Chapter 2
Bounds and Constructive Algorithms

Towards the end of Chap. 1 we saw a variety of different types of graphs that are
relatively straightforward to colour optimally, including complete graphs, bipartite
graphs, cycle and wheel graphs, and grid graphs. With regard to the chromatic num-
ber, we also saw that it is easy to determine when ¥(G) = 1 (G is an empty graph),
and when ¥ (G) =2 (G is bipartite). But can we go further than this? In this chapter
we review and analyse a number of fast constructive algorithms for the graph colour-
ing problem. We also make statements on how we are able to bound the chromatic
number.

The fact that graph colouring is an intractable problem implies that there is a
limited amount that we can say about the chromatic number of an arbitrary graph in
general. One simple rule is that, given a graph G with n vertices and m edges, if m >
|n?/4] then x(G) > 3, since any graph fitting this criteria must contain a triangle
and therefore cannot be bipartite (Bollobds, 1998); however, even the problem of
deciding whether ¥ (G) = 3 is NP-complete for arbitrary graphs.

In spite of this rather bleak situation, a variety of heuristic-based approximation
algorithms are available for graph colouring that are often able to produce very
pleasing results. In this chapter we will consider three fast constructive methods
which operate by assigning each vertex to a colour one at a time using rules that are
intended to keep the overall number of colours as small as possible. As we will see,
for certain graph topologies some of these algorithms turn out to be exact, though in
most cases they only produce approximate solutions. The first of these algorithms,
the so-called GREEDY algorithm, is perhaps the most fundamental method in the
field of graph colouring and is also useful for establishing bounds on the chromatic
number. Towards the end of the chapter we also present an empirical comparison
of the three constructive algorithms in order to provide information on their relative
strengths and weaknesses.

At this point it is useful to introduce some further graph terminology. Recall that
a graph G = (V,E) is defined by a vertex set V of n vertices and an edge set E of m
edges.

Definition 2.1 [f {u,v} € E, vertices u and v are said to be adjacent. Vertices v and
u are also said to be incident to the edge {u,v} € E. If {u,v} ¢ E, then vertices u
and v are nonadjacent.
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Definition 2.2 The neighbourhood of a vertex v, written I (v), is the set of vertices
adjacent to v in the graph G. That is, I(v) = {u € V : {v,u} € E}. The degree of a
vertex v is the cardinality of its neighbourhood set, |I(v)|, usually written degs(v).
When the graph being referred to is made clear by the text, these can be written in
their shorter forms, I'(v) and deg(v), respectively.

Definition 2.3 The density of a graph G = (V,E) is the ratio of the number of edges
to the number of pairs of vertices. For a simple graph with no loops this is calculated
m/((n(n—1))/2). Graphs with low densities are often referred to as sparse graphs;
those with high densities are known as dense graphs.

Definition 2.4 A graph G' = (V' E’) is a subgraph of G, denoted by G' C G, if
V' CV and E' CE. If G’ contains all edges of G that join two vertices in V' then G'
is said to be the graph induced by V'.

Definition 2.5 Let W C V, then G — W is the subgraph obtained by deleting the
vertices in W from G, together with the edges incident to them.

Definition 2.6 A path is a sequence of edges that connect a sequence of distinct
vertices. A path between two vertices u and v is called a uv-path. If a uv-path exists
between all pairs of vertices u,v € V, then G is said to be connected; otherwise it is
disconnected.

Definition 2.7 The length of a uv-path P = (u = vy,vy,...,v; = V), is the number
of edges it contains, equal to | — 1. The distance between two vertices u and v is the
minimal path length between u and v.

Definition 2.8 A cycle is a uv-path for which u = v. All other vertices in the cycle
must be distinct. A graph containing no cycles is said to be acyclic.

(@) v, (b)

Fig. 2.1 (a) A graph G, and (b) a subgraph G’ of G

To illustrate these definitions, Figure 2.1(a) shows a graph G where, for example,
vertices v; and v3 are adjacent, but v; and v, are nonadjacent. The neighbourhood
of vy is I'(v;) = {vs,vs}, giving deg(v;) = 2. The density of G is 7/(1/2 x 6 x
5) = 0.467. The subgraph G’ in Figure 2.1(b) has been created via the operation
G — {v2,v4}, and in this case both G and G’ are connected. Paths in G from, for
example, v; to v include (vy,v3,v4,vs,vs) (of length 4) and (v, vs, ve) (of length 2).
Since the latter path is also the shortest path between v; to vg, the distance between
these vertices is also 2. Cycles also exist in both G and G, such as (vq,v3,vs,v1).
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2.1 The Greedy Algorithm

Recall the example from Section 1.1.1 where we sought to partition some students
into a minimal number of groups for a team building exercise. The process we used
to try and achieve this is known as the GREEDY algorithm, which is one of the sim-
plest but most fundamental heuristic algorithms for graph colouring. The algorithm
operates by taking vertices one by one according to some (possibly arbitrary) or-
dering and assigns each vertex its first available colour. Because this is a heuristic
algorithm, the solutions it produces may very well be suboptimal; however, it can
also be shown that GREEDY can produce an optimal solution for any graph given
the correct sequence of vertices (see Theorem 2.2 below). As a result, various algo-
rithms for graph colouring have been proposed that seek to find such orderings of
the vertices (see Chapter 3).

GREEDY (S 0, 7)
(1) for i + 1 to || do
(2 for j« 1to]|S|

3) if (S;U{m}) is an independent set then
4) Sj<—SjU{7l'i}

5) break

©6) else j < j+1

(7)  if j>|S| then

(8) Sj < {71','}

9) S+ SUS;

Fig. 2.2 The GREEDY algorithm for graph colouring

Pseudocode for the GREEDY algorithm is given in Figure 2.2. To start, the al-
gorithm takes an empty solution $ = 0 and an arbitrary permutation of the vertices
7. In each outer loop the algorithm takes the ith vertex in the permutation, 7;, and
attempts to find a colour class §; € S into which it can be inserted. If such a colour
class currently exists in S, then the vertex is added to it and the process moves on to
consider the next vertex ;4. If not, lines (8-9) of the algorithm are used to create
a new colour class for the vertex. An example run of the algorithm on a small graph
is shown in Figure 2.3.

Let us now estimate the computational complexity of the GREEDY algorithm
with regard to the number of constraint checks that are performed. We see that one
vertex is coloured at each iteration, meaning n = | 7| iterations of the algorithm are
required in total. At the ith iteration (1 < i < n), we are concerned with finding
a feasible colour for the vertex m;. In the worst case this vertex will clash with
all vertices that have preceded it in 7, meaning that (i — 1) constraint checks will
be performed before a suitable colour is determined. Indeed, if the graph we are
colouring is the complete graph K,,, the worst case will occur for all vertices; hence
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Result Colou

Fig. 2.3 Example application of GREEDY using the permutation m; = v; (1 <i < n). Here, un-
coloured vertices are shown in white

atotal of 0+ 1+2+...+ (n— 1) constraint checks will be performed. This gives
GREEDY an overall worst-case complexity O(n?).

