
Chapter 2
MPC with No Model Uncertainty

2.1 Problem Description

This section provides a review of some of the key concepts and techniques in classical
MPC. Here the term “classical MPC” refers to a class of control problems involving
linear time invariant (LTI) systems whose dynamics are described by a discrete time
model that is not subject to any uncertainty, either in the form of unknown additive
disturbances or imprecise knowledge of the system parameters. In the first instance
the assumption will be made that the system dynamics can be described in terms of

the LTI state-space model

xk+1 = Axk + Buk (2.1a)

yk = Cxk (2.1b)

where xk ∈ R
nx , uk ∈ R

nu , yk ∈ R
ny are, respectively, the system state, the control

input and the system output, and k is the discrete time index. If the system to be con-
trolled is described by a model with continuous time dynamics (such as an ordinary
differential equation), then the implicit assumption is made here that the controller
can be implemented as a sampled data system and that (2.1a) defines the discrete
time dynamics relating the samples of the system state to those of its control inputs.

Assumption 2.1 Unless otherwise stated, the state xk of the system (2.1a) is assumed
to be measured and made available to the controller at each sampling instant k =
0, 1, . . .

The controlled system is also assumed to be subject to linear constraints. In gen-
eral these may involve both states and inputs and are expressed as a set of linear
inequalities

Fx + Gu ≤ 1 (2.2)
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where F ∈ R
nC ×nx , G ∈ R

nC ×nu and the inequality applies elementwise. We
denote by 1 a vector with elements equal to unity, the dimension of which is context
dependent, i.e. 1 = [1 · · · 1]T ∈ R

nC in (2.2). Setting F or G to zero results in
constraints on inputs or states alone. A feasible pair (xk, uk) or feasible sequence
{(x0, u0), (x1, u1), . . .} for (2.2) is any pair or sequence satisfying (2.2). The con-
straints in (2.2) are symmetric if (−xk,−uk) is feasible whenever (xk, uk) is feasible,
and non-symmetric otherwise. Although the form of (2.2) does not encompass con-
straints involving states or inputs at more than one sampling instant (such as, for
example rate constraints or more general dynamic constraints), these can be handled
through a suitable and obvious extension of the results to be presented.

The classical regulation problem is concerned with the design of a controller that
drives the system state to some desired reference point using an acceptable amount
of control effort. For the case that the state is to be steered to the origin, the controller
performance is quantified conveniently for this type of problem by a quadratic cost
index of the form

J (x0, {u0, u1, u2 . . .}) .=
∞∑

k=0

(
‖xk‖2Q + ‖uk‖2R

)
. (2.3)

Here ‖v‖2S denotes the quadratic form vT Sv for any v ∈ R
nv and S = ST ∈ R

nv×nv ,
and Q, R are weighting matrices that specify the emphasis placed on particular states
and inputs in the cost. We assume that R is a symmetric positive-definite matrix (i.e.
the eigenvalues of R are real and strictly positive, denoted R � 0) and that Q is
symmetric and positive semidefinite (all eigenvalues of Q are real and non-negative,
denoted Q � 0). This allows, for example, the choice Q = CT QyC for some
positive-definite matrix Qy , which corresponds to the case that the output vector, y,
rather than the state, x , is to be steered to the origin. At time k, the optimal value
of the cost (2.3) with respect to minimization over admissible control sequences
{uk, uk+1, uk+2, . . .} is denoted

J ∗(xk)
.= min

uk ,uk+1,uk+2,...
J
(
xk, {uk, uk+1, uk+2 . . .}).

This problem formulation leads to an optimal control problemwhereby the controller
is required to minimize at time k the performance cost (2.3) subject to the constraints
(2.2). To ensure that the optimal value of the cost is well defined, we assume that the
state of the model (2.1) is stabilizable and observable.

Assumption 2.2 In the system model (2.1) and cost (2.3), the pair (A, B) is stabi-
lizable, the pair (A, Q) is observable, and R is positive-definite.

Given the linear nature of the controlled system, the problem of setpoint tracking
(in which the output y is to be steered to a given constant setpoint) can be converted
into the regulation problem considered here by redefining the state of (2.1a) in terms
of the deviation from a desired steady-state value. The more general case of tracking
a time-varying setpoint (e.g. a ramp or sinusoidal signal) can also be tackled within



2.1 Problem Description 15

the framework outlined here provided the setpoint can itself be generated by applying
a constant reference signal to a system with known LTI dynamics.

2.2 The Unconstrained Optimum

The problem of minimizing the quadratic cost of (2.3) in the unconstrained case
(i.e. when F = 0 and G = 0 in (2.2)) is addressed by Linear Quadratic (LQ)
optimal control, which forms an extension of the calculus of variations. The solution
is usually obtained either using Pontryagin’s Maximum Principle [1] or Dynamic
Programming and the recursive Bellman equation [2]. Rather than replicating these
solution methods, here we first characterize the optimal linear state feedback law that
minimizes the cost of (2.3), and later show (in Sect. 2.7) through a lifting formulation
that this control law is indeed optimal over all input sequences.

We first obtain an expression for the cost under linear feedback, u = K x , for an
arbitrary stabilizing gainmatrix K ∈ R

nu×nx , using the closed-loop systemdynamics

xk+1 = (A + BK )xk

to write xk = (A + BK )k x0 and uk = K (A + BK )k x0, for all k. Therefore J (x0) =
J (x0, {K x0, K x1, . . .}) is a quadratic function of x0,

J (x0) = xT
0 W x0, (2.4a)

W =
∞∑

k=0

(A + BK )k T
(Q + K T RK )(A + BK )k . (2.4b)

If A + BK is strictly stable (i.e. each eigenvalue of A + BK is strictly less than
unity in absolute value), then it can easily be shown that the elements of the matrix
W defined in (2.4b) are necessarily finite. Furthermore, if R is positive-definite and
(A, Q) is observable, then J (x0) is a positive-definite function of x0 (since then
J (x0) ≥ 0, for all x0, and J (x0) = 0 only if x0 = 0), which implies that W is a
positive-definite matrix.

The unique matrix W satisfying (2.4) can be obtained by solving a set of linear
equations rather than by evaluating the infinite sum in (2.4b). This is demonstrated
by the following result, which also shows that (A + BK ) is necessarily stable if W
in (2.4) exists.

Lemma 2.1 (Lyapunov matrix equation) Under Assumption 2.2, the matrix W in
(2.4) is the unique positive definite solution of the Lyapunov matrix equation

W = (A + BK )T W (A + BK ) + Q + K T RK (2.5)
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if and only if A + BK is strictly stable.

Proof Let Wn denote the sum of the first n terms in (2.4b), so that

Wn
.=

n−1∑

k=0

(A + BK )k T
(Q + K T RK )(A + BK )k .

Then W1 = Q + K T RK and Wn+1 = (A + BK )T Wn(A + BK )+ Q + K T RK for
all n > 0. Assuming that A + BK is strictly stable and taking the limit as n → ∞,
we obtain (2.5) with W = limn→∞ Wn . The uniqueness of W satisfying (2.5) is
implied by the uniqueness of Wn+1 in this recursion for each n > 0, and W � 0
follows from the positive-definiteness of J (x0).

If we relax the assumption that A + BK is strictly stable, then the existence of
W � 0 satisfying (2.5) implies that there exists a Lyapunov function demonstrat-
ing that the system xk+1 = (A + BK )xk is asymptotically stable, since (A, Q) is
observable and R � 0 by Assumption 2.2. Hence A + BK must be strictly stable if
(2.5) has a solution W � 0. �

The optimal unconstrained linear feedback control law is defined by the stabilizing
feedback gain K that minimizes the cost in (2.3) for all initial conditions x0 ∈ R

nx .
The conditions for an optimal solution to this problem can be obtained by considering
the effect of perturbing the value of K on the solution, W , of the Lyapunov equation
(2.5). Let W + δW denote the sum in (2.4b) when K is replaced by K + δK . Then
W + δW and K + δK satisfy the Lyapunov equation

W + δW = [
A + B(K + δK )

]T
(W + δW )

[
A + B(K + δK )

]

+ Q + (K + δK )T R(K + δK )

which, together with (2.5), implies that δW satisfies

δW = δK T [
BT W (A + BK ) + RK

] + [
(A + BK )T W B + K T R

]
δK

+ (A + BK )T δW (A + BK ) + δK T (BT W B + R)δK

+ δK T BT δW (A + BK ) + (A + BK )T δW B δK + δK T BT δW B δK .

(2.6)

For given δK1 ∈ R
nu×nx , consider a perturbation of the form

δK = ε δK1,

and consider the effect on δW of varying the scaling parameter ε ∈ R. Clearly
K is optimal if and only if xT

0 (W + δW )x0 ≥ xT
0 W x0, for all x0 ∈ R

nx , for all
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δK1 ∈ R
nu×nx and for all sufficiently small ε. It follows that K is optimal if and only

if the solution of (2.6) has the form

δW = ε2 δW2 + ε3 δW3 + · · ·

for all ε ∈ R, where δW2 is a positive semidefinite matrix. Considering terms in
(2.6) of order ε and order ε2, we thus obtain the following necessary and sufficient
conditions for optimality:

BT W (A + BK ) + RK = 0, (2.7a)

δW2 � 0, (2.7b)

δW2 = (A + BK )T δW2(A + BK ) + δK T
1 (BT W B + R)δK1. (2.7c)

Solving (2.7a) for K gives K = −(BT W B + R)−1BT W A as the optimal feedback
gain, whereas Lemma 2.1 and (2.7c) imply that

δW2 =
∞∑

k=0

(A + BK )k T
δK T

1 (BT W B + R)δK1(A + BK )k

and therefore (2.7b) is necessarily satisfied since A + BK is strictly stable and
BT W B + R is positive-definite.

These arguments are summarized by the following result.

Theorem 2.1 (Discrete time algebraic Riccati equation) The feedback gain matrix
K for which the control law

u = K x

minimizes the cost of (2.3) for any initial condition x0 under the dynamics of (2.1a)
is given by

K = −(BT W B + R)−1BT W A, (2.8)

where W � 0 is the unique solution of

W = AT W A + Q − AT W B(BT W B + R)−1BT W A. (2.9)

Under Assumption 2.2, A + BK is strictly stable whenever there exists W � 0
satisfying (2.9).
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Proof The optimality of (2.8) is a consequence of the necessity and sufficiency of the
optimality conditions in (2.7a), (2.7b) and (2.7c). Equation (2.9) (which is known
as the discrete time algebraic Riccati equation) is obtained by substituting K in
(2.8) into (2.5). From Lemma 2.1, we can conclude that, under Assumption 2.2, the
solution of (2.9) for W is unique and positive-definite if and only if A+ BK is strictly
stable. �

2.3 The Dual-Mode Prediction Paradigm

The control law that minimizes the cost (2.3) is not in general a linear feedback law
when constraints (2.2) are present.Moreover, it may not be computationally tractable
to determine theoptimal controller as an explicit state feedback law.Predictive control
strategies overcome this difficulty by minimizing, subject to constraints, a predicted
cost that is computed for a particular initial state, namely the current plant state. This
constrained minimization of the predicted cost is solved online at each time step in
order to derive a feedback control law. The predicted cost corresponding to (2.3) can
be expressed

J (xk, {u0|k, u1|k, . . .}) =
∞∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
(2.10)

where xi |k and ui |k denote the predicted values of the model state and input, respec-
tively, at time k + i based on the information that is available at time k, and where
x0|k = xk is assumed.

The prediction horizon employed in (2.10) is infinite.Hence if every element of the
infinite sequence of predicted inputs {u0|k , u1|k, . . .}were considered to be a free vari-
able, then the constrained minimization of this cost would be an infinite-dimensional
optimization problem, which is in principle intractable. However predictive control
strategies provide effective approximations to the optimal control law that can be
computed efficiently and in real time. This is possible because of a parameterization
of predictions known as the dual-mode prediction paradigm, which enables theMPC
optimization to be specified as a finite-dimensional problem.

The dual-mode prediction paradigm divides the prediction horizon into two inter-
vals. Mode 1 refers to the predicted control inputs over the first N prediction time
steps for some finite horizon N (chosen by the designer), while mode 2 denotes the
control law over the subsequent infinite interval. The mode 2 predicted inputs are
specified by a fixed feedback law, which is usually taken to be the optimum for the
problem of minimizing the cost in the absence of constraints [3–6]. Therefore the
predicted cost (2.10) can be written as

J (xk, {u0|k, u1|k, . . .}) =
N−1∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
+ ‖xN |k‖2W (2.11)
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where, by Theorem 2.1, W is the solution of the Riccati equation (2.9). The term
‖xN |k‖2W is referred to as a terminal penalty term and accounts for the cost-to-go
after N prediction time steps under the mode 2 feedback law.

