
23© Springer International Publishing Switzerland 2016
S. Rehman et al., Reliable Software for Unreliable Hardware,
DOI 10.1007/978-3-319-25772-3_2

Chapter 2
Background and Related Work

This chapter presents the background knowledge regarding different sources of the
emerging reliability threats (i.e., soft errors, process variation, and aging-induced
effects), the related work on soft error modeling, and their mitigation techniques. In
particular, Sect. 2.1 provides the background regarding soft errors, starting with the
basic transistor structure and its functionality, followed by various soft error sources
and the soft error mechanism. Section 2.2 presents the basics of the NBTI-induced
aging phenomena. Section 2.3 presents different variability sources and manufac-
turing induced process variation effects along with the process variation model
explained in Sect. 2.3.1. Section 2.4 discusses the related work on soft error model-
ing and estimation at both the hardware and software layers. Starting from the tra-
ditional to more advanced approaches, Sect. 2.5 presents state-of-the-art soft error
mitigation techniques at both hardware and software levels. As the focus of this
work is on soft errors, most of the background discussed is related to soft errors.
Towards the end, Sect. 2.6 summarizes the related work.

2.1  �Soft Error

2.1.1  �Transistor Structure

Before going into the details of how soft errors becomes an issue in the transistors, it
is important to have a basic knowledge of the transistor’s structure and functionality.
The fundamental unit of the CMOS (Complementary Metal-Oxide-Semiconductor)
microprocessor’s underlying structure is the n-type (NMOS) and p-type (PMOS)
transistors. The n-type transistor carries the electrons, whereas the p-type transistor
carries the holes from source to drain. Figure 2.1 shows the structure of the NMOS
transistor. A metal gate is attached to a thin layer of a silicon dioxide (SiO2) which
forms the interface with the silicon substrate. Channel formation is necessary for the

24

flow of mobile charge carriers (i.e., electrons/holes) through the transistor. A channel
will be formed from source to drain and the transistor will be considered as ON,
when the gate-source voltage Vgs becomes larger than the threshold voltage Vth.
Otherwise, the transistor remains OFF as no channel is formed and no electrons/
holes are travelling from source to drain.

2.1.2  �Soft Errors in Transistors

Soft errors may be caused due to external events like energetic particle strikes, and/
or internal disruptive events like noise transients at circuit, chip or system level,
cross talks, and electromagnetic interference [39]. As compared to alpha particles
and low energy thermal neutrons, the high-energy cosmic neutrons produce huge
amount of energy (e.g., in the range of 80 MeV–1 GeV) when it strikes the nuclei
of a silicon substrate in the chip [18, 135]. Figure 2.2 illustrates the soft error mech-
anism that can be explained in the form of the following three main phases [18].

	1.	 Phase-1: Ion-Track Formation: When an energetic particle (like high-energy neu-
tron from cosmic rays) strikes the semiconductor material (e.g., substrate of a tran-
sistor), the energy transfer results in the generation of numerous electron–hole pairs
and a high carrier concentration along the ion’s path. This is called the ion track. The
high-energy cosmic neutron produces 80 MeV–1 GeV of energy with a single strike
and every 3.6 eV of energy the ion loses, produces one electron–hole pair.

	2.	 Phase-2: Ion Drift and Current Pulse Generation: The produced charge is
collected within a few microns at the junction. In this ion drift phase, when the
ions come close to the depletion region, the electric field collects the carriers that
results in a generation of a current spike (or voltage transient). This process is
called “funneling.” Collection of charge near the depletion region can result in a
temporary formation of a channel (even if the transistor is originally in the OFF
state) and consequently leads to the flow of electrons from source to drain. This
sudden current glitch may result in an instantaneous power-on of the transistor
for a very short period of time (typically for tens of picoseconds).

	3.	 Phase-3: Ion Diffusion: Over the period of time, the ions are diffused in the tran-
sistor for instance in the depletion region. This illustrates the transient nature of

Drain

n+ Channel

P-substrate

P-well

n+

Source
Gate

Metal
Oxide

Vth-Threshold voltage

Vdd-Supply voltage

Vgs-Gate-Source
 voltage
Vds-Drain-Source
 voltage

Fig. 2.1  Structure of an NMOS transistor

2  Background and Related Work

25

soft errors. In this process, additional charge is collected until all excess carriers
are captured, recombined, or diffused away.

With sufficient amount of collected charge, bit flips may result in logic devices and
get latched into memory elements. These bit flips may corrupt the state of the proces-
sor (i.e., content in pipeline registers, register files, caches) and jeopardize the correct
application software program execution. With the miniaturization of transistors, close
spacing, and reduced critical charges, increasing trends of multi-bit upset (even from
a single particle strike) have recently been reported in the literature [84, 85].

Critical Charge and Collection Charge: There are two important factors related
to the soft error mechanism: (1) collection charge QCollection and (2) critical charge
QCritical. As transistor dimensions reduce, the critical charge also decreases along
with the operating and threshold voltages. The QCollection is the amount of charges
(i.e., electrons/holes) collected in the conducting path of the transistor (i.e., between
source and drain) to form a channel. Whereas, the QCritical is the specified number of
accumulated charges which are required to form a channel between source and
drain. When the QCollection ≥ QCritical, the channel can form and the electron/holes start
flowing from source to drain. Now as the QCritical reduces, a lesser number of accu-
mulated charge is required to form a channel between the source and drain [135].
Thus, the chances for experiencing a soft error become higher, because a higher
number of electron/hole pairs are generated upon a particle strike that can rapidly
accumulate to form a channel in the conducting path between the source and drain.
In short: lower QCritical means, fewer number of collected electrons/holes can form a
strong channel. Furthermore, the QCritical becomes lower with higher temperature
and further aggravates the soft error rate [117]. When an energetic particle strikes
the silicon substrate, the QCollection is modeled using Eq. 2.1:

	

Q Q
x

Lcollection all
c= -

æ

è
ç

ö

ø
÷exp

max 	

(2.1)

Typically, the QCollection is in the range of 1 to several 100 fC, and its exact amount
depends upon the type of the energetic particle, its path, and the dissipated energy
along the path. Likewise, from the transistor perspective there are several factors upon
which the amount of QCollection is dependent, i.e., size, substrate structure, location of

n+ n+

P-Well

P-Substrate

Isolation

Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

n+
---- -

--
- --

- -
-- -- --
-

-
-

-
-

-
-

-
- -

++
++

+
+
+++

+
++++++

+
++
+
++
++
+
+

+

++

n+

-
-

--

-

-

- --
- -

- -

-

-
-

-

--

+

+
+

+

++
++ +

+
+

++

3

2

1

0
10-1310-1210-1110-10 10-9

Time (seconds)

C
ur

re
nt

 (
ar

bi
tr

ar
y

un
it)

Phase-�: Ion
Track

Formation

Phase-�: Ion
Diffusion

Phase-�:
Current Pulse

Generation

Fig. 2.2  Soft error mechanism illustrating different phases of charge generation, collection, and
diffusion

2.1  Soft Error

26

the strike, and device state. The transient current pulse for ion-track charge collection
typically has a double exponential form with rapid rise time and gradual fall time as
shown below in Eq. 2.2 [105].

	

I t
Q

e ecollection

t t

() =
-

-
æ

è
ç
ç

ö

ø
÷
÷

- -

t ta b

t ta b

	

(2.2)

The parameters τα and τβ denote the collection time constant and the time con-
stant for the ion-track formation, respectively. Both these parameters are dependent
upon the process with typical values for τα = 164 ps, and τβ = 50 ps. The QCritical
denotes the amount of the critical charge required to change the data state. Its value
can be expressed as Eq. 2.3 [86].

	

Q I t dtcritical

T

D

F

= ()ò
0 	

(2.3)

The parameter ID denotes the time-dependent drain transient current and TF
denotes the flipping time, which is the time when both the voltages at the drain
and at the gate become same [86]. The above model works well for simple circuits
like DRAM storage cells. However, more complex circuits like SRAM cells expe-
rience an upset when the recovery time of the cell τr (time taken for the struck
node voltage to return to its pre-strike value) exceeds the feedback time τf (time
taken for the struck node voltage to become latched as incorrect data) [106].
Therefore, for the computation of QCritical, TF = τr if the cell recovers and TF = τf if
the cell upsets. In general, TF = min(τr, τf).

