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  Embedded systems have become an important part of our day-to-day life because 
of their pervasive deployment in various application domains such as consumer 
electronic devices like smartphones and tablets, medical healthcare, telecommuni-
cation, automotive, aircrafts and space-applications, etc. Due to the shrinking tran-
sistor dimensions, embedded computing hardware is getting increasingly 
susceptible to different reliability threats like  transient faults  (such as soft errors 
due to high-energy particle strikes) and  permanent faults  due to design-time pro-
cess variations and run-time aging effects. Therefore, reliability has emerged as 
one of the primary design criteria in the nano-era. Soft errors manifest as spurious 
bit fl ips in the underlying hardware that may jeopardize the correct software execu-
tion. However, design-time manufacturing process variability manifests as fre-
quency and leakage power variations in different cores in a multi-/manycore 
processor, while run-time aging effects result in frequency degradation over the 
period of time. A majority of state-of-the-art hardware-level reliability techniques 
employ full-scale redundancy or error correction blocks in processor components 
that result in signifi cant overhead in terms of area, performance, and/or power/
energy, which may be prohibitive within the stringent design constraints of embed-
ded systems. To alleviate the overhead of hardware-level techniques or targeting 
the low-cost unreliable hardware, several software-level reliability improving tech-
niques have evolved that are based on the concept of full-scale redundancy at the 
code or data level and, therefore, incur signifi cant performance and memory over-
head (≥2×–3×). In general, state-of-the-art software-level reliability techniques 
have, by far, not exploited their potential since the common belief, so far, was that 
reliability problems when occurring at the hardware level should be addressed at 
the hardware level. However, a lot of hardware-level faults can potentially be 
masked at the higher software layers. Furthermore, a manycore processor is sub-
jected to multiple reliability threats that need to be considered when providing 
functional and timing correctness. 

 To enable a highly reliable software system for embedded computing, this 
manuscript introduces novel concepts, strategies, and implementations to leverage 
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multiple system layers in an integrated fashion for reliability optimization under 
user- provided tolerable performance overhead constraints. To enable this, this work 
addresses the key challenge of  bridging the gap between the hardware and software  
by quantifying the effects of hardware-level faults at the software level while 
accounting for the knowledge of the processor architecture and layout. It is impor-
tant to understand which instructions lead to which type of errors in the application 
software program when faults happen in the underlying hardware and how these 
faults are masked/propagated to higher system layers. In particular, this work devel-
ops novel techniques for cross-layer software program reliability modeling and 
optimization at different levels of granularity (e.g., instruction and function) and at 
different system design abstractions in order to compose and execute application 
software programs in a reliable fashion. Important highlights of the novel contribu-
tions of this manuscript are: 

  Cross-Layer Software Program Reliability Modeling and Estimation : This 
work develops cross-layer reliability analysis, modeling, and estimation concepts, 
techniques, and tools. An extensive program reliability analysis is performed to 
understand the manifestation of hardware-level faults at the software level. This 
analysis is leveraged to devise software-level reliability models that account for the 
hardware-level knowledge in order to bridge the gap between the hardware and 
software for accurate reliability estimation at the software level. At the instruction 
granularity, the following models are developed to capture key reliability aspects of 
a software program:

    1.    The  Instruction Vulnerability Index  estimates the probability of an instruction’s 
output being erroneous due to soft errors. It accounts for  spatial vulnerabilities  
(i.e., area-wise error probabilities) and  temporal vulnerabilities  (i.e., time-wise 
error probabilities) of different instructions executing in different pipeline stages 
of a given processor while accounting for hardware-level information, e.g., the 
probability of faults in different processor components obtained through a 
detailed gate-level soft error analysis.   

   2.    The  Instruction Error Masking Index  estimates the probability that an error at an 
instruction will ultimately be masked until the fi nal program output, i.e., does not 
become visible at the application output and therefore is denoted as “masked.”   

   3.    In case the error is not masked, the  Error Propagation Index  estimates how many 
outputs will be affected by the unmasked error.    

  These instruction-level estimates are then used to obtain the reliability estimates 
at basic block and function/task levels. In the optimization fl ow, these models are 
leveraged to quantify the reliability-wise importance of different instructions, basic 
blocks, and functions to enable selective reliability optimization at different system 
layers under tolerable performance overhead constraints. 

  Cross-Layer Software Program Reliability Optimization : This manuscript 
develops concepts and techniques for cross-layer reliability optimization and lever-
ages multiple system layers for reliable composition and execution of application 
software programs. First multiple versions of a software program are obtained that 
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enable run-time trade-offs between reliability and performance properties. This is 
done through the following two means:

    1.     Different reliability-driven software transformations and instruction scheduling 
techniques  are proposed that lower spatial/temporal vulnerabilities and probabil-
ities of software program failures and Incorrect Outputs by reducing the number 
of executions of  critical instructions  (like load, store, branches, jumps, and 
calls). Applying these transformations in constrained scenarios provides on aver-
age 60 % lower software program failures (i.e., crashes, halt, hang, abort) and 
thus increased software reliability.   

   2.     Reliability-driven selective instruction redundancy  is proposed that selects a set 
of reliability-wise important instructions in different functions for redundancy- 
based protection depending upon the instruction vulnerabilities, instruction-level 
error masking and propagation, and protection overhead under user-provided tol-
erable performance overhead constraint. The key is to give more protection to the 
less-resilient part of the software program and less protection to more- resilient 
part to achieve a high degree of reliability in constrained scenarios. Compared to 
state of the art, the proposed selective instruction protection provides 4.84× 
improved reliability at 50 % tolerable performance overhead constraint.    

  Afterwards, multiple reliable versions are exploited by a reliability-driven run- 
time system that enhances the reliability of multiple concurrently executing applica-
tions in a manycore processor while accounting for the frequency variations and 
degradation due to design-time process variation and run-time aging-induced 
effects. It performs the following key operations to facilitate reliable software pro-
gram execution:

    1.     Adaptively activating and deactivating the redundant multithreading for differ-
ent applications  in a manycore processor in area-constrained scenarios. It 
accounts for variable resilience properties and deadline requirements of different 
applications along with a history of the encountered errors.   

   2.     Dynamically selecting an appropriate reliable version  for each application con-
sidering cores’ frequency variations due to design-time process variations and 
run-time aging-induced performance degradation.   

   3.    Mapping the selected application version on the cores used for redundant multi-
threading at run time such that the execution properties of the redundant threads 
closely match the frequency properties of allocated cores considering core-to- 
core frequency variations.     

 Compared to state-of-the-art single-layer reliability optimizing techniques, the 
proposed cross-layer approach achieves 16 %–57 % improved software reliability 
on average for different chip confi gurations, various process variation maps, and 
different aging years. 

 In addition to the above-discussed scientifi c contribution, several tools for gate- 
level soft error analysis, aging analysis, an integrated fault generation, and an injec-
tion system for instruction set simulators have been developed in the scope of this 
work and are made available at   http://ces.itec.kit.edu/846.php    . 
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