In practice, the GREEDY algorithm produces feasible solutions quite quickly;
however, these solutions can often be quite poor in terms of the number of colours
that the algorithm requires compared to the chromatic number. Consider, for ex-
ample, the bipartite graph G = (V},V,,E) in which n is even and where the ver-
tex sets and edge set are defined Vi = {v,v3,...,v,—1}, Vo = {v2,v4,...,v,}, and
E={{vi,vj}:vieViAv; e Vo Ai+1# j} . Figure 2.4 shows examples of such
a graph using n = 10. Clearly for n > 4 such graphs will have a chromatic num-
ber x(G) = 2 because V; and V» constitute independent sets. However, colouring
this graph using GREEDY with the permutation T = (vi,v2,v3,...,v,) will actually
lead to a solution using n/2 colours, as Figure 2.4(a) illustrates. On the other hand,
a permutation of the form & = (vi,v3,...,vy—1,v2,V4,...,V,) Will give the optimal
solution shown in Figure 2.4(b). Clearly then, the order that the vertices are fed into
the GREEDY algorithm can be very important.

One very useful feature of the GREEDY algorithm involves using existing feasible
colourings of a graph to help generate new permutations of the vertices which can
then be fed back into the algorithm. Consider the situation where we have a feasible
colouring S of a graph G. Consider further a permutation 7 of G’s vertices that has
been generated such that the vertices occurring in each colour class of S are placed
into adjacent locations in 7. If we now use this permutation with GREEDY, the result
will be a new solution S’ that uses no more colours than S, but possibly fewer. This
is stated more concisely as follows:
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(a)

Fig. 2.4 Two different colourings of a bipartite graph achieved by the GREEDY algorithm

Theorem 2.1 Let S be a feasible colouring of a graph G. If each colour class S; € S
(for 1 < i <|S]) is considered in turn, and all vertices are fed one by one into the
greedy algorithm, the resultant solution 8" will also be feasible, with |S'| < |S]|.

Proof. Because S = {S1,...S|5} is a feasible solution, each set S; € S is an inde-
pendent set. Obviously any subset 7' C ; is also an independent set. Now consider
an application of GREEDY using S to build a new candidate solution S'. In applying
this algorithm, each set Sy, ... ,S‘ S| is considered in turn, and all vertices v € §; are
assigned one by one to some set S} € &' according to the rules of GREEDY (that
is, v is first considered for inclusion in S’l, then S’Z, and so on). Considering each
vertex v € S;, two situations and resultant actions will occur in the following order
of priority:

Case 1:  Anindependent set S';_; € S’ exists such that §; U {v} is also an indepen-
dent set. In this case v will be assigned to the jth colour class in S’.

Case2:  Anindependent set S'_; € S exists such that §’; U {v} is also an indepen-
dent set.

In both cases it is clear that v will always be assigned to a set in &’ with an index
that is less than or equal to that of its original set in S. Of course, if a situation arises
by which all items in a particular set S; are assigned according to Case 1, then at
termination of GREEDY, S’ will contain fewer colours than S.

Now assume that it is necessary to assign a vertex v € S; to a set S/,»>i. For this to
occur, it is first necessary that the proposed actions of Cases 1 and 2 (i.e., adding v
to a set S’j<i) cause a clash. However, S} C S; and is therefore an independent set. By
definition, . StU{v} C S; is also an independent set, contradicting the assumption.

O

To show these concepts in action, the colouring shown in Figure 2.5(a) has been
generated by the GREEDY algorithm using the permutation 7 = (v, v2,Vv3,v4, Vs, Vg,
v7,vg), giving the 4-colouring S = {{v1,v4,vs},{v2,v7},{v3,vs},{ve}}. This solu-
tion might then be used to form a new permutation @ = (v{,v4,Vvs,Vv2,V7,V3,Vs,V6)
which could then be fed back into the algorithm. However, our use of sets in defin-
ing a solution S means that we are free to use any ordering of the colour classes in
S to form 7, and indeed any ordering of the vertices within each colour class. One
alternative permutation of the vertices formed from solution § in this way is there-
fore © = (v2,v7,vs,v3,ve,Vv4,vs,v1 ). This permutation has been used with GREEDY
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Fig. 2.5 Feasible 4- and 3-colourings of a graph

to give the solution shown in Figure 2.5(b), which we see is using fewer colours
than the solution from which it was formed.
These concepts give rise to the following theorem:

Theorem 2.2 Let G be graph with an optimal graph colouring solution S =
{S1,-..,Sk}, where k = x(G). Then there are at least

x(G)
x(G)! T Isil! @2.1)
i=1

permutations of the vertices which, when fed into GREEDY, will result in an optimal
solution.

Proof. This arises immediately from Theorem 2.1: Since S is optimal, an appropri-
ate permutation can be generated from S in the manner just described. Moreover,
because the colour classes and vertices within each colour class can themselves be
permuted, the above formula holds. g

Note that if x(G) = 1 or x(G) = n then, trivially, the number of permutations de-
coding into an optimal solution will be n!. That is, every permutation of the vertices
will decode to an optimal colouring using GREEDY.

2.2 Bounds on the Chromatic Number

In this section we now review some of the upper and lower bounds that can be
stated about the chromatic number of a graph. Some of the bounds that we cover
make use of the GREEDY algorithm in their proofs, helping us to further understand
the behaviour of the algorithm. While these upper and lower bounds can be quite
useful, or even exact for some topologies, we will see that in many cases they are
either too difficult to calculate, or give us bounds that are too inaccurate to be of any
practical use. This latter point will be demonstrated empirically later in Section 2.5.
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2.2.1 Lower Bounds

To start, we make the observation that if a graph G contains as a subgraph the
complete graph K}, then a feasible colouring of G will obviously require at least
k colours. Stating this in another way, let ®@(G) denote the number of vertices con-
tained in the largest clique in G (this is sometimes known as G’s clique number).
Since ®(G) different colours will be needed to colour this clique, we deduce that
x(G) = o(G).

From another perspective, we can also consider the independent sets of a graph.
Let o/(G) denote the independence number of a graph G, defined as the number of
vertices contained in the largest independent set in G . In this case, x(G) must be
at least [n/ct(G)] since to be less than this value would imply the existence of an
independent set larger than a(G).

These two bounds can be combined into the following:

x(G) = max{®(G), [n/a(G)[} 22

The accuracy of the bounds given in Inequality (2.2) will vary on a case to case
basis. Their major drawback is the fact that the tasks of calculating ®(G) and a(G)
are themselves NP-hard problems, namely the maximum clique problem and the
maximum independent set problem. However, this does not mean that the bounds
are useless: in some practical applications the sizes of the largest cliques and/or
independent sets might be quite obvious from the graph’s topology, or even specified
as part of the problem itself (see, for example, the sport scheduling models used in
Chapter 7). In other cases, we might also be able to approximate @(G) and/or a(G)
using heuristics or by applying probabilistic arguments.

To illustrate how we might estimate the size of a maximum clique in probabilistic
terms, consider a graph G with n vertices that has been generated such that each
pair of vertices is joined by an edge with probability p. Assuming independence,
the probability that a subset of x < n vertices forms a clique K, is calculated to be

p(2) , since there are (;) edges that are required to be present among the x vertices.

