasible set for N = 0. As expected the feasible
sets Fy for increasing N are nested. For this example, the maximal CPI set is
given by Foo = Fy for N = 26 and the minimal description of F, involves 100

inequalities. O
1.5 ; ;
N =26
N =24
N =20
1 [CIN=16[
[ IN=12
[ IN=8
[ IN=4
0.5 [ IN=0 [
< or i
-0.5¢ g
1 i
_15 1 1 1 1 1 1 1 1 1
S0 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 2.3 The feasible sets Fy, N = 4, 8, 12, 16, 20, 24, 26 and the terminal set 7y = X7 for the
example of (2.16a), (2.16b). The maximal controlled invariant set is Foo = F26
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2.6 Stability and Convergence

This section introduces the main tools for analysing closed-loop stability under the
MPC law of Algorithm 2.1 for the ideal case of no model uncertainty or unmodeled
disturbances. The control law is nonlinear because of the inequality constraints in the
optimization (2.17), and the natural framework for the stability analysis is therefore
Lyapunov stability theory. Using the feasible but suboptimal tail sequence that was
introduced in Sect. 2.5, we show that the optimal value of the cost function in (2.17) is
non-increasing along trajectories of the closed-loop system. This provides guarantees
of asymptotic convergence of the state and Lyapunov stability under Assumption 2.2.
Where possible, we keep the discussion in this section non-technical and refer to the
literature on stability theory for technical details.

The feasibility of the tail of the optimal sequence ¢ implies that the sequence
¢x+1 defined in (2.20) is feasible but not necessarily an optimal solution of (2.17) at
time k + 1. Using (2.20) it is easy to show that the corresponding cost J (Xg+1, Ck+1)
is equal to J*(x) — ||xx ||2Q — |Jug ||%Q. After optimization at time k + 1, we therefore
have

T* (1) < T*Gr) — lxlp — Nl (2.21)

Summing both sides of this inequality over all k > 0 gives the closed-loop perfor-
mance bound

o0
D (Il + Nuill) < J*(xo) = Jim J* (). (222)
k=0

The quantity appearing on the LHS of this inequality is the cost evaluated along the
closed-loop trajectories of (2.1) under Algorithm 2.1. Since J*(xy) is non-negative
for all k, the bound (2.22) implies that the closed-loop cost can be no greater than
the initial optimal cost value, J*(xq).

Given that the optimal cost is necessarily finite if (2.17) is feasible, and since each
term in the sum on the LHS of (2.22) is non-negative, the closed-loop performance
bound in (2.22) implies the following convergence result

li : %) =0 2.23
im (Ll + el ) (2.23)
along the trajectories of the closed-loop system. We now give the basic results con-

cerning closed-loop stability.

Theorem 2.7 If (2.17) feasible at k = 0, then the state and input trajectories of
(2.1a) under Algorithm 2.1 satisfy limy_, oo (X, ugx) = (0, 0).

Proof This follows from (2.23) and Assumption 2.2 since R > 0 implies uy — 0 as
k — oo; hence from the observability of (Q, A) and ||xk||g — 0 we conclude that
xr —> 0ask — oo. O
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Theorem 2.8 Under the control law of Algorithm 2.1, the origin x = 0 of the system
(2.1a) is asymptotically stable and its region of attraction is equal to the feasible set
Fn-If Q = 0O, then x = 0 is exponentially stable.

Proof The conditions on Q and R in Assumption 2.2 ensure that the optimal cost
J*(xx) is a positive-definite function of x; since J*(x;) = Oifand only if x; = 0, and
J*(xx) > 0 whenever x; # 0. Therefore (2.21) implies that J*(x;) is a Lyapunov
function which demonstrates that x = 0 is a stable equilibrium (in the sense of
Lyapunov) of the closed-loop system [13]. Combined with the convergence result of
Theorem 2.7, this shows that x = 01is an asymptotically stable equilibrium point, and
since Theorem 2.7 applies to all feasible initial conditions, the region of attraction
is F N-

To show that the rate of convergence is exponential if Q > 0 we first note that
the optimal value of (2.17) is a continuous piecewise quadratic function of x; [14].
Therefore, J*(x;) can be bounded above and below for all x; € Fy by

allxl? < J*(xx) < Bllell? (2.24)

where o and (3 are necessarily positive scalars since J*(xy) is positive-definite. If
the smallest eigenvalue of Q is A(Q), then from (2.24) and (2.21) we get

1 A
lxil* < —‘1 - == J*(x0)
a B
forallk =0, 1, ..., and hence x = 0 is exponentially stable. O

Example 2.3 For the same system dynamics, constraints and cost as in Example 2.1
the predicted and closed-loop state trajectories under the MPC law of Algorithm 2.1
with N = 6 and initial state x(0) = (—7.5,0.5) are shown in Fig.2.4. Figure2.5
gives the corresponding predicted and closed-loop input trajectories. The jump in
the predicted input trajectory at N = 6 is due to the switch to the mode 2 feedback
law at that time step.

Table 2.1 gives the variation with mode 1 horizon N of predicted cost J; and
closed-loop cost Jg(xg) = Z,fio(llxklle + ||uk||%-‘,) for x(0) = (=7.5,0.5). The
infinite-dimensional optimal performance is obtained with N = N, where Ny, =
11 for this initial condition, so there is no further decrease in predicted cost for values
of N > 11. However, because of the receding horizon implementation, the closed-
loop response of the MPC law for N = 6 is indistinguishable from the ideal optimal
response for this initial condition. O
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Fig. 2.4 Predicted and closed-loop state trajectories for Algorithm 2.1 with N = 6
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Fig. 2.5 Predicted and closed-loop input trajectories for Algorithm 2.1 with N = 6
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Table 2.1 Variation of predicted and closed-loop cost with N for xg = (—7.5, 0.5) in Example 2.3

N 6 7 8 11 >11
J*(x0) 364.2 357.0 356.3 356.0 356.0
Je1(xo) 356.0 356.0 356.0 356.0 356.0

2.7 Autonomous Prediction Dynamics

The dual-mode prediction dynamics (2.14a) and (2.14b) can be expressed in a more
compact autonomous form that incorporates both prediction modes [15, 16]. This
alternative prediction model, which includes the degrees of freedom in predictions
within the state of an autonomous prediction system, enables the constraints on pre-
dicted trajectories to be formulated as constraints on the prediction system state at
the start of the prediction horizon. With this approach the feasible sets for the model
state and the degrees of freedom in predictions are determined simultaneously by
computing an invariant set (rather than a controlled invariant set) for the autonomous
system state. This can result in significant reductions in computation for the case
that the system model is uncertain since, as discussed in Chap.5, it greatly sim-
plifies handling the the effects of uncertainty over the prediction horizon. In this
section we show that an autonomous formulation is also convenient in the case of
nominal MPC.

An autonomous prediction system that generates the predictions of (2.13a),
(2.13b) and (2.14a), (2.14b) can be expressed as

Zivik = Yz, i=0,1,... (2.25)

where the initial state zojx € R™=+Nm consists of the state xj of the model (2.1a)
appended by the vector ¢ of degrees of freedom,

Xk
Colk
20k =

CN—1lk

The state transition matrix in (2.25) is given by

® BE
v = |:O Y, ] (2.26a)
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dynamic controller plant model
+ u z
c+:Mc FE x+:Ax+Bu >
+
initial state cg initial state xg
K

Fig. 2.6 Block diagram representation of the autonomous prediction systems (2.25) and (2.26).
The free variables in the state and input predictions at time k are contained in the initial controller
state ¢y ; the signals marked x and u are the i steps ahead predicted state and control input, and x T,
¢ denote their successor states

where @ = A 4+ BK and

0L, 0 -0
00 L - 0
E=[l,,0---0], M=|:: : - = |. (2.26b)
00 0 -1,
00 O ---0

The state and input predictions of (2.13a), (2.13b) and (2.14a), (2.14b) are then
given by

Uik = [K E] Zilk (2.27a)

Xijk = [In, 0] zik (2.27b)

fori = 0, 1,.... The prediction systems (2.25) and (2.26) can be interpreted as a
dynamic feedback law applied to (2.1a), with the controller state at the beginning of
the prediction horizon containing the degrees of freedom, ¢, in predictions (Fig. 2.6).

