Chapter 2
Discovering Mid-level Visual Connections
in Space and Time

Yong Jae Lee, Alexei A. Efros and Martial Hebert

Abstract Finding recurring visual patterns in data underlies much of modern
computer vision. The emerging subfield of visual category discovery/visual data min-
ing proposes to cluster visual patterns that capture more complex appearance than
low-level blobs, corners, or oriented bars, without requiring any semantic labels. In
particular, mid-level visual elements have recently been proposed as a new type of
visual primitive, and have been shown to be useful for various recognition tasks.
The visual elements are discovered automatically from the data, and thus, have a
flexible representation of being either a part, an object, a group of objects, etc. In this
chapter, we explore what the mid-level visual representation brings to geo-spatial
and longitudinal analyses. Specifically, we present a weakly supervised visual data
mining approach that discovers connections between recurring mid-level visual ele-
ments in historic (temporal) and geographic (spatial) image collections, and attempts
to capture the underlying visual style. In contrast to existing discovery methods that
mine for patterns that remain visually consistent throughout the dataset, the goal
is to discover visual elements whose appearance changes due to change in time or
location, i.e., exhibit consistent stylistic variations across the label space (date or
geo-location). To discover these elements, we first identify groups of patches that
are style-sensitive. We then incrementally build correspondences to find the same
element across the entire dataset. Finally, we train style-aware regressors that model
each element’s range of stylistic differences. We apply our approach to date and geo-
location prediction and show substantial improvement over several baselines that do
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not model visual style. We also demonstrate the method’s effectiveness on the related
task of fine-grained classification.

2.1 Introduction

Long before the age of “data mining,” historians, geographers, anthropologists, and
paleontologists have been discovering and analyzing patterns in data. One of their
main motivations is finding patterns that correlate with spatial (geographical) and/or
temporal (historical) information, allowing them to address two crucial questions:
where? (geo-localization) and when? (historical dating). Interestingly, many such
patterns, be it the shape of the handle on an Etruscan vase or the pattern of bark of a
Norwegian pine, are predominantly visual. The recent explosion in the sheer volume
of visual information that humanity has been capturing poses both a challenge (it
is impossible to go through by hand), and an opportunity (discovering things that
would never have been noticed before) for these fields. In this chapter, we take
the first step in considering temporally as well as spatially varying visual data and
developing a method for automatically discovering visual patterns that correlate with
time and space.

Of course, finding recurring visual patterns in data underlies much of modern
computer vision itself—it is what connects the disparate fragments of our visual
world into a coherent narrative. At the low level, this is typically done via sim-
ple unsupervised clustering (e.g., k-means in visual words [32]). But clustering
visual patterns that are more complex than simple blobs, corners, and oriented
bars turns out to be rather difficult because everything becomes more dissimilar in
higher dimensions. The emerging subfield of visual category discovery/visual data
mining [6-8, 12, 19, 25, 27, 30, 31] proposes ways to address this issue. Most
such approaches look for tight clumps in the data, discovering visual patterns that
stay globally consistent throughout the dataset. More recent discriminative methods,
such as [6, 30], take advantage of weak supervision to divide the dataset into discrete
subsets (e.g., kitchen vs. bathroom [30], Paris vs. Not-Paris [6]) to discover specific
visual patterns that repeatedly occur in one subset while not occurring in others.

But in addition to the globally consistent visual patterns (e.g., the Pepsi logo
is exactly the same all over the world) and the specific ones (e.g., toilets are only
found in bathrooms), much in our visual world is neither global nor specific, but
rather undergoes a gradual visual change. This is nowhere more evident than in
the visual changes across large extents of space (geography) and time (history).
Consider the three cars shown in Fig.2.1: one antique, one classic, and one from
the 1970s. Although these cars are quite different visually, they clearly share some
common elements, e.g., a headlight or a wheel. But notice that even these “common”
elements differ substantially in their appearance across the three car types, making
this a very challenging correspondence problem. Notice further that the way in which
they differ is not merely random (i.e., a statistical “noise term”). Rather, these subtle
yet consistent differences (curvy vs. boxy hood, the length of the ledge under the
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Fig. 2.1 Given images of historic cars, our algorithm is not only able to automatically discover
corresponding visual elements (e.g., yellow and green boxes) despite the large visual variations, but
can model these variations to capture the changes in visual style across time

door, etc.) tend to reflect the particular visual style that is both specific to an era yet
changing gradually over time (Fig. 2.9). If now we were given a photo of a different car
and asked to estimate its model year, we would not only need to detect the common
visual elements on the new car but also understand what its stylistic differences
(e.g., the length of that ledge) tell us about its age.

