Chapter 2
Background and Concepts

This work is a contribution to interweaving two lines of research that have developed
in almost separate ways: Markov chains and agent-based models (ABMs). The
former represents one of the simplest forms of a stochastic process while the
latter puts a strong emphasis on heterogeneity and social interactions. This chapter
provides an introduction to AB modeling and reviews approaches to use Markov
chains in their analysis.

The main expected output of the Markov chain strategy applied to ABMs is
a better understanding of the relationship between microscopic and macroscopic
dynamical properties. This brings into the discussion concepts of aggregation
and emergence, and it also relates to macroscopic mean-field formulations as a
substantial tool in the statistical mechanics approach to social dynamics. Moreover,
a series of information-theoretic tools to put the notion of levels onto mathematical
grounds have been developed in recent years. A complete review of the literature
dealing with these topics is clearly beyond the scope of this chapter which is rather
aimed at introducing the most important concepts with reference to AB systems
and Markov chains. Especially the physics-inspired approach to social dynamics
has attracted a lot of interest in the last years and a huge number of papers is still
produced every year. For a relatively coherent review (though, may be, no longer
completely up-to-date), the reader may be referred to Castellano et al. (2009).

2.1 Agent-Based and Related Models

ABMs are an attempt to understand how macroscopic regularities may emerge
through processes of self-organization in systems of interacting agents. A system
at question is modeled at the microscopic level by specifying the elementary units
of that system—the agents—and implementing simple rules for how these agents
interact with one another. Typically implemented on a computer, the time evolution
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of such a system is computed as an iterative process—an algorithm—in which
agents are updated according to the specified rules. One of the main purposes of
this modeling strategy is “to enrich our understanding of fundamental processes”
(Axelrod 1997, p. 25) underlying certain observed patterns, or to “explore the
simplest set of behavioral assumptions required to generate a macro pattern of
explanatory interest” (Macy and Willer 2002, p. 146).

One paradigmatic example of ABMs is Reynolds model of the flocking behavior
of birds (Reynolds 1987). While the modeling of a flock as such is difficult, quite
realistic flocking behavior is achieved if the individual birds follow simple rules of
how to react upon the action of other individuals in their neighborhood. Another
well-known example is Schelling’s model of segregation (Schelling 1971). Here,
two kinds of householders (say black and white) located on a lattice are endowed
with a slight preference to settle in a neighborhood with more households of the
same kind. Running that system leads to a clear spatial segregation at the global level
even if the homophily preference is small. Similar effects can be observed in models
of opinion and cultural dynamics, see, for instance, Axelrod (1997), Deffuant
et al. (2001), Hegselmann and Krause (2002), and Banisch et al. (2010). Another
paradigmatic problem that has been addressed by AB research is the emergence
of a set of norms or common conventions. In the naming game proposed by Steels
(1997), for instance, robots learn common word-object relations in a communication
process based on trail and error. Other models in which an initial plurality in a
population of agents evolves to a common consensus state include various models
of opinion formation with the VM as the most simple representative (see Castellano
et al. 2009 for a review of these models).

It is common to trace back the history of AB simulation to the cellular automata
(henceforth CA) designed by von Neumann (1951) and later shaped by Berlekamp
et al. (1982) and Wolfram (1983, 2002). And in fact, many ABMs can be viewed
as a stochastic CA with asynchronous update. The methods developed in this work
apply precisely to that type of models.

However, even some years before von Neumann and Ulam came up with the
first CA design, another type of “individual-based” model had been introduced
in a branch of theoretical biology which is today called population genetics (see
Li 1977 for a collection of the seminal papers in that field). Wright and Fisher
(along with Haldane known as the founders of population genetics) advocated
a simple model for the evolution of allele frequencies (Wright 1932) based on
microscopic assumptions of gene transmission from the parent to the children
generation. In 1958, Moran (1958) made use of Markov chain theory to study
a modified model and introduced what today is known as the Moran process.
Later, Kimura went further in this line of research on a neutral theory of evolution
with the stepping stone model (Kimura and Weiss 1964) which still later became
known as the voter model (abbreviated by VM throughout this book). From the
very beginning population genetics developed as a mathematical discipline and has
inspired various solution strategies from probabilistic methods including Markov
chains and coalescing random walks to mean-field approaches in statistical physics.
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The biological literature on evolutionary dynamics on graphs has mainly started
from the model proposed by Moran (1958). In the Moran model, at each time
step, an individual is chosen at random to reproduce and replaces a second one
chosen at random as well. In the original model, there is no population structure
which means that all individuals are chosen with equal probability. Therefore—this
is something that will be made explicit in the fourth chapter of this thesis—the
dynamics can be formulated as a birth-death random walk on the line. See Claussen
and Traulsen (2005), Traulsen et al. (2005), and Nowak (2006) for treatments of the
associated Moran process. While early studies (Maruyama 1974; Slatkin 1981) had
indicated that population structure has no or only little effect on the model behavior,
it has recently been shown that population structure can have a significant influence
(Liberman et al. 2005; Nowak 2006; Shakarian et al. 2012; Voorhees and Murray
2013; Voorhees 2013, among many others). The setting—sometimes referred to as
evolutionary graph theory (Liberman et al. 2005)—is usually as follows: suppose the
is a population of N individuals with fitness 1; suppose that a mutant with fitness r is
introduced in one of the individuals; what is the probability that the mutant invades
the entire population? The Moran case of unstructured populations is usually taken
as a benchmark such that a graph which leads to a fixation probability different from
the unstructured case are said to suppress or respectively enhance selection.