To simplify notation we express the predicted cost as an explicit function of the
initial state of the prediction model and the degrees of freedom in predictions. Hence
for the dual-mode prediction paradigm inwhich the control inputs over the prediction
horizon of mode 1 are optimization variables, we write (2.11) as

J (xk, uk) =
N−1∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
+ ‖xN |k‖2W . (2.12)

where uk = {u0|k, u1|k, . . . , uN−1|k}.
The receding horizon implementation ofMPC stipulates that at each time instant k

the optimal mode 1 control sequence u∗
k = {u∗

0|k, . . . , u∗
N−1|k} is computed, and only

the first element of this sequence is implemented, namely uk = u∗
0|k . Thus at each

time step the most up-to-date measurement information (embodied in the state xk)
is employed. This creates a feedback mechanism that provides some compensation
for any uncertainty present in the model of (2.1a). It also reduces the gap between
the optimal value of the predicted cost J (xk, uk) in (2.12) and the optimal cost for
the infinite-dimensional problem of minimizing (2.10) over the infinite sequence of
future inputs {u0|k, u1|k, . . .}.

The rationale behind the dual-mode prediction paradigm is as follows. Let
{u0

0|k, u0
1|k, . . .} denote the optimal control sequence for the problem of minimizing

the cost (2.10) over the infinite sequence {u0|k, u1|k, . . .} subject to the constraints
Fxi |k + Gui |k ≤ 1, for all i ≥ 0, for an initial condition x0|k = xk such that this
problem is feasible. If the weights Q and R satisfy Assumption 2.2, then this notional
optimal control sequence drives the predicted state of the model (2.1a) asymptoti-
cally to the origin, i.e. xi |k → 0 as i → ∞. Since (x, u) = (0, 0) is strictly feasible
for the constraints Fx + Gu ≤ 1, there exists a neighbourhood, S, of x = 0 with the
property that these constraints are satisfied at all times along trajectories of the model
(2.1a) under the unconstrained optimal feedback law, u = K x , starting from any ini-
tial condition in S. Hence there necessarily exists a horizon N∞ (which depends on
xk) such that xi |k ∈ S, for all i ≥ N∞. Since the optimal trajectory for i ≥ N∞ is
necessarily optimal for the problem with initial condition xN∞|k (by Bellman’s Prin-
ciple of Optimality [7]), the constrained optimal sequence must therefore coincide
with the unconstrained optimal feedback law, i.e. u0

i |k = K xi |k , for all i ≥ N∞.
It follows that if the mode 1 horizon is chosen to be sufficiently long, namely if
N ≥ N∞, then the mode 1 control sequence, u∗

k , that minimizes the cost of (2.12)
subject to the constraints Fxi |k +Gui |k ≤ 1 for i = 0, 1, . . . , N −1 must be equal to
the first N elements of the infinite sequence that minimizes the cost (2.10), namely
u∗

i |k = u0
i |k for i = 0, . . . , N − 1.

For completeness we next give a statement of this result; for a detailed proof and
further discussion we refer the interested reader to [4, 5].
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Theorem 2.2 There exists a finite horizon N∞, which depends on xk, with the prop-
erty that, whenever N ≥ N∞: (i). the sequence u∗

k that achieves the minimum
of J (xk, uk) in (2.12) subject to Fxi |k + Gui |k ≤ 1 for i = 0, 1, . . . , N − 1 is
equal to the first N terms of the infinite sequence {u0

0|k, u0
1|k, . . .} that minimizes

J (xk, {u0|k, u1|k, . . .}) in (2.10) subject to Fxi |k + Gui |k ≤ 1, for all i ≥ 0; and (ii).
J (xk, u∗

k) = J (xk, {u0
0|k, u0

1|k, . . .}).
It is generally convenient to consider the LQ optimal feedback law u = K x as

underlying both mode 1 and mode 2, and to introduce perturbations ci |k ∈ R
nu ,

i = 0, 1, . . . , N − 1 over the horizon of mode 1 in order to meet constraints. Then

the predicted sequence of control inputs is given by

ui |k = K xi |k + ci |k, i = 0, 1, . . . , N − 1 (2.13a)

ui |k = K xi |k, i = N , N + 1, . . . (2.13b)

with x0|k = xk . This prediction scheme is sometimes referred to as the closed-loop
paradigm because the term K x provides feedback in the horizons of both modes 1
and 2.

We argue in Sect. 3.1 (in the context of robustness tomodel uncertainty) that (2.13)
should be classified as an open-loop prediction scheme because K is fixed rather
than computed on the basis of measured information (namely xk). Nevertheless, the
feedback term K x forms a pre-stabilizing feedback loop around the dynamics of

(2.1a), which assume the form

xi+1|k = Φxi |k + Bci |k, i = 0, 1, . . . , N − 1 (2.14a)

xi+1|k = Φxi |k, i = N , N + 1, . . . (2.14b)

where Φ = A + BK , with x0|k = xk . The strict stability property of Φ prevents
numerical ill-conditioning that could arise in the prediction equations and the asso-
ciated MPC optimization problem in the case of open-loop unstable models [8].

For the closed-loop paradigm formulation in (2.13), the predicted state trajectory
can be generated by simulating (2.14a) forwards over the mode 1 prediction horizon,
giving

xk = Mx xk + Mcck, (2.14c)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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where

xk
.=

⎡

⎢⎣
x1|k
...

xN |k

⎤

⎥⎦, ck
.=

⎡

⎢⎣
c0|k
...

cN−1|k

⎤

⎥⎦

Mx =

⎡

⎢⎢⎢⎣

Φ

Φ2

...

ΦN

⎤

⎥⎥⎥⎦, Mc =

⎡

⎢⎢⎢⎣

B 0 · · · 0
ΦB B · · · 0
...

...
. . .

...

ΦN−1B ΦN−2B · · · B

⎤

⎥⎥⎥⎦.

On the basis of these prediction equations and the fact that the predicted cost over
mode 2 is given by ‖xN |k‖2W (where W is the solution of the Lyapunov equation
(2.5)), the predicted cost of (2.11) can be written as a quadratic function of the
degrees of freedom, namely the vector of predicted perturbations ck . The details of
this computation are straightforward and will not be given here. Instead we derive an
equivalent but more convenient form for the predicted cost in Sect. 2.7. For simplicity
(but with a slight abuse of notation) in the following development, we denote the cost
of (2.11) evaluated along the predicted trajectories of (2.13a) and (2.14a) as J (xk , ck),
thus making explicit the dependence of the cost on the optimization variables ck .

2.4 Invariant Sets

The determination of the minimum prediction horizon N which ensures that the
predicted state and input trajectories in mode 2 meet constraints (2.2) is not a trivial
matter. Instead lower bounds for this horizon were proposed in [4, 5]. However such
bounds could be conservative, leading to the use of unnecessarily long prediction
horizons. This in turn could make the online optimization of the predicted cost
computationally intractable as a result of large numbers of free variables and large
numbers of constraints in theminimization of predicted cost. In such cases it becomes
necessary to use a shorter horizon N while retaining the guarantee that predictions
over mode 2 satisfy constraints on states and inputs. This can be done by imposing
a terminal constraint which requires that the state at the end of the mode 1 horizon
should lie in a set which is positively invariant under the dynamics defined by (2.13b)
and (2.14b) and under the constraints (2.2).

Definition 2.1 (Positively invariant set) A setX ⊆ R
nx is positively invariant under

the dynamics defined by (2.13b) and (2.14b) and the constraints (2.2) if and only if
(F + G K )x ≤ 1 and Φx ∈ X , for all x ∈ X .

The use of invariant sets within the dual prediction mode paradigm is illustrated
in Fig. 2.1 for a second-order system. The predicted state at the end of mode 1 is
constrained to lie in an invariant set XT via the constraint xN |k ∈ XT . Thereafter, in
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Fig. 2.1 The dual-mode prediction paradigmwith terminal constraint. The control inputs inmode 1
are chosen so as to satisfy the system constraints as well as the constraint that the N step ahead
predicted state should be inside the invariant set XT . Over the infinite mode 2 prediction horizon
the predicted state trajectory is dictated by the prescribed feedback control law u = K x

mode 2, the evolution of the state trajectory is that prescribed by the state feedback
control law uk = K xk .

In order to increase the applicability of the MPC algorithm, and in particular to
increase the size of the set of initial conditions x0|k for which the terminal condition
xN |k ∈ XT can be met, it is important to choose the maximal positively invariant set
as the terminal constraint set. This set is defined as follows.

Definition 2.2 (Maximal positively invariant set) The maximal positively invariant
(MPI) set under the dynamics of (2.13b) and (2.14b) and the constraints (2.2) is the
union of all sets that are positively invariant under these dynamics and constraints.

It was shown in [9] that, for the case of linear dynamics and linear constraints
considered here, the MPI set is defined by a finite number of linear inequalities. This
result is summarized next.

Theorem 2.3 ([9]) The MPI set for the dynamics defined by (2.13b) and (2.14b) and
the constraints (2.2) can be expressed

XMPI .= {x : (F + G K )Φ i x ≤ 1, i = 0, . . . , ν} (2.15)

where ν is the smallest positive integer such that (F + G K )Φν+1x ≤ 1, for all x
satisfying (F +G K )Φ i x ≤ 1, i = 0, . . . , ν. If Φ is strictly stable and (Φ, F +G K )

is observable, then ν is necessarily finite.

Proof Let X (n) = {x : (F + G K )Φ i x ≤ 1, i = 0, . . . , n} for n ≥ 0, then it can be
shown that (2.15) holds for some finite ν using Definition 2.2 to show that the MPI
set XMPI is equal to X (ν) for finite ν.
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In particular, if x0|k /∈ X (n) for given n, then the constraint (2.2) must be violated
under the dynamics of (2.13b) and (2.14b). By Definition 2.2 therefore, any x /∈ X (n)

cannot lie in XMPI, so X (n) must contain XMPI, for all n ≥ 0.
Furthermore, if (F + G K )Φν+1x ≤ 1, for all x ∈ X (ν), then Φx ∈ X (ν)

must hold whenever x ∈ X (ν) (since x ∈ X (ν) and (F + G K )Φν+1x ≤ 1 imply
(F + G K )Φ i (Φx) ≤ 1 for i = 0, . . . ν). But from the definition of X (ν) we have
(F + G K )x ≤ 1 for all x ∈ X (ν), and therefore X (ν) is positively invariant under
(2.13b), (2.14b) and (2.2). From Definition 2.2 it can be concluded that X (ν) is a
subset of, and therefore equal to XMPI.

Finally, for ν ≥ nx , the set X (ν) is necessarily bounded if (Φ, F + G K ) is
observable, and, since Φ is strictly stable, the set {x : (F + G K )Φ(ν+1)x ≤ 1}
must contain X (ν) for finite ν; therefore XMPI must be defined by (2.15) for some
finite ν. �

The value of ν satisfying the conditions of Theorem 2.3 can be computed by
solving at most νnC linear programs (LPs), namely

maximize
x

(F + G K ) jΦ
n+1x subject to (F + G K )Φ i x ≤ 1, i = 0, . . . , n

for j = 1, . . . , nC , n = 1, . . . , ν, where (F +G K ) j denotes the j th row of F +G K .
The value of ν clearly does not depend on the system state, and this procedure can
therefore be performed offline. In general ν ≥ nx , and (2.15) defines theMPI set as a
polytope. Therefore if XT is equal to the MPI set, the terminal constraint xN |k ∈ XT

can be invoked via linear inequalities on the degrees of freedom inmode1predictions.
It will be convenient to represent the terminal set XT in matrix form

XT = {x : VT x ≤ 1},

so that with XT chosen as the MPI set (2.15), VT is given by

VT =

⎡

⎢⎢⎢⎣

F + G K
(F + G K )Φ

...

(F + G K )Φν

⎤

⎥⎥⎥⎦ .

Example 2.1 Figure2.2 gives an illustration of theMPI set for a second-order system

with state-space matrices

A =
[
1.1 2
0 0.95

]
, B =

[
0

0.0787

]
, C = [−1 1

]
(2.16a)

and constraints −1 ≤ x/8 ≤ 1, −1 ≤ u ≤ 1, which correspond to the following
constraint matrices in (2.2),
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Fig. 2.2 Themaximal positively invariant (MPI) set,XMPI, for the system of (2.16a), (2.16b). Each
of the inequalities defining XMPI is represented by a straight line on the diagram

F =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1/8
1/8 0
0 −1/8

−1/8 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, G =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

−1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2.16b)

The mode 2 feedback law is taken to be the optimal unconstrained linear feedback
law u = K x , with costweights Q = CT C and R = 1, forwhich K = − [

1.19 7.88
]
.

TheMPI set is given by (2.15) with ν = 5. After removing redundant constraints, this
set is defined by 10 inequalities corresponding to the 10 straight lines that intersect
the boundary of the MPI set, marked XMPI in Fig. 2.2. ♦

2.5 Controlled Invariant Sets and Recursive Feasibility

Collecting the ideas discussed in the previous sections we can state the following
MPC algorithm:

Algorithm 2.1 (MPC) At each time instant k = 0, 1, . . .:
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(i) Perform the optimization

minimize
ck

J (xk, ck) (2.17a)

subject to (F + G K )xi |k + Gci |k ≤ 1, i = 0, . . . , N − 1 (2.17b)

VT xN |k ≤ 1 (2.17c)

where J (xk, ck) is the cost of (2.11) evaluated for the predicted trajectories of
(2.13a) and (2.14a).