2.1.1 Overview

We propose a method for discovering connections between similar mid-level visual
elements in temporally and spatially varying datasets and modeling their “visual
style.” Here, we define visual style as appearance variations of the same visual
element due to change in time or location. Our central idea is to (1) create reliable
generic visual element detectors that “fire” across the entire dataset independent of
style, and then (2) model their style-specific differences using weakly supervised
image labels (date, geo-location, etc.). The reason for doing the first step is that
each generic detector puts all of its detections into correspondence (lower right in
Fig.2.1), creating a “closed world” focused on one visual theme, where it is much
easier to “subtract away” the commonalities and focus on the stylistic differences.
Furthermore, without conditioning on the generic detector, it would be very difficult
to even detect the stylistically informative features. For instance, the ledge in Fig. 2.1
(green box) is so tiny that it is unlikely to be detectable in isolation, but in combination
with the wheel and part of the door (the generic part), it becomes highly discriminable.

We evaluate our method on the task of date and geo-location prediction in three
scenarios: two historic car datasets with model year annotations and a Street View
imagery dataset annotated with GPS coordinates. We show that our method outper-
forms several baselines, which do not explicitly model visual style. Moreover, we
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also demonstrate how our approach can be applied to the related task of fine-grained
recognition of birds. This chapter expands upon our previous conference paper [18].

2.2 Related Work

We review related work in modeling geo-location and time, visual data mining, and
visual style analysis.

Modeling Space and Time Geo-tagged datasets have been used for geo-localization
on the local [16, 28], regional [3, 4], and planetary [13, 14] scales, but we are not
aware of any prior work on improving geo-location by explicitly capturing stylistic
differences between geo-informative visual elements (but see [6] for anecdotal evi-
dence of such possibility). Longitudinal (i.e., long-term temporal) visual modeling
has received relatively little attention. Most previous research has been on the special
case of age estimation for faces (see [10] for a survey). Recent work includes mod-
eling the temporal evolution of Web image collections [15] and dating of historical
color photographs [23]. We are not aware of any prior work on modeling historical
visual style.

Visual data mining Existing visual data mining/object discovery approaches have
been used to discover object categories [8, 12, 20, 25, 31], mid-level patches
[6, 26, 30], attributes [7, 27], and low-level foreground features [19]. Typically,
an appropriate similarity measure is defined between visual patterns (i.e., images,
patches, or contours) and those that are most similar are grouped into discovered
entities. Of these methods, mid-level discriminative patch mining [6, 30] shares the
most algorithmic similarities with our work; we also represent our visual elements
with HOG patches [5] and refine the clusters through discriminative cross-validation
training. However, unlike [6, 30] and all existing discovery methods, we go beyond
simply detecting recurring visual elements, and model the stylistic differences among
the common discovered elements.

Visual style analysis The seminal paper on “style-content separation” [34] uses
bilinear models to factor out the style and content components in pre-segmented,
prealigned visual data (e.g., images of letters in different fonts). While we also use
the term “style” to describe the differences between corresponding visual elements,
we are solving a rather different problem. Our aim is to automatically discover
recurring visual elements despite their differences in visual style, and then model
those differences. While our “generic detectors” could perhaps be thought of as
capturing “content” (independent of style), we do not explicitly factor out the style,
but model it conditioned on the content.

Fine-grained categorization can also be viewed as a form of style analysis, as
subtle differences within the same basic-level category differentiate one subordinate
category from another. Existing approaches use human-labeled attributes and key-
point annotations [1, 9, 36, 40] or template matching [38, 39]. Because these methods
are focused on classification, they limit themselves to the simpler visual world of
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manually annotated object bounding boxes, whereas our method operates on full
images. Furthermore, discovering one-to-one correspondences is given a primary
role in our method, whereas in most fine-grained approaches the correspondences
are already provided. While template matching methods [38, 39] also try to discover
correspondences, unlike our approach, they do not explicitly model the style-specific
differences within each correspondence set. Finally, these approaches have not been
applied to problems with continuous labels (regression), where capturing the range
of styles is particularly important.