In the physics literature, the analysis of binary models as the VM is usually
based on mean-field arguments. The system dynamics is traced in form of an
aggregate order parameter and the system is reformulated on the macro-scale as
a differential equation which describes the temporal evolution of that parameter. In
many cases, the average opinion (due to the analogy to spin systems often called
“magnetization”) has proven to be an adequate choice, but sometimes the number
of (re)active interfaces yields a more handable transformation (e.g., Frachebourg
and Krapivsky 1996; Krapivsky and Redner 2003; Vazquez and Eguiluz 2008). A
mean-field analysis for the VM on the complete graph was presented by Slanina and
Lavicka (2003), and naturally, we come across the same results using our method
(Sect.4.1.2). Slanina and Lavicka (2003) derive expressions for the asymptotic exit
probabilities and the mean time needed to converge, but the partial differential
equations that describe the full probability distribution for the time to reach the
stationary state is too difficult to be solved analytically (Slanina and Lavicka 2003,
p- 4). Further analytical results have been obtained for the VM on d-dimensional
lattices (Cox 1989; Frachebourg and Krapivsky 1996; Liggett 1999; Krapivsky and
Redner 2003) as well as for networks with uncorrelated degree distributions (Sood
and Redner 2005; Vazquez and Eguiluz 2008). It is noteworthy, that the analysis of
the VM (and more generally, of binary-state dynamics) on networks has inspired
a series of solution techniques such as refined mean-field descriptions (e.g., Sood
and Redner 2005; Moretti et al. 2012), pairwise approximation (e.g., De Oliveira
et al. 1993; Vazquez and Eguiluz 2008; Schweitzer and Behera 2009; Pugliese and
Castellano 2009) and approximate master equations (e.g., Gleeson 2011, 2013).

The early works in population genetics (Fisher 1930, in particular) have inspired
still another modeling approach that is related to ABMs, namely, evolutionary game
theory (see Smith 1982 for a seminal volume and Roca et al. 2009 for a recent
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review). Here, games are designed in which agents repeatedly play against one
another adopting one out of a set of predefined strategies. A fitness is assigned
to the combinations of strategies and the population evolves as a response to
this fitness. As in the framework of statistical mechanics, the model evolution is
typically captured in form of differential equation describing the evolution of the
(relative) frequencies of the different strategies, referred to as replicator dynamics
in this context (Taylor and Jonker 1978; Schuster and Sigmund 1983; Hofbauer and
Sigmund 2003). One of the main purposes of this work is to spell out explicitly how
to link the dynamics at the micro level to these macroscopic descriptions.

Finally, it is worth mentioning that research in economics has experienced a
growing interest in modeling economic phenomena as the result of the interactions
of heterogeneous individuals (Tesfatsion and Judd 2006). In particular in the
field of finance, this has led to the development of ABMs for the identification
of (macro) patterns of collective dynamics from (micro) investor heterogeneity
in many financial settings (Cont and Bouchaud 2000; LeBaron 2000; Bornholdt
2001; Kaizoji et al. 2002; Hommes 2006; Preis et al. 2013; Krause and Bornholdt
2013; Patzelt and Pawelzik 2013). Noteworthy, there is also a number of empirical
applications of Markov chains in the field of finance (e.g., Corcuera et al. 2005;
Nielsen 2005; Norberg 2006). Interaction and heterogeneity on the one hand, and
non-Gaussianity, heavy tails and long-range correlations on the other appear to be
natural features of modern economies, to which the formerly dominating tradition of
modeling representative agents has, to a large extent, paid little attention. This thesis
shows that memory effects at the macroscopic level are an immediate consequence
of microscopic heterogeneity and it may therefore contribute to the identification of
the relevant microscopic mechanisms that presumably play a role in the market.

2.2 Markov Chain Formalization of Agent-Based Models

The AB approach is first and foremost a computational methodology and the
mathematical formalization of the models is in its infancy. This is probably due
to the fact that a major motivation in the development of AB simulation has been
to relax a series of unrealistic assumptions made in other modeling frameworks just
in order to keep mathematical tractability; namely, rationality, perfect information,
agent homogeneity, and others. The other side of the coin is that the focus on
computer models and algorithms makes difficult the comparison of different models
and also complicates a rigorous analysis of the model behavior. In fact, the problems
of code verification and model comparison including the discussion of standards
for the replication of ABMs has nowadays become an area of research in its own
(e.g., Axtell et al. 1996; Axelrod 2003; Hales et al. 2003; David et al. 2005;
Grimm et al. 2006; Wilensky and Rand 2007; Galén et al. 2009). As a matter of
fact, many of those problems would actually vanish with a sound mathematical
formulation of an AB simulation model. On the other hand, it is also clear that the
precise mathematical specification of a high-dimensional system of heterogeneous
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interacting agents along with their update mechanisms can be cumbersome in more
complex models.