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck for problem (2.17). �

The terminal condition (2.17c) is sometimes referred to as a stability constraint
because it provides a means of guaranteeing the closed-loop stability of the MPC
law. It does this by ensuring that themode 2 predicted trajectories (2.13b) and (2.14b)
satisfy the constraint (F + G K )xi |k ≤ 1, thus ensuring that the predicted cost over
mode 2 is indeed given by ‖xN |k‖2W , and also by guaranteeing that Algorithm 2.1
is feasible at all time instants if it is feasible at initial time. The latter property of
recursive feasibility is a fundamental requirement for closed-loop stability since it
guarantees that the optimization problem (2.17) is solvable and hence that the control
law of Algorithm 2.1 is defined at every time instant if (2.17) is initially feasible.

Recall that the feasibility of predicted trajectories in mode 2 is ensured by con-
straining the terminal state to lie in a set which is positively invariant. The feasibility
of Algorithm 2.1 can be similarly ensured by requiring that the state xk lies in an
invariant set. However, since there are degrees of freedom in the predicted trajec-
tories of (2.13a) and (2.14a), the relevant form of invariance is controlled positive
invariance.

Definition 2.3 (Controlled positively invariant set) A set X ⊆ R
nx is controlled

positively invariant (CPI) for the dynamics of (2.1a) and constraints (2.2) if, for all
x ∈ X , there exists u ∈ R

nu such that Fx +Gu ≤ 1 and Ax + Bu ∈ X . Furthermore
X is the maximal controlled positively invariant (MCPI) set if it is CPI and contains
all other CPI sets.

To show that Algorithm 2.1 is recursively feasible, we demonstrate next that its
feasible set is a CPI set. Algorithm 2.1 is feasible whenever xk belongs to the feasible
set FN defined by

FN
.= {

xk : ∃ ck such that (F + G K )xi |k + Gci |k ≤ 1, i = 0, . . . , N − 1

and VT xN |k ≤ 1
}
. (2.18)



26 2 MPC with No Model Uncertainty

Clearly this is the same as the set of states of (2.1a) that can be driven to the terminal
set XT = {x : VT x ≤ 1} in N steps subject to the constraints (2.2), and it therefore
has the following equivalent definition:

FN = {
x0 : ∃ {u0, . . . , uN−1} such that Fxi + Gui ≤ 1, i = 0, . . . , N − 1,

and xN ∈ XT
}
. (2.19)

Theorem 2.4 If XT in (2.19) is positively invariant for (2.13b), (2.14b) and (2.2),
then FN ⊆ FN+1, for all N > 0, and FN is a CPI set for the dynamics of (2.1a)
and constraints (2.2).

Proof If x0 ∈ FN , then by definition there exists a sequence {u0, . . . , uN−1} such
that Fxi + Gui ≤ 1, i = 0, . . . , N − 1 and xN ∈ XT . Also, since XT is positively
invariant, the choice uN = K xN would ensure FxN + GuN ≤ 1 and xN+1 ∈ XT ,
and this in turn implies x0 ∈ FN+1 whenever x0 ∈ FN . Furthermore if x0 ∈ FN ,
then by definition u0 exists such that Fx0 + Gu0 ≤ 1 and x1 ∈ FN−1, and since
FN−1 ⊂ FN , it follows that FN is CPI. �

Although the proof of Theorem 2.4 considers the sequence of control inputs
{u0, . . . , uN−1}, the same arguments apply to the optimization variables ck in (2.17),
since for each feasible uk , k = 0, . . . , N − 1, there exists a feasible ck such that
uk = K xk + ck . Therefore, the fact that FN is a CPI set for (2.1a) and (2.2) also
implies that FN is CPI for the dynamics (2.14a) and constraints (2.17b). Hence
for any xk ∈ FN there must exist ck such that (F + G K )xk + Gck ≤ 1 and
xk+1 = Φxk + Bck ∈ FN . Furthermore, the proof of Theorem 2.4 shows that if
ck = c∗

0|k (where c∗
k = (c∗

0|k, . . . , c∗
N−1|k) is the optimal value of ck in step (ii) of

Algorithm 2.1), then the sequence

ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0) (2.20)

is necessarily feasible for the optimization (2.17) at time k + 1, and therefore Algo-
rithm 2.1 is recursively feasible.

The candidate feasible sequence in (2.20) can be thought of as the extension to
time k + 1 of the optimal sequence at time k. It is in fact the sequence that generates,
via (2.13a), the input sequence

{u1|k, . . . , uN−1|k, K xN |k}

at time k + 1. For this reason, it is sometimes referred to as the tail of the solution of
the MPC optimization problem at time k, or simply the tail. As well as demonstrating
recursive feasibility, the tail is often used to construct a suboptimal solution at time
k + 1 based on the optimal solution at time k. This enables a comparison of the
optimal costs at successive time steps, which is instrumental in the analysis of the
closed-loop stability properties of MPC laws.
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Theorem 2.4 shows that the feasible sets corresponding to increasing values of N
are nested, so that the feasible setFN necessarily grows as N is increased. In practice
the length of the mode 1 horizon is likely to be limited by the growth in computation
that is required to solve Algorithm 2.1 (this is discussed in Sect. 2.8). However, given
that FN increases as N grows, the question arises as to whether there exists a finite
value of N such that FN is equal to the maximal feasible set defined by

F∞
.=

∞⋃

N=1

FN .

Here F∞ is defined as the set of initial conditions that can be steered to XT over an
infinite horizon subject to constraints. However, F∞ is independent of the choice of
XT ; this is a consequence of the fact that, for any bounded positively invariant set
XT , the system (2.1a) can be steered from any initial state inXT to the origin subject
to the constraints (2.2) in finite time, as demonstrated by the following result.

Theorem 2.5 Let F0
N

.= {
x0 : ∃ {u0, . . . , uN−1} such that Fxi + Gui ≤ 1, i =

0, . . . , N − 1, and xN = 0
}
. If XT in (2.19) is positively invariant for (2.13b),

(2.14b) and (2.2), where Φ is strictly stable and (Φ, F + G K ) is observable, then
F∞ = ⋃∞

N=1 FN = ⋃∞
N=1 F0

N .

Proof First, note that any positively invariant setXT must contain the origin because
Φ is strictly stable. Second, strict stability of Φ and boundedness of XT (which fol-
lows from observability of (Φ, F + G K )) also implies that, for any ε > 0, the
set Bε

.= {x : ‖x‖ ≤ ε} is reachable from any point in XT in a finite number of
steps (namely for all x0 ∈ XT there exists a sequence {u0, . . . , un−1} such that
Fxi + Gui ≤ 1 for i = 0, . . . , n − 1 and xn ∈ Bε) since ‖Φn x‖ ≤ ε, for all x ∈ XT

for some finite n. Third, since (A, B) is controllable and (0, 0) lies in the interior
of the constraint set {(x, u) : Fx + Gu ≤ 1}, there must exist ε > 0 such that the
origin is reachable in nx steps from any point in Bε, i.e. Bε ⊆ F0

nx
. Combining these

observations we obtain {0} ⊆ XT ⊆ F0
n+nx

and hence F0
N ⊆ FN ⊆ F0

n+nx +N
for some finite n and all N ≥ 0. From this we conclude that

⋃∞
N=1 FN =⋃∞

N=1 F0
N . �

A consequence of Theorem 2.5 is that replacing the terminal set XT by any
bounded positively invariant set (or in fact any CPI set) in (2.18) results in the same
setF∞. ThereforeF∞ is identical to themaximal CPI set or infinite time reachability
set [10, 11], which by definition is the largest possible feasible set for any stabilizing
control law for the dynamics (2.1a) and constraints (2.2). In general FN does not
necessarily tend to a finite limit1 as N → ∞, but the following result shows that
under certain conditions F∞ is equal to FN for finite N .

1If for example the system (2.1a) is open-loop stable and F = 0, then clearly the MCPI set is the
entire state space and FN grows without bound as N increases. In general the MCPI set is finite if
and only if the system (A, B, F, G), mapping input uk to output Fxk + Guk has no transmission
zeros inside the unit circle (see, e.g. [11, 12]).
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Theorem 2.6 If FN+1 = FN for finite N > 0, then F∞ = FN .

Proof An alternative definition of FN+1 (which is nonetheless equivalent to (2.18))
is that FN+1 is the set of states x for which there exists a control input u such that
Fx + Gu ≤ 1 and Ax + Bu ∈ FN . If FN+1 = FN , then it immediately follows
from this definition that FN+2 = FN+1. Applying this argument repeatedly we get
FN+i = FN , for all i = 1, 2, . . . and hence F∞ = FN . �

Example 2.2 Figure2.3 shows the feasible sets FN of Algorithm 2.1 for the system
model and constraints of Example 2.1, for a range of values of mode 1 horizon N .
Here the terminal set XT is the maximal positively invariant set XMPI of Fig. 2.2;
this is shown in Fig. 2.3 as the feasible set for N = 0. As expected the feasible
sets FN for increasing N are nested. For this example, the maximal CPI set is
given by F∞ = FN for N = 26 and the minimal description of F∞ involves 100
inequalities. ♦

Fig. 2.3 The feasible sets FN , N = 4, 8, 12, 16, 20, 24, 26 and the terminal set F0 = XT for the
example of (2.16a), (2.16b). The maximal controlled invariant set is F∞ = F26
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2.6 Stability and Convergence

This section introduces the main tools for analysing closed-loop stability under the
MPC law of Algorithm 2.1 for the ideal case of no model uncertainty or unmodeled
disturbances. The control law is nonlinear because of the inequality constraints in the
optimization (2.17), and the natural framework for the stability analysis is therefore
Lyapunov stability theory. Using the feasible but suboptimal tail sequence that was
introduced in Sect. 2.5, we show that the optimal value of the cost function in (2.17) is
non-increasing along trajectories of the closed-loop system. This provides guarantees
of asymptotic convergence of the state and Lyapunov stability under Assumption 2.2.
Where possible, we keep the discussion in this section non-technical and refer to the
literature on stability theory for technical details.

The feasibility of the tail of the optimal sequence c∗
k implies that the sequence

ck+1 defined in (2.20) is feasible but not necessarily an optimal solution of (2.17) at
time k +1. Using (2.20) it is easy to show that the corresponding cost J (xk+1, ck+1)

is equal to J ∗(xk) − ‖xk‖2Q − ‖uk‖2R . After optimization at time k + 1, we therefore
have

J ∗(xk+1) ≤ J ∗(xk) − ‖xk‖2Q − ‖uk‖2R . (2.21)

Summing both sides of this inequality over all k ≥ 0 gives the closed-loop perfor-
mance bound ∞∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J ∗(x0) − lim

k→∞ J ∗(xk). (2.22)

The quantity appearing on the LHS of this inequality is the cost evaluated along the
closed-loop trajectories of (2.1) under Algorithm 2.1. Since J ∗(xk) is non-negative
for all k, the bound (2.22) implies that the closed-loop cost can be no greater than
the initial optimal cost value, J ∗(x0).

Given that the optimal cost is necessarily finite if (2.17) is feasible, and since each
term in the sum on the LHS of (2.22) is non-negative, the closed-loop performance
bound in (2.22) implies the following convergence result

lim
k→∞

(‖xk‖2Q + ‖uk‖2R
) = 0 (2.23)

along the trajectories of the closed-loop system. We now give the basic results con-
cerning closed-loop stability.

Theorem 2.7 If (2.17) feasible at k = 0, then the state and input trajectories of
(2.1a) under Algorithm 2.1 satisfy limk→∞(xk, uk) = (0, 0).

Proof This follows from (2.23) and Assumption 2.2 since R � 0 implies uk → 0 as
k → ∞; hence from the observability of (Q, A) and ‖xk‖Q → 0 we conclude that
xk → 0 as k → ∞. �
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Theorem 2.8 Under the control law of Algorithm 2.1, the origin x = 0 of the system
(2.1a) is asymptotically stable and its region of attraction is equal to the feasible set
FN . If Q � 0, then x = 0 is exponentially stable.

Proof The conditions on Q and R in Assumption 2.2 ensure that the optimal cost
J ∗(xk) is a positive-definite function of xk since J ∗(xk) = 0 if and only if xk = 0, and
J ∗(xk) > 0 whenever xk �= 0. Therefore (2.21) implies that J ∗(xk) is a Lyapunov
function which demonstrates that x = 0 is a stable equilibrium (in the sense of
Lyapunov) of the closed-loop system [13]. Combined with the convergence result of
Theorem 2.7, this shows that x = 0 is an asymptotically stable equilibrium point, and
since Theorem 2.7 applies to all feasible initial conditions, the region of attraction
is FN .

To show that the rate of convergence is exponential if Q � 0 we first note that
the optimal value of (2.17) is a continuous piecewise quadratic function of xk [14].
Therefore, J ∗(xk) can be bounded above and below for all xk ∈ FN by

α‖xk‖2 ≤ J ∗(xk) ≤ β‖xk‖2 (2.24)

where α and β are necessarily positive scalars since J ∗(xk) is positive-definite. If
the smallest eigenvalue of Q is λ(Q), then from (2.24) and (2.21) we get

‖xk‖2 ≤ 1

α

∣∣∣∣1 − λ(Q)

β

∣∣∣∣
k

J ∗(x0)

for all k = 0, 1, . . ., and hence x = 0 is exponentially stable. �

Example 2.3 For the same system dynamics, constraints and cost as in Example 2.1
the predicted and closed-loop state trajectories under the MPC law of Algorithm 2.1
with N = 6 and initial state x(0) = (−7.5, 0.5) are shown in Fig. 2.4. Figure2.5
gives the corresponding predicted and closed-loop input trajectories. The jump in
the predicted input trajectory at N = 6 is due to the switch to the mode 2 feedback
law at that time step.