The probability that the x vertices do not form a clique is therefore simply 1 — p(g).
Since there are (Z) different subsets of x vertices in G, the probability that none of
these are cliques is calculated to be (1 — p(i))(ﬁ). Hence the probability that there
exists at least one clique of size x in G is defined as

P(3K, CG)=1—(1—p)() 2.3)

for 2 < x < n. In practice we might use this formula to estimate a lower bound with
a certain confidence. For example, we might say “with greater than 99% confidence
we can say that G contains a clique of size y”, where y represents the largest x value
for which Equation 2.3 is greater than 0.99. We might also collect similar informa-
tion on the size of the largest maximum independent set in G by simply replacing p
with p = (1 — p) in the above formula. We must be careful in calculating the latter,
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however, because dividing n by an underestimation of a:(G) could lead to an invalid
bound that exceeds x(G). We should also be mindful that, for larger graphs, the
numbers involved in calculating Equation (2.3) might be very large indeed, perhaps
requiring rounding and introducing inaccuracies.

Fig. 2.6 Optimal 4-colouring of the Grétzch graph

Even if we are able to estimate or determine values such as @(G), we must still
bear in mind that they may still constitute a very weak lower bound in many cases.
Consider, for example, the graph shown in Figure 2.6, known as the Grétzch graph.
This graph is considered “triangle free” in that it contains no cliques of size 3 or
above; hence ®(G) = 2. However, as illustrated in the figure, the chromatic number
of the Grétzch graph is four: double the lower bound determined by @(G). In fact,
the Grotzch graph is the smallest graph in a set graphs known as the Mycielskians,
named after their discoverer Jan Mycielski (1955). Mycielskian graphs demonstrate
the potential inaccuracies involved in using @(G) as a lower bound by showing that
for any g > 1 there exists a graph G with @(G) = 2 but for which x(G) > q. Hence
we can encounter graphs for which @(G) gives us a lower bound of 2, but for which
the chromatic number can actually be arbitrarily large.

2.2.1.1 Bounds on Interval Graphs

While topologies such as the Mycielskian graphs demonstrate the potential for w(G)
to produce very poor lower bounds, in other cases this bound turns out to be both
exact and easy to calculate. One practical application where this occurs is with in-
terval graphs. Given a set of intervals defined on the real line, an interval graph is
defined as a graph in which adjacent vertices correspond to overlapping intervals.
More formally:

Definition 2.9 Let Z ={1,...,1I,} be a set of intervals defined on the real line such
that each interval I; = {x € R : a; < x < b;}, where a; and b; define the start and
end values of interval I;. The interval graph of T is the graph G = (V,E) for which
V={vi,...,vu} and where E = {{v;,v;} : ;NI; # 0}.
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An example interval graph has already been provided in Section 1.1.3 where we
sought to assign taxi journeys with known start and end times to a minimal number
of vehicles. Figure 1.5(a) in this section shows ten taxi journeys corresponding to
ten intervals over the real line (representing time in this case). These intervals are
then used to construct the interval graph shown in Figure 1.5(b).

One feature of interval graphs are that they are known to contain a “perfect elim-
ination ordering”. This is defined as an ordering of the vertices such that, for every
vertex, all of its neighbours to the left of it in the ordering form a clique.

Theorem 2.3 Every interval graph G has a perfect elimination ordering.

Proof. To start, arrange the intervals of Z in ascending order of start values, such that
a; <ay < ... < a,. Now label the vertices vi,vs,...,v, to correspond to this order-
ing. This implies that for any vertex v;, the corresponding intervals of all neighbours
to its left in the ordering must contain the value a;; hence all pairs of v;’s neighbours
must also share an edge, thereby forming a clique. a

The presence of a perfect elimination ordering is demonstrated in the example
interval graph in Figure 1.5. Here we see, for example, that v3 forms a clique of
size 3 with its neighbours v, and vy, and that vi¢ forms a clique of size 2 with its
neighbour vg. The fact that all interval graphs contain a perfect elimination ordering
allows us to produce optimal colourings to such graphs according to the following
theorem.

Theorem 2.4 Let G be a graph with a perfect elimination ordering. An optimal
colouring for G is obtained by labelling the vertices v1,...,v, such that a; < ap <
... < ay, and then applying the GREEDY algorithm with the permutation 7; = v;, for
i <i<n. Moreover, x(G) = o(G).

Proof. During execution of GREEDY, each vertex v; = m; is assigned to the lowest
indexed colour not used by any of its neighbours preceding it in 7. Clearly, each
vertex has less than @(G) neighbours. Hence at least one of the colours labelled 1
to ®(G) must be feasible for v;. This implies x(G) < @(G). Since ®(G) < x(G),
this gives x(G) = o(G). a

The optimal 3-colouring provided in Figure 1.5(c) shows the result of this colour-
ing process using the permutation © = (v, v2,v3,Vv4, Vs, V6, V7,V8,V9,V10)-

More generally, graphs featuring perfect elimination orderings are usually known
as chordal graphs. All interval graphs are therefore a type of chordal graph. The
problem of determining whether a graph is chordal or not can be achieved in poly-
nomial time by algorithms such as lexicographic breadth-first search (Rose et al.,
1976). Hence any chordal graph can be recognised and coloured optimally in poly-
nomial time.
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2.2.2 Upper Bounds

Upper bounds on the chromatic number are often derived by considering the degrees
of vertices in a graph. For instance, when a graph has a high density (that is, a
high proportion of vertex pairs that are neighbouring), often a larger number of
colours will be needed because a greater proportion of the vertex pairs will need
to be separated into different colour classes. This admittedly rather weak-sounding
proposal gives rise to the following theorem.

Theorem 2.5 Let G be a connected graph with maximal degree A(G) (that is,
A(G) = max{deg(v) : v€ V}). Then x(G) < A(G)+ 1.

Proof. Consider the behaviour of the GREEDY algorithm. Here the ith vertex in
the permutation 7, namely 7;, will be assigned to the lowest indexed colour class
that contains none of its neighbouring vertices. Since each vertex has at most A(G)
neighbours, no more than A(G) + 1 colours will be needed to feasibly colour all
vertices of G. 0

Another bound concerning vertex degrees can be calculated by examining all
of a graph’s subgraphs and identifying the minimal degree in each case, and then
taking the maximum of these. For practical purposes this might be less useful than
Theorem 2.5 for computing bounds quickly since the total number of subgraphs
to consider might be prohibitively large. However, the following result still has its
uses, particularly when it comes to colouring planar graphs and graphs representing
circuit boards (see Chapter 5).

Theorem 2.6 Given a graph G, suppose that in every subgraph G' of G there is a
vertex with degree less than or equal to 8. Then x(G) < 6+ 1

Proof. We know there is a vertex with a degree of at most § in G. Call this vertex
v, We also know that there is a vertex of at most 6 in the subgraph G — {v, }, which
we can label v, _|. Next, we can label as v,,_; a vertex of degree of at most & to form
the graph G — {v,, v, }. Continue this process until all of the n vertices have been
assigned labels. Now assign these vertices to the permutation 7 using 7; = v;, and
apply the GREEDY algorithm. At each step of the algorithm, v; will be adjacent to at
most & of the vertices vy,...,v;_| that have already been coloured; hence no more
than 6 + 1 colours will be required. g

Let us now examine some implications of these two theorems. It can be seen
that Theorem 2.5 provides tight bounds for both complete graphs, where ¥ (K,) =
A(K,)~+ 1 = n, and for odd cycles, where x(C,) = A(C,) + 1 = 3. However, such
accurate bounds will not always be so forthcoming. Consider, for example, the
wheel graph comprising 100 vertices, Wjgo. This features a “central” vertex of de-
gree A(Wigp) =99, meaning that Theorem 2.5 merely informs us that the chromatic
number of Wi is less than 100, despite the fact that it is actually just four! On
the other hand, for any wheel graph it is relatively easy to show that all of its sub-
graphs will contain a vertex with a degree of no more than 3 (i.e., 8 = 3). For
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wheel graphs where n is even, this allows Theorem 2.6 to return a tight bound since
o0+ 1=x(W,) =4

Beyond complete graphs and odd cycles, Theorem 2.5 can also be marginally
strengthened due to the result of Brooks (1941). This proof is slightly more involved
than that of Theorem 2.5 and requires some further definitions.