To the authors knowledge, the first systematic approach to the development
of mathematical formalism for ABMs in general is due to Laubenbacher and
co-workers. Laubenbacher et al. (2009) review existing formal frameworks that have
the potential to model AB systems, such as cellular automata and finite dynamical
systems and argue for the latter as an appropriate mathematical framework to repre-
sent ABMs. However, the probabilistic nature of most models can only be accounted
for by the stochastic version—the so-called stochastic finite dynamical systems—
the analysis of which “is still in its infancy” (Laubenbacher et al. 2009, p. 14). On
the other hand, Laubenbacher et al. (2009) recognize that stochastic finite dynamical
systems give rise to Markov chains. However, for reasons that do not become very
clear in their paper, the authors argue:

To understand the effect of structural components such as the topology of the dependency
graph or the stochastic nature of the update, it is important to study them not as Markov
chains but as SFDS [stochastic finite dynamical systems] (Laubenbacher et al. 2009, p. 10)

I clearly disagree with them in this point, because the microscopic specification
of ABMs as Markov chains developed in this thesis turns out to be a useful starting
point for further analysis. But of course, the incentive of Laubenbacher et al. (2009)
to further elaborate the theory of stochastic dynamical systems in order to derive
rigorous results for ABMs in future is highly appreciable.

The usefulness of the Markov chain formalism in the analysis of ABMs has
first been realized by Izquierdo et al. (2009). The authors look at ten well-known
social simulation models and discuss for each of them how to represent the model
as a time-homogeneous Markov chain. Among the models studied in Izquierdo
et al. (2009) are the Schelling segregation model (Schelling 1971, for which some
analytical results are available, for example, in Pollicott and Weiss 2001; Grauwin
et al. 2010), the Axelrod model of cultural dissemination (Axelrod 1997, see also
Castellano et al. 2000 for a mean-field approximation) and the sugarscape model
from Epstein and Axtell (1996). Noteworthy, the sugarscape model—one of the
reference models in the field of social simulation—contains virtually all features that
may occur in ABMs: heterogeneous agents placed in a dynamic spatial environment,
death and birth of agents, various static and dynamic attributes that may evolve on
different time scales.

The main idea of Izquierdo et al. (2009) is to consider all possible configurations
of the system as the state space of a huge Markov chain and the construction of that
state space is actually the main challenge for Izquierdo and co-workers. Despite
the fact that all the information of the dynamics of the ABM is encoded in a
Markov chain, however, it is difficult to learn directly from this fact, due to the
huge dimension of the configuration space and its corresponding Markov transition
matrix. The analyses provided in Izquierdo et al. (2009) are essentially based on the
classification of states into transient and absorbing communicating classes which
allows some statements about the convergence as times goes to infinity.
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The paper of Izquierdo et al. (2009) is designated “for researchers who may
not have a strong mathematical background” (par.1.1) and probably therefore lacks
rigorous arguments sustaining some of the results. Most fundamentally, there is
no proof that the process on the constructed configuration space indeed satisfies
the Markov property. Their work also mainly relies on numerical computations to
estimate the stochastic transition matrices of the models. Both issues are addressed
in this volume. The explicit computation of transition probabilities, in particular,
allows for the application of the theory of Markov chain aggregation in order to
reduce the state space of the model.

2.2.1 A Very Short Introduction to the Markov Chain Setting

For the purposes of this book, it is not necessary to provide an extensive overview
of Markov chain theory. It is more convenient here to introduce the general idea
for using Markov chains for the representation of ABMs and introduce the analysis
tools of Markov chain theory when we apply them to the models. In Chap. 4, for
instance, we will analyze the voter model on the complete graph which gives rise
to an absorbing birth-death process known as Moran process (Moran 1958). The
standard tools for the analysis of absorbing chains are introduced and applied there.
In the same way Chap. 6 can be consulted for the analysis of regular Markov chains.
In the applications of Markov chain tools presented throughout this book we mainly
follow Kemeny and Snell (1976), Behrends (2000), and Levin et al. (2009). Many
other volumes (introductory and advanced) are available.

Here we concentrate on ABMs with a finite number of agents that are charac-
terized by a finite set of discrete attributes. This means that the state space of the
system—that is, the set of all possible system configurations—is also finite.! It
will be denoted as X' in the sequel. Furthermore, AB simulation models usually
implement time-discrete processes and due to these ingredients taken together we
concentrate on finite-state, discrete-time processes.

A Markov chain is a stochastic process in which the probability to observe a
state y at time ¢ + 1 is completely determined by the preceding state x at time ¢.
It is common to express this in form of a transition probability matrix P:x -
XY that contains the transition probabilities for all pairs of states x,y € X. Then,
considering a initial distribution 77 (0) that assigns an initial probability to all the
possible system states, the time evolution is given by the repeated application of the
transition matrix 7 (1) = #(0)P' where 7 (r) now contains the probability for the
system states at time .

Notice, that this excludes a series of models (e.g. continuous opinion dynamics Deffuant et al.
2001; Hegselmann and Krause 2002) that operate with agents characterized by a continuous
variable.
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Throughout this book, we will mainly be confronted with two different classes
of Markov chains, namely, absorbing and regular chains. This first ones are
characterized by the fact that there are certain states X in the system with no outgoing
probabilities, meaning that the system will remain in x once it has entered it. In
other words, Is(x, x) = 1 and the process is said to converge to the absorbing state
x. For this reason, questions concerning convergence times and the number of times
the non-absorbing, transient states are visited before convergence are among the
most interesting. As already mentioned, the tools to address those questions are
introduced in Chap. 4.