Table2.1 gives the variation with mode 1 horizon N of predicted cost J ∗
0 and

closed-loop cost Jcl(x0)
.= ∑∞

k=0(‖xk‖2Q + ‖uk‖2R) for x(0) = (−7.5, 0.5). The
infinite-dimensional optimal performance is obtained with N = N∞, where N∞ =
11 for this initial condition, so there is no further decrease in predicted cost for values
of N > 11. However, because of the receding horizon implementation, the closed-
loop response of the MPC law for N = 6 is indistinguishable from the ideal optimal
response for this initial condition. ♦
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Fig. 2.4 Predicted and closed-loop state trajectories for Algorithm 2.1 with N = 6

Fig. 2.5 Predicted and closed-loop input trajectories for Algorithm 2.1 with N = 6
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Table 2.1 Variation of predicted and closed-loop cost with N for x0 = (−7.5, 0.5) in Example 2.3

N 6 7 8 11 >11

J ∗(x0) 364.2 357.0 356.3 356.0 356.0

Jcl(x0) 356.0 356.0 356.0 356.0 356.0

2.7 Autonomous Prediction Dynamics

The dual-mode prediction dynamics (2.14a) and (2.14b) can be expressed in a more
compact autonomous form that incorporates both prediction modes [15, 16]. This
alternative prediction model, which includes the degrees of freedom in predictions
within the state of an autonomous prediction system, enables the constraints on pre-
dicted trajectories to be formulated as constraints on the prediction system state at
the start of the prediction horizon. With this approach the feasible sets for the model
state and the degrees of freedom in predictions are determined simultaneously by
computing an invariant set (rather than a controlled invariant set) for the autonomous
system state. This can result in significant reductions in computation for the case
that the system model is uncertain since, as discussed in Chap. 5, it greatly sim-
plifies handling the the effects of uncertainty over the prediction horizon. In this
section we show that an autonomous formulation is also convenient in the case of
nominal MPC.

An autonomous prediction system that generates the predictions of (2.13a),
(2.13b) and (2.14a), (2.14b) can be expressed as

zi+1|k = �zi |k, i = 0, 1, . . . (2.25)

where the initial state z0|k ∈ R
nx +Nnu consists of the state xk of the model (2.1a)

appended by the vector ck of degrees of freedom,

z0|k =

⎡

⎢⎢⎢⎣

xk

c0|k
...

cN−1|k

⎤

⎥⎥⎥⎦.

The state transition matrix in (2.25) is given by

� =
[
Φ B E
0 M

]
(2.26a)

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 2.6 Block diagram representation of the autonomous prediction systems (2.25) and (2.26).
The free variables in the state and input predictions at time k are contained in the initial controller
state ck ; the signals marked x and u are the i steps ahead predicted state and control input, and x+,
c+ denote their successor states

where Φ = A + BK and

E = [
Inu 0 · · · 0] , M =

⎡

⎢⎢⎢⎢⎢⎣

0 Inu 0 · · · 0
0 0 Inu · · · 0
...

...
...

. . .
...

0 0 0 · · · Inu

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
. (2.26b)

The state and input predictions of (2.13a), (2.13b) and (2.14a), (2.14b) are then

given by

ui |k = [
K E

]
zi |k (2.27a)

xi |k = [
Inx 0

]
zi |k (2.27b)

for i = 0, 1, . . . . The prediction systems (2.25) and (2.26) can be interpreted as a
dynamic feedback law applied to (2.1a), with the controller state at the beginning of
the prediction horizon containing the degrees of freedom, ck , in predictions (Fig. 2.6).

2.7.1 Polytopic and Ellipsoidal Constraint Sets

The constraints (2.2) applied to the predictions of (2.27a), (2.27b) are equivalent to
the following constraints on the initial prediction system state zk = z0|k :

[
F + G K G E

]
� i zk ≤ 1, i = 0, 1, . . . (2.28)

Clearly this implies an infinite number of constraints that apply across an infi-
nite prediction horizon. However, analogously to the definition of terminal invari-
ant sets in Sect. 2.4, a feasible set for zk satisfying (2.28) can be constructed by
determining a positively invariant set for the dynamics zk+1 = �zk and constraints
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[
F + G K G E

]
zk ≤ 1. Theorem 2.3 shows that the maximal positively invariant set

for these dynamics and constraints is given by

Z .= {z : [
F + G K G E

]
� i z ≤ 1, i = 0, 1, . . . , νz} (2.29)

where νz is a positive integer such that
[
F + G K G E

]
�νz+1z ≤ 1, for all z satis-

fying
[
F + G K G E

]
� i z ≤ 1, i = 0, 1, . . . , νz . Since Z is the MPI set, every state

zk for which (2.28) is satisfied must lie inZ . Given that a mode 1 prediction horizon
of N steps is implicit in the augmented prediction dynamics (2.25), the projection of
Z onto the x-subspace is therefore equal to the feasible set FN defined in (2.18), i.e.

FN =
{

x : ∃ c such that
[
F + G K G E

]
� i

[
x
c

]
≤ 1, i = 0, 1, . . . , νz

}
.

The value of νz defining the MPI set in (2.29) grows as the mode 1 prediction
horizon N is increased. Furthermore, it can be seen from (2.26) that every eigenvalue
of� is equal either to 0 or to an eigenvalue ofΦ, so if one or more of the eigenvalues
ofΦ lies close to the unit circle in the complex plane, then νz in (2.29) could be large
even for short horizons N . The equivalence of (2.27a), (2.27b) with (2.13a), (2.13b)
and (2.14a), (2.14b) implies that the online MPC optimization in (2.17) is equivalent
to

minimize
ck

J (xk, ck) subject to

[
xk

ck

]
∈ Z. (2.30)

which is a quadratic programming problem with νznC constraints.
A large value of νz could therefore make the implementation of Algorithm 2.1

computationally demanding. If this is the case, and in particular for applications with
very high sampling rates, it may be advantageous to replace the polyhedral invariant
set Z with an ellipsoidal invariant set, Ez :

minimize
ck

J (xk, ck) subject to

[
xk

ck

]
∈ Ez . (2.31)

This represents a simplification of the online optimization to a problem that involves
just a single constraint, thus allowing for significant computational savings. Further-
more, using an ellipsoidal set that is positively invariant for the autonomous predic-
tion dynamics (2.25) and constraints

[
F + G K G E

]
z ≤ 1, the resulting MPC law

retains the recursive feasibility and stability properties of Algorithm 2.1. Approxi-
mating theMPI setZ (which is by definition maximal) using a smaller ellipsoidal set
necessarily introduces suboptimality into the resulting MPC law; but as discussed in
Sect. 2.8, the degree of suboptimality is in many cases negligible.

The invariant ellipsoidal set Ez can be computed offline by solving an appro-
priate convex optimization problem. The design of these sets is particularly con-
venient computationally because the conditions for invariance with respect to the
linear autonomous dynamics (2.25) and linear constraints

[
F + G K G E

]
zk ≤ 1
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may be written in terms of linear matrix inequalities (LMIs), which are necessar-
ily convex and can be handled using semidefinite programming (SDP) [17]. Linear
matrix inequalities and the offline optimization of Ez are considered in more detail
in Sect. 2.7.3; here we simply summarize the conditions for invariance of Ez in the
following theorem:

Theorem 2.9 The ellipsoidal set defined byEz
.= {z : zT Pzz ≤ 1} for Pz � 0 is posi-

tively invariant for the dynamics zk+1 = �zk and constraints
[
F + G K G E

]
zk ≤ 1

if and only if Pz satisfies

Pz − �T Pz� � 0 (2.32)

and

⎡

⎣
H

[
F + G K G E

]
[
(F + G K )T

(G E)T

]
Pz

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, 2, . . . , nC (2.33)

for some symmetric matrix H, where ei is the i th column of the identity matrix.

Proof The inequality in (2.32) implies zT �T P�z ≤ zT Pz ≤ 1,which is a sufficient
condition for invariance of the ellipsoidal set Ez under zk+1 = �zk . Conversely,
(2.32) is also necessary for invariance since if Pz − �T Pz� � 0, then there would
exist z satisfying zT �T Pz�z > zT Pzz and zT Pzz = 1, which would imply that
�z /∈ Ez for some z ∈ Ez .

We next show that (2.33) provides necessary and sufficient conditions for satis-
faction of the constraints

[
F + G K G E

]
z ≤ 1, for all z ∈ Ez . To simplify notation,

let F̃
.= [

F + G K G E
]
and let F̃i denote the i th row of F̃ . Since

max
z

{
F̃i z subject to zT Pzz ≤ 1

} = (
F̃i P−1

z F̃ T
i

)1/2

it follows that F̃ x ≤ 1, for all x ∈ Ez if and only if F̃i P−1
z F̃ T

i ≤ 1 for each
row i = 1, . . . , nC . These conditions can be expressed equivalently in terms of a
condition on a positive-definite diagonal matrix:

⎡

⎢⎣
H1,1 − F̃1P−1

z F̃ T
1

. . .

HnC ,nC − F̃nC P−1
z F̃ T

nC

⎤

⎥⎦ � 0

for some scalars Hi,i ≤ 1, i = 1, . . . , nC , and this in turn is equivalent to

H − F̃ P−1 F̃T � 0

for some symmetric matrix H with eT
i Hei ≤ 1, for all i . Using Schur complements

(as discussed in Sect. 2.7.3), this condition is equivalent to
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[
H F̃
F̃T Pz

]
� 0, eT

i Hei ≤ 1, i = 1, . . . , nC

which implies the necessity and sufficiency of (2.33). �

2.7.2 The Predicted Cost and MPC Algorithm

Given the autonomous form of the prediction dynamics of (2.25) it is possible to
use a Lyapunov equation similar to (2.5) to evaluate the predicted cost J (xk, ck) of
(2.11) along the predicted trajectories of (2.27a), (2.27b). The stage cost (namely the
part of the cost incurred at each prediction time step) has the general form

‖x‖2Q + ‖u‖2R = ‖x‖2Q + ‖K x + c‖2R = xT (Q + K T RK )x + cT ET REc

= ‖z‖2
Q̂
, Q̂ =

[
Q + K T RK K T RE

ET RK ET RE

]
.

Hence J (xk, ck) can be written as

J (xk, ck) =
∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
) =

∞∑

i=0

‖zi |k‖2Q̂ = ‖z0|k‖2W

where, by Lemma 2.1, W is the (positive-definite) solution of the Lyapunov equation

W = �T W� + Q̂. (2.34)

The special structure of � and Q̂ in this Lyapunov equation implies that its solution
also has a specific structure, as we describe next.

Theorem 2.10 If K is the optimal unconstrained linear feedback gain for the dynam-
ics of (2.1a), then the cost (2.11) for the predicted trajectories of (2.27a), (2.27b)
can be written as

J (xk, ck) = xT
k Wx xk + cT

k Wcck

Wc =

⎡

⎢⎢⎢⎣

BT Wx B + R 0 · · · 0
0 BT Wx B + R · · · 0
...

...
. . .

0 0 BT Wx B + R

⎤

⎥⎥⎥⎦
(2.35)

where Wx is the solution of the Riccati equation (2.9).

Proof Let W =
[

Wx Wxc
Wcx Wc

]
, then substituting for W , � and Q̂ in (2.34) gives
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Wx = ΦT WxΦ + Q + K T RK (2.36a)

Wcx = MT WcxΦ + ET (BT WxΦ + RK ) (2.36b)

Wc = (B E)T Wx (B E) + (B E)T Wxc M + MT Wcx B E + MT Wc M + ET RE

(2.36c)

The predicted cost for ck = 0 is ‖xk‖2Wx
, and since K is the unconstrained opti-

mal linear feedback gain, it follows from (2.36a) and Theorem 2.1 that Wx is the
solution of the Riccati equation (2.9). Furthermore, from Theorem 2.1 we have
K = −(BT Wx B + R)−1BT Wx A, so that BT WxΦ + RK = 0 and hence (2.36b)
gives Wcx − MT WcxΦ = 0, which implies that Wcx = 0. Therefore,

W =
[

Wx 0
0 Wc

]
, (2.37)

and from (2.36c) we have Wc − MT Wc M = ET (BT Wx B + R)E . Hence from the
structure of M and E in (2.26b), Wc is given by (2.35). �

Corollary 2.1 The unconstrained LQ optimal control law is given by the feedback
law u = K x, where K = −(BT Wx B + R)−1BT Wx A and Wx is the solution of the
Riccati equation (2.9).