2.7.1 Polytopic and Ellipsoidal Constraint Sets

The constraints (2.2) applied to the predictions of (2.27a), (2.27b) are equivalent to
the following constraints on the initial prediction system state zx = zZojk:

[F+GK GE| ¥z <1, i=0,1,... (2.28)

Clearly this implies an infinite number of constraints that apply across an infi-
nite prediction horizon. However, analogously to the definition of terminal invari-
ant sets in Sect.2.4, a feasible set for z; satisfying (2.28) can be constructed by
determining a positively invariant set for the dynamics zx4+1 = Wzx and constraints
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[F + GK GE ] Zx < 1. Theorem 2.3 shows that the maximal positively invariant set
for these dynamics and constraints is given by

Z={z:[F+GK GE]¥'z<1, i=0,1,...,v;} (2.29)

where v, is a positive integer such that [F + GK GE]w"=T1z < 1, for all z satis-
fying [F + GK GE] viz<1,i=0,1,..., v,. Since Z is the MPI set, every state
zx for which (2.28) is satisfied must lie in Z. Given that a mode 1 prediction horizon
of N steps is implicit in the augmented prediction dynamics (2.25), the projection of
Z onto the x-subspace is therefore equal to the feasible set F defined in (2.18), i.e.

Fn = {x:EIcsuchthat [F+GK GE| W' m <1, i:O,l,...,VZ}.

The value of v, defining the MPI set in (2.29) grows as the mode 1 prediction
horizon N is increased. Furthermore, it can be seen from (2.26) that every eigenvalue
of W is equal either to O or to an eigenvalue of @, so if one or more of the eigenvalues
of @ lies close to the unit circle in the complex plane, then v, in (2.29) could be large
even for short horizons N. The equivalence of (2.27a), (2.27b) with (2.13a), (2.13b)
and (2.14a), (2.14b) implies that the online MPC optimization in (2.17) is equivalent
to

minimize J(xg, cx) subject to |:)chi| € Z. (2.30)
Ck k

which is a quadratic programming problem with v,n¢ constraints.

A large value of v, could therefore make the implementation of Algorithm 2.1
computationally demanding. If this is the case, and in particular for applications with
very high sampling rates, it may be advantageous to replace the polyhedral invariant
set Z with an ellipsoidal invariant set, &,:

minimize J (x;, ¢) subject to [i’]j €&, 2.31)
This represents a simplification of the online optimization to a problem that involves
just a single constraint, thus allowing for significant computational savings. Further-
more, using an ellipsoidal set that is positively invariant for the autonomous predic-
tion dynamics (2.25) and constraints [F + GK GE]z < 1, the resulting MPC law
retains the recursive feasibility and stability properties of Algorithm 2.1. Approxi-
mating the MPI set Z (which is by definition maximal) using a smaller ellipsoidal set
necessarily introduces suboptimality into the resulting MPC law; but as discussed in
Sect. 2.8, the degree of suboptimality is in many cases negligible.

The invariant ellipsoidal set £, can be computed offline by solving an appro-
priate convex optimization problem. The design of these sets is particularly con-
venient computationally because the conditions for invariance with respect to the
linear autonomous dynamics (2.25) and linear constraints [F + GK GE ] 7 <1
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may be written in terms of linear matrix inequalities (LMIs), which are necessar-
ily convex and can be handled using semidefinite programming (SDP) [17]. Linear
matrix inequalities and the offline optimization of &, are considered in more detail
in Sect.2.7.3; here we simply summarize the conditions for invariance of &, in the
following theorem:

Theorem 2.9 The ellipsoidal set definedby €, = {z : z! P,z < 1}for P, > Oisposi-
tively invariant for the dynamics zx+1 = Wz and constraints [F + GK GE] 7 <1
if and only if P; satisfies

P.—vTPw >0 (2.32)
and
H [F+GK GE]
(F+GK)T p >0, e/ He;<1, i=1,2,...,nc (233)
(GE)T z

for some symmetric matrix H, where e; is the ith column of the identity matrix.

Proof Theinequality in (2.32) implies ZTwT pwz < 7T Pz < 1, whichis asufficient
condition for invariance of the ellipsoidal set £, under zx+; = Wz;. Conversely,
(2.32) is also necessary for invariance since if P, — W1 P, % 0, then there would
exist z satisfying z7 WT P.Wz > zT P,z and z¥ P,z = 1, which would imply that
Wz ¢ &, forsome z € £;.

We next show that (2.33) provides necessary and sufficient conditions for satis-
faction of the constraints [F + GK GE]z <1, forall z € &,. To simplify notation,

let F = [F + GK GE] and let }7} denote the ith row of F. Since
max{F;z subjectto ' P.z < 1} = (FI-PZ*‘FIT)I/Z
< ,

it follows that Fx < 1, for all x € &, if and only if I:}Pz_lﬁiT < 1 for each
row i = 1,...,nc. These conditions can be expressed equivalently in terms of a
condition on a positive-definite diagonal matrix:

Hl,l — F] Pz_lﬁlT

. >0
- —1 5T
an,nc - Fnc Pz Fnc
for some scalars H; ; < 1,i =1, ..., nc, and this in turn is equivalent to

H—FP'FT =0

for some symmetric matrix H with eiT He; < 1, for all i. Using Schur complements
(as discussed in Sect.2.7.3), this condition is equivalent to
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[HF"

P Pzi|50, el-THeifl, i=1,...,nc

which implies the necessity and sufficiency of (2.33). ]

2.7.2 The Predicted Cost and MPC Algorithm

Given the autonomous form of the prediction dynamics of (2.25) it is possible to
use a Lyapunov equation similar to (2.5) to evaluate the predicted cost J (xi, ¢x) of
(2.11) along the predicted trajectories of (2.27a), (2.27b). The stage cost (namely the
part of the cost incurred at each prediction time step) has the general form

X015 + lulz = Ix1% + IKx +cllf =x"(Q + K" RK)x + " ET REc
2k 0=27 KTRK KTRE
A | ETRK ETRE|"

Hence J (xx, ¢;) can be written as

o o0

2 2 2 2

I e) = D (el + luigelz) = D Nzl = lzolliy
i=0 i=0

where, by Lemma 2.1, W is the (positive-definite) solution of the Lyapunov equation

w=v"ww + Q. (2.34)

The special structure of W and O in this Lyapunov equation implies that its solution
also has a specific structure, as we describe next.

Theorem 2.10 If K isthe optimal unconstrained linear feedback gain for the dynam-
ics of (2.1a), then the cost (2.11) for the predicted trajectories of (2.27a), (2.27b)
can be written as

J (xk, e) = x{ Wyxg +¢f Weey

BTW.B+ R 0 0
0 BTW.B+R--- 0 (2.35)
W, = ) : .
0 0 BTW.B + R

where Wy is the solution of the Riccati equation (2.9).

Proof Let W = [‘XZXX v“,{;‘; ], then substituting for W, ¥ and Q in (2.34) gives
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Wy=oTW,®+ Q0+ K'RK (2.36a)
Wer = MW @ + ET(BTW, @ + RK) (2.36b)

W. = (BE)" W (BE) + (BE)" WeeM + MW« BE + MTW.M + ETRE
(2.36¢)

The predicted cost for ¢x = 0 is ||xk||%[,V, and since K is the unconstrained opti-
mal linear feedback gain, it follows from (2.36a) and Theorem 2.1 that W, is the
solution of the Riccati equation (2.9). Furthermore, from Theorem 2.1 we have
K = —(BTWB + R)"'BTW,A, so that BT W,® + RK = 0 and hence (2.36b)
gives W,y — M Tw,.® = 0, which implies that W, = 0. Therefore,

W, 0
W= [ 0 Wc]’ (2.37)

and from (2.36¢) we have W, — MT W.M = ET (BT W, B + R)E. Hence from the
structure of M and E in (2.26b), W, is given by (2.35). U

Corollary 2.1 The unconstrained LQ optimal control law is given by the feedback
lawu = Kx, where K = —(BTW,.B + R)"'BTW, A and W, is the solution of the
Riccati equation (2.9).