2.1.3  �Masking Sources for Soft Errors

In combinational circuits, not all soft errors in the underlying hardware propagate to
the output due to different masking effects. Masking means the ability of a logic
circuit to prevent soft errors from occurring/appearing at the final output. Figure 2.3
illustrates the three major masking effects namely Logical Masking, Electrical
Masking, and Latch-Window Masking.

“0” Output“0”
D Q

CLK Q

Input

I2

I1
“1” “1” Output

Output“0”

-Vth

-Vth VthVth

“1” “0” “1”

Logical Masking Electrical Masking

Latch-window

Q=D
Q holdCLK

INPUT

Latch-Window Masking

Fig. 2.3  Soft error masking effects [87]

2  Background and Related Work

27

The logical masking effect is defined as the capability of a logic circuit to
prevent soft errors from affecting the final output. For instance, in the figure it is
shown that the output of the OR gate will always be “1,” as long as I1 maintains a
logic high state (“1”). The blue pulse is caused upon a radiation event, and this
will not affect the final output. In the second figure, there is an electric pulse
caused by the radiation event. However, the amplitude of the pulse is not strong
enough to trigger a bit flip on the input signal. The pulse will be attenuated when
it passes through each gate and finally dies out. This phenomenon is called elec-
trical masking. In the third figure, there is a D-latch. The value of output Q
depends on the clock, if the clock is high, the value of D is set to Q, if the clock is
low, Q will hold its previous value. The latch window is defined as “this” interval,
during which the clock is high. If the pulse misses the window, it will not affect
the final output, due to the so called latch-window masking.

However, logic circuits still face a lot of soft error threats in spite of the masking
effects, and many state-of-the art reliability estimation and optimization techniques
are proposed at both the hardware and at the software levels (discussed in Sects. 2.4
and 2.5) to protect the logic circuit from soft errors or make sure that even if a soft
error happens, the circuit can detect the errors and give the correct output.

2.2  �NBTI-Induced Aging

There are different mechanisms for aging like Negative-Bias Temperature Instability
(NBTI), Hot Carrier Injection, and Time-Dependent Dielectric Breakdown. NBTI-
induced aging has emerged as one of the most crucial aging phenomena that hap-
pens in the PMOS transistor. An equivalent process called Positive-Bias Temperature
Instability happens in NMOS.

Figure 2.4a illustrates the NBTI mechanism in a PMOS transistor which is under
stress, i.e., the gate voltage is minus Vdd. When this voltage is applied, it creates a
force at the inversion layer resulting in the breakdown of the silicon and hydrogen
bond at the interface of the silicon and oxide layer (as negative stress attracts the
positive hydrogen ion). The hydrogen ion is released in the oxide layer and at the
broken bond a trap is created which can trap any free ions or charges, thus making
the insulation imperfect. Even two neutral H atoms can combine together into an H2
molecule, which can escape from the surface of the oxide [65]. At a higher abstrac-
tion layer, the NBTI-induced effect is manifested as an increase/shift in the threshold
voltage, thereby making the transistor slower. Note, the exact phenomenon is still
not precisely known and is an actively researched area in device physics [143].

The temperature plays an important role in further accelerating the NBTI-induced
aging effects, i.e., increase in the threshold voltage shift. Figure 2.4b shows different
curves for the threshold voltage shifts over a period of time for different operating
temperatures [19]. As the temperature increases, the shift in threshold voltage aggra-
vates and therefore increases the delay, and thus the aging effects become more promi-
nent [151]. When estimating the change in the threshold voltages for two temperatures,

2.2  NBTI-Induced Aging

28

i.e., 75 and 50 °C, the ΔVth is approximately 50 % higher at 75 °C than 50 °C. It can
be seen that the NBTI effects for two alternating temperatures, i.e., between 100 and
25 °C, are worse than that at 75 °C [151]. This shows that the shift in threshold voltage
ΔVth will be determined by the higher temperature.

As soon as the negative stress is removed, a recovery phase is triggered but 100 %
recovery happens only in infinite time. Figure 2.5 shows an abstract view of the stress
phase (causing Vth increase) and recovery phase (causing Vth decrease) along with the
short-term and long-term aging effects. The stress and recovery phase can be explained
using the reaction–diffusion model [40]. One reason for the partial recovery could be
that the hydrogen ion again tries to re-bond with the silicon, but this behavior is not fully
understood [142]. However, 100 % recovery is not possible as re-bonding is a random
process and the same hydrogen and silicon atoms will never always perfectly re-bond.
It is reported that the recovery is probably better at higher temperatures. However,
higher temperatures also aggravate the threshold voltage shift in the stress phase.

Drain

0.022
25°C
50°C
75°C

100°C
100&25°C

0.02

0.018

0.016

0.014

0.012

0.01∆
V

th
 [V

]

0.008

0.006

0.004

0.002
0 0.5 1 1.5 2 2.5

Time [years]
3 3.5 4

Source

a

b

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

Fig. 2.4  (a) NBTI-induced aging (adapted from [137]) and (b) Impact of temperature on the
NBTI-aging [19]

Time

V t
h

Sh
ift

[V
ol

t]

-1

0

V g
 [V

ol
t]

Long-Term Aging

Stress
Phase

Recovery
Phase

Varying
Duration

Short-
Term
Aging

Fig. 2.5  Short-term and long-term aging [138]

2  Background and Related Work

29

If aging is not properly taken care of, then the cores’ safe operating frequency
(i.e., to ensure correct execution) and system clock frequency become different and
may lead to timing errors. To compensate the increase in the threshold voltage Vth by
an amount ∆Vth, the circuit needs to execute at a lower frequency by a factor of ∆f
that may violate the performance constraints, otherwise the circuit output may be
faulty due to the timing errors. The industrial practice to solve this issue is via guard
banding, i.e., running all the cores at the slowest frequency, which will lead to a
system-wide performance loss. The aging-induced performance/delay degradation
varies depending upon the stress produced due to workload and operating conditions
[19]. During the first year, the aging of the core is expedited and dependent upon the
core usage, whereas in the years onwards the long-term aging happens which is in
times of months and years and is more dependent on the temperature [19, 138]. The
device-level NBTI aging model (Eq. 2.4) employed in this work is obtained together
with the VirTherm-3D group [151] as a part of the collaborative research effort in the
DFG SPP1500 program [118]. It is based on the reaction–diffusion theory [13, 40].

	 DV e V y dth
T

dd= ´ ´ ´ ´-0 05 1500 4 1 6 1 6. / / /

	 (2.4)

∆Vth is the mean threshold voltage shift in volts, T is the temperature in kelvin,
Vdd is the supply voltage in volts, y is the age of the transistor in years, and d is the
duty cycle, i.e., probability that the transistor is stressed.

Note: the aging model adopted in this work is based on the reaction–diffusion
theory but another aging model based on trapping–detrapping theory [143] can
also be employed because the proposed algorithms and concepts are orthogonal
to the aging models. The aging values (in form of core-to-core frequency degra-
dation) serve only as an input to the proposed cross-layer reliability modeling
and optimization flow for evaluating concepts related to soft error resilience
under frequency variations.

2.3  �Manufacturing-Induced Process Variations and Other
Variability Sources

The magnitude of the process variations (e.g., in the channel length/geometry and
random dopant fluctuations) increases with the scaling technology trends, as it is
more difficult to precisely manufacture smaller transistors with exactly the specified
dimensions [25, 45, 139]. One source of variability comes from the manufacturing
side which manifests in the form of core-to-core frequency variations. Figure 2.6
shows the frequency variations in the Intel’s 65 nm 80-core test chip, where at 1.2 V
the maximum core frequency is 7.3 GHz and the minimum is 5.7 GHz. This corre-
sponds to 25 % frequency variation on the same chip, whereas across different chips
the variation will be more [42]. The cores running at different clock frequencies
may lead to timing errors. To address this issue, the major industry practice is to do
guard banding by running every core with the minimum frequency on the chip, i.e.,

2.3  Manufacturing-Induced Process Variations and Other Variability Sources

30

in this case it is 5.7 GHz which is the slowest of all the cores. In synchronous system
design, the core’s performance is determined by the slowest critical path, and pro-
cess variations may introduce severe design-time performance degradation.