Lastly, relative/comparative attributes [24, 29] model how objects/scenes relate
to one another via ordered pairs of labels (A is “furrier” than B). We also share the
idea of relating things. However, instead of using strong supervision to define these
relationships, we automatically mine for visual patterns that exhibit such behavior.

2.3 Approach

Our goal is to discover and connect mid-level visual elements across temporally and
spatially varying image collections and model their style-specific differences. We
assume that the image collections are weakly supervised with date or location labels.

There are three main steps to our approach: First, as initialization, we mine for
“style-sensitive” image patch clusters, that is, groups of visually similar patches with
similar labels (date or location). Then, for each initial cluster, we try to generalize
it by training a generic detector that computes correspondences across the entire
image collection to find the same visual element independent of style. Finally, for
each set of correspondences, we train a style-aware regression model that learns to
differentiate the subtle stylistic differences between different instances of the same
generic element. In the following sections, we describe each of the steps in turn.
We will use an image collection of historic cars as our running example, but note
that there is nothing specific to cars in our algorithm, as will be shown in the results
section.

2.3.1 Mining Style-Sensitive Visual Elements

Most recurring visual patterns in our dataset will be extremely boring (sky, asphalt,
etc.). They will also not exhibit any stylistic variation over time (or space), and not be
of any use in historical dating (or geo-localization)—after all, asphalt is always just
asphalt! Even some parts of the car (e.g., a window) do not really change much over
the decades. On the other hand, we would expect the shape of the hood between two
1920s cars to be more similar than between a 1920s and a 1950s car. Therefore, our
first task is to mine for visual elements whose appearance somehow correlates with
its labels (i.e., date or location). We call visual elements that exhibit this behavior
style-sensitive.
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Since we do not know a priori the correct scale, location, and spatial extent of
the style-sensitive elements, we randomly sample patches across various scales and
locations from each image in the dataset. Following [6], we represent each patch with
a histogram of gradients (HOG) descriptor [5], and find its top N nearest neighbor
patches in the database (using normalized correlation) by matching it to each image in
asliding window fashion over multiple scales and locations. To ensure that redundant
overlapping patches are not chosen more than once, for each matching image we only
take its best matching patch.

Each sampled patch and its N nearest neighbors ideally form a cluster of a recur-
ring visual element; although, in practice, many clusters will be very noisy due to
inadequacies of simple HOG matching. To identify the style-sensitive clusters, we
can analyze the temporal distribution of labels for each cluster’s instances. Intu-
itively, a cluster that has a tightly grouped (“peaky”) label distribution suggests a
visual element that prefers a particular time period, and is thus style-sensitive, while
a cluster that has a uniform label distribution suggests a pattern that does not change
over time. As extra bonus, most noisy clusters will also have a uniform distribution
since it is very unlikely to be style-sensitive by random chance. To measure the style
sensitivity of cluster ¢, we histogram its labels and compute its entropy:

E(c) =— > H()-log, H(i), 2.1)

i=1

where H (i) denotes the histogram count for bin i and n denotes the number of
quantized label bins (we normalize the histogram to sum to 1). We then sort the
clusters in ascending order of entropy. Figure2.2a, b shows examples of the highest
and lowest ranked clusters for the car dataset images. Notice how the highest ranked
clusters correspond to style-sensitive car elements, while the lowest ranked clusters
contain noisy or style-insensitive ones. We take the top M clusters as our discovered
style-sensitive visual elements, after rejecting near-duplicate clusters. A cluster is
considered to be a near-duplicate of a higher ranked cluster if it has at least five
cluster members that spatially overlap by more than 25 % with any of the instances
from the higher ranked cluster.