Definition 2.10 A component of a graph G is a subgraph G' in which all pairs of
vertices are connected by paths. A graph that is itself connected has exactly one
component, comprising the whole graph.

Definition 2.11 A cut vertex v is a vertex whose removal from a graph G (together
with all incident edges) increases the number of components. Thus a cut vertex of a
connected graph is a vertex whose removal disconnects the graph. More generally,
a separating set of a graph G is a set of vertices whose removal increases the number
of components.

Definition 2.12 A graph G is said to be k-connected if it remains connected when-
ever fewer than k vertices are removed. In other words, G will only become discon-
nected if a separating set comprising k or more vertices is deleted.

Definition 2.13 A component of a graph is considered a block if it is 2-connected.

(m o B g@
/
Cut vertex Separating Set

Fig. 2.7 Illustrations of a cut vertex and separating set

To illustrate these definitions, Figure 2.7(a) shows a graph G comprising one
component. Removal of the indicated cut vertex would split G into two components.
Figure 2.7(b) can be considered a block in that it does not contain a cut vertex (i.e., it
is 2-connected). However, it is not 3-connected, because removal of the two vertices
in the indicated separating set increases the number of components from one to two.

Having gone over the necessary terminology, we are now in a position to state
and prove Brooks’ theorem.

Theorem 2.7 (Brooks (1941)) Let G be a connected graph with maximal degree
A(G). Suppose further that G is not complete and not an odd cycle. Then x(G) <
A(G).

Proof. The theorem is obviously correct for A(G) < 2. For A(G) =0 and A(G) =
1, the corresponding graphs will be K; and K; respectively, and are therefore not
included in the theorem. For A(G) = 2 on the other hand, G will be a path or even
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cycle (giving x(G) = 2) or will be an odd cycle, meaning it is not included in the
theorem.

Assuming A(G) > 3, let G be a counterexample with the smallest possible num-
ber of vertices for which the theorem does not hold: i.e., ¥ (G) > A(G). We therefore
assume that all graphs with fewer vertices than G can be feasibly coloured using
A(G) colours.

Claim 1: G is connected. If G were not connected, then G’s components would be
a smaller counterexample, or all of G’s components would be A (G)-colourable.

Claim 2: G is 2-connected. If G were not 2-connected, then G would have at least
one cut vertex v, and each block of G would be A (G)-colourable. The colourings
of each block could then be combined to form a feasible A (G)-colouring.

Claim 3: G must contain three vertices v, u; and u, such that (a) u; and u, are non-
adjacent; (b) both u; and u, are adjacent to v; and (¢) G — {uy,u, } is connected.
Two cases can now be considered:

Case 1: G is 3-connected. Because G is not complete, there must be two ver-
tices x and y that are nonadjacent. Let the shortest path between x and y in
Gbe x=vy,...,v; =y, where [ > 2. Since this is the shortest path, v¢ is not
adjacent to v, so we can choose u; = vg, v = v1 and up = v,. This satisfies
Claim 3.

Case 2: G is 2-connected but not 3-connected. In this case, there must exist
two vertices u and v such that G — {u,v} is disconnected. This means that the
graph G — {v} contains a cut vertex (i.e., u), but there is no cut vertex in G
itself. In this case, v must be adjacent to at least one vertex in every block of
the graph G — {v}. Let u; and uy be two vertices in two different end blocks
of G — {v} that are adjacent to v. The vertices u;, up and v now satisfy Claim
3.

Having proved Claims 1, 2, and 3, we now construct a permutation 7 of the n ver-
tices of G such that m; = u;, T = u», and m, = v. The remaining parts of the per-
mutation 73, ... 7T, are then formed such that, for 3 <i < j <n— 1, the distance
from 7, to 7; is greater than or equal to the distance from 7, to 7;. If we now apply
GREEDY to this permutation, the vertices m; = u; and @ = up will first both be
assigned to colour Sy, because they are nonadjacent. Moreover, when we colour the
vertices 7r; (3 <i < n), there will always be at least one colour S () available for
;. Finally, when we come to colour vertex 7, = v, at most A(G) — 1 colours will
have been used to colour the neighbours of v (since its neighbours u; and u, have
been assigned to the same colour) and so at least one of the A(G) colours will be
feasible for v. This shows that x(G) < A(G) as required. O

Having analysed the behaviour of the GREEDY algorithm and reviewed a number
of bounds on the chromatic number, the following two sections will now consider
two further heuristic-based constructive algorithms for the graph colouring problem.
As we will see, these algorithms are guaranteed to produce optimal solutions for
some simple graph topologies and also often construct solutions that improve on the
upper bounds mentioned above. Later, in Chapters 3 and 4, we will also see that
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these algorithms, along with GREEDY, are often used as building blocks in many of
the more sophisticated algorithms available for graph colouring.

2.3 The DSATUR Algorithm

The DSATUR algorithm (abbreviated from “degree of saturation”) was originally
proposed by Brélaz (1979). In essence it is very similar in behaviour to the GREEDY
algorithm in that it takes each vertex in turn according to some ordering and then
assigns it to the first suitable colour class, creating new colour classes when nec-
essary. The difference between the two algorithms lies in the way that these vertex
orderings are generated. With GREEDY the ordering is decided before any colour-
ing takes place; on the other hand, for the DSATUR algorithm the choice of which
vertex to colour next is decided heuristically based on the characteristics of the cur-
rent partial colouring of the graph. This choice is based primarily on the saturation
degree of the vertices, defined as follows.

Definition 2.14 Ler ¢(v) = NULL for any vertex v € V not currently assigned to a
colour class. Given such a vertex v, the saturation degree of v, denoted by sat(v),
is the number of different colours assigned to adjacent vertices. That is, sat(v) =
{c(u):ueI'(v)Ac(u)#NULL}|

DSATUR (S 0,X < V)
(1) while X £ 0 do
2) Choose v € X
3) for j < 1to|S|

“4) if (S;U{v}) is an independent set then
(5) Sj — Sj U {V}
(6) break
7 else j«+ j+1
(8)  ifj>|S|then
9 Sj <« {v}
(10) S+ SUS;

(1) X< X—{v}

Fig. 2.8 The DSATUR algorithm for graph colouring

Pseudocode for the DSATUR algorithm is shown in Figure 2.8. It can be seen
that the majority of the algorithm is the same as the GREEDY algorithm in that once
a vertex has been selected, a colour is found by simply going through each colour
class in turn and stopping when a suitable one has been found. Consequently, the
worst-case complexity of DSATUR is the same as GREEDY at O(n?), although in
practice some extra bookkeeping is required to keep track of the saturation degrees
of the uncoloured vertices.
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The major difference between GREEDY and DSATUR lies in lines (1), (2) and
(11) of the pseudocode. Here, a set X is used to define the set of vertices currently
not assigned to a colour. At the beginning of execution X = V. In each iteration of
the algorithm the next vertex to be coloured is selected from X according to line
(2), and once coloured, it is removed from X in line (11). The algorithm terminates
when X = 0.