Proof Theorem 2.1 has already established that the unconstrained optimal linear
feedback gain is as given in the corollary. The question remains as to whether it is
possible to obtain a smaller cost by perturbing this feedback law. Equation (2.35)
implies that this cannot be the case because the minimum cost is obtained for ¢; = 0.
This argument applies for arbitrary N and hence for perturbation sequences of any
length. (]

Using the autonomous prediction system formulation of this section, Algo-
rithm 2.1 can be restated as follows:

Algorithm 2.2 Ateach time instantk =0, 1, .. .:

(i) Perform the optimization

minimize |l [|%, subject to [ik] €S (2.38)
Ck ¢ k
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where § = Z defined in (2.29) (v;n¢ linear constraints), or S = &, defined by
the solution of (2.32) and (2.33) (a single quadratic constraint).

(i) Apply the control law u = Kx; + Cglk’ where ¢; = (CS\k’ ... ,C*Ni”k) is the
optimal value of ¢, for problem (2.38). <

Theorem 2.11 Under the MPC law of Algorithm 2.2, the origin x = 0 of system
(2.1a) is an asymptotically stable equilibrium with a region of attraction equal to the
set of states that are feasible for the constraints in (2.38).

Proof The constraint set in (2.38) is by assumption positively invariant. Therefore,
the tail ¢; 1 = Mcj provides a feasible but suboptimal solution for (2.38) at time
k + 1. Stability and asymptotic convergence of x; to the origin is then shown by
applying the arguments of the proofs of Theorems 2.7 and 2.8 to the optimal value
of the cost J (xx, ¢f) at the solution of (2.38). [l

2.7.3 Offtine Computation of Ellipsoidal Invariant Sets

In order to determine the invariant ellipsoidal set &£, for the autonomous prediction
dynamics (2.25), the matrices P, and H must be considered as variables in the con-
ditions of Theorem 2.9. These conditions then constitute Linear Matrix Inequalities
(LMIs) in the elements of P, and H. Linear matrix inequalities are used extensively
throughout this book; for an introduction to the properties of LMIs and LMI-based
techniques that are commonly used in systems analysis and control design problems,
we refer the reader to [17].

In its most general form a linear matrix inequality is a condition on the pos-
itive definiteness of a linear combination of matrices, where the coefficients of
this combination are considered as variables. Thus a (strict) LMI in the variable
x = (x1,...,x,) € R" can be expressed

M) = Mo+ Mix1 + ...+ Myxy = 0 (2.39)

where My, ..., M, are given matrices.? The convenience of LMISs lies in the convex-
ity of (2.39) (see also Questions 1-3 on page 233). This property makes it possible to
include conditions, such as those defining an invariant ellipsoidal set in Theorem 2.9,
in convex optimization problems that can be solved efficiently using semidefinite
programming.

2 A non-strict LMI is similarly defined by M (x) > 0. Any non-strict LMI can be expressed equiv-
alently as a combination of a linear equality constraint and a strict LMI (see, e.g. [17]). However,
none of the non-strict LMIs encountered in this chapter or in Chap.5 carry implicit equality con-
straints, and hence non-strict LMIs may be assumed to be either strictly feasible or infeasible. We
therefore make use of both strict and non-strict LMIs with the understanding that M (x) > 0 can be
replaced with M (x) > O for the purposes of numerical implementation.
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A suitable criterion for selecting P, is to maximize the region of attraction of
Algorithm 2.2, namely the feasible set for the constraint sz P,z; < 1. This region is
equal to the projection of £, = {z : z/ P,z < 1} onto the x-subspace:

{x : Jc such that x” Pyx + 2¢” Poex +¢T Poee < 1)

where the matrices Py, Pyc, Pcx, Pec are blocks of P, partitioned according to

_ Pxx ch
P, = [ P PJ. (2.40)

By considering the minimum value of z’ P,z over all ¢ for given x, it is easy to show
that the projection of £, onto the x-subspace is given by

Ey = {x : xT(Pxx — PXCPCZIPXC)x < 1}.

Inverting the partitioned matrix P, we obtain

-1 _ ¢ - Sxx ch
Fo=5= [Scx S]

where )
Sxx = (Pxx - PXCPc_c]PXC) >

and hence the volume of the projected ellipsoidal set £, is proportional to 1/ det(S x_xl)
= det(Sxx). The volume of the region of attraction of Algorithm 2.2 is therefore
maximized by the optimization

meslxgmfilze det(Syx) subject to (2.32), (2.33) 2.41)

Maximizing the objective in (2.41) is equivalent to maximizing logdet(Sy),
which is a concave function of the elements of S (see, e.g. [18]). But this is not yet
a semidefinite programming problem since (2.32) and (2.33) are LMIs in P, rather
than S. These constraints can however be expressed as Linear Matrix Inequalities in
S using Schur complements.

In particular, the positive definiteness of a partitioned matrix

T
[l‘i‘;V:|>0

where U, V, W are real matrices of conformal dimensions, is equivalent to positive
definiteness of the Schur complements
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U>0and W—-VvU'VT >0,

or
Ws=0and U-VIWlv ~0

(the proof of this result is discussed in Question 1 in Chap. 5 on page 233). Therefore,
after pre- and post-multiplying (2.32) by S, using Schur complements we obtain the

following condition:
S wSs
[SlIJT s ] >0, (2.42)

which is an LMI in S. Similarly, pre- and post-multiplying the matrix inequality in
(2.33) by [(I) g] yields the condition

H [F+GK GE]S
g (F+GK)T g >0 (2.43)
(GE)T

which is an LMI in S and H. Therefore &£, can be computed by solving the SDP
problem

ma)bgirbr{lize logdet(Syx) subjectto (2.42), (2.43) (2.44)

andeiTHe,- <1l,i=1,...,nc.

Example 2.4 For the system model, constraints and cost of Example 2.1, Fig.2.7
shows the ellipsoidal regions of attraction &, of Algorithm 2.2 for values of N in the
range 5-40 and compares these with the polytopic feasible set Fy for N = 10. As
expected, the ellipsoidal feasible sets are smaller than the polytopic feasible sets of
Fig.2.3, but the difference in area is small; the area of £, for N = 40 is 13.4 while
that of Fg is 13.6, a difference of only 1 %. On the other hand 36 linear constraints
are needed to define the polytopic set Z for N = 10 whereas &, is a single (quadratic)
constraint.

Figure 2.8 shows closed-loop state and input responses for Algorithm 2.2, com-
paring the responses obtained with the ellipsoidal constraint z; € &, against the
responses obtained with the linear constraint set z; € Z for N = 10. The difference in
the closed-loop costs of the two controllers for the initial condition xg = (—7.5, 0.5)
is 17 %. O
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Fig. 2.7 The ellipsoidal regions of attraction of Algorithm 2.2 for N = 5, 10, 15, 20, 30, 40. The
polytopic sets F1o and X7 are shown (dashed lines) for comparison
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Fig. 2.8 Closed-loop responses of Algorithm 2.2 for the example of (2.16a), (2.16b) for the
quadratic constraint z; € &£, with N = 20 (blue o) and the linear constraints zx € Z with N = 10
(red +). Left state trajectories and the feasible set £, for N = 20. Right control inputs
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2.8 Computational Issues

The optimization problem to be solved online in Algorithm 2.1 has a convex quadratic
objective function and linear constraints, and is therefore a convex Quadratic Program
(QP). Likewise if Algorithm 2.2 is formulated in terms of linear constraints, then this
also requires the online solution of a convex QP problem. A variety of general QP
solvers (based on active set methods [19] or interior point methods [20]), can therefore
be used to perform the online MPC optimization required by these algorithms.

However algorithms for general quadratic programming problems do not exploit
the special structure of the MPC problem considered here, and as a result their
computational demand may exceed allowable limits. In particular they may not
be applicable to problems with high sample rates, high-dimensional models, or
long prediction horizons. For example the computational load of both interior point
and active set methods grows approximately cubically with the mode 1 prediction
horizon N.