Proof Theorem 2.1 has already established that the unconstrained optimal linear
feedback gain is as given in the corollary. The question remains as to whether it is
possible to obtain a smaller cost by perturbing this feedback law. Equation (2.35)
implies that this cannot be the case because the minimum cost is obtained for ck = 0.
This argument applies for arbitrary N and hence for perturbation sequences of any
length. �

Using the autonomous prediction system formulation of this section, Algo-
rithm 2.1 can be restated as follows:

Algorithm 2.2 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
ck

‖ck‖2Wc
subject to

[
xk

ck

]
∈ S (2.38)
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where S = Z defined in (2.29) (νznC linear constraints), or S = Ez defined by
the solution of (2.32) and (2.33) (a single quadratic constraint).

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck for problem (2.38). �

Theorem 2.11 Under the MPC law of Algorithm 2.2, the origin x = 0 of system
(2.1a) is an asymptotically stable equilibrium with a region of attraction equal to the
set of states that are feasible for the constraints in (2.38).

Proof The constraint set in (2.38) is by assumption positively invariant. Therefore,
the tail ck+1 = Mc∗

k provides a feasible but suboptimal solution for (2.38) at time
k + 1. Stability and asymptotic convergence of xk to the origin is then shown by
applying the arguments of the proofs of Theorems 2.7 and 2.8 to the optimal value
of the cost J (xk, c∗

k) at the solution of (2.38). �

2.7.3 Offline Computation of Ellipsoidal Invariant Sets

In order to determine the invariant ellipsoidal set Ez for the autonomous prediction
dynamics (2.25), the matrices Pz and H must be considered as variables in the con-
ditions of Theorem 2.9. These conditions then constitute Linear Matrix Inequalities
(LMIs) in the elements of Pz and H . Linear matrix inequalities are used extensively
throughout this book; for an introduction to the properties of LMIs and LMI-based
techniques that are commonly used in systems analysis and control design problems,
we refer the reader to [17].

In its most general form a linear matrix inequality is a condition on the pos-
itive definiteness of a linear combination of matrices, where the coefficients of
this combination are considered as variables. Thus a (strict) LMI in the variable
x

.= (x1, . . . , xn) ∈ R
n can be expressed

M(x)
.= M0 + M1x1 + . . . + Mn xn � 0 (2.39)

where M0, . . . , Mn are given matrices.2 The convenience of LMIs lies in the convex-
ity of (2.39) (see also Questions 1–3 on page 233). This property makes it possible to
include conditions, such as those defining an invariant ellipsoidal set in Theorem 2.9,
in convex optimization problems that can be solved efficiently using semidefinite
programming.

2A non-strict LMI is similarly defined by M(x) � 0. Any non-strict LMI can be expressed equiv-
alently as a combination of a linear equality constraint and a strict LMI (see, e.g. [17]). However,
none of the non-strict LMIs encountered in this chapter or in Chap.5 carry implicit equality con-
straints, and hence non-strict LMIs may be assumed to be either strictly feasible or infeasible. We
therefore make use of both strict and non-strict LMIs with the understanding that M(x) � 0 can be
replaced with M(x) � 0 for the purposes of numerical implementation.

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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A suitable criterion for selecting Pz is to maximize the region of attraction of
Algorithm 2.2, namely the feasible set for the constraint zT

k Pzzk ≤ 1. This region is
equal to the projection of Ez = {z : zT Pzz ≤ 1} onto the x-subspace:

{x : ∃ c such that xT Pxx x + 2cT Pcx x + cT Pccc ≤ 1}

where the matrices Pxx , Pxc, Pcx , Pcc are blocks of Pz partitioned according to

Pz =
[

Pxx Pxc

Pcx Pcc

]
. (2.40)

By considering the minimum value of zT Pzz over all c for given x , it is easy to show
that the projection of Ez onto the x-subspace is given by

Ex
.= {

x : xT (Pxx − Pxc P−1
cc Pxc)x ≤ 1

}
.

Inverting the partitioned matrix Pz we obtain

P−1
z = S

.=
[

Sxx Sxc

Scx Scc

]
,

where
Sxx = (

Pxx − Pxc P−1
cc Pxc

)−1
,

and hence the volume of the projected ellipsoidal set Ex is proportional to 1/ det(S−1
xx )

= det(Sxx ). The volume of the region of attraction of Algorithm 2.2 is therefore
maximized by the optimization

maximize
S,Pz ,H

det(Sxx ) subject to (2.32), (2.33) (2.41)

Maximizing the objective in (2.41) is equivalent to maximizing log det(Sxx ),
which is a concave function of the elements of S (see, e.g. [18]). But this is not yet
a semidefinite programming problem since (2.32) and (2.33) are LMIs in Pz rather
than S. These constraints can however be expressed as Linear Matrix Inequalities in
S using Schur complements.

In particular, the positive definiteness of a partitioned matrix

[
U V T

V W

]
� 0

where U, V, W are real matrices of conformal dimensions, is equivalent to positive
definiteness of the Schur complements
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U � 0 and W − V U−1V T � 0,

or
W � 0 and U − V T W −1V � 0

(the proof of this result is discussed in Question1 in Chap.5 on page 233). Therefore,
after pre- and post-multiplying (2.32) by S, using Schur complements we obtain the
following condition: [

S �S
S�T S

]
� 0, (2.42)

which is an LMI in S. Similarly, pre- and post-multiplying the matrix inequality in

(2.33) by
[

I 0
0 S

]
yields the condition

⎡

⎣
H

[
F + G K G E

]
S

S

[
(F + G K )T

(G E)T

]
S

⎤

⎦ � 0 (2.43)

which is an LMI in S and H . Therefore Ez can be computed by solving the SDP
problem

maximize
S,H

log det(Sxx ) subject to (2.42), (2.43)

and eT
i Hei ≤ 1, i = 1, . . . , nC .

(2.44)

Example 2.4 For the system model, constraints and cost of Example 2.1, Fig. 2.7
shows the ellipsoidal regions of attraction Ex of Algorithm 2.2 for values of N in the
range 5–40 and compares these with the polytopic feasible set FN for N = 10. As
expected, the ellipsoidal feasible sets are smaller than the polytopic feasible sets of
Fig. 2.3, but the difference in area is small; the area of Ex for N = 40 is 13.4 while
that of F10 is 13.6, a difference of only 1%. On the other hand 36 linear constraints
are needed to define the polytopic setZ for N = 10whereas Ez is a single (quadratic)
constraint.

Figure2.8 shows closed-loop state and input responses for Algorithm 2.2, com-
paring the responses obtained with the ellipsoidal constraint zk ∈ Ez against the
responses obtainedwith the linear constraint set zk ∈ Z for N = 10. The difference in
the closed-loop costs of the two controllers for the initial condition x0 = (−7.5, 0.5)
is 17%. ♦

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 2.7 The ellipsoidal regions of attraction of Algorithm 2.2 for N = 5, 10, 15, 20, 30, 40. The
polytopic sets F10 and XT are shown (dashed lines) for comparison

Fig. 2.8 Closed-loop responses of Algorithm 2.2 for the example of (2.16a), (2.16b) for the
quadratic constraint zk ∈ Ez with N = 20 (blue o) and the linear constraints zk ∈ Z with N = 10
(red +). Left state trajectories and the feasible set Ex for N = 20. Right control inputs
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2.8 Computational Issues

The optimization problem to be solved online inAlgorithm2.1 has a convex quadratic
objective function and linear constraints, and is therefore a convexQuadratic Program
(QP). Likewise if Algorithm 2.2 is formulated in terms of linear constraints, then this
also requires the online solution of a convex QP problem. A variety of general QP
solvers (basedon active setmethods [19] or interior pointmethods [20]), can therefore
be used to perform the online MPC optimization required by these algorithms.

However algorithms for general quadratic programming problems do not exploit
the special structure of the MPC problem considered here, and as a result their
computational demand may exceed allowable limits. In particular they may not
be applicable to problems with high sample rates, high-dimensional models, or
long prediction horizons. For example the computational load of both interior point
and active set methods grows approximately cubically with the mode 1 prediction
horizon N .

The rate of growth with N of the required computation can be reduced how-
ever if the predicted model states are considered to be optimization variables. Thus
redefining the vector of degrees of freedom as dk ∈ R

Nnx +Nnu :

dk = (c0|k, x1|k, c1|k, x2|k, . . . , cN−1|k, xN |k)

and introducing the predicted dynamics of (2.14) as equality constraints results in an
online optimization of the form

minimize
dk

dT
k Hddk subject to Dddk = hh, Ccdk ≤ hc.

Although the number of optimization variables has increased from Nnu to Nnu +
Nnx , the key benefit is that the matrices Hd , Dd , Cc are sparse and highly structured.
This structure can be exploited to reduce the online computation so that it grows only
linearly with N (e.g. see [19, 20]).

An alternative to reducing the online computation is to use multiparametric pro-
gramming to solve the optimization problem offline for initial conditions that lie
in different regions of the state space. Thus, given that xk is a known constant, the
minimization of the cost of (2.35) is equivalent to the minimization of

J (d) = dT H0d (2.45)

where for simplicity, the vector of degrees of freedom c has been substituted by d
and the cost is renamed as simply J . The minimization of J is subject to the linear
constraints implied by the dynamics (2.14) and systemconstraints (2.2), togetherwith
the terminal constraints of (2.35); the totality of these constraints can be written as

C0d ≤ h0 + V0x (2.46)
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Then adjoining the constraints (2.46) with the cost of (2.45) through the use of a
vector of Lagrange multipliers λ, we obtain the first-order Karush–Kuhn–Tucker

(KKT) conditions [19]

H0d + CT
0 λ = 0 (2.47a)

λT (C0d − h0 − V0x) = 0 (2.47b)

C0d ≤ h0 + V0x (2.47c)

λ ≥ 0 (2.47d)

Now suppose that at the given x only a subset of (2.46) is active, so that gathering all
these active constraints and the corresponding Lagrange multipliers we can write

C̃0d − h̃0 − Ṽ0x = 0 (2.48a)

λ̃ ≥ 0 (2.48b)

In addition, the Lagrange multipliers corresponding to inactive constraints will be
zero so that from (2.47) it follows that

d = −H−1
0 C̃T

0 λ̃. (2.49)

The solution for λ̃ can be derived by substituting (2.49) into (2.48a) as

λ̃ = −(C̃0H−1
0 C̃T )−1(h̃0 + Ṽ0x). (2.50)

and substituting this into (2.49) produces the optimal solution as

d = H−1
0 C̃T

0 − (C̃0H−1
0 C̃T

0 )−1(h̃0 + Ṽ0x). (2.51)

Thus for given active constraints, the optimal solution is a known affine function of
the state. Clearly the optimal solution must satisfy the constraints (2.46) as well as
the Lagrange multipliers of (2.50) must satisfy (2.48a):

Co[H−1
o C̃T

o − (C̃o H−1
o C̃T

o )−1(h̃o + Ṽox)] ≤ ho + Vox

and

−(C̃o H−1
o C̃T

o )−1(h̃o + Ṽox) > 0.
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These two conditions give a characterization of the polyhedral region in which x
must lie in order that (2.48a) is the active constraint set.

A procedure based on these considerations is given in [14] for partitioning the con-
trollable set of Algorithms 2.1 and 2.2 into the union of a number of non-overlapping
polyhedral regions. Then the MPC optimization can be implemented online by iden-
tifying the particular polyhedral region inwhich the current state lies. In this approach
the associated optimal solution (2.51) is then recovered from a lookup table, and the
first element of this is used to compute and implement the current optimal control
input.

A disadvantage of this multiparametric approach is that the number of regions
grows exponentially with the dimension of the state and the length of the mode 1
prediction horizon N , and this can make the approach impractical for anything other
than small-scale problems with small values of N . Indeed in most other cases, the
computational and storage demands of the multiparametric approach exceed those
required by the QP solvers that exploit the MPC structure described above. Methods
have been proposed (e.g. [21]) for improving the efficiencywithwhich the polyhedral
state-space partition is computed by merging regions that have the same control
law, however the complexity of the polyhedral partition remains prohibitive in this
approach.

Example 2.5 For the second-order system defined in (2.16a), (2.16b), with the cost
and terminal constraints of Example 2.3 the MPC optimization problem (2.17) can
be solved using multiparametric programming. For a mode 1 horizon of N = 10
this results in a partition of the state space into 243 polytopic regions (Fig. 2.9), each
of which corresponds to a different active constraint set at the solution of the MPC
optimization problem (2.17). ♦

A further alternative [15, 16] which results in significant reduction in the online
computation replaces the polytopic constraints zk ∈ Z defined (2.29) by the ellip-
soidal constraint zk ∈ Ez defined in (2.44) and thus addresses the optimization

minimize
ck

‖zk‖2W subject to zT
k Pzzk ≤ 1, zk =

[
xk

ck

]
(2.52)

As discussed in Sect. 2.7, this results in a certain degree of conservativeness because
the ellipsoidal constraint zk ∈ Ez gives an inner approximation to the polytopic
constraint zk ∈ Z of (2.29). The problem defined in (2.52) can be formulated as
a second-order cone program (SOCP) in Nnu + 1 variables.3 If a generic solution
method is employed, then this problem could turn out to be more computationally
demanding than the QP that arises when the constraints are linear. However, the
simple form of the cost and constraint in (2.38) allow for a particularly efficient
solution, which is to be discussed next.