Regular chains, to the contrary, are characterized by the fact that there is a
certain time 7 at which the matrix P’ has only positive elements. This obviously
excludes absorbing states as the respective outgoing transition probabilities for these
states will always remain zero. It basically means that in regular chains every state
can be reached from every other state in the course of the process. Moreover, the
powers of the transition probability matrix approach a limiting matrix for t — oo in
which all rows are the same probability vector. Therefore, independent of the initial
distribution 7 (0), a regular chain always converges to a fixed probability vector &
which is called the stationary distribution of the chain. Since the stationary vector
7 is constant under further application of the transition matrix, one way to compute
this vector is solve the eigenvalue problem #P = # (for the eigenvalue 1). Chapter 6
will deal with an ABM that gives rise to regular chains.

When simulating an ABM, one usually initializes the system with particular
(often random) initial assignments of the agent attribute corresponding to one
specific system configuration x. The initial distribution corresponds in this case to a
vector that contains zero everywhere except for the element representing x where it
is one (i.e., 7x(0) = 1 and 7, (0) = 0, Vy # x). However, in order to understand the
dynamics of a model, a series of numerical experiments is usually performed each
with a different initial condition. This can be accounted for by setting 7 accordingly.
One of the strength of using Markov chains is then that the statistics one derives
from the analysis accounts for the statistics that would be observed for infinitely
many model realizations.

2.3 Lumpability and State Space Aggregation

The state space of a Markov chain derived by considering as states all possible
system configurations is far too big to directly use the respective transition matrix
P for exact numerical computations. As an example, consider a model with binary
agent attributes such as the VM. A system of N agents will lead to a Markov chain
of size 2V which for our introductory example of only 20 agents (Fig. 1.1) leads to
a chain with more than a million states. In order to use the Markov chain machinery
for AB systems, the system size has to be reduced in some way.



18 2 Background and Concepts
2.3.1 Strong Lumpability

This brings lumpability into play as a way to combine and aggregate the states of
a Markov chain so that the process at the aggregate level is still a Markov chain.
Consider that the state space of a Markov chain is X' and the transition probabilities
between all pairs of states in X' are given by the |¥| x | ¥| transition matrix P.
Throughout this work, the chain (X, f’) will be called micro chain and, respectively,
the states in X' micro states. Now assume that X = (Xp, X1, ...,X,) is a partition
of X' where each X contains a set of micro states in X', such the X are disjoint
(Xx N X; = @ for any pair of aggregate sets) and for the union of all sets | Ji_, X; =
Y. Such a situation naturally arises if the process is observed not at the micro level
of ¥, but rather in terms of a measure on ¥, ¢ : ¥ — {0,1,...,n}, by which
all states in X that give rise to the same measurement are mapped into the same
aggregate set X; (also referred to as macro states). An important question that arises
in such a setting is whether the new aggregate process on X is still a Markov chain
or not. This is what lumpability is about. The lumpability theory adopted for the
purposes of this thesis is largely based on Kemeny and Snell (1976), which is, to the
authors knowledge, the first textbook in which the strong as well as the weak form
of lumpability are discussed with some detail. Notice that there are some other early
and seminal works on lumpability, such as Burke and Rosenblatt (1958), Rosenblatt
(1959), and Rogers and Pitman (1981).

To illustrate the concept of strong lumpability, let us use the Land of Oz
example repeatedly considered in Kemeny and Snell (1976) (see pages 29/30 for
the introduction of the example and page 125 for the lumpability example). There, a
three-state Markov chain is formed which approximates how the whether develops
from 1 day to the other. There is rain (R), nice whether () and snow (S) and the
transition rates are given by

R [(1/21/41/4
P=N|1/2 0 1/2]. 2.1)
s \1/41/41)2

Therefore, a nice day is never followed by a nice day, but there is an equal chance
to have rain or snow. For a rainy day as well as for a day with snow, on the contrary,
there is a chance of 1/2 that the whether remains as it is for the next day, and the
remaining options are equally likely with probability 1/4. From this assignment
of probabilities, we can already see that the behavior for rain (R) and snow (S) is
actually equal and therefore we may combine the two states into a “macro” state
called “bad whether” (B = {R, S}). Hence, the states space is partitioned into two
sets: N on the one hand and B = {R, S} on the other. Now, as the probability that
nice whether follows is equal for R and § the transition matrix of the new chain is

uniquely defined by:
N0 1
P= . 2.2
B (1/4 3/4) 22)
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It is the equality of conjoint transition rates from the states that shall be combined to
all the other partitions (IS(R, N) = IS(S, N) = 1/4 in this simple example) on which
the condition for lumpability is based.

More precisely, if the probability of moving from a micro state x € X; to a macro
state X; is equal for all micro states in Xj, then all the information about the history
which led to a particular state in Xj is actually irrelevant, because from the macro
perspective the future evolution is equivalent for any state in Xj. This leads to a
condition on the transition matrix 13, namely, ZyEX; P(x € Xk, y € X;) must be
equal for all x € X;. For a process to be lumpable with respect to a partition X, it
is sufficient and necessary if this is true for any pair of sets Xy, X; of the partition.
The respective theorem is presented in Kemeny and Snell (1976, Theorem 6.3.2)
and we will come back to it with more detail and a focus on an application to ABMs
in Sect. 3.3.3 (next chapter).