Another source of variability comes from different vendors. This is because dif-
ferent vendors use different design rules and cell libraries to fabricate the same
specification, ultimately leading to variations in the leakage and dynamic power
across different chips. Figure 2.7a presents the variations in the maximum active
and max idle power for five different vendors fabricating the same standard, i.e.,
DDR2 533 DRAM chips. The standard is fixed which is the DDR2 533 but as the
vendors are different there are variations in the maximum active/dynamic power
and maximum idle/leakage power across different vendors.

There are also ambient conditions-dependent variabilities. This comes with the
variations in the temperature, e.g., as the temperature is increased the leakage power
also increases. In a single 80-core chip, different cores might have different tem-
peratures, resulting in different leakage power and performance properties.
Figure 2.7b shows the measurement of the leakage power for different temperature
for different variants of five ARM cortex M3 processors. It can be seen that at the

Core ID
Fr

eq
ue

nc
y

(G
H

z)

7

6

5

4

3

2

1.2V

0.8V

7.3
GHz 5.7

GHz

25%

50%

0 10 20 30 40 50 60 70 80

Semiconductor ManufacturingFig. 2.6  Frequency
variation in an 80-core
processor within a single
die in Intel’s 65 nm
technology [42]

Fig. 2.7  (a) Power variation across five 512 MB DDR2-533 DRAM parts and (b) variation in sleep
power (Psleep) with temperature across five instances of an ARM Cortex M3 processor [26, 43]

2  Background and Related Work

31

same temperature, different processors will have different leakage powers.
Furthermore, a single processor shows variations in the leakage power as the tem-
perature varies. This can be explained due to the fact that at higher temperatures, the
electron mobility increases making it easier for them to escape from source to drain
or from source to substrate, causing current leaks.

Figure 2.8 shows the trend of design-time variability that comes from random
dopant fluctuations in the transistor. Doping is done in silicon semiconductors by
implanting additional doped atoms, i.e., p+ and n+ in the transistor substrate. In the
nano-scale transistors, it becomes increasingly difficult to manufacture every tran-
sistor with precisely the same number of dopant atoms, and with exactly the same
dimensions, i.e., gate thickness and channel length. Earlier in one micron technol-
ogy, there were more than 5000 of these dopant atoms which basically meant that
minor variations of 4–5 atoms (0.001 %) had negligible effect on the electrical prop-
erties of the transistor. However, in the recent 32 nm technology, the number of
dopant atoms is approximately 40 [19], and slight variations in the number of dopant
atoms will significantly affect the properties of the transistor, e.g., a variation of four
dopant atoms will become 10 % of the total that may result in performance degrada-
tion by approximately 10 %. The variations at the transistor level will ultimately
reflect at the gate level, e.g., see the delay distribution for an inverter as shown in
Fig. 2.8. In earlier technologies, the inverter was having a deterministic delay value
which meant that all the inverters on the chip had exactly the same delay, e.g., 1 ps.
But now due to process variations, inverters made from different transistors typi-
cally have different delay properties. For instance, some transistors may have a
delay value of 1 ps while some others have 1.1 or 0.9 ps.

2.3.1  �Process Variation Model

This manuscript employs the process variation model, which is proposed in [25]. It
models the chip surface as a fine grid of dimensions Nchip × Nchip. The process param-
eter value pij (i; j ∈ [1; Nchip]) at a grid cell (i, j) can be modeled as a Gaussian random

Average Number of dopant atoms in the channel

Pr
ob

ab
ili

ty
 →

Delay →

Latency of inverter
Av

er
ag

e
N

um
be

r
of

 D
op

an
t A

to
m

s
100000

10000

1000

100

10

1
10000 1000 100 10 1

Technology Node [nm]

Fig. 2.8  Design-time process variation [144]

2.3  Manufacturing-Induced Process Variations and Other Variability Sources

32

variable with mean μp and standard deviation σp. The correlation between the process
parameters at two different grid points is given as the correlation coefficient ρij,kl that
reduces with increasing distance. Based on the experimentally validated model of
[44], ρij,kl is given as Eq. 2.5.

	
r a
ij kl

i k j l
chipe i j k l N, , , , , ,= " Î éë ùû

- -() + -()2 2

1
	

(2.5)

The parameter α denotes the reduction rate of ρij,kl. The frequency of a digital
circuit can be modeled as the worst-case delay of the Ncp identical critical paths.
According to [25, 45], the maximum frequency of core Ci (i ∈ [1; N]) in a multi-/
manycore processor is modeled using Eq. 2.6, where K′ is a technology-dependent
constant and SCP,i denotes the set of NP grid cells in Ci

	

f Ki
MAX

k l S
klCP i

=
æ

è
ç

ö

ø
÷

¢

Î
min
, ,

1

r
	

(2.6)

As discussed in Chap. 1, since the primary focus of this work is on the soft error
related issues, in the following sections, related work for the soft error modeling and
mitigation techniques will be discussed in more detail.

2.4  �State-of-the-Art Soft Error Estimation Techniques

In literature, extensive research has been conducted for analyzing and modeling the
soft error impacts at various granularities, i.e., at circuit-/architecture level [47, 88,
93, 94] and program level [73, 74, 76]. The standard techniques are either based
upon fault injection simulations or analytical/mathematical models developed to
estimate the soft error propagation across multiple gates in the combinatorial cir-
cuits. In the following, an overview of these approaches at different design abstrac-
tion layers is given.

2.4.1  �Circuit-Level Techniques

In circuits, the fundamental entity in both the logic and memory parts is the NMOS
and PMOS transistor which are prone to soft errors and its sensitivity grows when
fabricated in scaled technology nodes [10]. The soft errors are of major concern in
memories because of their large footprint in the chips. Furthermore, the soft error-
induced bit flips inside memories stay unless overwritten. To handle soft errors in
memories, ECC-based techniques are prominent [62, 63]. In contrast, the soft error
effects in the logic part of the combinatorial circuits are relatively less frequent due
to various circuit-level error masking effects (i.e., logical, electrical, and latch-
window masking [87]) that prevent the errors to appear at the final output in several

2  Background and Related Work

http://dx.doi.org/10.1007/978-3-319-25772-3_1

33

cases. However, despite these error masking effects, the soft error failure rate in the
combinational logic is becoming more crucial for transistors fabricated in the scaled
technology nodes. This is primarily due to their reduced sizes and critical charges
which makes them more prone to soft errors [21]. Moreover, achieving soft error
detection and recovery in a cost-effective way is relatively difficult in combina-
tional circuits compared to that in memories (typically protected with parity or
ECC) because of the random and transient nature of these faults and a high degree
of propagation to multiple memory elements. In general, the soft error rate measure-
ment in circuits is in accordance with the potential error masking effects. A model
is developed in [21] to measure the Soft Error Rate (SER) in the microprocessors
while taking into account the effects of electrical and latch-window masking effects.
At first, the SER is computed via simulating the mechanism when a particle strikes
the gate till the drain of the gate. This behavior is simulated using charge to voltage
pulse modes, and then the electrical model is used to check the characteristics of the
voltage pulse reaching the latch input. Afterwards, for checking the pulse strength
at the latch input, a pulse latching model is developed that checks the amplitude and
duration to cause a soft error.