3Second-order cone programs are convex optimization problems that can be solved using interior
point methods. See [22] for details and further applications of SOCP.
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Fig. 2.9 The partition of the state space of the system of Example 2.5 into regions in which different
constraint sets are active at the solution of the online MPC optimization problem

To exploit the structure of the cost and constraint in (2.52), we use the partitions of
(2.37) and (2.40) to write zT

k W zk = xT
k Wx x + cT

k Wcck and zT
k Pzzk = xT

k Pxx xk +
2cT

k Pcx xk + cT
k Pccck , where use has been made of the fact that Pxc = PT

cx . The
minimizing value of ck in (2.52) can only occur at a point at which the two ellipsoidal
boundaries, ∂EJ

.= {zk : zT
k W zk = α} and ∂Ez

.= {zk : zT
K Pzzk = 1}, are tangential

to one another for some constant α > 0, namely when the gradients (with respect to
c) are parallel, i.e.

Wcck = μ(Pcx xk + Pccck), μ ≤ 0 (2.53)

for some scalar μ, or equivalently

ck = μMμ Pcx xk, Mμ = (Wc − μPcc)
−1. (2.54)

At the solution therefore, the inequality constraint in (2.52) will hold with equality
so that μ can be obtained as the solution of xT

k Pxx xk + 2cT
k Pcx + cT

k Pccck = 1 ,
which after some algebraic manipulation gives μ as a root of

φ(μ) = xT
k Pxc

(
MμWc P−1

cc Wc Mμ − P−1
cc

)
Pcx xk + xT

k Pxx xk − 1 = 0. (2.55)
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Equation (2.55) is equivalent to a polynomial equation in μ which can be shown
(using straightforward algebra) to have 2N roots, all corresponding to points of
tangency of ∂EJ and ∂Ez . However (2.52) has a unique minimum, and it follows that
only one of these roots can be negative, as is required by (2.53).

By repeatedly differentiating φ(μ) with respect to μ it is easy to show that the
derivatives of this polynomial satisfy

drφ

dμr
> 0 ∀μ ≤ 0.

This implies that the Newton–Raphson method, when initialised at μ = 0, is guar-
anteed to converge to the unique negative root of (2.55), and that the rate of its
convergence is quadratic.

Thus the optimal solution to (2.52) is obtained extremely efficiently by substituting
the negative root of (2.55) into (2.54); in fact the computation required is equivalent
to solving a univariate polynomial with monotonic derivatives. The price that must
be paid for this gain in computational efficiency is a degree of suboptimality that
results from the use of the ellipsoidal constraint zk ∈ Ez , which provides only an
inner approximation to the actual polytopic constraint of (2.29). However, simulation
results [16] show that in most cases the degree of suboptimality is not significant.
Furthermore predicted performance can be improved by a subsequent univariate
search over α ∈ [0, 1] with zk = (xk,αc∗

k) where c∗
k is the solution of (2.52). To

retain the guarantee of closed-loop stability this is performed subject to the constraints
that the vector �zk defining the tail of the predicted sequence at time k should lie
in the ellipsoid Ez and subject to the constraint Fxk + Guk ≤ 1. This modification
requires negligible additional computation.

2.9 Optimized Prediction Dynamics

The MPC algorithms described thus far parameterize the predicted inputs in terms
of a projection onto the standard basis vectors ei , so, for example

ck =
N−1∑

i=0

ci |kei+1

in the case that if nu = 1. As a consequence the degrees of freedom have a direct
effect on the predictions only over the N -step mode 1 prediction horizon, which
therefore has to be taken to be sufficiently long to ensure that constraints are met
during the transients of the prediction system response. Combinedwith the additional
requirement that the terminal constraint is met at the end of the mode 1 horizon for as
large a set of initial conditions as possible, this places demands on N that can make
the computational load ofMPC prohibitive for applications with high sampling rates.
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To overcome this problem an extra mode can be introduced into the predicted
control trajectories, as is done for example in triple mode MPC [23]. This additional
mode introduces degrees of freedom into predictions after the end of the mode 1
horizon but allows efficient handling of the constraints at these prediction instants,
thus allowing the mode 1 horizon to be shortened without adversely affecting opti-
mality and the size of the feasible set. Alternatively in the context of dual-mode
predictions it is possible to consider parameterizing predicted control trajectories as
an expansion over a finite set of basis functions. Exponential basis functions, which
allow the use of arguments based on the tail for analysing stability and convergence
(e.g. [24]), are most commonly employed in MPC, a special case being expansion
over Laguerre functions (e.g. [25]).

A framework that encompasses projection onto a general set of exponential basis
functions was developed in [26]. In this approach, the matrices E and M appearing in
the transition matrix � of the augmented prediction dynamics (2.25) are not chosen
as prescribed by (2.26b), but instead are replaced by variables, denoted Ac and Cc

that are optimized offline as we discuss later in this section. With this modification

the prediction dynamics are given by

zi+1|k = �zi |k, i = 0, 1, . . . (2.56a)

where

z0|k =
[

xk

ck

]
, � =

[
Φ BCc

0 Ac

]
(2.56b)

and the predicted state and control trajectories are generated by

ui |k = [
K Cc

]
zi |k (2.56c)

xi |k = [
I 0

]
zi |k . (2.56d)

As in Sect. 2.7, the predicted control law of (2.56c) has the form of a dynamic
feedback controller, the initial state of which is given by ck . However in Sect. 2.7 the
matrix M of (2.26) is nilpotent, so that M N ck = 0 and hence ui |k = K xi |k , for all
i = N , N + 1, . . .. For the general case considered in (2.56), Ac is not necessarily
nilpotent, which implies that the direct effect of the elements of ck can extend beyond
the initial N steps of the prediction horizon in this setting.

Following a development analogous to that of Sect. 2.7, the predicted cost (2.11)
can be expressed as J (xk, ck) = ‖z0|k‖2W where W satisfies the Lyapunov matrix
equation

W = �T W� + Q̂, Q̂ =
[

Q + K T RK K T RCc

CT
c RK CT

c RCc

]
. (2.57)
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By examining the partitioned blocks of this equation, it can be shown (using the same
approach as the proof of Theorem 2.10) that its solution is block diagonal

W =
[

Wx 0
0 Wc

]

whenever K is the unconstrained optimal feedback gain. Here Wx is the solution of
the Riccati equation (2.9) and Wc is the solution of the Lyapunov equation Wc =
AT

c W Ac +CT
c (BT Wx B + R)Cc. By Lemma 2.1, the solution is unique and satisfies

Wc � 0 whenever Ac is strictly stable.
The constraints (2.2) applied to the predictions of (2.56) require that z0|k lies in

the polytopic set

Z = {z : [
F + G K GCc

]
� i z ≤ 1, i = 0, 1, . . . , νz}, (2.58)

where
[
F + G K GCc

]
�νz+1z ≤ 1, for all z satisfying

[
F + G K GCc

]
� i z ≤ 1,

i = 0, 1, . . . , νz . By Theorem 2.3 this is the MPI set for the dynamics of (2.56) and
constraints (2.2), and its projection onto the x-subspace is therefore equal to the feasi-
ble set for xk for the prediction system (2.56) and constraints

[
F + G K GCc

]
z ≤ 1.

The MPC law of Algorithm 2.2 with the cost matrix W defined in (2.57) and con-
straint set Z defined in (2.58) has the stability and convergence properties stated in
Theorem 2.11.

Alternatively, and similarly to the discussion in Sect. 2.7, it is possible to replace
the linear constraints z0|k ∈ Z by a single quadratic constraint z0|k ∈ Ez in order to
reduce the online computational load of Algorithm 2.2. As in Sect. 2.7, we require
that Ez = {z : zT Pzz ≤ 1} is positively invariant for the dynamics zk+1 = �zk and
constraints

[
F + G K GCc

]
zk ≤ 1, which by Theorem 2.9 requires that there exists

a symmetric matrix H such that Pz , Ac and Cc satisfy

Pz − �T Pz� � 0 (2.59a)
⎡

⎣
H

[
F + G K GCc

]
[
(F + G K )T

(GCc)
T

]
Pz

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . nC . (2.59b)

Under these conditions the stability and convergence properties specified by Theo-
rem 2.11 again apply.

Using Ez as the constraint set in the online optimization in place of Z reduces
the region of attraction of the MPC law. However, to compensate for this effect it is
possible to design the prediction system parameters Ac and Cc so as to maximize the
projection of Ez onto the x-subspace. Analogously to (2.44), this is achieved by max-
imizing the determinant of [Inx 0]P−1

z [Inx 0]T subject to (2.59a), (2.59b). Unlike
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the case considered in Sect. 2.7, this is performed with Ac and Cc as optimization
variables. Viewed as inequalities in these variables, (2.59a), (2.59b) represent non-
convex constraints. The problem can however be convexified provided the dimension
of ck is at least as large as that of nx [26] using a technique introduced by [27] in the
context of H∞ control, as we discuss next.

Introducing variables U, V ∈ R
nx ×νc (where νc is the length of ck), � ∈ R

nx ×nx ,
� ∈ R

nu×nx and symmetric X, Y ∈ R
nx ×nx , we re-parameterize the problem by

defining

Pz =
[

X−1 X−1U
U T X−1 •

]
P−1

z =
[

Y V
V T •

]
, � = U AcV T , � = CcV T

(2.60)
(where • indicates blocks of Pz and P−1

z that are determined uniquely by X, Y, U, V ).
Since Pz P−1

z = I , we also require that

U V T = X − Y. (2.61)

The constraints (2.59a), (2.59b) can then be expressed as LMIs in �, �, X and Y .
Specifically, using Schur complements, (2.59a) is equivalent to

[
Pz Pz�

�T Pz Pz

]
� 0,

and multiplying the LHS of this inequality by diag{�T ,�T } on the left and

diag{�,�} on the right, where � =
[

Y X
V T 0

]
, yields the equivalent condition

⎡

⎢⎢⎣

[
Y X
X X

] [
ΦY + B� Φ X

� + ΦY + B� Φ X

]

�

[
Y X
X X

]

⎤

⎥⎥⎦ � 0 (2.62a)

(where the block marked � is omitted as the matrix is symmetric). Similarly, pre-
and post-multiplying thematrix inequality in (2.59b) by diag{I,�T } and diag{I,�},
respectively, yields

⎡

⎣
H

[
(F + G K )Y + G� (F + G K )X

]

�

[
Y X
X X

]
⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . , nC .

(2.62b)

Therefore matrices Pz , Ac and Cc can exist satisfying (2.59a), (2.59b) only if the
conditions (2.62a), (2.62b) are feasible.Moreover, (2.62a), (2.62b) are both necessary
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and sufficient for feasibility of (2.59a), (2.59b) if νc ≥ nx since (2.61) then imposes
no additional constraints on X and Y (in the sense that U and V then exist satisfying
(2.61), for all X, Y ∈ R

nx ×nx ). Thevolumeof the projection ofEz onto the x-subspace
is proportional to det(Y ), which is maximized by solving the convex optimization:

maximize
�,�,X,Y

log det(Y ) subject to (2.62a), (2.62b). (2.63)

Finally, we note that the conditions (2.62a), (2.62b) do not depend on the value of
νc, and since there is no advantage to be gained using a larger value, we set νc = nx .
From the solution of (2.63), Ac and Cc are given uniquely by

Ac = U−1�V −T , Cc = �V −T .

while Pz can be recovered from (2.60).
A remarkable property of the optimized prediction dynamics is that the maximal

projection of Ez onto the x-subspace is as large as the maximal positively invariant
ellipsoidal set under any linear state feedback control law [26]. The importance of this
is that it overcomes the trade-off that exists in the conventional MPC formulations
of Sects. 2.7 and 2.5 between performance and the size of the feasible set. Thus,
in the interests of enlarging the terminal invariant set (and hence the overall region
of attraction), it may be tempting to de-tune the terminal control law. But this has
an adverse effect on predicted performance, and potentially also reduces closed-
loop performance. Such loss of performance is however avoided if the optimized
prediction dynamics are used since K can be chosen to be the unconstrained LQ
optimal gain, without any detriment to the size of the region of attraction.

Example 2.6 The maximal ellipsoidal region of attraction of Algorithm 2.2 for the
same system model, constraints and cost as Example 2.1 is shown in Fig. 2.10. Since
this is obtained by optimizing the prediction dynamics using (2.63), the number
of degrees of freedom in the resulting prediction system (i.e. the length of ck in
(2.56)) is the same as nx , which here is 2. The area of this maximal ellipsoid is 13.5,
whereas the area of the ellipsoidal region of attraction obtained from (2.44) for the
non-optimized prediction system (2.25) and the same number of degrees of freedom
in predictions (i.e. N = 2) is just 2.3.