The rate of growth with N of the required computation can be reduced how-
ever if the predicted model states are considered to be optimization variables. Thus
redefining the vector of degrees of freedom as d € RN"x+Nnu:

dr = (Colk> X11k> Cljk»> X20ks - - - » CN—1]k» XN|k)

and introducing the predicted dynamics of (2.14) as equality constraints results in an
online optimization of the form

minimize dl Hydy subjectto Dydy = hy, Cedy < h..
k

Although the number of optimization variables has increased from Nn, to Nn, +
Nny, the key benefit is that the matrices Hy, Dy, C. are sparse and highly structured.
This structure can be exploited to reduce the online computation so that it grows only
linearly with N (e.g. see [19, 20]).

An alternative to reducing the online computation is to use multiparametric pro-
gramming to solve the optimization problem offline for initial conditions that lie
in different regions of the state space. Thus, given that xj is a known constant, the
minimization of the cost of (2.35) is equivalent to the minimization of

J(d) = d" Hyd (2.45)

where for simplicity, the vector of degrees of freedom ¢ has been substituted by d
and the cost is renamed as simply J. The minimization of J is subject to the linear
constraints implied by the dynamics (2.14) and system constraints (2.2), together with
the terminal constraints of (2.35); the totality of these constraints can be written as

Cod < hg + Vox (2.46)
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Then adjoining the constraints (2.46) with the cost of (2.45) through the use of a
vector of Lagrange multipliers A, we obtain the first-order Karush—Kuhn-Tucker

(KKT) conditions [19]

Hod +CEX =0 (2.47a)
M (Cod — hg — Vox) =0 (2.47b)
Cod < ho + Vox (2.47¢c)
A>0 (2.47d)

Now suppose that at the given x only a subset of (2.46) is active, so that gathering all
these active constraints and the corresponding Lagrange multipliers we can write

Cod —ho — Vox =0 (2.48a)

A>0 (2.48b)

In addition, the Lagrange multipliers corresponding to inactive constraints will be
zero so that from (2.47) it follows that

d=—Hy'CIX (2.49)
The solution for \ can be derived by substituting (2.49) into (2.48a) as
A= —(CoHy 'CTY™ " (ho + Vox). (2.50)
and substituting this into (2.49) produces the optimal solution as
d=Hy'Cl — (CoHy 'CEY 7 (ho + Vox). (2.51)

Thus for given active constraints, the optimal solution is a known affine function of
the state. Clearly the optimal solution must satisfy the constraints (2.46) as well as
the Lagrange multipliers of (2.50) must satisfy (2.48a):

ColHy ' CL — (CoHy ' CHY 7 (o + Vox)] < ho + Vox

and

—(CoH'CTY ™Y (hy + Vox) > 0.
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These two conditions give a characterization of the polyhedral region in which x
must lie in order that (2.48a) is the active constraint set.

A procedure based on these considerations is given in [14] for partitioning the con-
trollable set of Algorithms 2.1 and 2.2 into the union of a number of non-overlapping
polyhedral regions. Then the MPC optimization can be implemented online by iden-
tifying the particular polyhedral region in which the current state lies. In this approach
the associated optimal solution (2.51) is then recovered from a lookup table, and the
first element of this is used to compute and implement the current optimal control
input.

A disadvantage of this multiparametric approach is that the number of regions
grows exponentially with the dimension of the state and the length of the mode 1
prediction horizon N, and this can make the approach impractical for anything other
than small-scale problems with small values of N. Indeed in most other cases, the
computational and storage demands of the multiparametric approach exceed those
required by the QP solvers that exploit the MPC structure described above. Methods
have been proposed (e.g. [21]) for improving the efficiency with which the polyhedral
state-space partition is computed by merging regions that have the same control
law, however the complexity of the polyhedral partition remains prohibitive in this
approach.

Example 2.5 For the second-order system defined in (2.16a), (2.16b), with the cost
and terminal constraints of Example 2.3 the MPC optimization problem (2.17) can
be solved using multiparametric programming. For a mode 1 horizon of N = 10
this results in a partition of the state space into 243 polytopic regions (Fig.2.9), each
of which corresponds to a different active constraint set at the solution of the MPC
optimization problem (2.17). O

A further alternative [15, 16] which results in significant reduction in the online
computation replaces the polytopic constraints z; € Z defined (2.29) by the ellip-
soidal constraint z; € &, defined in (2.44) and thus addresses the optimization

minimize ||z [f subjectto zf Pz <1, 7% = [)c"]j (2.52)
k

As discussed in Sect. 2.7, this results in a certain degree of conservativeness because
the ellipsoidal constraint zz € &, gives an inner approximation to the polytopic
constraint 7z € Z of (2.29). The problem defined in (2.52) can be formulated as
a second-order cone program (SOCP) in Nn, + 1 variables.? If a generic solution
method is employed, then this problem could turn out to be more computationally
demanding than the QP that arises when the constraints are linear. However, the
simple form of the cost and constraint in (2.38) allow for a particularly efficient
solution, which is to be discussed next.

3Second-order cone programs are convex optimization problems that can be solved using interior
point methods. See [22] for details and further applications of SOCP.
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Fig.2.9 The partition of the state space of the system of Example 2.5 into regions in which different
constraint sets are active at the solution of the online MPC optimization problem

To exploit the structure of the cost and constraint in (2.52), we use the partitions of
(2.37) and (2.40) to write z} Wz = x] Wyx + ¢! Weer and 2] P,zj = x] Poyxi +
2¢] Pexxy + €] Pecek, where use has been made of the fact that Py = P/ The
minimizing value of ¢ in (2.52) can only occur at a point at which the two ellipsoidal
boundaries, 07 = {z : z,{ Wzr = a} and 0E, = {zj : ZIT(PZZk = 1}, are tangential
to one another for some constant o > 0, namely when the gradients (with respect to
¢) are parallel, i.e.

Weer = p(Pexxi + PecCr), 1 <0 (2.53)

for some scalar y, or equivalently
¢ = My, Pexxi, My = (W, — pPec) ™" (2.54)
At the solution therefore, the inequality constraint in (2.52) will hold with equality

so that /1 can be obtained as the solution of x/ Pyyxy + 2¢] Pey + €] Pecex = 1,
which after some algebraic manipulation gives y as a root of

cc

é() = x! Py (MHWCPL;IWCMM - P—l) Pexxi +x] Poxi — 1 = 0. (2.55)
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Equation (2.55) is equivalent to a polynomial equation in g which can be shown
(using straightforward algebra) to have 2N roots, all corresponding to points of
tangency of 0, and ;. However (2.52) has a unique minimum, and it follows that
only one of these roots can be negative, as is required by (2.53).

By repeatedly differentiating ¢(u) with respect to p it is easy to show that the
derivatives of this polynomial satisfy

d" ¢
du”

>0 Vu<0.

This implies that the Newton—Raphson method, when initialised at u = 0, is guar-
anteed to converge to the unique negative root of (2.55), and that the rate of its
convergence is quadratic.

Thus the optimal solution to (2.52) is obtained extremely efficiently by substituting
the negative root of (2.55) into (2.54); in fact the computation required is equivalent
to solving a univariate polynomial with monotonic derivatives. The price that must
be paid for this gain in computational efficiency is a degree of suboptimality that
results from the use of the ellipsoidal constraint z; € &£, which provides only an
inner approximation to the actual polytopic constraint of (2.29). However, simulation
results [16] show that in most cases the degree of suboptimality is not significant.
Furthermore predicted performance can be improved by a subsequent univariate
search over a € [0, 1] with zx = (x¢, acy)) where ¢; is the solution of (2.52). To
retain the guarantee of closed-loop stability this is performed subject to the constraints
that the vector Wz; defining the tail of the predicted sequence at time k should lie
in the ellipsoid &£, and subject to the constraint Fxx + Guy < 1. This modification
requires negligible additional computation.