IBM developed the Soft-Error Monte Carlo Modeling program to check if the
chip designs meet SER specifications [46]. Work in [47] only focuses on the electri-
cal masking effects and has developed a mathematical model to analyze the soft
error propagation across multiple gates in a combinational circuit. In [88], an analy-
sis and modeling approach has been proposed to measure the SER while taking into
account the error masking effect. Low-level HSPICE simulation is performed to
obtain the electrical masking computation for each path, and logical masking com-
putation is carried out by flipping the logic value at each input vector and each path
independently. Works in [48, 49] present a reliability evaluation, where in [49], dif-
ferent error masking factors are separately computed for investigating the soft error
tolerance of the circuit. In [48], probabilistic transfer matrices are used where each
gate is represented as a matrix and for each input combination, the probability of its
output value is explicitly known. However, the work presented in [48] focuses only
on the logical masking effect of the circuit for given gate output probabilities with-
out considering electrical and latch-window masking.

In [95], fault injection techniques are utilized which are based upon Monte-Carlo
simulations which are time consuming because numerous experiments are performed
to achieve certain accuracy. In [50], an electrical masking model is proposed in which
soft error rate estimation is performed at chip level while taking into account the
impact of voltage fluctuations, and it is reported that ignoring the voltage fluctuation
in electrical masking can lead to inaccurate estimates of the soft error rate.
Furthermore, the chances of experiencing both single and multiple bit flips are higher
in the recent technologies along with the possibilities of multiple correlated bit flips.
Hence it is important to account for such a correlation during soft error rate estima-
tion, as proposed in [21]. In [51], a circuit-level technique is proposed which is based
upon the error propagation probability. This technique uses a path-based analysis to
check the error propagation from source to the outputs, which is a very useful and
fast technique for reasonably accurate identification of the vulnerable parts of the
design. In [52], a hybrid technique is proposed to compute the soft error vulnerability

2.4  State-of-the-Art Soft Error Estimation Techniques

34

of the entire microprocessor system consisting of regular and irregular structures.
The techniques at the architectural and logic level are integrated for estimating the
soft error vulnerability of regular (address-based structures, i.e., register file, cache)
and irregular structures (i.e., logic, functional units) within a microprocessor. In gen-
eral, the circuit-level techniques cannot account for the soft error masking factors at
the higher system layers like architecture and software program. Therefore, a large
body of research has investigated soft error estimation techniques at both architecture
and software program levels.

2.4.2  �Architecture-Level Techniques

The Architectural Vulnerability Factor (AVF) model is developed in [31] which
is employed by different state-of-the-art to estimate the soft error impacts at the
architectural level. The AVF of a processor component is the probability that a
fault in that component will result in a visible error in its final output. It is the
fraction of faults that can appear at the output in the form of user visible errors.
For AVF estimation of a processor component, the Architecturally Correct
Execution (ACE) analysis [31] is performed for all the bits in the processor com-
ponent. ACE bits are the bits which are deemed necessary for architecturally
correct execution, meaning that any fault in these bits will affect the correct
program output when no error correction techniques are employed. All other bits
are termed as un-ACE bits, because a fault in these bits will not cause a user vis-
ible erroneous program output. A bit is said to be un-ACE for a fraction of time
if a fault at its value does not affect the final output of the program otherwise it
is ACE. In case of storage cells, the AVF is the percentage of the time that it
holds ACE bits, whereas in case of logic structures, the AVF is the fraction of
time (percentage of total execution cycles) that the ACE bits or instructions are
processed. It is assumed that all bits are ACE unless proven un-ACE and this may
lead to overestimating the vulnerability of the target processor component. It is
reported in [89] that ACE analysis overestimates the vulnerability up to 7x.
Furthermore, the circuit-level masking factors such as electrical and latch-
window masking in a hardware component cannot be ignored during the soft
error rate analysis of a hardware component. However, the ACE analysis ignores
error masking, making this approach inappropriate for irregular hardware struc-
tures (e.g., functional units) and only suitable for regular structures such as
cache, register file, and reorder buffer in microprocessors [90]. It is reported that
different processor components and microarchitectures have distinct AVF values,
e.g., a fault in an ALU might affect the final output, whereas a fault in branch
predictors might incur performance penalty but will leave no impact to the final
output. The work in [73] proposed the Register Vulnerability Factor (RVF) model
which considers the register bits required for architecturally correct execution.
Extending the concept of AVF, the RVF models consider the fact that soft errors
in the register file can be overwritten and will have no impact on the final

2  Background and Related Work

35

program output if read after being written. RVF is the probability that a soft error
in registers can be propagated to other processor components (i.e., functional
units, memory). While AVF concepts focus on the effect of soft error propaga-
tion, the RVF presents the probability of soft error propagation to other hardware
components. The authors in [91] quantified the impact of transient faults on the
Alpha 21264 microprocessor by estimating the fault masking and identifying the
vulnerable portions of the processor. Enhancements of the AVF are discussed in
[31, 89, 90]. The AVF is primarily used to make decisions between two reliabil-
ity implementations of a processor component, but cannot be used to compare
different programs at instruction and function granularity for a given architec-
ture. A program-level reliability model is required to consider the program prop-
erties, i.e., instructions, control flow and data flow, and program-level error
masking effects. A program designer also requires an error characterization from
the program’s perspective. Furthermore, hardware-level reliability analysis and
estimation techniques [31, 91, 96] require significant development time and a
long experimental duration. To address these limitations, software program-level
techniques [27, 28, 75, 77, 80, 81, 92] can be used.

2.4.3  �Software Program-Level Techniques

Several software program reliability estimation techniques have been proposed
which are analogous to AVF. In [76], an Instruction Vulnerability Factor model
is developed to assess the criticality of the instruction through fault injection
experiments but this technique lacks in-depth knowledge of vulnerable bits,
time-wise error probabilities, and explicit quantification of program-level mask-
ing effects. Due to the coverage issues of fault injection (especially under vary-
ing inputs), the Instruction Vulnerability Factor inherently limits accuracy of soft
error analysis and estimation. Vilas et al. in [74] introduced the concept of
Program Vulnerability Factor (PVF) as a microarchitecture-independent metric.
PVF is fundamentally an adaptation of the AVF by shifting the Architecturally
Correct Execution (ACE) analysis from microarchitecture to the program level,
i.e., in a software resource (e.g., compiler-visible architectural registers). Besides
PVF’s inaccuracy due to ignorance of the underlying hardware properties (i.e.,
the layer where fault happens), PVF’s consideration of only the number of ISA-
visible ACE bits does not provide a comprehensive knowledge of the program
reliability, and thus further limits its accuracy. The reliability of a program also
depends upon the type of instructions, its data/control flow properties, and tem-
poral effects as discussed in Chap. 3. For a same number of ACE bits, a fault in
one program might cause Incorrect Output or no effect (i.e., correct output), but
in another program it might cause a program failure (e.g., crash) due to the use
of a different instruction. Moreover, a particle strike at a certain location in the
processor may manifest as a different error compared to a strike in other parts.
ACE analysis by PVF ignores different types of the manifested error that may

2.4  State-of-the-Art Soft Error Estimation Techniques

http://dx.doi.org/10.1007/978-3-319-25772-3_3

36

incur different reliability cost. PVF, however, considers all bits as ACE unless
proven un-ACE which might lead to an overestimate of the program vulnerabil-
ity. However, not all bits are of same vulnerability as some bits are more impor-
tant for the correct execution and some might be less important. For example,
faults in some bits may result in a crash and faults in some other bits may lead to
data corruption, which is within the tolerable limit of the program user. A case of
the tolerable limit of the program user has been demonstrated by the authors in
[97] where the most significant bits are more vulnerable compared to the least
significant bits. Since not all ACE bits lead to the same type of errors with the
same intensity, program reliability analysis without the characterization of the
manifested errors is incomplete. This instantiates the need for error characteriza-
tion at the program level, given faults are injected in the underlying hardware at
varying rates. Overall, the state-of-the-art approaches [31, 74, 75, 91] did not
analyze the effects of changing fault rates on the program behavior when esti-
mating the program reliability for a given system scenario. Furthermore, these
reliability estimation models do not consider the knowledge of hardware-specific
details, like chip footprint with processor details (e.g., area of different compo-
nents, number of physical registers, fault probabilities of different processor
components) for fault distribution and fault injection under different fault rates.
Moreover, these techniques do not consider the time-wise error probabilities of
different instructions in different components of a pipeline. Therefore, these soft-
ware program-level techniques are based on abstract fault models and they will
lead to over- or underestimation of the reliability.