2.3.2 Establishing Correspondences

Each of the top M clusters corresponds to a style-sensitive visual element in a local
region of the label space. A few of these elements represent very specific visual
features that just do not occur in other parts of the data (e.g., car tailfins from 1960s).
But most others have similar counterparts in other time periods and our goal is to
connect them together, which will allow us to model the change in style of the same
visual element over the entire label space. For instance, one of the style-sensitive
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Fig. 2.2 Mining style-sensitive visual elements. Clusters are considered style-sensitive if they
have “peaky” (low-entropy) distribution across time (a) and style-insensitive if their instances are
distributed more uniformly (b). Notice how the high-entropy distributions (b) represent not only
style insensitivity (e.g., nondescript side of car) but also visually noisy clusters. Both are disregarded
by our method. a Peaky (low-entropy) clusters, b uniform (high-entropy) clusters

elements could represent frontal cars from 1920s. We want to find corresponding
frontal car patches across all time periods.

The same visual element, however, can look quite different across the label space,
especially over larger temporal extents (Fig. 2.1). To obtain accurate correspondences
across all style variations, we propose to train a discriminative detector using an
iterative procedure that exploits the continuous nature of the label space. In general,
we expect the appearance of a visual element to change gradually as a function of
its label. Our key idea is to initialize the detector using a style-sensitive cluster as
the initial positive training data, but then incrementally revise it by augmenting the
positive set with detections fired only on images with “nearby” labels (e.g., decades),
as shown in Fig.2.3.

Specifically, we first train a linear support vector machine (SVM) detector with
the cluster patches as positives and patches sampled from thousands of random Flickr
images as negatives. These negatives will make the detector discriminative against
generic patterns occurring in the “natural world” [30], which helps it to fire accurately
on unseen images. We then incrementally revise the detector. At each step, we run
the current detector on a new subset of the data that covers a slightly broader range
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Fig. 2.3 To account for a visual element’s variation in style over space or time, we incrementally
revise its detector by augmenting the positive training set with the top detections fired only on
images with “nearby” labels. This produces an accurate generic detector that is invariant to the
visual element’s changes in style

(a) 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s
2 . . - ' -

19205 1930s 1940s 1950s 1960s 1970s 1980s 1990s

Fig. 2.4 Establishing correspondences across time. a Correspondences made using the discrim-
inative patch mining approach [6, 30] using a positive set of 1920s frontal cars. Note how the
correspondences break down a third of the way through. b Starting with the same initial set of
1920s frontal cars, our algorithm gradually expands the positive set over the continuous label space
until it is able to connect the same visual element across the entire temporal extent of the dataset.
a Singh et al., b our approach

in label space, and retrain it by augmenting the positive training set with the top
detections. We repeat this process until all labels have been accounted for. Making
these transitive connections produces a final generic detector that fires accurately
across the entire label space, as shown in Fig.2.4b. Note that automatic discovery
of transitive visual correspondences across a dataset is very much in the spirit of the
Visual Memex [22] opening up several promising future directions for investigation.

There is an important issue that we must address to ensure that the detector
is robust to noise. The initial cluster can contain irrelevant, outlier patches, since
some of the top N nearest neighbors of the query patch could be bad matches.
To prune out the noisy instances, at each step of the incremental revision of our
detector, we apply cross-validation training [6, 30]. Specifically, we create multiple
partitions of the training set and iteratively refine the current detector by: (1) training
on one partition; (2) testing on another; (3) taking the resulting top detections as
the new training instances; and (4) repeating steps 1-3 until convergence, i.e., the
top detections do not change. Effectively, at each iteration, the detector learns to
boost the common patterns shared across the top detections and down-weights their
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Initial model (1920s) Final model

Fig. 2.5 Visualization of the positive HOG weights learned for the discovered frontal car visual
element. Compared to the initial model, which was trained on the 1920s images, the final model
cares much less about the car’s global shape but still prefers to see a wheel in the lower left corner

discrepancies without overfitting, which leads to more accurate detections in the next
iteration. After several iterations, we obtain a robust detector.

Note that a direct application of [6, 30] will not work for our case of continuous,
style-varying data because the variability can be too great. Figure 2.4a shows detec-
tions made by a detector trained with [6, 30], using the same initial style-sensitive
cluster of 1920s cars as positives. The detector produces accurate matches in nearby
decades, but the correspondence breaks down across larger temporal extents because
it fails to model the variation in style. Figure 2.5 visualizes the positive components
of the weights learned by the initial model trained only with the 1920s frontal car,
and those of our final model trained incrementally over all decades. The final model
has automatically learned to be invariant to the change in global shape of the car
over time. It still prefers to see a wheel in the lower left corner, since its appearance
changes much less over time.