2.9 Optimized Prediction Dynamics

The MPC algorithms described thus far parameterize the predicted inputs in terms
of a projection onto the standard basis vectors e;, so, for example

N-1
Ck = Z Cilk€i+1
—

in the case that if n, = 1. As a consequence the degrees of freedom have a direct
effect on the predictions only over the N-step mode 1 prediction horizon, which
therefore has to be taken to be sufficiently long to ensure that constraints are met
during the transients of the prediction system response. Combined with the additional
requirement that the terminal constraint is met at the end of the mode 1 horizon for as
large a set of initial conditions as possible, this places demands on N that can make
the computational load of MPC prohibitive for applications with high sampling rates.
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To overcome this problem an extra mode can be introduced into the predicted
control trajectories, as is done for example in triple mode MPC [23]. This additional
mode introduces degrees of freedom into predictions after the end of the mode 1
horizon but allows efficient handling of the constraints at these prediction instants,
thus allowing the mode 1 horizon to be shortened without adversely affecting opti-
mality and the size of the feasible set. Alternatively in the context of dual-mode
predictions it is possible to consider parameterizing predicted control trajectories as
an expansion over a finite set of basis functions. Exponential basis functions, which
allow the use of arguments based on the tail for analysing stability and convergence
(e.g. [24]), are most commonly employed in MPC, a special case being expansion
over Laguerre functions (e.g. [25]).

A framework that encompasses projection onto a general set of exponential basis
functions was developed in [26]. In this approach, the matrices E and M appearing in
the transition matrix W of the augmented prediction dynamics (2.25) are not chosen
as prescribed by (2.26b), but instead are replaced by variables, denoted A, and C,
that are optimized offline as we discuss later in this section. With this modification

the prediction dynamics are given by

Zigik =¥z, 1=0,1,... (2.56a)
where
| xx | ® BC,
200k = [CJ, V= [0 A, ] (2.56b)

and the predicted state and control trajectories are generated by
ik = [K Ce)zig (2.56¢)

xik = [1 0] zik. (2.56d)

As in Sect.2.7, the predicted control law of (2.56c) has the form of a dynamic
feedback controller, the initial state of which is given by ¢;. However in Sect. 2.7 the
matrix M of (2.26) is nilpotent, so that MV ¢, = 0 and hence ujjk = Kxj, for all
i =N,N+1,.... For the general case considered in (2.56), A, is not necessarily
nilpotent, which implies that the direct effect of the elements of ¢, can extend beyond
the initial N steps of the prediction horizon in this setting.

Following a development analogous to that of Sect.2.7, the predicted cost (2.11)
can be expressed as J(xg, ¢x) = ||Z0|k||%v where W satisfies the Lyapunov matrix
equation

(2.57)

n n T T
W=wT W+ 0. QZ[Q—!—K RK K RCC:|.

cI'rRk CIRcC,



48 2  MPC with No Model Uncertainty

By examining the partitioned blocks of this equation, it can be shown (using the same
approach as the proof of Theorem 2.10) that its solution is block diagonal

W O
w={%
whenever K is the unconstrained optimal feedback gain. Here W, is the solution of
the Riccati equation (2.9) and W, is the solution of the Lyapunov equation W, =
ACT WA+ CCT (BTW,B+ R)C.. By Lemma 2.1, the solution is unique and satisfies
W, > 0 whenever A. is strictly stable.

The constraints (2.2) applied to the predictions of (2.56) require that zox lies in
the polytopic set

Z={z:[F+GK GC]¥'z<1, i=0,1,...,v}, (2.58)

where [F + GK GC.| W"*!z < 1, for all z satisfying [F + GK GC.| Wiz <1,
i=0,1,...,v,. By Theorem 2.3 this is the MPI set for the dynamics of (2.56) and
constraints (2.2), and its projection onto the x-subspace is therefore equal to the feasi-
ble set for x; for the prediction system (2.56) and constraints [F + GK GCC] z<1.
The MPC law of Algorithm 2.2 with the cost matrix W defined in (2.57) and con-
straint set Z defined in (2.58) has the stability and convergence properties stated in
Theorem 2.11.

Alternatively, and similarly to the discussion in Sect. 2.7, it is possible to replace
the linear constraints zojx € Z by a single quadratic constraint zo|x € &; in order to
reduce the online computational load of Algorithm 2.2. As in Sect.2.7, we require
that £, = {z : zT P,z < 1} is positively invariant for the dynamics z;,1 = Wz and
constraints [F + GK GCC] zx < 1, which by Theorem 2.9 requires that there exists
a symmetric matrix H such that P,, A, and C, satisfy

P.—vTpPw >0 (2.59a)
H [F +GK GC]
(F+GK)] | =0, e] He; <1, i=1,...nc. (2.59b)
(GC)" :

Under these conditions the stability and convergence properties specified by Theo-
rem 2.11 again apply.

Using &, as the constraint set in the online optimization in place of Z reduces
the region of attraction of the MPC law. However, to compensate for this effect it is
possible to design the prediction system parameters A, and C, so as to maximize the
projection of &, onto the x-subspace. Analogously to (2.44), this is achieved by max-
imizing the determinant of [/, O]PZ_1 (1, 017 subject to (2.59a), (2.59b). Unlike
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the case considered in Sect.2.7, this is performed with A, and C, as optimization
variables. Viewed as inequalities in these variables, (2.59a), (2.59b) represent non-
convex constraints. The problem can however be convexified provided the dimension
of ¢y is at least as large as that of n,, [26] using a technique introduced by [27] in the
context of H oo, control, as we discuss next.

Introducing variables U, V € R"*¥¢ (where v, is the length of ¢;), & € R /x|
[ € R"™*" and symmetric X,Y € R"™*"x  we re-parameterize the problem by
defining

x! x"'v _ Y V ~
PZ=|:UTx—l ® :| le=[vT .:|’ C‘=UACVT’ F=CCVT
(2.60)

(where e indicates blocks of P, and PZ’1 that are determined uniquely by X, Y, U, V).
Since P, Pz_1 = I, we also require that

vvli =x-v. (2.61)

The constraints (2.59a), (2.59b) can then be expressed as LMIs in E, I', X and Y.
Specifically, using Schur complements, (2.59a) is equivalent to

P. PV
>
[\IJTPZ P, } =0,

and multiplying the LHS of this inequality by diag{IT”, 17} on the left and
diag{IT, IT} on the right, where IT = [ yox ] yields the equivalent condition

vl o |
[YX}[ ®Y + BT cpx}
XX||E4+®Y+ Bl &X
. Y X =0 (2.62a)
XX

(where the block marked « is omitted as the matrix is symmetric). Similarly, pre-
and post-multiplying the matrix inequality in (2.59b) by diag{Z, 17 } and diag{/, IT},
respectively, yields

H [(F + GK)Y + GT (F + GK)X]
|:YX] >0, eiTHeifl, i=1,...,nc.

*

XX
(2.62b)

Therefore matrices P;, A, and C, can exist satisfying (2.59a), (2.59b) only if the
conditions (2.62a), (2.62b) are feasible. Moreover, (2.62a), (2.62b) are both necessary
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and sufficient for feasibility of (2.59a), (2.59b) if v, > n, since (2.61) then imposes
no additional constraints on X and Y (in the sense that U and V then exist satisfying
(2.61),forall X, Y € R"*"x) The volume of the projection of £, onto the x-subspace
is proportional to det(Y’), which is maximized by solving the convex optimization:

m_g);ir}?i%e logdet(Y) subject to (2.62a), (2.62b). (2.63)

Finally, we note that the conditions (2.62a), (2.62b) do not depend on the value of
V¢, and since there is no advantage to be gained using a larger value, we set v, = ny.
From the solution of (2.63), A, and C, are given uniquely by

A.=U'gv T c.=rvT.

while P, can be recovered from (2.60).

A remarkable property of the optimized prediction dynamics is that the maximal
projection of &, onto the x-subspace is as large as the maximal positively invariant
ellipsoidal set under any linear state feedback control law [26]. The importance of this
is that it overcomes the trade-off that exists in the conventional MPC formulations
of Sects.2.7 and 2.5 between performance and the size of the feasible set. Thus,
in the interests of enlarging the terminal invariant set (and hence the overall region
of attraction), it may be tempting to de-tune the terminal control law. But this has
an adverse effect on predicted performance, and potentially also reduces closed-
loop performance. Such loss of performance is however avoided if the optimized
prediction dynamics are used since K can be chosen to be the unconstrained LQ
optimal gain, without any detriment to the size of the region of attraction.

Example 2.6 The maximal ellipsoidal region of attraction of Algorithm 2.2 for the
same system model, constraints and cost as Example 2.1 is shown in Fig. 2.10. Since
this is obtained by optimizing the prediction dynamics using (2.63), the number
of degrees of freedom in the resulting prediction system (i.e. the length of ¢; in
(2.56)) is the same as n,, which here is 2. The area of this maximal ellipsoid is 13.5,
whereas the area of the ellipsoidal region of attraction obtained from (2.44) for the
non-optimized prediction system (2.25) and the same number of degrees of freedom
in predictions (i.e. N = 2) is just 2.3.