If the chain along with the desired state space partition is given, the application
of the conditions provided in Kemeny and Snell (1976, Theorem 6.3.2) (as well as
the subsequent matrix conditions) is relatively simple. However, if only the chain
is given, it may be a real challenge to find partitions with respect to which the
process is lumpable, not least due to the combinatorial explosion of the number of
possible partitions. In this context, some algorithms have been presented for the task
to find the optimal or coarsest partition (Buchholz 2000; Derisavi et al. 2003). Other
authors have addressed these issues by studying the spectral properties of lumpable
chains and have proposed algorithms based on that (Barr and Thomas 1977; Meila
and Shi 2001; Takacs 2006; Jacobi 2008; Filliger and Hongler 2008; G6rnerup and
Jacobi 2010).

Another approach in which aggregate Markov chain descriptions are derived
on the basis of model specifications that include the hierarchical and symmetric
composition of sub-models has been followed by Buchholz (1995) and is also
advised in the context of interactive Markov chains by Hermanns (1999) and
Hermanns and Katoen (2010). Namely for systems that “include a large number
of identical and symmetric components” (Buchholz 1995, pp. 93/94), a reduced
Markov chain description “resulting from exact lumping” (Buchholz 1995, p. 94)
is constructed directly during the modeling process. This avoids time-consuming
(up to unfeasibility) computations on the huge transition matrices that the model
would give rise to without the reduction. In this work, we formulate explicitly the
complete microscopic system—containing all symmetries that come by the ABM
at question—and lumpability arguments are based on that description (Sects. 3.2
and 3.3, next chapter). However, one of the main messages of this work concerns
the translation of model symmetries into regularities on the associated micro chain
which then enable lumpability. Especially Chap. 5, in which aggregate descriptions
are derived starting from the symmetries of the agent network, is clearly related
to the hierarchical approach due to Buchholz (1995) and the idea of symmetric
composition in Hermanns (1999).
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2.3.2 Weak Lumpability

This thesis mostly applies the strong version of lumpability described above in order
to achieve a Markovian aggregation for ABMs. However, it is important to note
that there is a weaker version of lumpability often referred to as weak lumpability
which will play some role in the seventh chapter. While in the case of strong
lumpability the projected process on X = {Xy, X|, ...} is a Markov chain for any
(initial) distribution, the weaker form of lumpability makes statements about the
possibility to obtain a Markovian process at the aggregate level only for particular
initial vectors.

For a description of the intuition behind weak lumpability the reader is encour-
aged to have a look to Kemeny and Snell (1976, Sect. 6.4., and pages 132/133 in
particular) who themselves refer to Burke and Rosenblatt (1958) for some of their
results. The main idea resides in the following possibility:

Assume that no matter what the past information is, we always end up with the same
assignment of probabilities for being in each of the states in [X;]. Then again the past can
have no influence on our predictions. (Kemeny and Snell 1976, p. 133)

A necessary and sufficient (though not always practical) condition (Kemeny
and Snell 1976, Theorem 6.4.1) is also provided, but the necessity and sufficiency
of conditions for weak lumpability have also been subject of further discussion,
see Abdel-Moneim and Leysieffer (1982), Rubino and Sericola (1989), and Peng
(1996).

On of the most important observations concerns the fact that if a regular chain is
weakly lumpable with respect to a partition X for some probability vector, then it is
weakly lumpable for the stationary vector (the left invariant vector of the transition
matrix 7P = ). See Kemeny and Snell (1976, Theorem 6.4.3) and also Rubino and
Sericola (1989). This may be useful for the decision whether there is one distribution
altogether for which a chain is weakly lumpable or not (Kemeny and Snell 1976,
Theorem 6.4.4). This result has been extended to absorbing Markov chains by
Ledoux et al. (1994). In the absorbing case, the quasi-stationary distribution is
shown to play the role of the stationary vector which allows to relate the lumpability
problem and existing algorithms for irreducible chains to the absorbing case.

2.3.3 Nearly Lumpable and Non-lumpable Aggregation

It is well known that lumpability (the strong as well as the weak version) is rather
an exception than the rule (Chazottes and Ugalde 2003; Gurvits and Ledoux 2005).
Some form of aggregation, state space reduction, or macroscopic observation,
however, is omnipresent in the analysis of complex systems and their dynamics.
The question that then arises concerns the extend to which an aggregate process still
informs us about the real microscopic model behavior.



2.3 Lumpability and State Space Aggregation 21

There are some works that discuss these issues for the cases that the aggregation
satisfies different types of lumpability. Namely, Schweitzer (1984), Sumita and
Rieders (1989), and Buchholz (1994) show that important stationary and transient
measures are preserved by the lump. However, the direct derivation of stationary
and transient properties of the original chain only by knowledge of the aggregated
chain is possible only for a special case of weak lumpability referred to as exact
lumpability (Buchholz 1994, Theorem 3, Theorem 6). Buchholz (1994) also states
that for any micro process and any partition it is possible to construct an aggregation
that preserves the stationary measure. However, for the construction of this so-called
ideal aggregate the stationary state of the original micro system has to be known.
Though all lumpable aggregation are also ideal, the converse is not true and
Buchholz (1994, p. 6) states:

In all cases considered here, no information about the transient behavior can be gained from
the ideal aggregate.