Finally, we fire each trained generic detector on all images and take the top
detection per image (and with SVM score greater than —1) to obtain the final
correspondences.

2.3.3 Training Style-Aware Regression Models

The result of the previous step is a set of generic mid-level detectors, each tuned
to a particular visual element and able to produce a set of corresponding instances
under many different styles. Now we are finally ready to model that variation in style.
Because the correspondences are so good, we can now forget about the larger dataset
and focus entirely on each set of corresponding instances in isolation, making our
modeling problem much simpler. The final step is to train a style-aware regressor for
each element that models its stylistic variation over the label space.
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In general, style will not change linearly over the label space (e.g., with cars, it is
possible that stylistic elements from one decade could be reintroduced as “vintage”
in a later decade). To account for this, we train a standard nonlinear support vector
regressor (SVR) [33] with an e-insensitive loss function using ground-truth weakly
supervised image labels (e.g., date, geo-location) as the target score. We use Gaussian
kernels: K (x;, x;) = exp(—y ~'||x; — x;[|*), where y is the mean of the pairwise
distances among all instances and x; is the HOG feature, for instance, i. Under this
kernel, instances with similar appearance are most likely to have similar regression
outputs. Furthermore, to handle possible misdetections made by the generic detector
which could add noise, we weight each instance proportional to its detection score
when training the SVR. (We map a detection score s to a weightin [0, 1], via a logistic
function 1/(1 4 exp(—2s)).) Each resulting model captures the stylistic differences
of the same visual element found by the generic detector.

2.4 Results

In this section, we (1) evaluate our method’s ability to predict date/location com-
pared to several baselines, (2) provide in-depth comparisons to the discriminative
patch mining approach of [30], (3) show qualitative examples of discovered corre-
spondences and learned styles, and (4) apply our approach to fine-grained recognition
of birds.

Datasets We use three datasets: (1) Car Database (CarDb): 13,473 photos of cars
made in 1920-1999 crawled from cardatabase.net; (2) Internet Movie Car Database
(IMCDb): 2,400 movie images of cars made in 1920-1999 crawled from imcdb.org;
and (3) East Coast Database (EDb): 4,455 Google Street View images along the
eastern coasts of Georgia, South Carolina, and North Carolina. Example images are
shown in Fig.2.6. CarDb and IMCDb images are labeled with the model year of the
main car in the image, and EDb images are labeled with their GPS coordinates. These
are the “style” labels and the only supervisory information we use. For EDb, since our
SVRs expect 1D outputs (although a multivariate regression method could also be
used), we project the images’ 2D GPS coordinates to 1D using principal component
analysis; this works because the area of interest is roughly linear, i.e., long and
narrow, see Fig. 2.6c. These datasets exhibit a number of challenges including clutter,
occlusion, scale, location and viewpoint change, and large appearance variations
of the objects. Importantly, unlike standard object recognition datasets, ours have
continuous labels. We partition the CarDb and EDb datasets into train/test sets with
70/30 % splits. We evaluate on all datasets, and focus additional analysis on CarDb
since it has the largest number of images.

Image-level date/location prediction To evaluate on a label prediction task, we
need to combine all of our visual element predictors together. We train an image-
level prediction model using as features the outputs of each style-aware regressor
on an image. Specifically, we represent an image I with feature ¢ (I), which is
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Fig.2.6 Example images of the a Car Database (CarDDb), b Internet Movie Car Database (IMCDb),
and c East coast Database (EDb). Each image in CarDb and IMCDb is labeled with the car’s model
year. Each image in EDb is labeled with its GPS coordinate
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the concatenation of the maximum SVM detection scores of the generic detectors
(over the image) and the SVR scores of their corresponding style-aware regressors.
When testing on EDb, we aggregate the features in spatial bins via a spatial pyra-
mid [17, 21], since we expect there to be spatial consistency of visual patterns across
images. When testing on CarDb and IMCDb, we simply aggregate the features over
the entire image, since the images have less spatial regularity. We use these features
to train an image-level Gaussian SVR. This model essentially selects the most useful
style-aware regressors for predicting style given the entire image. To ensure that the
image-level model does not overfit, we train it on a separate validation set.