2.4.4  �Fault Injection Methodologies

Engineers typically employ fault injection to analyze and estimate the system
reliability [96]. The “saboteur” or “mutant” [100] techniques are based on modi-
fying the VHDL code. These VHDL-based techniques require precise processor
models and timing details, thus requiring significant development time. Therefore,
these techniques cannot be deployed in the initial design phases for the applica-
tion designer. High-level simulator-based techniques typically produce the errors
at the program layer in the early design phases. The technique of [101] uses a
command-based injection of single-bit faults (from a fault database) in ASICs
using its SystemC model. Authors in [99] propose a fault injection technique for
digital signal processors. SymPLFIED is a program-level fault injection and
error detection framework [98]. It enumerates transient faults in registers, mem-
ory, and computation blocks of hardware. However, it does not consider the
knowledge of chip footprint in its machine model, which may lead to an inac-
curate program reliability analysis. Moreover, due to its complex model evalua-
tion it suffers from long experimental duration. The performance and analysis
accuracy comparison is made against SymPLFIED in Appendix A.

2  Background and Related Work

http://dx.doi.org/10.1007/978-3-319-25772-3_BM1

37

2.5  �State-of-the-Art Soft Error Mitigation Techniques

In order to mitigate the soft error effects, extensive research to develop reliability
improvement techniques has been conducted at both the hardware level and the
software level. In the following, some prominent hardware- and software-level tech-
niques are discussed.

2.5.1  �Hardware-Level Soft Error Mitigation Techniques

The hardware-level soft error mitigation techniques are tackled at the device level
by adopting specialized process technology (e.g., using SOI process [55]) and mate-
rials during fabrication, at the circuit level by adopting specialized radiation hard-
ened cells or redundant logic, and at the architecture level through redundancy in
time or in space.

Device-Level Techniques: A major practice has been on exploring the possibilities
of mitigating the soft error at the transistor/device level since it appears at the lower
layers. The transistor-level solutions are primarily relying on the process technol-
ogy, i.e., the way in which transistors are manufactured such that it becomes shielded
against the radiation events like alpha particles and neutron strikes. Shielding
against soft error means that the amount of collected charge Qcollection at a transistor
node once exposed to a radiation event is reduced, thus minimizing the chances of
soft errors. Note, to prevent the soft error event it is important that the QCollection < QCritical.
Adopting specialized fabrication processes and usages of some special material for
fabricating soft error immune transistors is very effective, but it has a substantial
overhead (in terms of, for instance, area and cost) when deployed throughout the
processor. Moreover, the validation and verification costs of such approaches are
considerable [19, 71, 116].

To overcome the soft errors due to the alpha particles, the semiconductor
industry adopted various shielding techniques against the alpha particle-induced
soft errors, e.g., by deploying thick polyimide (100 μm as stated in [53]) as an
alpha particle protection layer because of their efficient thermal and electrical
characteristics. With shielding, the alpha particle-originated SER is reduced to
around 20 % [54]. However, such shielding solutions are typically not adopted in
case of high-energy neutron-induced soft errors, because for shielding against
neutron strikes, the thickness of the protection layer is required to be a minimum
of approximately 10 ft in concrete, which is not feasible for almost all computing
devices. As the neutron-induced SER is becoming increasingly common in the
current technology, the shielding solutions do not completely eradicate the sus-
ceptibility of the device against all sources of soft error. Furthermore, deploying
these techniques even for reducing the alpha particle-induced soft error is unaf-
fordable because of the strict cost constraints.

2.5  State-of-the-Art Soft Error Mitigation Techniques

38

Silicon-On-Insulator (SOI) has evolved as a promising technology for MOS/
CMOS fabrications to protect against soft errors and in this way, has become supe-
rior to the conventional bulk CMOS process technology. In SOI technology, a thin-
film layered insulator called buried oxide or silicon-insulator (see Fig. 2.9a) is
placed in the substrate, instead of the conventional silicon substrate [55]. The tran-
sistor with SOI technology has the capability to reduce the Qcollection upon the radia-
tion event, because the silicon-insulator layer keeps the bulk silicon isolated, thus
preventing the excess charge in the bulk silicon (induced by the radiation event)
from propagating towards the source/drain, or device channel. It is reported by IBM
that usage of the SOI process technology enables 5x reductions in SER for SRAM
[56]. Although, the SOI technology appears to be an attractive option for reducing
the SER and also in low power applications [102], nevertheless, their high manufac-
turing costs have made them less famous in the products that have strict design
constraints. Another, well-known device-level solution is the Triple well (TW) pro-
cess technique [57] which is different from the conventional CMOS process where
twin-well transistor is constructed. This process technology alleviates the device
sensitivity towards single event upsets. A TW device has a buried n-well layer
(“deep n-well”) that separates the p-well from the p-substrate; see Fig. 2.9b. The
idea of burying the n-well layer is to collect the electrons generated in the p-well
region of the NMOS device upon a particle strike before they are collected at the
surface of the NMOS (source–drain channel). The gathered electrons below the
p-well and at the deep n-well junction do not have an impact on the device state.

Circuit-Level Techniques: At the circuit level, the soft error problem is addressed
either by deploying the radiation hardened cells [66], changing the device parameters
[58], or introducing redundant circuits [59]. The radiation hardened cells are in prac-
tice and are prevailing in the electronic devices deployed in the space and military
missions. Changing or tuning the device parameters may help in reducing the soft
error rate, e.g., increasing the supply voltage which makes the QCritical higher, hence
the SER becomes lower [58]. The introduction of redundant or error detection/cor-
rection circuits into the target design has been well explored in order to recover from
soft errors. A prominent example is the RAZOR approach that introduces shadow
flip flops in the pipeline to recover from errors. The recovery is accomplished using
a global clock gating of the pipeline and an error detection through shadow flip flops
that receive a delayed clock. Figure 2.10 shows (a) organization of a processor pipe-
line with RAZOR flip flops (FF) after each pipeline stage, and (b) the timing of the

n+ gate
Source

a b
Drain

n+ Channel

Buried Oxide

p-substrate

p-well

n+

p-substrate
Deep n-well

p-well
n-well

Fig. 2.9  (a) SOI MOSFET device and (b) TW NMOS FET structure

2  Background and Related Work

39

overhead costs, these techniques are more practical and beneficial for the space-
based applications. Furthermore, ECC and parity techniques are used to protect
memories and caches. ECC-protected caches are a well-established practice in vari-
ous research and industrial projects like IBM [62], AMD [63], and [35]. However,
in case of register files, ECC is avoided due to high area and power overhead under
frequent usage scenarios [27, 28, 73, 76], and consequently they remain vulnerable
to soft errors. An approach to reduce this overhead by using the unused bits of reg-
isters is proposed in [152] but it has limited optimization potential in case of appli-
cations using full register widths and due to low soft error susceptibility of register
file due to its very small footprint compared to the full pipeline. An alternate
solution is employing parity-protected register files, but the error coverage is low,
especially in case of multi-bit faults. Note, the contributions proposed in this
manuscript are applicable to both protected and unprotected register files.
Although the architecture-level solutions may not have the same precision and accu-
racy that the device-level solutions can offer, their efficiency is high because these
solutions are independent from the underlying hardware-level details, i.e., process
technology and transistor/cell structure. It is reported in [22] that when compared to
the circuit-level hardening techniques, the ECC-based techniques [64] incur low
area overhead. Besides the ASIC-based systems, techniques for improving the reli-
ability of reconfigurable architectures have been proposed in [153, 154].