In Chap. 7 of this work, we will construct an ideal non-lumpable aggregate for the
contrarian VM on networks. While this book does not go much further in analyzing
the relation between that ideal aggregate and the micro process, it does present an
analytical example in which these questions can be addressed.

A second important contribution due to Schweitzer (1984) and Buchholz (1994)
is an operational concept of near lumpability. The main idea is that a nearly
lumpable transition matrix P can be represented as P = A+eBwhereAis lumpable
and € is a sufficiently small constant used in analogy to its use in perturbation theory.
Buchholz (1994) constructs bounding matrices for the transition probabilities that
can be used to compute bounds for the stationary and transient quantities of the
aggregated process. The computation of bounds in Buchholz (1994) is in part based
on the work of Courtois and Semal (1984). See also Franceschinis and Muntz (1994)
and Dayar and Stewart (1997) for other concepts of nearly- or quasi-lumpability.

2.3.4 Aggregation in Dynamical Systems

Finally, to complete this section, we should notice that aggregation and state
space decomposition is a wide field which has been vividly discussed across
different disciplines, during quite some time. In philosophy, it relates strongly
to the more general discussions about the decomposability of a complex system
(Simon 1962) and from there to emergence (Wimsatt 1986; Auger and Poggiale
1998) and even further to the possible limitations of an reductionist account of
complex systems (Wimsatt 2006a). In economics, where much theory is in fact
developed around aggregate measures, techniques for the aggregation of variables in
dynamical systems have been developed (e.g., Theil 1965; Simon and Ando 1961;
Ando and Fisher 1963) as an operationalization “decomposability” and “nearly-
decomposability” of a complex system mentioned above (Simon 1962). These
techniques have been transferred to theoretical biology, ecological modeling and
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population dynamics in particular, by Iwasa et al. (1987) in which conditions for
exact aggregation in non-linear dynamical systems are given and Iwasa et al. (1989)
which deals with approximate aggregations. The fact that the explicit consideration
of more and more factors is a tendency in modern model development, has led to
a renewed interest in aggregation techniques not only in Markov chains but also in
the context of dynamical systems (see Auger et al. 2008 for a review of aggregation
methods with application to population dynamics).

It is clear that aggregation techniques are actually relevant to all models which
involve a large number of variables (or agents), in order to derive reduced model
descriptions that might be amenable to analytical strategies. Markov chains and
dynamical systems are probably the two most important mathematical formalisms to
represent complex and high-dimensional systems that evolve in time. In this context,
it is very interesting that methods for aggregation of variables in linear dynamical
systems and lumpability in Markov chains can be based on the same principles, a
fact that has recently been exploited in Jacobi and Gornerup (2009) and Gornerup
and Jacobi (2010).

2.4 The Information-Theoretic Perspective

A useful complementary view on lumpability and state space aggregation more
generally is provided by a series of information-theoretic approaches that are
recently developed in the context of multi-level dynamical systems (Shalizi and
Moore 2003; Gornerup and Jacobi 2008, 2010; Jacobi and Gornerup 2009; Pfante
et al. 2014a,b). Albeit being applied to dynamical systems more generally, the
setting is strongly related to the questions of lumpability in Markov chains. Consider
a Markov chain (X, P) with state space X' and a transition matrix Pandan operator
¢ : ¥ — X that projects the system onto a higher-level coarse-graining X of ¥
inducing a dynamical process on X. The question of lumpability is basically whether
the induced process on the X-level is still Markovian.

In the previous section, we have somehow considered that the partition X is
already defined. This is reasonable in many cases, for instance, in most AB studies
where the system property one wishes to analyze defines a projection (see Chap. 3).
However, in multi-level systems more generally, the state space partition X might
not be known beforehand. This leads to questions of level-identification where one
has to find projection operators (and consequently partitions) that lead to a “closed”
description (at least approximately), in the sense that the system can be modeled by
the state variables of this level. Information-theoretic measures can be used in order
to quantify “closedness”, or, to be precise, deviations from it. Here we shall mention
three of these measures:

Markovianity Shalizi and Moore (2003) emphasize the particular role of Marko-
vianity in the definition or identification of macroscopic observables. Based on
that, Gornerup and Jacobi (2008) propose a Markovianity measure following the
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idea that an higher level is closed if the dynamic P : X — X induced at this
level is Markovian. The decision whether the macro process (obtained by a certain
projection) is Markovian or not is based on the mutual information between the
past (..., X;—2,X,—1) and the future (X;4, X;+2,...) with respect to the present
(Xy). If the expected mutual information between past and future is zero, looking
further back into the past does not provide any new information about the future
evolution, that is, the future depends only on the present value X; and the sequence
induced at the macro level is a Markov process. In other words, the conditional
past-future mutual information /(X,+1; X" |X;) vanishes. Noteworthy, they show
that their Markovianity measure can be expressed in terms of the slope of block
entropies which bears a relation to process reconstruction in turbulence and finance
(Chazottes et al. 1998; Vilela Mendes et al. 2002).