Line (2) of Figure 2.8 provides the main power behind the DSATUR algorithm.
Here, the next vertex to be coloured is chosen as the vertex in X that has maximal
saturation degree. If there is more than one vertex with maximal saturation degree,
then ties are broken by choosing the vertex among these with the largest degree.
Any further ties can then be broken randomly. The idea behind the maximum sat-
uration degree heuristic is that it prioritises vertices that are seen to be the most
“constrained”—that is, vertices that currently have the fewest colour options avail-
able to them. Consequently, these “more constrained” vertices are dealt with by the
algorithm first, allowing the less constrained vertices to be coloured later.

W QO 0 @ 0 B Q2 0
1 1 1 1
0 0
1 - 2 - 3 1
(4) 2 0 (5) 1 (6) 2
1 1
1 1 2
7 2 8 Result Colour
(7) (8) o}
Q2?2
@®:
(!

Fig. 2.9 Example application of DSATUR. Here, uncoloured vertices (members of X) are shown
in white, and have their saturation degrees written alongside

Figure 2.9 shows an example run-through of the algorithm on a small graph.
To begin, all vertices have a saturation degree equal to 0, so the first vertex to be
coloured is the one with the highest degree. As shown in Step (1), this is assigned
to colour 1. This also leads to five vertices having a saturation degree of 1, so the
next vertex to be chosen is the one among these that has the highest degree. This is
then assigned to colour 2 as shown in Step (2). Next, three vertices have saturation
degrees of 2, so we again choose the vertex among these with the highest degree.
Since colours 1 and 2 are not feasible for this vertex, it is assigned to colour 3.
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This process continues as shown in the figure until a feasible colouring has been
achieved.

Earlier we saw that the number of colours used in solutions produced by the
GREEDY algorithm depends on the order that the vertices are fed into the proce-
dure, with results (in terms of the number of colours used in the solution produced)
potentially varying a great deal. On the other hand, the DSATUR algorithm reduces
this variance by generating the vertex ordering during a run according to its heuris-
tics. As aresult, DSATUR’’s performance is more predictable. Indeed DSATUR turns
out to be exact for a number of elementary graph topologies. The first of these is the
bipartite graph, and to prove this claim it is first necessary to show a classical result
on the structure of these graphs.

Theorem 2.8 A graph is bipartite if and only if it contains no odd cycles.

Proof. Let G be a connected bipartite graph with vertex sets V| and V;. (It is enough
to consider G as being connected, as otherwise we could simply treat each compo-
nent of G separately.) Let vi,vo,...,v;, v be a cycle in G. We can also assume that
v € V1, v» € Vo, v3 € V1, and so on. Hence, a vertex v; € V if and only if i is odd.
Since v; € V3, this implies [ is even. Consequently G has no odd cycles.

Now suppose that G is known to feature no odd cycles. Choose any vertex v in
the graph and let the set V| be the set of vertices such that the shortest path from
each member of V; to v is of odd length, and let V, be the set of vertices where the
shortest path from each member of V; to v is even. Observe now that there is no edge
joining vertices of the same set V; since otherwise G would contain an odd cycle.
Hence G is bipartite. O

This result allows us to prove the following theorem.
Theorem 2.9 (Brélaz (1979)) The DSATUR algorithm is exact for bipartite graphs.

Proof. Let G be a connected bipartite graph with n > 3. If G is not connected, it
is enough to consider each component of G separately. For purposes of contradic-
tion assume that one vertex v has a saturation degree of 2, meaning that v has two
neighbours, #| and u,, assigned to different colours. From these two neighbours we
can build two paths which, because G is connected, will have a common vertex u.
Hence we have formed a cycle containing vertices v, uy, up, u and perhaps others.
Since G is bipartite, the length of this cycle must be even, meaning that the u; and
uy must have the same colour, contradicting our initial assumption. O

To illustrate the usefulness of this result, consider the bipartite graphs shown in
Figure 2.4 earlier. Here, many permutations of the vertices used in conjunction with
the GREEDY algorithm will lead to colourings using more than two colours. Indeed,
in the worst case they may even lead to (n/2)-colourings as demonstrated in the
figure. In contrast DSATUR is guaranteed to return the optimal solution bipartite
graphs, as it is for some further topologies:

Theorem 2.10 The DSATUR algorithm is exact for cycle and wheel graphs.
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Proof. Note that even cycles are 2-colourable and are therefore bipartite. Hence they
are dealt with by Theorem 2.9. However, it is useful to consider both even and odd
cycles in the following.

Let C,, be a cycle graph. Since the degree of all vertices in C, is 2, the first vertex
to be coloured, v, will be chosen arbitrarily by DSATUR. In the next (n — 2) steps,
according to the behaviour of DSATUR a path of vertices of alternating colours will
be constructed that extends from v in both clockwise and anticlockwise directions.
At the end of this process, a path comprising n — 1 vertices will have been formed,
and a single vertex u will remain that is adjacent to both terminal vertices of this
path. If C, is an even cycle, n — 1 will be odd, meaning that the terminal vertices
have the same colour. Hence u can be coloured with the alternative colour. If C,
is an odd cycle, n — 1 will be even, meaning that the terminal vertices will have
different colours. Hence a u will be assigned to a third colour.

For wheel graphs W,, a similar argument applies. Assuming n > 5, DSATUR will
initially colour the central vertex v, because it features the highest degree. Since v,

is adjacent to all other vertices in W, all remaining vertices vy,...,v,—1 will now
have a saturation degree of 1. The same colouring process as the cycle graphs C,,_
then follows. g

Colour

(a) (b) o1
Q2
®:
@ 4

Fig. 2.10 An optimal 3-colouring (a) and a suboptimal 4-colouring produced by DSATUR (b)

Although, as these theorems show, DSATUR is exact for certain types of graph,
the NP-hardness of the graph colouring problem obviously implies that it will be
unable to produce optimal solutions for all graphs. Figure 2.10, for example, shows
a small graph that, while actually being 3-colourable, will always be coloured us-
ing four colours by DSATUR, regardless of the way any random ties in the algo-
rithm’s heuristics are broken. In fact, Janczewski et al. (2001) have proved that this
is the smallest such graph where this suboptimality occurs, but there are countless
larger graphs where DSATUR will also not return the optimal. In other work, Spin-
rad and Vijayan (1984) have also identified a graph topology of O(n) vertices that,
despite being 3-colourable, will actually be coloured using n different colours using
DSATUR.

2.4 The Recursive Largest First (RLF) Algorithm

While the DSATUR algorithm for graph colouring is similar in behaviour and com-
plexity to the classical GREEDY approach, the next constructive method we exam-
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ine, the Recursive Largest First (RLF) algorithm, follows a slightly different strat-
egy. The RLF algorithm was originally designed by Leighton (1979), in part for
use in constructing solutions to large timetabling problems. The method works by
colouring a graph one colour at a time, as opposed to one vertex at a time. In each
step the algorithm uses heuristics to identify an independent set of vertices in the
graph, which are then associated with the same colour. This independent set is then
removed from the graph, and the process is repeated on the resultant, smaller sub-
graph. This process continues until the subgraph is empty, at which point all vertices
have been coloured leaving us with a feasible solution. Leighton (1979) has proven
the worst-case complexity of RLF to be O(n?), giving it a higher computational cost
than the O(n*) GREEDY and DSATUR algorithms; however, this algorithm is still
of course polynomially bounded.