Baselines For date/location prediction, we compare three baselines: bag-of-words
(BOW), spatial pyramid (SP) [17], and Singh et al. [30]. For the first two, we
detect dense SIFT features, compute a global visual word dictionary on the full
dataset, and then train an intersection kernel SVR using the date/location labels. For
Singh et al. [30], which mines discriminative patches but does not model their change
in style, we adapt the approach to train date/location-specific patch detectors using
the initial style-sensitive clusters discovered in Sect.2.3.1. Specifically, we take each
specific cluster’s instances as positives and all patches from the remaining training
images that do not share the same labels (with a small “don’t care” region in between)
as negatives. Now, just like in the previous paragraph, we concatenate the max output
of the detectors as features to train an image-level Gaussian SVR. We optimize all
baselines’ parameters by cross-validation.

Implementation details We sample 80 x 80 pixel patches over an image pyramid
at five scales (i.e., min/max patch is 80/320 pixels wide in original image), and
represent each patch with a 10 x 10 x 31 HOG descriptor [5]. For EDb patches,
we augment HOG with a 10 x 10 tiny image in lab colorspace, which results in a
final 10 x 10 x 34 descriptor, when training the style-aware SVRs. We set N = 50,
n = 80, and M = 80, 315 for CarDb and EDb, respectively. For our generic SVM
detectors, we fix Cyyyy = 0.1, and cover 1/8 of the label space at each training step;
CarDb: 10years, EDb: 66 miles. For our SVRs, we fix € = 0.1 and set Cy,; = 100
and 10 for CarDb and EDb, respectively, tuned using cross-validation on the training
set.

2.4.1 Date and Location Prediction Accuracy

We first evaluate our method’s ability to predict the correct date/geo-location of the
images in CarDb/EDb. Figure2.7 and Table 2.1 (top rows) show the absolute error
rates for all methods. This metric is computed by taking the absolute difference
between the ground-truth and predicted labels.

Our approach outperforms all baselines on both datasets. The baselines have no
mechanism to explicitly model stylistic differences as they are either mining dis-
criminate patches over a subregion in label space (Singh et al.) or using quantized
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Fig. 2.7 Box plots showing date and location prediction error on the CarDb and EDb datasets,
respectively. Lower values are better. Our approach models the subtle stylistic differences for each
discovered element in the data, which leads to lower error rates compared to the baselines

Table 2.1 Mean absolute error on CarDb, EDb, and IMCDb for all methods

Ours Singh et al. Spatial Bag-of-words
[6, 30] pyramid [17]
CarDb (years) 8.56 9.72 11.81 15.39
EDb (miles) 77.66 87.47 83.92 97.78
IMCDb (years) |13.53 15.32 17.06 18.65

The result on IMCDb evaluates cross-dataset generalization performance using models trained on
CarDb. Lower values are better

local features (BOW and SP) that result in loss of fine detail necessary to model
subtle stylistic changes. Without explicitly making connections over space/time,
the baselines appear to have difficulty telling apart signal from noise. In particular,
we show substantial improvement on CarDb, because cars exhibit more pronounced
stylistic differences across eras that require accurate modeling. The stylistic differ-
ences in architecture and vegetation for EDb are much more subtle. This makes
sense, since the geographic region of interest only spans about 530 miles along the
U.S. east coast. Still, our method is able to capture more of the stylistic differences
to produce better results. Note that chance performance is around 19 years and 113
miles for CarDb and EDb, respectively; all methods significantly outperform chance,
which shows that stylistic patterns correlated with time/location are indeed present
in these datasets.