Informational Closure According to this measure, introduced in Pfante et al.
(2014a), a level is informational closed if the knowledge of the micro-level state
X, at time ¢ does not allow for better predictions of the macro level X, than the
knowledge of the preceding macro state X;. This can be written as the conditional
mutual information 7(X;+;; X,|X;) which quantifies the information flow from the
original to the higher level. In other words, this measure quantifies micro-level
information that a higher-level description does not account for and consequently
a level is closed if I(X;+1;X;|X;) vanishes. As shown in Pfante et al. (2014a),
I(X41; X7 L|1X:) < I(X41;%|X;) so that vanishing information flow from micro
to macro implies Markovianity. Moreover, in most situations information flow can
distinguish between the strong and the weak form of lumpability as it vanishes for
the former but not for the latter.

Predictive Efficiency The intuition behind predictive efficiency, introduced in
Shalizi (2001) with important predecessors in Grassberger (1986), Lindgren and
Nordahl (1988), and Crutchfield and Young (1989) (among others), is that a coarse-
grained description with state space X can be considered as a level if it is informative
for the dynamics at this level while, at the same time, being not too complex.
Shalizi (2001) introduces the notion as the ratio between excess entropy and
statistical complexity and uses it to define emergent processes. Based on this, two
variants of predictive efficiency are introduced in Pfante et al. (2014b): first, the
ratio I(X;+1; X;)/H(X;) between one-step mutual (prediction) information and the
entropy of the description; second, the variational /(X;+; X;)—BH (X,) which relates
the measure to the information bottleneck method (Tishby et al. 1999).

We will come back to these measures in the seventh chapter where we study
a non-absorbing variant of the VM on a two-community graph. The projection
of the micro dynamics of this model onto the macroscopic level is not lumpable
which means that memory effects are introduced in the transition from the micro
to the macro level. For the special two-community case we are able to compute
Markovianity and informational closure explicitly.

The information-theoretic setting described in this section is also related to
the framework of computational mechanics (Crutchfield and Young 1989; Shalizi
and Crutchfield 2001; James et al. 2011, and references therein). The main idea
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in computational mechanics is to group histories which give rise to the same
conditional probability distribution over futures into equivalence classes—so-called
causal states—and to construct in this way a minimal causal model—called
e-machines—for the prediction of the process at question. The reader may be
referred to Shalizi and Crutchfield (2001) for an overview and several interesting
theoretical results in computational mechanics. The applicability of these measures
to AB and related computational models is limited by their computational com-
plexity (cf. Gornerup and Jacobi 2008, p. 13). The fact that, even in very simple
ABMs, the state space of the process to be handled becomes very large challenges
these approaches in two ways. The first one concerns the “combinatorial explosion”
(Gornerup and Jacobi 2008, p. 11) of the number of possible partitions, which is
a general difficulty for level identification where the partition is not given a priori.
Secondly, the larger the alphabet, the more data must be generated and evaluated
in order to obtain a workable approximation of the joined probability distribution
of sequence blocks (cf. Shalizi and Crutchfield 2001, Sect. VII.B/C). One way to
deal with this problem is to restrict to block size to one, as in Shalizi et al. (2004),
which is actually exact if the original process is a Markov chain. Still, in this case,
the number of states is huge and the estimation of the conditional probabilities (on
the basis of which equivalence classes are constructed) requires a lot of simulation
data.

2.5 Motivation: Towards a Markov Chain Theory
of Aggregation for Agent-Based Models

2.5.1 Bridging a Gap

Though it has often been recognized that ABMs may be conceived as (stochastic)
dynamical systems or Markov chains (Epstein and Axtell 1996; Laubenbacher et al.
2009; Izquierdo et al. 2009; Page 2012), the afore mentioned aggregation techniques
developed for these systems have not yet been applied to ABMs. One of the reasons
for this is that an explicit formulation of the micro process in terms of dynamical
systems or Markov chains has been accomplished only in an abstract (Laubenbacher
et al. 2009; Page 2012) or approximate (Izquierdo et al. 2009) way. The explicit
formalization of the micro process as a Markov chain—the reasoning presented in
this book will be started with it (Sect. 3.2)—enables the application of the Markov
chain theory of aggregation—that is, lumpability—to ABMs.

The need for a mathematical framework that links the micro and the macro level
has, of course, been noted earlier. For instance:

Of course, microscopic and macroscopic theories are related, and understanding the

connection between the two, e.g., through simulation or by deriving the latter from the
former, is an important goal of any complex systems research. (Lerman 2001, p. 225)
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Also the general possibility of applying mathematical aggregation techniques
(Page 2012) and complexity reduction by symmetry exploitation (Laubenbacher
et al. 2009) has been noted, namely, in the context of dynamical systems and partly
based on earlier work by Iwasa et al. (1987) in population ecology. However, a
sophisticated and practicable mathematical framework for linking between micro
and macro level processes in an AB system does not yet exist. This work is a first
step to bridge this gap.

2.5.2 The Micro-Macro Link

The relation between the microscopic and the macroscopic has since long been
subject for controversy. In sociology, it is manifest in the dichotomy of methodolog-
ical individualism and structural functionalism. A good overview over the historical
development of micro-macro debates from philosophy to social theory is provided
in the introductory chapter (Alexander and Giesen 1987) of a volume headed “The
Micro-Macro Link” (Alexander et al. 1987).