Redundant Multithreading Techniques: Multi-/manycore architectures facilitate
soft error tolerance through excessive core availability, i.e., the cores originally
reserved for performance improvements can now be exploited to improve the
reliability through spatial and temporal redundancy [38, 83]. The works like fault
detection via lock stepping [82], Simultaneous Redundant Threading (SRT) [67],
Chip-level Redundant Threading (CRT) [36] and other works like [37] have focused

x

CLK Recover Recover Recover Recover

PC IF ID EX MEM
WB
(reg/
mem)

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Ra
zo

r F
F

Error ErrorError Error

ST

IF ID EX MEM ST
IF ID EX* MEM* MEM ST WB

IF ID EX Stall MEM ST WB
IF ID Stall EX MEM ST

Time (in cycles)

In
st

ru
ct

io
ns

Razor latch gets correct
EX value

St
ab

ili
ze

r F
F

Correct value provided to MEM

Fig. 2.10  A simple 5-stage pipelined processor with razor flip flop and error recovery [59]

2.5  State-of-the-Art Soft Error Mitigation Techniques

40

Logic
Stage

L2

Main flip-
flop

0
1

ErrorShadow
Latch

Logic
Stage

L1

CLK_delayed

CLK

Razor FF

D1 Q1

Error_L

Comparator

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Instr 1

Instr 1

Instr 2

Instr 2

CLK
CLK_

delayed

D

Error

Q

Fig. 2.11  Razor flip flop and timing diagram [59, 60]

HW Module-1

HW Module-2

DMR

Voter

TMR TTMR

HW Module-1

HW Module-2

HW Module-3

HW Module-1

HW Module-2

HW Module-3

Voter

Voter

Voter

Comparator

Fig. 2.12  Dual, triple, and triplicated triple modular redundancy [33, 36, 104]

pipeline for an error that happens in the execute (EX) stage (asterisk denotes an error
in the pipeline stage computation). The detailed structure of the RAZOR flip flop is
shown in Fig. 2.11 that employs a shadow latch controlled by a delayed clock.
Deploying additional hardware structures, however, makes the circuit-level solutions
more costly due to the incurred overheads in terms of area/power and verification
cost, that may become prohibitive especially in the embedded systems.
Architecture-Level Techniques: At the architectural level, the availability of dif-
ferent functional units with distinct structures and diverse functional and timing
properties makes a wider design problem when compared to device/circuit levels.
The techniques at this level are based upon the redundant executions either in
space (using the duplicated functional units) or in time (using the same hardware
multiple times for redundant execution and comparing the outputs). Furthermore,
keeping the redundant information can also help in recovering, for instance, from
the corrupted state in memory. The traditional architectural redundancy approaches
are Dual Modular Redundancy (DMR), Triple Modular Redundancy (TMR),
Error Correcting Code (ECC), and parity protection. The DMR approach shown
in Fig. 2.12 is used for error detection where two hardware modules are used to
execute the redundant copy of a code and after the execution, a comparator checks
the output. In case of a mismatch, the error is detected and the rollback execution
is performed for recovery.

Figure 2.12 shows TMR which is used for error detection and recovery and that
employs three hardware modules for executing three copies of the code. After the
execution is finished, a majority voter compares the final outputs and selects the best
two out of three to determine the correct output. Besides the large area/power over-
head, the voter in TMR is the single point of failure. To overcome this, triplicated
voters are deployed. The increased power overhead of TMR systems may poten-
tially increase the temperature. Increased temperatures lead to higher SER due to
the reduction in the critical charge [117] and increased aging. Due to their high

2  Background and Related Work

41

on multi-/manycore based soft error mitigation where free cores are exploited to
provide redundancy either at the hardware level (using redundant instructions or
redundant threads) or operating system level (using redundant thread processes).
Figure 2.13 presents fault detection via replicated microprocessors that are cycle-by-
cycle lockstepped. This means that both the processors are synchronized with each
other and have identical states at any point in time. At the same time, both processors
receive same inputs and deliver the output at the same time. If an error happens in
one processor, then the difference amongst the processor states will be detected and
an error will be identified by the system monitor upon the output mismatch. The SRT
[67] approach adapts the philosophy of the Simultaneous Multithreading (SMT) [68]
approach that was originally proposed to improve the performance via executing the
program codes of different applications in a simultaneous multithreaded fashion on
multiple functional units inside a given processor; see Fig. 2.14. Instead of executing
different application threads, SRT executes two redundant threads of the same appli-
cation on multiple functional units (e.g., two adders, multipliers) inside the same
core and then performs the output comparison. In contrast, the CRT approach exe-
cutes redundant threads on two different processor cores; see Fig. 2.15.

R1 ← (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity

Servernet covered by CRC

R1 ← (R2)

microprocessor microprocessor

Replicated Microprocessors + Cycle-by-Cycle Lockstepping

Fig. 2.13  Fault detection via lockstepping (HP Himalaya) [36]

Functional
Units

Thread1 Thread2

Instruction Scheduler

Trailing
Thread

Leading
Thread

Memory System (incl. L1 $)

Sphere of Replication

Input
Replication

Output
Comparison

Fig. 2.14  Fault detection via simultaneous multithreading. Left: Scheduling different instructions
on different functional units and right: sphere of replication with input and output replication
[36, 67]

2.5  State-of-the-Art Soft Error Mitigation Techniques

42

CPU A

Leading
Thread A

Trailing
Thread B

CPU B

Trailing
Thread A

Leading
Thread B

LVQ

Stores

LPQ

Stores

LPQ

LVQ
Fig. 2.15  Chip-level
redundant threading
[36, 67]

The SRT approach has an advantage of lower time-to-market and cost, as it
exploits the existing well-established SMT architecture with little extra hardware.
Moreover, it offers better performance than the complete replication. However, the
challenge is the careful fetch/schedule of the redundant threads in a lockstepped
fashion. The SRT combines both space- and time-wise redundancy. However, it
prefers the space-wise redundancy due to its better coverage of permanent/long-
duration faults. The CRT approach combines the best of SRT and lockstepping.
Besides the conventional redundancy-based approaches, recent trends have evolved
to explore flexible approaches, i.e., adaptive control of TMR/DMR [103], cores
with heterogeneous error recovery functionalities [83], and the hardware-level
checkpointing and recovery approaches [140].

The aforementioned approaches primarily target soft errors and may not address
aging and process variation related problems during the soft error mitigation. For
example, in CRT, two processor cores are executing redundant threads. In the pres-
ence of performance variations, one core may produce the output later than the
other core. Hence, both the outputs may not synchronize for the comparison that
will eventually lead to output errors. Alternatively, providing a large synchroniza-
tion time may lead to performance degradation and potential deadline misses.
Another limitation of these techniques is that they assume excessive area is avail-
able in the multi-/manycore system. However, in case of area-constrained embed-
ded systems, there may be scenarios where not all applications may be supported
with full DMR or TMR due to resource competition.

Summary: Within the scope of the hardware-based approaches, the soft error miti-
gation techniques have been explored at different abstractions in the system layers,
i.e., device, circuit, and architectural level. Because of the prevailing facts that these
hardware-level techniques have more area, therefore more power overhead and also
high verification/validation costs, reliable hardware design and development using
these techniques is both expensive and time consuming [19, 33, 71, 107, 116]. As a
result, various soft error mitigation techniques at the software level have evolved.
These software-level approaches are developed in various design abstraction layers
which are hereby discussed in the following.

2  Background and Related Work

43

2.5.2  �Software-Level Soft Error Mitigation Techniques

The classic soft error mitigation techniques (amongst many others) are N-version pro-
gramming, code redundancy, control flow checking, and checkpoint recovery. The
N-version programming [69] relies on implementing multiple program versions of the
same specification. Depending upon the memory requirements, the number of pro-
gram versions varies; however, N should not be less than 2. These N program versions
are functionally identical but have diverse implementations leading to different failure
characteristics such that not all versions fail in the same way under a given fault sce-
nario. Figure 2.16 shows the working of N-version programming in a TMR model.
For managing the execution, this technique demands a mechanism to synchronize the
three outputs and to compare their results.