Figure 2.8 shows some discovered correspondences. Notice the stylistic variation
of the car parts over the decades (e.g., windshield) and the change in amount/type
of vegetation from north to south (e.g., trees surrounding the houses). In Fig.2.9 we
visualize the learned styles of a few style-aware regressors on CarDb by averaging
the most confident detected instances of each predicted decade.
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Fig. 2.8 Example correspondences on CarDb (top) and EDb (bottom). Notice how a visual ele-
ment’s appearance can change due to change in time or location

1920s 1990s

Fig. 2.9 In each row, we visualize the styles that a single style-aware regressor has learned by
averaging the predictions for each decade
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2.4.2 Cross-Dataset Generalization Accuracy

Recent work on dataset bias [35] demonstrated that training and testing on the same
type of data can dramatically overestimate the performance of an algorithm in a real-
world scenario. Thus, we feel that a true test for an algorithm’s performance should
include training on one dataset while testing on a different one, whenever possible.
To evaluate cross-dataset generalization performance, we take the models trained
on CarDb and test them on IMCDb. The third row in Table2.1 shows the result.
The error rates have increased for all methods compared to those on CarDb (with
BOW now almost at chance level!). Overall, IMCDDb is more difficult as it exhibits
larger appearance variations due to more significant changes in scale, viewpoint, and
position of the cars. CarDb, on the other hand, is a collection of photos taken by
car enthusiasts, and thus, the cars are typically centered in the image in one of a
few canonical viewpoints. Note also that the gap between BOW and SP is smaller
compared to that on CarDb. This is mainly because spatial position is ignored in BOW
while it is an important feature in SP. Since the objects’ spatial position in IMCDDb is
more varied, SP tends to suffer from the different biases. Since our generic detectors
are scale- and translation-invariant, we generalize better than the baselines. Singh et
al. is also scale- and translation-invariant, and thus, shows better performance than
BOW and SP. Still, our method retains a similar improvement over that baseline.

2.4.3 Detailed Comparisons to Singh et al. [30]

In this section, we present detailed comparisons to Singh et al. [30], which is similar
to our method but does not capture the style-specific differences.

2.4.3.1 Robustness to Number of Detectors

Figure 2.10 (left) plots the geo-location prediction error as a function of the number
of detectors on EDb for the two methods (the curve averages the error rates over five
runs; in each run, we randomly sample a fixed number of detectors, and corresponding
style-aware models for ours, among all 315 detectors to train the image-level SVR).
Our approach outperforms the baseline across all points, saturating at a much lower
error rate. This result demonstrates that when the visual patterns in the data change
subtly, we gain a lot more from being style-aware than being discriminative.

We also analyze how well our models generalize across the label space. Using
generic detectors initialized only with the visual patterns discovered within a specific
decade (which results in 10 detectors), we train the corresponding style-aware regres-
sion models. We then use their outputs to train the image-level regressor. Across all
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eight different decade initializations, we find our final mean prediction error rates to
be quite stable (~10years). This shows our approach’s generalizability and robust-
ness to initialization.

2.4.3.2 Visual Consistency of Correspondences

We next evaluate the quality of our discovered correspondences to that of Singh
et al. using a purity/coverage plot. Purity is the % of cluster members that belong to
the same visual element and coverage is the number of images covered by a given
cluster. These are standard metrics used to evaluate discovery algorithms, and Singh
et al. already showed superior performance over common feature/region clustering
approaches using them. Thus, we feel it is important to evaluate our approach using
the same metrics. We randomly sample 80 test images (10 per decade) from CarDb,
and randomly sample 15 generic detectors and 15 discriminative detectors for ours
and the baseline, respectively. We fire each detector and take its highest scoring
detected patch in each image. We sort the resulting set of detections in decreasing
detection score and ask a human labeler to mark the inliers/outliers, where inliers are
the majority of high-scoring detections belonging to the same visual element. Using
these human-marked annotations and treating each set of detections as a cluster, we
compute average purity as a function of coverage.

Figure2.10 (right) shows the result. We generate the curve by varying the thresh-
old on the detection scores to define cluster membership and average the resulting
purity scores (e.g., at coverage = 0.1, purity is computed using only the top 10 %
scoring detections in each cluster). Both ours and the baseline produce high purity
when the clusters consist of only the highest scoring detections. As more lower scor-
ing instances are included in the clusters, the baseline’s purity rates fall quickly, while
ours fall much more gracefully. This is because the baseline is trained to be discrimi-
native against visual elements from other time periods. Thus, it succeeds in detecting
corresponding visual elements that are consistent within the same period, but cannot
generalize outside of that period well. Our detectors are trained to be generic and
thus able to generalize much better, maintaining high purity with increased coverage.