Figure2.10 also shows the polytopic feasible set for xk in Algorithm 2.2 when
the optimized prediction dynamics are used to define the polytopic constraint set
Z in (2.58). Despite having only 2 degrees of freedom, the optimized prediction
dynamics result in a polytopic feasible set covering 97% of the area of the maximal
feasible set F∞, which for this example is equal to the polytopic feasible set for the
non-optimized dynamics with N = 26 degrees of freedom (also shown in Fig. 2.10).
For the initial condition x0 = (−7.5, 0.5), the closed-loop cost of Algorithm 2.2 with
the optimized prediction dynamics containing 2 degrees of freedom and polytopic
constraint set Z is 357.7, which from Table2.1 is only 0.5% suboptimal relative to
the ideal optimal cost with N = 11. ♦



2.10 Early MPC Algorithms 51

Fig. 2.10 Ellipsoidal region of attraction for optimized dynamics (with 2 degrees of freedom) and
ellipsoidal region of attraction for N = 2. Also shown are themaximal polytopic region of attraction
(F26) and the polytopic region of attraction for the optimized dynamics

2.10 Early MPC Algorithms

Perhaps the earliest reference to MPC strategies is [28], although the ideas of rolling
horizons and decision making based on forecasts had been used earlier in different
contexts (e.g. production scheduling). There have since been thousands of MPC
papers published in the open literature, including a plethora of reports on applications
ofMPC to industrial problems. Early contributions (e.g. [29, 30])were based onfinite
horizon predictive costs and as such did not carry guarantees of closed-loop stability.

The most cited of the early papers on predictive control is the seminal work
[31, 32] on Generalized Predictive Control (GPC). This uses an input–output model
to express the vector of output predictions as an affine function of the vector of
predicted inputs

yk =
⎡

⎢⎣
y1|k
...

yN |k

⎤

⎥⎦ = CGΔuk + y f
k , Δuk =

⎡

⎢⎣
Δu0|k

...

ΔuNu−1|k

⎤

⎥⎦

Here Nu denotes an input prediction horizon which is chosen to be less than or equal
to the prediction horizon N . The matrix CG is the block striped (Toeplitz) lower
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triangular matrix comprising the coefficients of the system step response, CGΔuk

denotes the predicted forced response at time k, and y f
k denotes the free response

at time k due to non-zero initial conditions. The notation Δu is used to denote the
control increments (i.e. Δui |k = ui |k − ui−1|k). Posing the problem in terms of
control increments implies the automatic inclusion in the feedback loop of integral
action which rejects (in the steady state) constant additive disturbances.

The GPC algorithm minimizes a cost, subject to constraints, which penalizes
predicted output errors (deviations from a constant reference vector r ) and predicted
control increments

Jk = (r − yk)
T Q̂(r − yk) + ΔuT

k R̂Δuk (2.64)

where r = [r T · · · r T ]T , Q̂ = diag{Q, . . . , Q} and R̂ = diag{R, . . . , R}. By
setting the derivative of this cost with respect toΔuk equal to zero, the unconstrained
optimum vector of predicted control increments can be derived as

Δuk =
(

CT
G Q̂CG + R̂

)−1
CT

G Q̂(r − y f
k ) (2.65)

The optimal current control move Δu0|k is then computed from the first element of
this vector, and the control input uk = Δu0|k + uk−1 is applied to the plant.

GPC has proven effective in a wide range of applications and is the basis of a
number of commercially successful MPC algorithms. There are several reasons for
the success of the approach, principal among these are: the simplicity and generality
of the plant model, and the lack of sensitivity of the controller to variable or unknown
plant dead time and unknown model order; the fact that the approach lends itself
to self-tuning and adaptive control, output feedback control and stochastic control
problems; and the ability of GPC to approximate various well-known control laws
through appropriate definition of the cost (2.64), for example LQ optimal control,
minimumvariance and dead-beat control laws. For further discussion of these aspects
of GPC and its industrial applications we refer the reader to [31–34].

Althoughwidely used in industry, the original formulation of GPC did not guaran-
tee closed-loop stability except in limiting cases of the input and output horizons (for
example, in the limit as both the prediction and control horizons tend to infinity, or
when the control horizon is Nu = 1, the prediction horizon is N = ∞ and the open-
loop system is stable). However, the missing stability guarantee can be established
by imposing a suitable terminal constraint on predictions.

Terminal equality constraints that force the predicted tracking errors to be zero at
all prediction times beyond the N -step prediction horizon were proposed for reced-
ing horizon controllers in the context of continuous time, time-varying unconstrained
systems in [35], time invariant discrete time unconstrained systems [36], and non-
linear constrained systems [37]. This constraint effectively turns the cost of (2.64)
into an infinite horizon cost which can be shown to be monotonically non-increasing
using an argument based on the prediction tail. As a result it can be shown that
tracking errors are steered asymptotically to zero. The terminal equality constraint
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need only to be applied over nx prediction steps after the end of an initial N -step
horizon. Under the assumption that N > nx , the general solution of the equality
constraints will contain, implicitly, (N − nx )nu degrees of freedom and these can be
used to minimize the resulting predicted cost (i.e. the cost of (2.64) after the expres-
sion for the general solution of the equality constraints has been substituted into
(2.64)). A closely related algorithm to GPC that addresses the case of constrained
systems is StableGPC (SGPC) [38], which establishes closed-loop stability by ensur-
ing that optimal predicted cost is a Lyapunov function for the closed-loop system.
Related approaches [36, 39] use terminal equality constraints explicitly, however
SGPC implements the equality constraints implicitly while preserving an explicit
representation of the degrees of freedom in predictions.

The decision variables in the SGPC predicted control trajectories appear as per-
turbations of a stabilizing feedback law, and in terms of a left factorization of transfer
function matrices, the predicted control sequence is given by

uk = Ỹ −1(z−1)
(

ck − z−1 X̃(z−1)yk+1

)
. (2.66)

Here z is the z-transform variable (z−1 can be thought of as the backward shift
operator, namely z−1 fk = fk−1), and X̃(z−1), Ỹ (z−1) are polynomial solutions
(expressed in powers of z−1) of the matrix Bezout identity

Ỹ (z−1)A(z−1) + z−1 X̃(z−1)B(z−1) = I. (2.67)

For simplicity, we use uk instead of Δuk and consider the regulation rather than
the setpoint tracking problem (i.e. we take r = 0). Here B(z−1), A(z−1) are the
polynomial matrices (in powers of z−1) defining right coprime factors of the system
transfer function matrix, G(z−1), where

yk+1 = G(z−1)uk = B(z−1)A−1(z−1)uk (2.68)

The determination of the coprime factors can be achieved through the compu-
tation of the Smith–McMillan form of the transfer function matrix, G(z−1) =
L(z−1)S(z−1)R(z−1) where S(z−1) = E(z−1)�−1(z−1) with both E(z−1) and
�(z−1) being diagonal polynomialmatrix functions of z−1. The right coprime factors
can then be chosen as B(z−1) = L(z−1)E(z−1), A(z−1) = R−1(z−1)�(z−1). Alter-
natively, B(z−1), A(z−1) can be computed through an iterative procedure, which we
describe now.

Assuming that G(z−1) is given as

G(z−1) = 1

d
(
z−1

) N (z−1)
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we need to find the solution, A(z−1), B(z−1), of the Bezout identity

N (z−1)A(z−1) = B(z−1)d(z−1) (2.69)

for which (2.67) admits a solution for X̃(z−1), Ỹ (z−1). This solution can be shown
to be unique under the assumption that the coefficient of z0 in A(z−1) is the identity,
and that A(z−1) and B(z−1) are of minimal degree. Equation (2.69) defines a set of
under-determined linear conditions on the coefficients of B(z−1), A(z−1). Thus the
coefficients of B(z−1), A(z−1) can be expressed as an affine function of a matrix,
say R, where R defines the degrees of freedom which are to be given up so that
(2.67) admits a solution. The determination of R constitutes a nonlinear problem
which, nevertheless, can be solved to any desired degree of accuracy by solving
(2.67) iteratively. The iteration consists of using the least squares solution for R of
(2.67) to update the choice for the coefficients of A(z−1), B(z−1); these updated
values are then used in (2.67) to update the solution for Ỹ (z−1), X̃(z−1), and so on.
Each cycle of this iteration reduces the norm of the error in the solution of (2.67)
and the iterative process can be terminated when the norm of the error is below a
practically desirable threshold.

Substituting (2.68) into (2.66), pre-multiplying by Ỹ (z−1) and using the Bezout
identity (2.67) provides the prediction model:

yk+1 = B(z−1)ck + y f
k+1

uk = A(z−1)ck + u f
k .

(2.70)

Here y f
k and u f

k denote the components of the predicted output and input trajectories
corresponding to the free response of the model due to non-zero initial conditions.
Consider now the dual coprime factorizations B(z−1)A−1(z−1) = Ã−1(z−1)B̃(z−1),
X (z−1)Y −1(z−1) = Ỹ −1(z−1)X̃(z−1) satisfying the Bezout identity

[
z−1 X̃(z−1) Ỹ (z−1)

Ã(z−1) −B̃(z−1)

] [
B(z−1) Y (z−1)

A(z−1) −z−1X (z−1)

]
=

[
I 0
0 I

]
(2.71)

Detailed calculation, based on simulating forward in time the relationships Ỹ (z−1)uk

= ck − z−1 X̃(z−1)yk+1 and Ã(z−1)yk+1 = B̃(z−1)uk , leads to the following
affine relationship from the vector of predicted controller perturbations, ck =
(c0|k, . . . , cN−1|k) (with ci |k = 0, for all i ≥ ν), to the vectors of predicted out-
puts, yk = (y1|k, . . . , yN |k), and inputs, uk = (u0|k, . . . , uN−1|k):

[
Cz−1 X̃ CỸ

CÃ −CB̃

] [
yk

uk

]
=

[
ck

0

]
−

[
Hz−1 X̃ CỸ

HÃ −HB̃

] [
yp

k
up

k

]
(2.72)

where N = ν + n A, yp
k = (yk−nX −1, . . . , yk) and up

k = (uk−nY , . . . , uk−1)

denote vectors of past input and output values and n A, nX , nY are the degrees
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of the polynomials A(z−1), X (z−1), Y (z−1). The C and H matrices are block
Toeplitz convolution matrices, which are defined for any given matrix polynomial
F(z−1) = F0 + F1z−1 + · · · + Fm z−m by

CF
.=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 0 · · · 0 0 · · · 0
F1 F0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

Fm Fm−1 · · · F0 0 · · · 0
0 Fm · · · F1 F0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · Fm Fm−1 · · · F0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, HF
.=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fm Fm−1 · · · F1
0 Fm · · · F2
...

...
. . .

...

0 0 · · · Fm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the row-blocks of CF and HF consist, respectively, of N and m blocks.
The solution of (2.72) for the vectors, yk and uk , of output and input predictions

is affine in the vector of the degrees of freedom ck , and hence the predicted cost is
quadratic in ck . In particular the Bezout identity (2.71) implies an explicit expression
for the inverse of the matrix on the LHS of (2.72), which in turn implies the solution

[
yk

uk

]
=

[
CB

CA

]
ck −

[
CB CY

CA −Cz−1X

] [
Hz−1 X̃ HỸ

HÃ −HB̃

] [
yp

k
up

k

]
.

The second term on the RHS of this expression corresponds to the free responses of
the output and input predictions, and, on account of the structure of the convolution
matrices in (2.72) and the Bezout identity (2.71), these free responses are zero at the
end of the prediction horizon consisting of N = ν + NA steps. From this observation
and the finite impulse response of the filters B(z−1) and A(z−1) in (2.70), it follows
that SGPC imposes an implicit terminal equality constraint, namely that both the
predicted input and output vectors reach the steady value of zero at the end of the
horizon of N = ν+NA prediction time steps, and this gives the algorithm a guarantee
of closed-loop stability.

Equality terminal constraints can be overly stringent but it is possible to modify
SGPC so that the predicted control law of (2.66) imitates what is obtained using the
predicted control law, ui |k = K xi |k + ci |k , of the closed-loop paradigm. This can be
achieved through the use of the Bezout identity

Ỹ (z−1)A(z−1) + z−1 X̃(z−1)B(z−1) = Acl(z
−1) (2.73)

where Acl(z−1) is such that B(z−1) and Acl(z−1) define right coprime factors of the
closed-loop transfer function matrix (under the control law u = K x + c). The fact
that the same B(z−1) can be used for both the open and closed-loop transfer function
matrices can be argued as follows. Let B̂(z−1), Â(z−1) be the right coprime factors
of (z I − A)−1B such that B Â(z−1) = (z I − A)B̂(z−1). The consistency condition
for this equation is N (z I − A)B̂(z−1) = 0 where N is the full-rank left annihilator
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of B (satisfying the condition N B = 0). This is however is also the consistency
condition for the equation

B Acl(z
−1) = (z I − A − BK )−1 B̂(z−1),

which implies that B̂(z−1) can also be used in the right coprime factorization of
(z I − A−BK )−1B. Thus the same B(z−1) = C B̂(z−1) can be used for both the open
and closed-loop transfer function matrices given that these transfer function matrices
are obtained by the pre-multiplication byC of (z I − A)−1B and (z I − A− BK )−1B,
respectively. The property that a common B(z−1) can be used in the factorization of
the open and closed-loop transfer function matrices can also be used to prove that the
control law of (2.66) guarantees the internal stability of the closed-loop system [40]
(when Ỹ (z−1), X̃(z−1) satisfy either of (2.67) or (2.73)).