The software-based checkpoint recovery techniques [70] do not require a
modification in the hardware and thereby restrict the area/power overhead.
However, modification in the software is required in terms of additional imple-
mentations for the functionality. Such techniques place checkpoint instructions
inside the code, typically before the critical instructions which have a high error
probability. The program state is saved in reliable storage during normal execu-
tion (data checkpointing), so that in case of errors, the program can be resumed
from the last checkpointed state. In [145], a compiler-assisted checkpointing
scheme is proposed that inserts additional checkpointing code into user pro-
grams. An adaptive scheme is used to identify potential checkpoints in order to
amortize the storage overhead of checkpointed data. The Libckpt [146] and libFT
[147] checkpointing libraries provide routines to enable applications to dump
critical data and/or states but require user intervention for maximum benefits.
Efforts in [148] propose a reliable microkernel for application checkpointing that
utilizes OS support to guarantee consistency between the current system state
and process image. Besides checkpointing, a large body of work has been con-
ducted at the software-/compiler-level that can be categorized in two major
classes, (1) redundancy-based and control flow protection techniques and (2)

Version i

Version i+1

Version i+n

Inactive

Running

Supervisory
Program

Invoke

Terminate

Cross-Check
Service
request

Waiting

Fig. 2.16  N-version programming

2.5  State-of-the-Art Soft Error Mitigation Techniques

44

vulnerability reduction-based techniques, as discussed below. These techniques
offer new opportunities for constrained optimizations such that the cost budgets
remain intact by exploiting the application characteristics.

The state-of-the-art redundancy-based techniques, such as Error Detection
using Duplicated Instructions (EDDI) [27] and Software Implemented Fault
Tolerance (SWIFT) [28], provide software reliability by duplicating the instruc-
tions, and inserting the comparison and checking instructions before the store
and/or conditional branches. As a result, these techniques incur a significant per-
formance overhead. An example is presented in Fig. 2.17 to explain the EDDI
approach. In this example, the load from a global constant address is duplicated
as instruction 1. In order to avoid conflicts between the original and duplicate
instructions, the duplicated load reads its data from a different source address and
stores its result into a different register. In a similar way, the add instruction is
also duplicated as instruction 2 in order to create a redundant chain of computa-
tion. Finally, the store instruction is a point of synchronization, and instructions 3
and 4 compare the store’s operands (the address and the computed data) with their
redundant copies. In case a difference is detected, instruction 5 will report an
error. Otherwise, the original and its duplicate store instruction 6, will execute
storing values to non-conflicting addresses.

As demonstrated in Fig. 2.17, this technique incurs a significant performance and
memory overhead due to redundant instruction execution and shadow memory
locations to store redundant data, respectively. Furthermore, performance overhead
can also be attributed to the increased cache usage to hold redundant data for com-
putation of original and duplicated instructions, generating additional memory traf-
fic. With EDDI, although the input operands for branch instructions are verified,
there is the possibility that a program’s control flow gets erroneously misdirected
without detection. The corruption can happen during the execution of the branch or
register corruption after branch check instructions.

A well-established control flow technique is signature-based protection [34].
In order to verify that the control transfer is in the appropriate or intended basic

Original code Transformed Code [EDDI]
ld r�� = [GLOBAL]

�: ld r�� = [GLOBAL+offset]

add r�� = r��, r��
�: add r�� = r��,r��
�: cmp.neq.unc p�,p� = r��,r��

�: cmp neq.or p�,p� =r��,r��

�: (p�) br faultDetected

st m[r��] = r��

�: st m[r��+offset] = r��

ld r�� = [GLOBAL]

add r�� = r��, r��

st m[r��] = r��

Fig. 2.17  An example for EDDI [27]

2  Background and Related Work

45

block, each block will be assigned a signature [34]. For that, a designated general
purpose register named as GSR (General Signature Register) is employed that
holds these signatures which are later used to detect faults. The GSR holds the
signature value for the currently executing block. As soon as there is an entry to
any block, the GSR will be xor’ed with a statically determined constant in order
to transform the previous block’s signature into the current block’s signature.
Once it is done the value inside the GSR can be compared with the statically
assigned signature for the block to ensure that an authorized control transfer has
occurred. In cases where two basic blocks have a control flow to a common block,
both the blocks can jump to a common block (a control flow merge) while sharing
the same signature. In such cases, using a statically determined constant to trans-
form the GSR from the previous basic block signature to the current basic block
signature might not cover control flow errors. With the statically determined con-
stant, faults which transfer control to or from blocks having the same signature
will remain undetected; this is undesirable. In order to avoid this, the signatures
should be determined dynamically.

Figure 2.18a highlights this technique, where instruction 1 and 2 are the redun-
dant duplicates for the add and compare instructions, respectively. Recall that, in
the EDDI transformation, branches are the synchronization points. The redundant
instructions from 3 to 7 are introduced in order to compare the predicate p11 to its

Original Code (a) EDDI+ECC+CF Code (b) EDDI+ECC+ECF Code
add r�� = r��, r��

�: add r�� = r��, r��
cmp.lt.unc

p��, p� = r��,r��
�: cmp.lt.unc

p��, p�=r��, r��
�: mov r� = �
�: (p��) xor r�=r�, �
�: (p��) xor r�=r�, �
�: cmp.neq.unc

p�,p� = r�, �
�: (p�) br faultDetected

(p��) br L�
.
L�:

�: xor GSR=GSR,L�_to_L�
�: cmp.neq.unc

p�,p� = GSR, sig.�
��: (p�) br faultDetected

��: cmp.neq.unc
p�,p�=r��, r��

��: cmp.neq.or
p�,p�=r��, r��

��: (p�) br faultDetected

st m[r��] = r��

add r�� = r��, r��

cmp.lt.unc
p��, p� = r��,r��

(p��) br L�
.
L�:

st m[r��] = r��

add r�� = r��, r��
�: add r�� = r��, r��

cmp.lt.unc
p��, p� = r��,r��

�: cmp.lt.unc
p��, p�=r��, r��

�: (p��) xor RTS=sig�, sig�

(p��) br L�
.

�: xor RTS=sig�, sig�
L�:

�: xor GSR=GSR, RTS
�: cmp.neq.unc

p�,p� = GSR, sig.�
�: (p�) br faultDetected
�: cmp.neq.unc

p�,p�=r��, r��

�: cmp.neq.unc
p�,p�=r��, r��

��: (p�) br faultDetected

st m[r��] = r��

Fig. 2.18  (a) Control flow checking using software signatures [34] and (b) Enhanced control flow
checking [28]

2.5  State-of-the-Art Soft Error Mitigation Techniques

46

duplicate p21 and branch to error code if a fault is detected. At instruction 8, the
control flow additions start that transform the GSR from the previous block signa-
ture to the signature for the currently executing block. The instructions 9 and 10
confirm if the signature is correct, in case an incorrect signature is detected, the
error code is invoked. Finally, instructions 11–13 are inserted to handle the synchro-
nization point induced by the later store instruction. This transformation will detect
faulty control flow transfers between two blocks which are not unauthorized. Any
such control transfer will result in an incorrect signature no matter if the erroneous
transfer jumps to the middle of a basic block. These issues have led to the enhanced
control flow protection approach [28]; see example in Fig. 2.18b. In this technique,
for all the blocks, a dynamic equivalent of a run-time adjusting signature is used
(also for the basic blocks which are not control flow merges). Each block asserts its
target while using the run-time adjusted signature, and in response each target con-
firms the transfer by checking the GSR. Figure 2.18b demonstrates how the
enhanced control flow checking works. Similar to the previous control flow check-
ing example, in this example instructions 1 and 2 are the redundant duplicates for
the add and compare instructions, respectively. The run-time signature for the target
of the branch is computed via Instruction 3 by xor’ing the signature of the current
block with the signature of the target block. As the branch is predicated, the assign-
ment to RTS (Run-Time Signature) is also predicated using the redundant register
for the predicate. Instruction 4 is the equivalent of instruction 3 for the fall through
control transfer. To compute the signature of the new block, instruction 5 at the
target of a control transfer xors RTS with the GSR. Afterwards, at instruction 6, this
signature is compared with the statically assigned signature, in case of mismatch an
error code is invoked with instruction 7. Just as before, instructions 8 through 9
implement the synchronization checks for the store instruction.