< Varying number of detectors (EDb) Visual consistency of correspondences (CarDb)
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Fig. 2.10 Absolute prediction error rates when varying the number of detectors (lower is better),
and visual consistency of correspondences measured using purity and coverage (higher is better)
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(a) GT=1925,Pred = 1924.81  GT = 1946, Pred = 1945.87  GT = 1957, Pred = 1956.98 ~ GT=1971,Pred = 1971.00  GT = 1991, Pred = 1991.29
Error = 0.19 years Error = 0.13 years Error = 0.02 years Error = 0.00 years Error = 0.29 years

(b) GT=1923, Pred = 1965.58 ~ GT = 1999, Pred =1956.66 ~ GT = 1988, Pred = 1950.37  GT = 1976, Pred = 1926.57  GT = 1974, Pred = 1949.02
Error = 42.58 years Error = 42.34 years Error = 37.63 years Error = 49.43 years Error = 24.98 years

Fig.2.11 Examples of accurate (a) and inaccurate (b) date predictions on CarDb. GT ground-truth
year, Pred predicted year, and Error absolute error in years

2.4.4 Qualitative Predictions

We next show qualitative examples of accurate and inaccurate date predictions on
CarDbinFig.2.11a, b, respectively. Some common errors, as shown in Fig. 2.11b, are
due to the car having atypical viewpoint (first example), resembling a vehicle from
a different decade (second example), being too small in the image (third example),
or being uncommon from that decade (fifth example).

2.4.5 Fine-Grained Recognition

Finally, the idea of first making visual connections across a dataset to create a “closed
world,” and then modeling the style-specific differences is applicable to several other
domains. As one example, we adopt our method with minor modifications to the task
of fine-grained recognition of bird species, where the labels are discrete.

Specifically, we first mine recurring visual elements that repeatedly fire inside the
foreground bounding box (of any bird category) and not on the background (cf. style-
sensitive clusters). We take the top-ranked clusters and train generic unsupervised
bird-part detectors. Then, given the correspondence sets produced by each detec-
tor, we train 1-vs-all linear SVM classifiers to model the style-specific differences
(cf. style-aware SVRs). Finally, we produce an image-level representation, pooling
the maximum responses of the detectors and corresponding classifier outputs in a
spatial pyramid. We use those features to train image-level 1-versus-all linear SVM
classifiers, one for each bird category.

We evaluate classification accuracy on the CUB-200-2011 dataset [37], which is
comprised of 11,788 images of 200 bird species, using the provided bounding box
annotations. We compare to the state-of-the-art methods of [1, 2, 11, 40, 41], which
are all optimized to the fine-grained classification task. The strongly supervised
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Table 2.2 Fine-grained recognition on CUB-200-2011 [37]

Y.J. Lee et al.

Ours Zhanget |Bergand |Zhanget |Chaietal. | Gavves et
al. [40] Belhumeur | al. [41] [2] al. [11]
(1]
Mean 41.01 28.18 56.89 50.98 59.40 62.70
accuracy (%)
Supervision Weak Strong Strong Strong Weak Weak

methods [1, 40, 41] use ground-truth part annotations for training, while the weakly
supervised methods (ours and [2, 11]) use only bounding box annotations.

Table 2.2 shows mean classification accuracy over all 200 bird categories. Even
though our method is not specialized for this specific task, its performance is
respectable compared to existing approaches (some of which employ stronger super-
vision), and even outperforms [40] despite using less supervision. We attribute this
to our generic detectors producing accurate correspondences for the informative bird
parts (see Fig.2.12), allowing our style-specific models to better discriminate the

fine-grained differences.
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2.5 Conclusion

In this chapter, we presented a novel approach that discovers recurring mid-level
visual elements and models their visual style in appearance-varying datasets. By
automatically establishing visual connections in space and time, we created a “closed
world” where our regression models could focus on the stylistic differences. We
demonstrated substantial improvement in date and geo-location prediction over sev-
eral baselines that do not model style.

Source code, data, and additional results are available on our project webpage:
http://www.cs.ucdavis.edu/~yjlee/iccv2013.html
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