SGPC introduced a Youla parameter into the MPC problem and this provides
an alternative way to that described in Sect. 2.9 to endow the prediction structure
with control dynamics. This can be achieved by replacing the polynomial matrices
Ỹ (z−1), X̃(z−1), respectively by

M̃(z−1) = Ỹ (z−1) − z−1Q(z−1)B(z−1)

Ñ (z−1) = X̃(z−1) + A(z−1)Q(z−1)

where Q(z−1) represents a free parameter (which can be chosen to be any polynomial
matrix, or stable transfer function matrix). If Ỹ (z−1) and X̃(z−1) satisfy the Bezout
identity (either (2.67) or (2.73)), then so will M̃(z−1) and Ñ (z−1), which therefore
can be used in the control law of (2.66) in place of Ỹ (z−1) and X̃(z−1). The advantage
of this is that the degrees of freedom in Q(z−1) can be used to enhance the robustness
of the closed-loop system to model parameter uncertainty or to enlarge the region of
attraction of the algorithm [38].

At first sight it may appear that the relationships above will not hold in the
presence of constraints. However this is not so, because the perturbations ck have
been introduced in order to ensure that constraints are respected and therefore
the predicted trajectories are generated by the system operating within its linear
range. These prediction equations can be used to express the vector of predicted
outputs and inputs as functions of the vector of predicted degrees of freedom,
ck = (c0k, . . . , cN−1|k, c∞, c∞, . . .)where c∞ denotes the constant value of c which
ensures that the steady-state predicted output is equal to the desired setpoint vector r
and the vector ck contains Nnu degrees of freedom. Clearly for a regulation problem
with r = 0, c∞ would be chosen to be zero. SGPC then proceeds to minimize the
cost of (2.65) over the degrees of freedom (c0k, . . . , cN−1|k) subject to constraints
and implements the control move indicated by (2.66).
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The algorithms discussed in this section are based on output feedback and are
appropriate in caseswhere the assumption that the states aremeasurable and available
for the purposes of feedback does not hold true. In instances like this one can, instead,
revert to a state-space system representation constructed using current and past inputs
and outputs as states (e.g. [41]) or a state-space description of the combination of
the system dynamics together with the dynamics of a state observer (e.g. [42], which
established invariance using low-complexity polytopes, namely polytopes with 2nx

vertices).

2.11 Exercises

1 A first-order system with the discrete time model

xk+1 = 1.5xk + uk

is to be controlled using a predictive controller that minimizes the predicted perfor-
mance index

J (xk, u0|k, u1|k) =
1∑

i=0

(
x2i |k + 10u2

i |k
)

+ qx22|k

where q is a positive constant.

(a) Show that the unconstrained predictive control law is uk = −0.35xk if q = 1.
(b) The unconstrained optimal control law with respect to the infinite horizon cost∑∞

k=0(x2k + 10u2
k) is uk = −0.88xk . Determine the value of q so that the

unconstrained predictive control law coincides with this LQ optimal control
law.

(c) The predicted cost is to be minimized subject to input constraints

−0.5 ≤ ui |k ≤ 1.

If the predicted inputs are defined as ui |k = −0.88xi |k , for all i ≥ 2, show that
the MPC optimization problem is guaranteed to be recursively feasible if ui |k
satisfies these constraints for i = 0, 1 and 2.

2 (a) A discrete time system is defined by

xk+1 =
[
0 1
0 α

]
xk, yk = [

1 0
]

xk

where α is a constant. Show that −1 ≤ yk ≤ 1, for all k ≥ 0 if and only if
|α| < 1 and
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[−1
−1

]
≤ x0 ≤

[
1
1

]
.

(b) A model predictive control strategy is to be designed for the system

xk+1 =
[
β 1
0 α

]
xk +

[
1
0

]
uk, yk = [

1 0
]

xk, −1 ≤ uk ≤ 1

where α and β are constants, with |α| < 1. Assuming that, for i ≥ N , the i steps
ahead predicted input is defined as

ui |k = [−β 0
]

xi |k,

show that:

(i)
∞∑

i=0

(y2i |k + u2
i |k) =

N−1∑

i=0

(y2i |k + u2
i |k) + (β2 + 1)xT

N |k
[
1 0
0 1

1−α2

]
xN |k .

(ii) −1 ≤ ui |k ≤ 1 for all i ≥ N if

[−1
−1

]
≤ |β| xN |k ≤

[
1
1

]
.

(c) Comment on the suggestion that an MPC law based on minimizing the cost in
(b)(i) subject to −1 ≤ ui |k ≤ 1 for i = 0, . . . , N −1 and the terminal constraint
xN |k = 0 would be stable. Why would it be preferable to use the terminal
inequality constraints of (b)(ii) instead of this terminal equality constraint.

3 A system has the model

xk+1 =
[
0 1

−1 0

]
xk + 1

2

[−1
1

]
uk, yk = 1√

2

[
1 1

]
xk .

(a) Show that, if uk = 1√
2

yk , then

∞∑

k=0

1
2

(
y2k + u2

k

)
= ‖x0‖2.

(b) A predictive control law is defined at each time step k by uk = u∗
0|k , where

(u∗
0|k, . . . , u∗

N−1|k) is the minimizing argument of

min
u0|k ,...,uN−1|k

N−1∑

i=0

1
2

(
y2i |k + u2

i |k
)

+ ‖xN |k‖2.

Show that the closed-loop system is stable.
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(c) The system is now subject to the constraint −1 ≤ yk ≤ 1, for all k. Will the
closed-loop system necessarily be stable if the optimization in part (b) includes
the constraints −1 ≤ yi |k ≤ 1, for i = 1, 2, . . . , N + 1?

4 A discrete time system is described by the model xk+1 = Axk + Buk with

A =
[
0.3 −0.9

−0.4 −2.1

]
, B =

[
0.5
1

]

where uk = K xk for K = [
0.244 1.751

]
, and for all k = 0, 1 . . . the state xk is

subject to the constraints ∣∣[1 −1
]

xk
∣∣ ≤ 1.

(a) Describe a procedure based on linear programming for determining the largest
invariant set compatible with constraints |[1 −1

]
x | ≤ 1.

(b) Demonstrate by solving a linear program that the maximal invariant set is
defined by

{x : Fx ≤ 1 and FΦx ≤ 1},

where F =
[
1 −1

−1 1

]
and Φ =

[
0.42 −0.025

−0.16 −0.35

]
.

5 Consider the system of Question 4 with the cost
∑∞

k=0

(‖xk‖2Q + ‖uk‖2R
)
, with

Q = I and R = 1.

(a) For K = [
0.244 1.751

]
, solve the Lyapunovmatrix equation (2.5) to findW and

hence verify using Theorem 2.1 that K is the optimal unconstrained feedback
gain.

(b) Use the maximal invariant set given in Question 4(b) to prove that xi |k =[
I 0

]
� i zk satisfies the constraints |[1 −1

]
xi |k | ≤ 1, for all i ≥ 0 if

[
F 0

]
� i zk

≤ 1 for i = 0, 1, . . . , N + 1, where

F =
[
1 −1

−1 1

]
, � =

[
A + BK B E

0 M

]
, zk =

[
xk

ck

]

E = [
1 0 · · · 0] ∈ R

1×N , M =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R

N×N .

(c) Show that the predicted cost is given by

J (xk, ck) = ‖xk‖2W + ρ‖ck‖2, W =
[
1.33 0.58
0.58 4.64

]
, ρ = 6.56.
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(d) For the initial condition x0 = (3.8, 3.8), the optimal predicted cost,

J ∗
N (x0)

.= min
c∈RN

J (x0, c) subject to
[
F 0

]
� i

[
x0
c

]
≤ 1, i = 1, . . . , N + 1

varies with N as follows:

N 8 9 10 11
J ∗

N (x0) ∞ 826.6 826.6 826.6

(the problem is infeasible for N ≤ 8). Suggestwhy J ∗
N (x0) is likely to be equal to

826.6, for all N > 9 and state the likely value of the infinite horizon cost for the
closed loop state and control sequence starting from x0 under uk = K xk + c∗

0|k
if N = 9.

6 For the system and constraints of Question 4 with K = [
0.244 1.751

]
:

(a) Taking N = 2, solve the optimization (2.41) to determine, for the prediction
dynamics zk+1 = �zk , the ellipsoidal invariant set {z : zT Pzz ≤ 1} that has
the maximum area projection onto the x-subspace. Hence show that the greatest
scalar α such that x0 = (α,α) satisfies zT

0 Pzz0 ≤ 1 for z0 = (x0, c0), for some
c0 ∈ R

2, is α = 1.79.
(b) Show that, for N = 2, the greatest α such that x0 = (α,α) is feasible for the

constraints
[
F 0

]
� i z0 ≤ 1, i = 0, . . . , N + 1, for z0 = (x0, c0), for some

c0 ∈ R
2, is α = 2.41. Explain why this value is necessarily greater than the

value of α in (a).
(c) Determine the optimized prediction dynamics by solving (2.63) and verify that

Cc = [−1.22 −0.45
]
, Ac =

[
0.96 0.32

−0.015 −0.063

]
,

and also that the maximum scaling α such that x0 = (α,α) is feasible for
zT
0 Pzz0 ≤ 1 for z0 = (x0, c0), for some c0 ∈ R

2, is α = 2.32.
(d) Using the optimized prediction dynamics computed in part (c), define

�̂ =
[

A + BK BCc

0 Ac

]

and show that xi |k = [
I 0

]
�̂ i zk satisfies constraints |[1 −1

]
xi |k | ≤ 1, for all

i ≥ 0 if
[
F 0

]
�̂ i zk ≤ 1 for i = 0, . . . , 5. Hence show that the maximum

scaling α such that x0 = (α,α) satisfies these constraints for some c0 ∈ R
2 is

α = 3.82.
(e) Show that the optimal value of the predicted cost for the prediction dynamics

and constraints determined in (d) with x0 = (3.8, 3.8) is J ∗(x0) = 1686.
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Explain why this value is greater than the predicted cost in Question 5(d) for
N = 9.What is the advantage of theMPC law based on the optimized prediction
dynamics?

7 With K = [
0.067 2

]
, the model of Question 4 gives

A + BK =
[
0.33 0.1

−0.33 −0.1

]
.

(a) Explain the significance of this for the size of the feasible initial condition set
of an MPC law which is subject to the state constraints |[1 1

]
x | ≤ 1 rather than

the constraints of Question 4?
(b) Explain why the feasible set of the MPC algorithm in Question 5(d) (which is

subject to the constraints |[1 −1
]

x | ≤ 1) is finite for all N .

8 GPC can be cast in terms of state-space models, through which the predicted
output sequence yk = (y1|k, . . . , yN |k) can be expressed as an affine function of
the predicted input sequence uk = (u0|k, . . . , uNu−1|k) as yk = Cx xk + Cuuk .
Using this expression show that the unconstrained optimum for the minimization
of the regulation cost Jk = yT

k Q̂yk + uT
k R̂uk , with Q̂ = diag{Q, . . . , Q} and

R̂ = diag{R, . . . , R}, is given by

u∗
k = −

(
R̂ + CT

u Q̂Cu

)−1
CT

u Q̂Cx xk .

Hence show that for

A =
[
0.83 −0.46

−0.05 0.86

]
, B =

[
0.26
0.55

]
, C = [

0.67 0.71
]
,

and in the absence of constraints, GPC results in an unstable closed loop system for
all prediction horizons N ≤ 9 and input horizons Nu ≤ N . Confirm that the open-
loop system is stable but that its zero is non-minimum phase. Construct an argument
which explains the instability observed above.

9 (a) Compute the transfer function of the system of Question 8 and show that the
polynomials

X̃(z−1) = 21.0529z−1 − 32.2308, Ỹ (z−1) = 19.8907z−1 + 1

are solutions of the Bezout identity (2.67).
(b) It is proposed to use SGPC to regulate the system of part (a) about the origin

(i.e. the reference setpoint is taken to be r = 0) using two degrees of freedom,
ck = (c0|k, c1|k), in the predicted state and input sequences, the implicit assump-
tion being that ci |k = 0, for all i ≥ 2. Form the 4×4 convolutionmatricesCz−1 X̃ ,
CỸ , CÃ, CB̃ and confirm that
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[
Cz−1 X̃ CỸ

CÃ −CB̃

]−1

=
[

CA CY

CB −Cz−1X

]
.

Hence show that the prediction equation giving the vectors of predicted outputs
yk = (y1|k, . . . , y4|k) and inputs uk = (u0|k, . . . , u3|k) is

[
yk

uk

]
=

[
CB

CA

] [
ck

02×1

]
−

⎡

⎢⎢⎢⎢⎣

12.6 −19.9 11.9
03×3

21.1 −32.2 19.9
−13.31 21.1 −12.6

02×3

⎤

⎥⎥⎥⎥⎦

[
yp

k
up

k

]
.

(c) Show that the predicted sequences in (b) implicitly satisfy a terminal constraint.
Hence explain why the closed-loop system under SGPC is necessarily stable.

10 For the data of Question 9 plot the frequency response of the modulus of
K (z−1)/

(
1 + G(z−1)K (z−1)

)
where

K (z−1) = X̃(z−1) + A(z−1)Q(z−1)

Ỹ (z−1) − z−1B(z−1)Q(z−1)

for the following two cases:

(a) Q(z−1) = 0
(b) Q(z−1) = −11.7z−1 + 43

Hence suggest what might be the benefit of introducing aYoula parameter into SGPC
in terms of robustness to additive uncertainty in the system transfer function.
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