Figure2.10 also shows the polytopic feasible set for x; in Algorithm 2.2 when
the optimized prediction dynamics are used to define the polytopic constraint set
Z in (2.58). Despite having only 2 degrees of freedom, the optimized prediction
dynamics result in a polytopic feasible set covering 97 % of the area of the maximal
feasible set Foo, Which for this example is equal to the polytopic feasible set for the
non-optimized dynamics with N = 26 degrees of freedom (also shown in Fig.2.10).
For the initial condition xg = (—7.5, 0.5), the closed-loop cost of Algorithm 2.2 with
the optimized prediction dynamics containing 2 degrees of freedom and polytopic
constraint set Z is 357.7, which from Table 2.1 is only 0.5 % suboptimal relative to
the ideal optimal cost with N = 11. O



2.10 Early MPC Algorithms 51

1.5 T T T T T

[ polytopic N = 26

[_Ipolytopic opt. dyn.
[Jellipsoidal opt. dyn.
[Jellipsoidal N = 2

1.5 1 1 1 1 1 1 1 1

Fig. 2.10 Ellipsoidal region of attraction for optimized dynamics (with 2 degrees of freedom) and
ellipsoidal region of attraction for N = 2. Also shown are the maximal polytopic region of attraction
(F26) and the polytopic region of attraction for the optimized dynamics

2.10 Early MPC Algorithms

Perhaps the earliest reference to MPC strategies is [28], although the ideas of rolling
horizons and decision making based on forecasts had been used earlier in different
contexts (e.g. production scheduling). There have since been thousands of MPC
papers published in the open literature, including a plethora of reports on applications
of MPC to industrial problems. Early contributions (e.g. [29, 30]) were based on finite
horizon predictive costs and as such did not carry guarantees of closed-loop stability.

The most cited of the early papers on predictive control is the seminal work
[31, 32] on Generalized Predictive Control (GPC). This uses an input—output model
to express the vector of output predictions as an affine function of the vector of
predicted inputs

Y1k Aug

Ye=| : | =Cclu +y,{, Aug =

YNk Aun, 11k

Here N, denotes an input prediction horizon which is chosen to be less than or equal
to the prediction horizon N. The matrix Cg is the block striped (Toeplitz) lower
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triangular matrix comprising the coefficients of the system step response, Cg Auy
denotes the predicted forced response at time k, and y,{ denotes the free response
at time k due to non-zero initial conditions. The notation Au is used to denote the
control increments (i.e. Au;jx = u;jx — uj—1x). Posing the problem in terms of
control increments implies the automatic inclusion in the feedback loop of integral
action which rejects (in the steady state) constant additive disturbances.

The GPC algorithm minimizes a cost, subject to constraints, which penalizes
predicted output errors (deviations from a constant reference vector r) and predicted
control increments

Ji = =y O — yi) + Au! RAw, (2.64)

wherer = [r7 -+ 717, O = diag{Q,..., Q} and R = diag{R, ..., R}. By
setting the derivative of this cost with respect to Auy equal to zero, the unconstrained
optimum vector of predicted control increments can be derived as

N A\ —1 N
Auy = (chCG + R) cLow -yl (2.65)

The optimal current control move Augjy is then computed from the first element of
this vector, and the control input uy = Augk + ux—1 is applied to the plant.

GPC has proven effective in a wide range of applications and is the basis of a
number of commercially successful MPC algorithms. There are several reasons for
the success of the approach, principal among these are: the simplicity and generality
of the plant model, and the lack of sensitivity of the controller to variable or unknown
plant dead time and unknown model order; the fact that the approach lends itself
to self-tuning and adaptive control, output feedback control and stochastic control
problems; and the ability of GPC to approximate various well-known control laws
through appropriate definition of the cost (2.64), for example LQ optimal control,
minimum variance and dead-beat control laws. For further discussion of these aspects
of GPC and its industrial applications we refer the reader to [31-34].

Although widely used in industry, the original formulation of GPC did not guaran-
tee closed-loop stability except in limiting cases of the input and output horizons (for
example, in the limit as both the prediction and control horizons tend to infinity, or
when the control horizon is N,, = 1, the prediction horizon is N = oo and the open-
loop system is stable). However, the missing stability guarantee can be established
by imposing a suitable terminal constraint on predictions.

Terminal equality constraints that force the predicted tracking errors to be zero at
all prediction times beyond the N-step prediction horizon were proposed for reced-
ing horizon controllers in the context of continuous time, time-varying unconstrained
systems in [35], time invariant discrete time unconstrained systems [36], and non-
linear constrained systems [37]. This constraint effectively turns the cost of (2.64)
into an infinite horizon cost which can be shown to be monotonically non-increasing
using an argument based on the prediction tail. As a result it can be shown that
tracking errors are steered asymptotically to zero. The terminal equality constraint
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need only to be applied over n, prediction steps after the end of an initial N-step
horizon. Under the assumption that N > n,, the general solution of the equality
constraints will contain, implicitly, (N — n,)n,, degrees of freedom and these can be
used to minimize the resulting predicted cost (i.e. the cost of (2.64) after the expres-
sion for the general solution of the equality constraints has been substituted into
(2.64)). A closely related algorithm to GPC that addresses the case of constrained
systems is Stable GPC (SGPC) [38], which establishes closed-loop stability by ensur-
ing that optimal predicted cost is a Lyapunov function for the closed-loop system.
Related approaches [36, 39] use terminal equality constraints explicitly, however
SGPC implements the equality constraints implicitly while preserving an explicit
representation of the degrees of freedom in predictions.

The decision variables in the SGPC predicted control trajectories appear as per-
turbations of a stabilizing feedback law, and in terms of a left factorization of transfer
function matrices, the predicted control sequence is given by

we =V (e - 21 RGE@ D). (2.66)

Here z is the z-transform variable (z~! can be thought of as the backward shift
operator, namely 7! fr = fr—1), and X ™D, YY) are polynomial solutions
(expressed in powers of z~!) of the matrix Bezout identity

Y HAC Y +z7' X HBEH =1 (2.67)

For simplicity, we use uy instead of Auy and consider the regulation rather than
the setpoint tracking problem (i.e. we take r = 0). Here Bz, A(z™1) are the
polynomial matrices (in powers of z~!) defining right coprime factors of the system
transfer function matrix, G(z~!), where

Yir1 = G Hug = BzHAT @ Hug (2.68)

The determination of the coprime factors can be achieved through the compu-
tation of the Smith—-McMillan form of the transfer function matrix, G(z~') =
Lz HSE HR(™) where Sz = £ Hw!(z7!) with both £(z7!) and
W (z 1) being diagonal polynomial matrix functions of z ~!. The right coprime factors
canthenbe chosenas B(z™') = Lz HEGE™), Az = R™' @ Hw(z™"). Alter-
natively, B(z~!), A(z™") can be computed through an iterative procedure, which we
describe now.

Assuming that G(z~!) is given as

G(z—1>=d L_Ne

oM
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we need to find the solution, A(z~1), B(z™1), of the Bezout identity

N HAaE™hH =B HdiE™) (2.69)

for which (2.67) admits a solution for X (z =), ¥ (z~"). This solution can be shown
to be unique under the assumption that the coefficient of z in A(z ") is the identity,
and that A(z~!) and B(z™!) are of minimal degree. Equation (2.69) defines a set of
under-determined linear conditions on the coefficients of B(z~'), A(z™"). Thus the
coefficients of B(z~!), A(z™") can be expressed as an affine function of a matrix,
say R, where R defines the degrees of freedom which are to be given up so that
(2.67) admits a solution. The determination of R constitutes a nonlinear problem
which, nevertheless, can be solved to any desired degree of accuracy by solving
(2.67) iteratively. The iteration consists of using the least squares solution for R of
(2.67) to update the choice for the coefficients of Az™Y, B(z™D); these updated
values are then used in (2.67) to update the solution for Y(z7Y, X(z7"), and so on.
Each cycle of this iteration reduces the norm of the error in the solution of (2.67)
and the iterative process can be terminated when the norm of the error is below a
practically desirable threshold.