The SWIFT approach [28] is demonstrated in Fig. 2.19 where all the instructions
are duplicated and before the store, the comparison instructions for fault detection
are placed. In this case, it is only the store instructions which ultimately send data
out of the SoR (Sphere of Replication). The system will function correctly, as long
as it is ensured that store instructions execute only if they are “meant to” and the
store instructions write the correct data to the correct address. This observation is
used to restrict enhanced control flow checking only to blocks having the store
instructions. In this scenario, the updates to the GSR and RTS are performed in all

Original Code Transformed Code [SWIFT]
add r� = r�, r�
�: add r�’ = r�’, r�’

mul r� = r�, 8
�: mul r�’ = r�’, 8

�: br faultDet, r� != r�’

�: br faultDet, r� != r�’

st [r�] = r�

add r� = r�, r�

mul r� = r�, �

st [r�] = r�

Fig. 2.19  Software
implemented fault
tolerance (SWIFT) [28]

2  Background and Related Work

47

blocks; however, the comparisons for signatures are restricted to blocks with store
instructions. With this optimization, if the signature check instructions are eradi-
cated, this will further alleviate the overhead for fault tolerance with no reduction in
the reliability. Since signature comparisons are computed at the beginning of every
block that contains a store instruction, any deviation from the valid control flow path
to that point will be detected before memory and output is corrupted. This optimiza-
tion has relatively lesser negative impact on the performance compared to the
EDDI. Both the branch checking and enhanced control flow checking are somewhat
redundant. While branch checking makes sure that branches are taken in the proper
direction, the enhanced control flow checking ensures that all control transfers are
made to the proper address. However, verifying all control flow includes the notion
of branching in the right direction. Therefore, performing the control flow checking
alone is adequate to detect all control flow errors.

Besides fault detection, a reliable system requires fault recovery, too. The SWIFT
transformation can be seen as a DMR-like implementation that provides fault detec-
tion, but not recovery. For recovery, a TMR-like implementation SWIFTR (Software
Implemented Fault Tolerance with Recovery) approach is presented in [71] that
employs triplicated instructions and majority voting. Such full-scale redundancy
solutions, however, incur significant power, area, and performance overheads. To
alleviate these overheads, there are some techniques that offer enhanced control flow
protection like CRAFT [28, 71] and Instruction Vulnerability Factor-based tech-
niques [76] via duplicating only the critical instructions, i.e., instructions that have a
relatively high probability to lead to a software failure/crash in case of a soft error,
for instance, load, store, jump, branches, and calls. However, these techniques incur
additional >40 % performance loss, increased register pressure due to more register
usage, and excessive memory overhead because of instruction and data redundancy
[28]. Furthermore, an increased number of critical instruction executions may lead to
excessive rollbacks during recovery because of an increased probability of software
failures and fault propagation to/from memory, when a fault occurs in the hardware
of the memory pipeline stage [28]. Besides offering protection only at the instruction
level, some advanced work of [77] exploits the unused bits of a register for in-register
duplication, while [80] performs both the instruction and data duplication. These
redundancy-based techniques incur a significant performance/memory overhead
(>2x–3x) [27, 28, 77, 80, 92], which is typically prohibitive for embedded systems.

Besides excessive performance overhead, one of the primary issues of
instruction redundancy and scheduling techniques, like [27, 28, 72, 73], is that
they treat all instructions in the same way. This is because their software-level
reliability estimation models (Register Vulnerability Factor1 [73] or Program
Vulnerability Factor2 [74, 75]) do not distinguish between different types of
errors in the software caused by the hardware-level faults during the execution

1 Register Vulnerability Factor considers the register live period as a measure for the reliability.
2 Program Vulnerability Factor relates the software reliability to the bits for Architecturally Correct
Execution in different programmer-visible architectural components (Register File, ALU, etc.), but
hides the physical components (e.g., there are 256 physical registers, but 32 are visible to the
programmer).

2.5  State-of-the-Art Soft Error Mitigation Techniques

48

of different instructions that use diverse processor components in different pipe-
line stages. Moreover, these models are computed without considering the pro-
cessor architecture. As a result, software-level reliability techniques of this kind
are not very efficient. For vulnerability reduction, different compile-time
approaches have evolved that seem to have promising effects on lowering the
error probability of the software programs. For example, the instruction sched-
uling phase during the compilation can impact the instruction vulnerability by
affecting the vulnerable periods of instructions and their operands in different
pipeline resources. Towards this, several compile-time reliability-aware instruc-
tion scheduling approaches have been proposed [27, 76] that reorder the instruc-
tion profile of a program while incurring relatively limited performance
degradation and almost no memory overhead compared to instruction redun-
dancy techniques. The work of [77] minimizes the residency cycles of vulnera-
ble bits inside the issue queue of superscalar processor by performing instruction
scheduling at run-time. However, this technique requires architecture modifica-
tion of the hardware scheduler and introduces a significant hardware overhead.
In contrast, ISSE [81] reschedules a program’s assembly code to minimize the
operands’ vulnerable periods via exploiting the slack time. The works in [78,
79] perform instruction rescheduling after the performance-optimized schedul-
ing in order to reduce the vulnerable periods of registers. The slacks are identi-
fied after a performance-driven instruction scheduling, which already tries to
minimize the slacks as much as possible to avoid pipeline stalls to improve
performance. As a result, state-of-the-art instruction scheduling techniques [27]
and [76] provide limited reliability improvements of 2 % and 9 %, respectively.
Furthermore, the error probability is reduced by lowering the vulnerability of
register file [80] or software program [28] through minimizing the register life-
time. These state-of-the-art solutions offer limited reliability improvements as
they primarily improve the reliability of the register file, which typically covers
a small portion of the processor layout compared to the pipeline and instruction
execution unit, thus ignoring the complete processor perspective.

2.6  �Summary of Related Work

In this chapter, the background related to various reliability threats, i.e., soft
error, NBTI-induced aging effect, and process variation is discussed. The mecha-
nisms of these reliability threats, their sources, and how they are modeled are
presented. Since the focus of this manuscript is on soft errors, a detailed litera-
ture survey regarding the soft error estimation and mitigation techniques is pre-
sented at various levels of system abstraction, i.e., circuit level, architecture
level, and program level.

Although there has been plenty of hardware-level software mitigation works
at the device, circuit, and architectural layers, these techniques are not area-
and power-wise cost effective as they incur extra circuitry besides their high

2  Background and Related Work

49

verification/validation costs [19, 33, 71, 107, 116]. To alleviate this overhead, vari-
ous soft error mitigation techniques at the software level have evolved. The control
flow checking and instruction/register value duplication result in significant perfor-
mance and memory overhead, while register vulnerability reduction techniques pro-
vide limited reliability improvement. In contrast, instruction scheduling for
reliability reorders the instructions of a software program without costing memory
overhead and with limited/no performance overhead [73, 81]. However, these tech-
niques ignore the complete processor perspective, as they only try to reduce the
vulnerability of the register file that covers only a small portion of the processor
layout compared to the complete pipeline. As a result, these techniques [73, 81]
provide limited reliability improvement (2–9 %). State-of-the-art compiler-level
reliability techniques have not exploited the prospective opportunities which exist at
the compiler front-/middle-end optimizations that may impact the software code for
improving reliability with reduced performance overhead. Furthermore, the slacks
for reliability improvement are identified after a performance-driven instruction
scheduling that already minimized slacks to avoid pipeline stalls to improve perfor-
mance. As a result, state-of-the-art instruction scheduling techniques [73] and [81]
provide limited reliability improvements of 2 % and 9 %, respectively.

In the following chapter, a comprehensive view of the novel contributions of this
manuscript is presented along with details on the developed concepts, techniques,
different design challenges, and motivating error analysis at the application soft-
ware program level while considering the hardware-level faults.

2.6  Summary of Related Work

http://www.springer.com/978-3-319-25770-9