“The Micro-Macro Link” is a collection of essays by very influential social
theorists in the micro as well as in the macro tradition about ways to overcome the
micro-macro divide and link between the different levels of analysis. A synthetic
formulation embracing the different levels from individual action to social order
and back requires on the one hand a link from the micro to the macro pointing
at questions related to various (from weaker to stronger) forms of emergence
(Brodbeck 1968; Giesen 1987), aggregation and equilibrium (Coleman 1987). On
the other, it should also include concepts for the retro-action of the macro on
the micro level, such as internalization (Parsons 1954) or constraints on and the
environment of individual actions (Alexander 1987). One of the first acknowledged
synthetic formulations of this linkage between micro and macro in sociology studies
is from Max Weber (1978) from where we quote the following basic observation:

within the realm of social action, certain empirical uniformities can be observed, that is,
courses of action that are repeated by the actor or (simultaneously) occur among numerous
actors (Weber 1978, p. 29)

We shall see how a stylized version of this belief is incorporated in our study
when passing from micro to macro dynamics.

AB simulation is sometimes considered as a methodology to provide a “theoret-
ical bridge” (Macy and Willer 2002, p. 148) between micro and macro theories (see
also Saam 1999; Squazzoni 2008). Even if most of the models (especially the early
ones) are actually a straight implementation of the individualistic program, there are
some attempts to include into the model agents with some socio-cognitive abilities
(see Squazzoni 2008, pp. 14-16) capable of the perception and internalization of
the macro sphere. Also the experimentation with different interaction topologies
can actually be seen as an attempt to understand the influence of social structure
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(macro) on the emergence of collective order (macro) transmitted through the level
of individual interaction (micro).

Clearly, this book is not about social theory. It is about a mathematical technique
to link micro dynamics to macro dynamics in models that may be designed on the
basis of sociological theorizing. To my opinion, a well posed mathematical basis
for these models may help the understanding of many of their observed properties,
and it also provides a new perspective on aggregation and emergence and on how
they are related. Linking the micro-description of an ABM to a macro-description
in the form of a Markov chain provides information about the transition from the
interaction of individual actors to the complex macroscopic behaviors observed in
social systems. In particular, well-known conditions for lumpability (Sect.2.3.1)
make it possible to decide whether the macro model is still Markov. Conversely,
this setting can also provide a suitable framework to understand the emergence of
long range memory effects and patterns of spatial organization (Chap. 7).

2.5.3 Computational Emergence and Aggregativity

ABMs and other related computational tools (such as CA) play an increasingly
important role also in the contemporary philosophical discussions of emergence.
Some philosophers (e.g., Bedau 1997, 2003; Huneman and Humphreys 2008;
Humphreys 2008) advocate a position which makes use of computational models
as a playground to address fundamental questions of emergence (see Symons 2008
for a critical consideration). Questions about the relation of these artificial model
environments to real phenomena are not ignored, but considered as an independent
issue which is actually part of another debate. The field of computational emergence
aims to establish “a close link between the concept of emergence and computation or
computer simulations, which can perhaps be captured by the idea that an emergent
phenomenon is one that arises from a computationally incompressible process”
(Huneman and Humphreys 2008, pp. 425/426). The framework presented here
provides explicit knowledge about the (in)compressibility of computational models
and the dynamical processes which these models give rise to.

While scientists use the term “emergence” relatively freely, the philosophical
literature differentiates more carefully between different forms of emergence (onto-
logical versus epistemological, strong versus weak, synchronic versus diachronic
emergence) and the existence of some of these forms (ontological emergence in
particular) is in fact highly controversial. In the context of computational models,
emergence is often paraphrased by “the whole is more than the sum of its parts” and
an emergent property can be a certain macro-level pattern that could not be expected
(and not predicted!) by looking at the micro level rules only. Along this lines, a well-
known and explicitly computational account of weak emergence that fits the use of
the term in complexity science has been offered by Bedau (1997, 2003):
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The behavior of weakly emergent systems cannot be determined by any computation that is
essentially simpler than the intrinsic natural computational process by which the system’s
behavior is generated. (Bedau 2003, p. 18)

Bedau (2003) uses CAs to illustrate these ideas and makes explicit reference to
simulations: according to him a system property is emergent if it can be derived
“only by simulation” (Bedau 2003, p. 15).

An alternative position on emergence has been advocated by Wimsatt (1986)
even before computer simulations became widespread. Wimsatt (1986) starts out
from analyzing the conditions for a system property to be a mere aggregate of
the properties of the parts of which the system is composed (see also Wimsatt
2000, 2006a,b). Accordingly, a property of a system is called emergent if it does
not satisfy these condition for aggregativity. In this way, Wimsatt is able to give a
rather straightforward meaning to the dictum “a complex system is more than the
sum of its parts” by relating emergence to the lack of aggregativity. What makes
Wimsatt’s position particularly interesting for this work is not only that relation
between aggregation and emergence, but also the observation expressed by the
following statements:

[I]t is better to talk about properties of systems and their parts, and to analyze aggregativity
as a kind of relation between these properties. (Wimsatt 1986, p. 260)

Aggregativity and emergence concern the relationship between a property of a system under
study and properties of its parts. (Wimsatt 2006a, p. 675)

The reason for which it is better to focus on properties, or rather to be explicit
on that point, is that a system might be aggregative for one but emergent for another
property. Just as a Markov chain might be lumpable with respect to one but non-
lumpable with respect to another partition!
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