Substituting (2.68) into (2.66), pre-multiplying by Y(z~") and using the Bezout
identity (2.67) provides the prediction model:

Vi1 = Bz ek + y,{H

up = Az Hep + u,{

(2.70)
Here y,‘(f and u ,J: denote the components of the predicted output and input trajectories
corresponding to the free response of the model due to non-zero initial conditions.
Consider now the dual coprime factorizations Bz HA 'z H=A"1z"HBE™,
X Hy 1@ =7 'z"HX () satisfying the Bezout identity

TIXEhH Teh ][Be™H v 10
ii—1 poo—1 -1 Ay | = (2.71)
Az™H —=B@E™H||AE™YH) —z7 X (™) 01

Detailed calcu~lation, based on sirpulating forward ~in time the relationships I?(z_ Dyug

= cr — 2 'X@ Hyryr and Az Hyre1 = B Huy, leads to the following

affine relationship from the vector of predicted controller perturbations, ¢; =

(coks - - -» en—11%) (With ¢jjp = 0, for all i > v), to the vectors of predicted out-
puts, Y« = (V1jk - - - » YN|k), and inputs, g = (Uojk, - - ., UN—1]k):
R | R AR A
77X Y — — 77X Y k (2.72)
|: CA —Cé uy 0 H; _HB ll]I(7
where N = v 4+ na, ¥ = Ok-ny—1s---» ) and u} = (ug_py, ..., up—1)

denote vectors of past input and output values and n4,ny,ny are the degrees
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of the polynomials Az7H, Xz, Y(zH. The C and H matrices are block
Toeplitz convolution matrices, which are defined for any given matrix polynomial
Feh=F+Fz '+ - +F,z by

Fp 0 0 0 -0 Fu Fn_1 F

F F 0 0 ---0 0 Fy F
Cr=|FnFu1--F O ---0|, Hr=|0 0 ---F,
0 F, - F Fy -0 O 0 ---0
| 0 0 - Fy Fpyy - Fo| [0 0 -0

where the row-blocks of Cr and Hf consist, respectively, of N and m blocks.

The solution of (2.72) for the vectors, y; and uy, of output and input predictions
is affine in the vector of the degrees of freedom ¢y, and hence the predicted cost is
quadratic in ¢g. In particular the Bezout identity (2.71) implies an explicit expression
for the inverse of the matrix on the LHS of (2.72), which in turn implies the solution

FAR Rl e | A A ]

w| [Ca k Ca —CZ—IX HA _HB ulf ’

The second term on the RHS of this expression corresponds to the free responses of
the output and input predictions, and, on account of the structure of the convolution
matrices in (2.72) and the Bezout identity (2.71), these free responses are zero at the
end of the prediction horizon consisting of N = v 4 N4 steps. From this observation
and the finite impulse response of the filters B(z ) and A(z~!) in (2.70), it follows
that SGPC imposes an implicit terminal equality constraint, namely that both the
predicted input and output vectors reach the steady value of zero at the end of the
horizon of N = v+ N4 prediction time steps, and this gives the algorithm a guarantee
of closed-loop stability.

Equality terminal constraints can be overly stringent but it is possible to modify
SGPC so that the predicted control law of (2.66) imitates what is obtained using the
predicted control law, u;jx = Kx;jx + ¢i, of the closed-loop paradigm. This can be
achieved through the use of the Bezout identity

Y HAEH +z7'X@ HBE™) = Auz™h (2.73)

where A.;(z™!) is such that B(z~!) and A.;(z!) define right coprime factors of the
closed-loop transfer function matrix (under the control law u = Kx + ¢). The fact
that the same B(z~!) can be used for both the open and closed-loop transfer function
matrices can be argued as follows. Let lg?(z_1 ), A(z‘l) be the right coprime factors
of (zI — A)~! B such that BA(Z_I) = (zI — A)é(z_l). The consistency condition
for this equation is N (z/ — A)é(z_l) = 0 where N is the full-rank left annihilator
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of B (satisfying the condition N B = 0). This is however is also the consistency
condition for the equation

BAu(z Y=zl —A—BK) ' Bz,

which implies that B(z™!) can also be used in the right coprime factorization of
(zI—A—BK) ' B.Thus the same B(z~!) = CB(z™") can be used for both the open
and closed-loop transfer function matrices given that these transfer function matrices
are obtained by the pre-multiplication by C of (z/ —A) " 'Band (zI —A—BK)~'B,
respectively. The property that acommon B(z~!) can be used in the factorization of
the open and closed-loop transfer function matrices can also be used to prove that the
control law of (2.66) guarantees the internal stability of the closed-loop system [40]
(when Y (z71), X(z~1) satisfy either of (2.67) or (2.73)).

SGPC introduced a Youla parameter into the MPC problem and this provides
an alternative way to that described in Sect.2.9 to endow the prediction structure
with control dynamics. This can be achieved by replacing the polynomial matrices
Y(z™Y, X(z"), respectively by

Mz H=YchH-z"oehHBE™)
NeH=Xz"H+4aczhHoe™h

where Q(z~!) represents a free parameter (which can be chosen to be any polynomial
matrix, or stable transfer function matrix). If ¥ (z~!) and X (z™1) satisfy the Bezout
identity (either (2.67) or (2.73)), then so will M(z~") and N(z 1), which therefore
can be used in the control law of (2.66) in place of Y(z Y and X (z7!). The advantage
of this is that the degrees of freedom in Q (z~1) can be used to enhance the robustness
of the closed-loop system to model parameter uncertainty or to enlarge the region of
attraction of the algorithm [38].

At first sight it may appear that the relationships above will not hold in the
presence of constraints. However this is not so, because the perturbations c; have
been introduced in order to ensure that constraints are respected and therefore
the predicted trajectories are generated by the system operating within its linear
range. These prediction equations can be used to express the vector of predicted
outputs and inputs as functions of the vector of predicted degrees of freedom,
¢ = (COks - - - s CN—1]k» Coo» Coos - - -) Where coo denotes the constant value of ¢ which
ensures that the steady-state predicted output is equal to the desired setpoint vector
and the vector ¢, contains Nn, degrees of freedom. Clearly for a regulation problem
with r = 0, cs, would be chosen to be zero. SGPC then proceeds to minimize the
cost of (2.65) over the degrees of freedom (cok, ..., cy—1jk) subject to constraints
and implements the control move indicated by (2.66).
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The algorithms discussed in this section are based on output feedback and are
appropriate in cases where the assumption that the states are measurable and available
for the purposes of feedback does not hold true. In instances like this one can, instead,
revert to a state-space system representation constructed using current and past inputs
and outputs as states (e.g. [41]) or a state-space description of the combination of
the system dynamics together with the dynamics of a state observer (e.g. [42], which
established invariance using low-complexity polytopes, namely polytopes with 2n,
vertices).

2.11 Exercises

1 A first-order system with the discrete time model
Xir1 = 1.5xg + uy

is to be controlled using a predictive controller that minimizes the predicted perfor-
mance index

1
J (e, wok, k) = z (xi2|k + 10“1'2|k) + qx%\k
i=0

where ¢ is a positive constant.

(a) Show that the unconstrained predictive control law is u = —0.35x; if g = 1.

(b) The unconstrained optimal control law with respect to the infinite horizon cost
Z,fio(x,% + 10u,%) is ury = —0.88x;. Determine the value of g so that the
unconstrained predictive control law coincides with this LQ optimal control
law.

(c) The predicted cost is to be minimized subject to input constraints

—05 <u; < 1.
If the predicted inputs are defined as u;x = —0.88x;, for alli > 2, show that

the MPC optimization problem is guaranteed to be recursively feasible if u;
satisfies these constraints for i = 0, 1 and 2.