RLF (S« 0,X V,Y < 0,i< 0)
(1) while X Z 0 do
()  iei+l

3) Si 0
4 while X £ 0 do
5) Choose v € X
(6) Si <—S,‘U{V}
7 Y « YUIx(v)
8) X+ X—-xu{v})
©) S« SU{S;}
(10) X<+Y
(1) Y+0

Fig. 2.11 The RLF algorithm for graph colouring. Here, I'x (v) denotes the subset of vertices in the
set X that are adjacent to vertex v

Pseudocode for the RLF algorithm is given in Figure 2.11. In each outer loop
of the process, the ith colour class S; is build. The algorithm also makes use of two
sets: X, which contains uncoloured vertices that can currently be added to S; without
causing a clash; and Y, which holds the uncoloured vertices that cannot be feasibly
added to S;. At the start of execution X =V and Y = 0.

Lines (4) to (8) of Figure 2.11 give the steps responsible for constructing the ith
colour class §;. To start, a vertex v from X is selected and added to S; (i.e., v is
coloured with colour i). Next, all vertices neighbouring v in the subgraph induced
by X are transferred to Y, to signify that they cannot now be feasibly assigned to
S;. Finally, v and its neighbours are also removed from X, since they are not now
considered candidates for inclusion in colour class S;.

Once X = 0, no further vertices can be added to the current colour class S;. In
lines (9) to (11) of the algorithm S; is therefore added to the solution S and, if
necessary, the algorithm moves on to constructing colour class S;1 . To do this, all
vertices in the set of uncoloured vertices Y are moved into X, and Y is emptied.
Obviously, once both X and Y are empty, all vertices have been coloured.
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The heuristics suggested by Leighton (1979) for selecting the next vertex v € X to
colour in line (5) follow a similar rationale to those of the DSATUR algorithm in that
the most “constrained” vertices are prioritised. Consequently the first vertex chosen
for insertion into each colour class S; is the member of X that has the highest degree
in the subgraph induced by X. The remaining vertices v for S; are then selected as
the member of X that has the largest degree in the subgraph induced by ¥ U{v} (that
is, the vertex in X that is adjacent to the largest number of vertices in Y). As with
DSATUR, any ties in these heuristics can be broken randomly.

(1) (2 o (3) o
o o
©) o
S, being constructed
(4) (5) e O
o o @)
S, being constructed S, being constructed
7 @ (8) Result Colour
O:
(o))
®:3
o @4

S, being constructed

Fig. 2.12 Example application of the RLF algorithm. Here, dotted vertices denote those currently
assigned to the set Y. Vertices with solid lines and no colour denote members of X

Figure 2.12 gives an example step-by-step run-through of the RLF algorithm.
Steps that involve the creation of a new colour class S; are indicated. In Step (1) the
vertex v with the highest degree in the graph is added to colour class Sj. In Step (2),
all vertices adjacent to v have now been moved to Y, leaving a subgraph induced by
the set X which contains just two vertices, both of which are subsequently added to
colour class S; in Steps (2) and (3). In Step (4) a new colour class is created and the
process is repeated on the subgraph induced by the remaining uncoloured vertices.
This continues until all vertices have been coloured, as shown.

Like DSATUR, the RLF algorithm is also exact for a number of fundamental
graph topologies.

Theorem 2.11 The RLF algorithm is exact for bipartite graphs.

Proof. Let G be a connected bipartite graph with n > 3 and vertex sets V; and V5. If
G is disconnected, it is enough to consider each component separately.
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Assume without loss of generality that vertex v € V| has the highest degree and
is therefore assigned to the first colour. Consequently all neighbours of v (that is,
I'(v) € V,) will be added to Y. It is now sufficient to show that the next |V;| — 1
vertices assigned to the first colour will all be members of Vj. This is indeed the
case because, in the next |Vj| — 1 steps, uncoloured vertices will be selected that
have the largest number of adjacent vertices in the set Y. Since uncoloured vertices
from the set V, —Y will be nonadjacent to those in Y, only vertices from V; will
be selected. This applies until all vertices from V; have been assigned to the first
colour. At this point the subgraph induced by V, will have no edges, allowing RLF
to colour all remaining vertices with the second colour. O

Theorem 2.12 The RLF algorithm is exact for cycle and wheel graphs.

Proof. Even cycles are 2-colourable and are thus dealt with by Theorem 2.11.
However, for convenience we shall consider both even and odd cycles in the fol-
lowing. Let C, be a cycle graph with vertices V = {v,...,v,} and edges E =
{{vi,v2},{v2,va}, .-, {vu—1,vn}, {va,v1 } }. For bookkeeping purposes, also assume
that ties in the RLF selection heuristic (line (4) of Figure 2.11) are broken by taking
the vertex with the lowest index, as opposed to choosing arbitrarily. It is easy to see
that this theorem holds without this restriction, however.

The degree of all vertices in C, is 2, so the first vertex to be coloured will be
v1. Consequently, neighbouring vertices v, and v,_ are added to Y. According to
the heuristics of RLF the next vertex to be coloured will be v3, leading to v4 being
added to Y; then vs, leading to vg being added to Y; and so on. At the end of this
process, we will have colour class S; = {vi,vs,...,v,—1} when n is even, and the
colour class S; = {vi,v3,...,v,—2} when n is odd. In the even case, this leaves an
uncoloured subgraph with vertices {vy,v4,...,v,} and no edges. Consequently RLF
will assign all of these vertices to the second colour. In the odd case, we will be left
with uncoloured vertices {v2,v4, ..., v,—1,V, } together with a single edge {v,,—1, v, }.
Following the heuristic rules of RLF, all even-indexed vertices will then be assigned
to the second colour, with v,, being assigned to the third.

For wheel graphs W,, similar reasoning applies. Assuming n > 5, the central ver-
tex v, will coloured first because it has the highest degree. Since v, is adjacent to
all other vertices, no further vertices can be added to this colour, so the algorithm
will move on to the second colour. The remaining uncoloured vertices now form the
cycle graph C,,—1, and the same colouring process as above follows. a

2.5 Empirical Comparison

In this section we now present a comparison of the GREEDY, DSATUR, and RLF
algorithms looking particularly at their run time requirements and the quality of
solutions that they tend to produce. The algorithm implementations used in these
experiments can be found in the online suite of graph colouring algorithms men-
tioned in Section 1.6.1 and Appendix A.1.
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2.5.1 Experimental Considerations

When new algorithms are proposed for the graph colouring problem, the quality of
the solutions it produces will usually be compared to those achieved on the same
problem instances by other preexisting methods. A development in this regard oc-
curred in 1992 with the organisation of the Second DIMACS Implementation Chal-
lenge (http://mat.gsia.cmu.edu/COLOR/instances.html), which resulted in a suite of
differently structured graph colouring problems being placed into the public do-
main. Since this time, authors of graph colouring papers have often used this set (or
a subset of it) and have concentrated on tuning their algorithms (perhaps by alter-
ing the underlying heuristics or run time parameters) in order to achieve the best
possible results.