2 (a) A discrete time system is defined by

01
Xi+1 = [0 OJ xe vk =[10]x

where « is a constant. Show that —1 < y; < 1, for all k¥ > 0 if and only if
la] < 1 and
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=[]

(b) A model predictive control strategy is to be designed for the system

1 1
X1 = [g OJ X+ [O} ue, ye=[10]x, —-1<up=<1

where «v and 3 are constants, with || < 1. Assuming that, fori > N, the i steps
ahead predicted input is defined as

ik = [ 0] xik,
show that:
o] N-—1 1 0
() D O +uin) = D Gl +ul) + (8% + Dxjy [O 1 ] XN k-
i=0 i=0 I-a

(i) —1 <uj < 1foralli > N if

[j}] < 1Bl o < m .

(c) Comment on the suggestion that an MPC law based on minimizing the cost in
(b)(i) subjectto —1 < u;x < 1fori =0, ..., N —1 and the terminal constraint
xyik = 0 would be stable. Why would it be preferable to use the terminal
inequality constraints of (b)(ii) instead of this terminal equality constraint.

3 A system has the model

01 I-1 1
xk+l:|:_1 Oi|xk+§|:1i|'4k, yk:E[l I]Xk.

(a) Show that, if u; =

oo
>R +ud) = ol

il
[}

(b) A predictive control law is defined at each time step k by u; = u(’gl «» Where
(u(";lk, e, u*]‘v_llk) is the minimizing argument of

N—1
: 1(.2 2 2
min Z 2 (yilk + “i|k) + [lxnll ™

UQk s UN—1]k *
i=0

Show that the closed-loop system is stable.
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(c) The system is now subject to the constraint —1 < y; < 1, for all k. Will the
closed-loop system necessarily be stable if the optimization in part (b) includes
the constraints —1 < y;p < 1,fori =1,2,..., N +1?

4 A discrete time system is described by the model xx1| = Axy + Buy with

03 —0.9 0.5
A—[—o.4—2.1]’ B‘[l ]

where u, = Kxi for K = [0.244 1.751], and for all k = 0, 1... the state x; is
subject to the constraints
I[1 =1]x| = 1.

(a) Describe a procedure based on linear programming for determining the largest
invariant set compatible with constraints |[1 —1] x| < 1.
(b) Demonstrate by solving a linear program that the maximal invariant set is
defined by
{x: Fx <land F®x <1},

1 -1 0.42 —0.025
where F = |:_1 | :| and @ = [—0.16 —035 :|

5 Consider the system of Question 4 with the cost Z,iio(llxk ||2Q + ||uk||%€), with
QOQ=1Tand R =1.

(a) ForK = [0.244 1.75 l], solve the Lyapunov matrix equation (2.5) to find W and
hence verify using Theorem 2.1 that K is the optimal unconstrained feedback
gain.

(b) Use the maximal invariant set given in Question 4(b) to prove that x;;x =
[1 0] W'z satisfies the constraints |[1 —1] x;x| < 1,foralli > 0if [F 0] W'z
<1fori=0,1,..., N + 1, where

1= _[A+BK BE e
R e AR M

010---00
001---00
E=[10---0]eRN M=|::: ::|eRVV
000---01
000---00

(c) Show that the predicted cost is given by

1.330.58
0o e0) = Il + pllel, W = [0.58 4_64] . p=6.56.
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(d) For the initial condition xo = (3.8, 3.8), the optimal predicted cost,

J (x0) = min J(xo,¢) subjectto [F 0] \yi[’“’} <1,i=1,...,N+1
ceRN C

varies with N as follows:

N 8 9 10 11
J3% (xo0) 00 826.6 826.6 826.6

(the problemis infeasible for N < 8). Suggest why J}; (xo) is likely to be equal to
826.6, for all N > 9 and state the likely value of the infinite horizon cost for the
closed loop state and control sequence starting from xg under u; = Kx; + CS\ X
if N =09.

6 For the system and constraints of Question 4 with K = [0.244 1.751]:

(a)

(b)

(©)

(d)

(e)

Taking N = 2, solve the optimization (2.41) to determine, for the prediction
dynamics 71 = Wz, the ellipsoidal invariant set {z : z7 P,z < 1} that has
the maximum area projection onto the x-subspace. Hence show that the greatest
scalar « such that xo = («, «) satisfies zg P,zo < 1 for zg = (xg, ¢p), for some
co € R%isa = 1.79.

Show that, for N = 2, the greatest « such that xo = («, ) is feasible for the
constraints [F 0] Wizg<1,i=0,...,N+1,forzp = (xg, ¢p), for some
co € R?, is o = 2.41. Explain why this value is necessarily greater than the
value of « in (a).

Determine the optimized prediction dynamics by solving (2.63) and verify that

096 0.32
Co=[-122-045], A = [_0.015 _0.063} ’

and also that the maximum scaling « such that x9 = («a, «) is feasible for

28 P.zo < 1 for zg = (xo, ¢9), for some ¢y € R?, is a = 2.32.
Using the optimized prediction dynamics computed in part (c), define

- [A+BK BC.
o=

and show that x;;x = [I 0] Wiz satisfies constraints |[1 —1] Xiik| < 1, for all
i > 0if [F 0] Wiz < 1fori = 0,...,5. Hence show that the maximum
scaling « such that xg = (v, «) satisfies these constraints for some ¢g € R? is
o = 3.82.

Show that the optimal value of the predicted cost for the prediction dynamics
and constraints determined in (d) with xo = (3.8,3.8) is J*(xg) = 1686.
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Explain why this value is greater than the predicted cost in Question 5(d) for
N = 9. Whatis the advantage of the MPC law based on the optimized prediction
dynamics?

7 With K = [0.067 2], the model of Question 4 gives
0.33 0.1
A+ BK= [—0.33 —0.1} '

(a) Explain the significance of this for the size of the feasible initial condition set
of an MPC law which is subject to the state constraints |[1 1] x| < 1rather than
the constraints of Question 4?7

(b) Explain why the feasible set of the MPC algorithm in Question 5(d) (which is
subject to the constraints |[1 —1] x| < 1) is finite for all N.

8 GPC can be cast in terms of state-space models, through which the predicted
output sequence yx = (Y1, ..., YN|k) can be expressed as an affine function of
the predicted input sequence w;y = (ugjk, ..., UN,—1k) as Yx = Cixp + C,ug.
Using this expression show that the unconstrained optimum for the minimization
of the regulation cost Jy = y,{ QYk + u,{l@uk, with Q = diag{Q, ..., Q} and
R = diag{R, ..., R}, is given by

* b T A -1 7
ul = — (R + T ch) cT OCyxt.
Hence show that for

0.83 —0.46 0.26
A= [—0.05 0.86 ] B= [0.55]’ ¢ =[o67071],

and in the absence of constraints, GPC results in an unstable closed loop system for
all prediction horizons N < 9 and input horizons N, < N. Confirm that the open-
loop system is stable but that its zero is non-minimum phase. Construct an argument
which explains the instability observed above.

9 (a) Compute the transfer function of the system of Question 8 and show that the
polynomials

X(z7" =21.0529z71 —32.2308, Y(z~!) =19.8907z"' +1

are solutions of the Bezout identity (2.67).

(b) It is proposed to use SGPC to regulate the system of part (a) about the origin
(i.e. the reference setpoint is taken to be »r = 0) using two degrees of freedom,
¢, = (cojk, 1)), in the predicted state and input sequences, the implicit assump-
tion being that ¢; x = 0, foralli > 2. Form the 4 x 4 convolution matrices C %
Cy,Cj4, Ci and confirm that
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-1
) -la-cll
C; —Cj Cp —C,1y
Hence show that the prediction equation giving the vectors of predicted outputs
Yi = (V1ik - - - » Y4jx) and inputs wg = (uq, - . ., U3jk) is
126 —199 11.9
03x3 p
[lylk} - [23} [Ock ] —| 211 =322 199 [y';,] :
k Al P21 —1331 21.1 —126 | L%
02x3

(c) Show that the predicted sequences in (b) implicitly satisfy a terminal constraint.
Hence explain why the closed-loop system under SGPC is necessarily stable.

10 For the data of Question 9 plot the frequency response of the modulus of
K@z ™hH/(1+ G HK(z™")) where

Xz H+AzHoe™

Kz H)=~=
=Y — B hoe

for the following two cases:

(@ Qi H=0
b) 0z H=—-11.7z"1+43

Hence suggest what might be the benefit of introducing a Youla parameter into SGPC
in terms of robustness to additive uncertainty in the system transfer function.
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