More generally, when testing and comparing the accuracy of two graph colour-
ing algorithms (or, indeed, any approximation/heuristic algorithms), an important
question is “Are we attempting to show that Algorithm A produces better results
than Algorithm B on (a) a particular problem instance, or (b) across a whole set of
problem instances?” In some cases we might, for example, be given a difficult prac-
tical problem that we only need to solve once, and whose efficient solution might
save lots of money or other resources. Here, it would seem sensible to concentrate
on answering question (a) and spend our time choosing the correct heuristics and
parameters in order to achieve the best solution possible under the given time con-
straints. If our chosen algorithm involves stochastic behaviour (i.e., making random
choices) multiple runs of the algorithm might then be performed on the problem
instance to gain an understanding of its average performance for this case. In most
situations however, it is more likely that when a new algorithm is proposed, the sci-
entific community will be more interested in question (b) being answered—that is,
we will want to understand and appreciate the performance of the algorithm across
a whole set of problem instances, allowing more general conclusions to be drawn.

If we choose to follow (b) above, it is first necessary to decide what types of
graphs (i.e., what population of problems instances) we wish to make statements
about. For instance, this might be the set of all 2-colourable graphs, or it could be
the set of all graphs containing fewer than 1,000 vertices. Typically, populations
like these will be very large, or perhaps infinite in size, and so it will be necessary
to test our algorithms on randomly selected samples of these populations. Under
appropriate experimental conditions, we might then be able to use the outcomes of
these trials to make general statistical statements about the population itself, such
as: “With > 95% confidence Algorithm A produces solutions with fewer colours
than Algorithm B on this particular graph type”.

In this section, in order to compare the performance of the GREEDY, DSATUR,
and RLF algorithms, we make use of the following facts to define our population.
Given a graph with n vertices, let / denote the number of vertex pairs in G. That is,
/= (g) Any graph with n vertices can t(h;zrefore be represented by an /-dimensional
n

i

binary vector b for which element b
(n)

i

= 1 if and only if the corresponding pair

of vertices are adjacent, and b;’ = 0 otherwise.
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Now let B define the set of all /-dimensional binary vectors. Obviously this
means that |[B")| = 2/, The set B can therefore be considered as the set of all
possible ways of connecting the vertices in an n-vertex graph. However, we must
be careful in this interpretation as this is not quite the same as saying that B
represents the set of all graphs with n vertices (which it does not), because it fails to
take into account the principle of graph isomorphisms.

Consider the example in Figure 2.13, where we show two different six-dimensional
binary vectors and illustrate the graphs that they represent, called G; and G here.
Note that when we come to colour G| and G, the vertex labels are of little impor-
tance and, indeed, without the labels the two graphs might be considered identical.
In these circumstances G| and G, are considered isomorphic as there exists a way
of converting one graph into the other by simply relabelling the vertices (in this ex-
ample we can convert G| to G; by relabelling v as v, vo as v4, v3 as v3 and vy
as v1). Because the set B™ fails to take these isomorphisms into account, it must
therefore be interpreted as the “set of all n-vertex graphs and their isomorphisms”,
as opposed to the set of all n-vertex graphs itself.

v, A VVo o VyVao VLV, VoVa o VoV, VgV,

— (3] ]ofafa]o]

ViV VoV Vg Vp,V3 Vo,V V3,V

[ofofafafafs |

Vg v,

Gy

Fig. 2.13 Illustration of how different binary vectors can represent graphs that are isomorphic

To generate a single member of the set B () at random (i.e., to choose an element
of B such that each element is equally likely to be selected), it is simply neces-

sary to generate an [-dimensional vector b in which each element bg") =1 with
probability 0.5, and O otherwise. This is the same process as producing a random
graph with p = 0.5:

Definition 2.15 A random graph, denoted by G, p, is a graph comprising n vertices
in which each pair of vertices is adjacent with probability p. The degrees of the
vertices in a random graph are consequently binomially distributed: deg(v) ~B(n—

1,p).

Random graphs will be the focus of our algorithm comparison in this chapter,
though we will also look at other types of graphs in later chapters.
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Table 2.1 Summary of results produced by the GREEDY, DSATUR and RLF algorithms on ran-
dom graphs G, o5

Algorithm®
n LB? GREEDY DSATUR RLF UB¢
100 9 21.14 £ 0.95 18.48 +0.81 17.44 £ 0.61 62.22
500 10 72.54 +1.33 65.18 + 1.06 61.04 +0.78 284.06
1000 10 126.64 4 1.21 11544 +1.23 108.74 + 0.90 550.76
1500 10 176.20 + 1.58 162.46 + 1.42 153.44 + 0.86 841.92
2000 10 224.18 + 1.90 208.18 + 1.02 196.88 + 1.10 1076.26

¢ Mean plus/minus standard deviation in number of colours, taken from runs across 50 graphs.
b Largest value x for which Equation (2.3) is greater than or equal to 0.99.
¢ Generated according to Theorem 2.7. Mean taken across 50 graphs.

2.5.2 Results and Analysis

Table 2.1 summarises the number of colours used in solutions produced by the
GREEDY, DSATUR, and RLF algorithms for random graphs with edge probabil-
ity p = 0.5 and varying numbers of vertices. For each value of n, 50 random graphs
were generated and each algorithm was executed on it once. In applications of the
GREEDY algorithm, the vertex permutation & was generated randomly. Table 2.1
also shows lower and upper bounds that were generated for these problem instances.

The results in Table 2.1 indicate that for all tested values of n, the DSATUR algo-
rithm tends to produce solutions using fewer colours than the GREEDY algorithm.
Indeed, in all five cases, these differences were seen to be significantly different.! In
turn, significant differences were also observed between the results of DSATUR and
RLF, indicating that, for all of the tested values of n, the RLF algorithm produces
the best solutions across the set of all graphs and their isomorphisms.

The data in Table 2.1 also reveals that the generated lower and upper bounds seem
to be some distance from the number of colours ultimately used by the algorithms.
This indicates that Brooks’ Theorem (2.7) tends to provide a rather inaccurate up-
per bound for random graphs. It also suggests two factors with regard to the lower
bound: (a) that the probabilistic bound determined by Equation (2.3) is also quite in-
accurate and/or (b) that the GREEDY, DSATUR, and RLF algorithms are producing
solutions whose numbers of colours are some distance from the chromatic number.

The graphs shown in Figure 2.3 expand upon the results of Table 2.1 by consider-
ing a range of different values for p. Bounds are also indicated by the shaded areas.
We see that the unshaded areas of these graphs are generally quite wide, with the
algorithms’ results falling in a fairly narrow band within these. This again indicates
the inadequacy of the upper bound, particularly for larger values of n.

The differences between the three algorithms themselves across these values of
p are presented more clearly in Figure 2.15. Here, the bars in the graphs show the

! The samples collected for each algorithm and value of n were not generally found to be derived
from an underlying normal distribution according to a Shapiro-Wilk test. Consequently, statistical
significance is claimed here according to the results of a nonparametric related samples Wilcoxon
Signed Rank test at the 0.1% significance level.
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Fig. 2.14 Average number of colours in solutions produced by the GREEDY, DSATUR and RLF
algorithms on random graphs G, ;, with various values of p, using n = 100, 1,000 and 2,000. All
points are the mean across 50 graphs
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number of colours used in solutions produced by the GREEDY algorithm, and the
lines indicate the percentage of this figure used by DSATUR and RLF. We see that
the latter two algorithms achieve percentages of less than 100% across all of the
tested values for p, indicating their superior performance across the range of random
graphs, from sparse to dense. We also see that RLF consistently produces the low-
est percentages, once again indicating its general superiority to DSATUR on these
graphs.

We now turn to the implications of the computational complexity of the GREEDY,
DSATUR, and RLF algorithms. Earlier in this chapter we noted that GREEDY and
DSATUR both have worst-case complexities of O(n?), while for the RLF this is
O(n?). What effects does this have when running the algorithms on different graph
colouring problems? Figure 2.16 shows the number of constraint checks required
by the algorithms for random graphs with p = 0.5 using values of n up to 2,000.
For larger graphs the RLF algorithm clearly requires more computational effort to
complete a run than both GREEDY and DSATUR. Indeed, as n increases, this gap
seems to widen quite significantly. In contrast, the GREEDY algorithm requires by
far the fewest constraint checks, with its line being barely distinguishable with the
horizontal axis in the figure.

The next graph, Figure 2.17, shows the computational requirements of the three
algorithms for different values of p. It can be seen that the number of constraint
checks required by GREEDY and DSATUR remains fairly stable over the range,
suggesting that it is the number of vertices n, and not the edge connectivity p, that
is the driving force in determining the two algorithms’ computational requirements.
In contrast, RLF’s requirements once again increase quite rapidly over this range.

Finally, Figure 2.18 demonstrates the strong correlation that exists between the
number of constraint checks the algorithms require and the subsequent CPU time
that is used (coefficient of determination R?> = 0.939). In fact, the majority of this
figure is once again dominated by data generated from runs of the RLF algorithm
with GREEDY and DSATUR’s results being tightly clustered in the bottom left cor-
ner (the GREEDY algorithm never required more than 16 ms on any of the graph
colouring problem instances considered in this section; similarly the DSATUR al-
gorithm never required more than 47 ms). This figure demonstrates that the use of
constraint checks as a measure of computational effort is suitable for estimating
CPU time, but also has the obvious advantage of being independent of any issues to
do with computer hardware, programming languages and operating systems.

2.6 Chapter Summary and Further Reading

In this chapter we have reviewed a number of bounds for the graph colouring prob-
lem and have also compared and contrasted three constructive algorithms. For ran-
dom graphs of different sizes and densities (including sets of graphs and their iso-

2 The CPU times relate to a 3.0 GHz Windows 7 PC with 3.87 GB RAM.
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Fig. 2.15 Mean quality of solutions achieved on random graphs G, , by the RLF and DSATUR
algorithms compared to GREEDY. All points are the mean across 50 graphs using n = 100, 1,000,
and 2,000 respectively
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Fig. 2.16 Number of constraint checks required by the GREEDY, DSATUR and RLF algorithms
on random graphs G, , with p = 0.5. All points are the mean of 50 trials
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Fig. 2.17 Number of constraint checks required by the GREEDY, DSATUR and RLF algorithms
on random graphs G, , with n = 1,000. All points are the mean of 50 trials

morphisms), we have seen that the RLF algorithm generally produces solutions with
the fewest colours, though this also comes at the expense of added computation time,
particularly for graphs with larger numbers of vertices.

In the next two chapters we will analyse a number of techniques that seek to im-
prove upon the solutions produced by these algorithms. We now end this chapter by
providing points of reference for further work on bounds for the chromatic number.

Reed (1999) has shown that Brooks” Theorem (2.7), can be improved by one
colour when a graph G has a sufficiently large value for A(G) and also has no
cliques of size A(G). Specifically:

Theorem 2.13 (Reed (1999)) There exists some value § such that if A(G) > & and
0(G) < A(G) — 1 then 7(G) < A(G) — 1.
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Fig. 2.18 Scatter diagram showing the relationship between number of constraint checks and CPU
time. Each point is the mean of the 50 runs performed by each algorithm on each p and n value

In the work a sufficient value for § is shown to be 10'*. Reed’s Conjecture, also
stated in this work, suggests that for any graph G,

1+A(G)+a)(G)] 2.4)

x(G) < [ 5

A good survey on these issues can be found in the work of Cranston and Rabern
(2014).

In Section 2.2.1.1 of this chapter we also saw that interval graphs (and more
generally chordal graphs) feature chromatic numbers x (G) equal to the their clique
numbers @(G). Chordal graphs form part of a larger family of graphs known as per-
fect graphs which, in addition to satisfying this criterion, are also known to maintain
this property when any of its vertices are removed.

Definition 2.16 A graph G = (V,E) is perfect if, for every subgraph G' C G,
2(G) = (G,

Defining the structures needed for a graph to be perfect has been the subject of much
research in the field of graph theory and was eventually settled by Chudnovsky
et al. (2006), who proved the earlier conjecture of Berge (1960), which states that
a graph is perfect if and only if it contains no odd hole and no odd antihole. (A
hole is an induced subgraph which is a cycle of length at least 4; an antihole is the
complement). See MacKenzie (2002) for further details.

Looking at other topologies, bounds on the chromatic number of random graphs
have also been determined by Bollob4as (1988), who states that with very high prob-
ability, a random graph G, , will have a chromatic number x (G, p):

“ |3

3loglo
<X(Gup) <+ (1 + gg”) 2.5)
s logn
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where
s =[2log,;n—log,log;n+2log,(e/2)+ 1] (2.6)

with ¢ = 1 — p and d = 1/q. The finding is based on calculating the expected number
of disjoint cliques within a random graph, and provides much tighter bounds than
Equation (2.3) and Brooks’ Theorem (though recall that the latter applies to all
graphs, not just random graphs). Further bounds on general graphs have also been
given by Berge (1970), who finds

n2

- < .
n*—2m =2(6), @D
and Hoffman (1970), who has shown
M (G)
1=3 1), 2.8)

where A (G) and 4,(G) are the biggest and smallest eigenvalues of the adjacency
matrix of G. Both of these often give very loose lower bounds in practice, however.

Note that, strictly speaking, the three constructive algorithms reviewed in this
section should be classed as heuristic algorithms as opposed to approximation al-
gorithms. Unlike heuristics, approximation algorithms are usually associated with
provable bounds on the quality of solutions they produce compared to the optimal.
So for the graph colouring problem, using A(G) to denote the number of colours
used in a feasible solution produced by algorithm A with graph G, a good approxi-
mation algorithm should feature an approximation ratio A(G)/x (G) as close to 1 as
possible. Those seeking an algorithm with a low approximation ratio for the graph
colouring problem, however, should take note of the following theorem:

Theorem 2.14 (Garey and Johnson (1976)) If, for some constant r < 2 and con-
stant d, there exists a polynomial-time graph colouring algorithm A which guaran-
tees to produce A(G) < r X x(G) +d, then there also exists an algorithm A’ which
guarantees A'(G) = x(G).

In other words, this states that we cannot hope to find an approximation algorithm
A for the graph colouring problem that, for all graphs, produces A(G) < 2 X x(G)
unless P = NP.
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