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Abstract It is widely believed that road traffic as a whole self-adapts to the current
situation to make travel times shorter, if the navigation devices exploit real-time
traffic information. A novel theoretical approach to study this belief is the online
routing game model. This chapter describes the model of online routing games in
order to be able to determine how we can measure and prove the benefits of online
real-time data in navigation systems. Three different notions of the benefit of online
data and two classes of online routing games are defined. The class of simple naive
online routing games represents the current commercial car navigation systems.
Simple naive online routing games may have undesirable properties: stability is
not guaranteed, single flow intensification may be possible and the worst case
benefit of online data may be bigger than one, i.e. it may be a “price”. One of the
approaches to avoid such problems of car navigation is intention propagation where
agents share their intention and can forecast future travel times. The class of simple
naive intention propagation online routing games represents the navigation systems
that use shortest path planning based on forecast future travel times. In spite of
exploiting intention propagation in online routing games, single flow intensification
may be possible, the traffic may fluctuate and the worst case benefit may be bigger
than one. These theoretical investigations point out issues that need to be solved by
future research on decision strategies for self-adapting traffic flows with autonomous
navigation.
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1 Introduction

This chapter investigates the properties of autonomous car navigation devices with
access to real-time data. If all the information about the road network, the cars on the
roads and the destination of the cars could be collected by a centralized system, then
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it would be able to create an optimal plan for the trips of the cars. Optimality may
be measured in several ways, but usually we assume that the goal is to optimize
some “global” parameter of the traffic, like the sum of the travel times. We also
assume that the goal is to assure some kind of fairness for all traffic participants, for
example, none of the cars pays with some extra long travel time to achieve the global
optimum of the whole traffic. Everyday traffic is not coordinated by a centralized
system, and even if the traffic was coordinated by such centralized system, there
would be the question whether the individual traffic participants would conform
to its instructions. In reality, the traffic participants make their own autonomous
decisions based on their intentions and the information available for them locally.
This means that instead of centralized decision making, we have a set of autonomous
distributed decision makers, i.e. a multi-agent system. In this aspect autonomy refers
to the autonomous route planning by the navigation devices in the individual cars
instead of following the instructions of some centralized planner.

Another aspect of the autonomous behaviour of navigation systems is related to
the ability of the traffic as a whole to self-organize and adapt to the current situation,
which is a kind of autonomicity. The major trends that became more and more
accomplished in the history of computing are ubiquity, interconnection, intelligence,
delegation and human orientation [14]. The current wave of this progress is marked
by the widespread availability of online real-time data. The navigation devices in
cars can get up-to-date information on the current status of the traffic, like the current
travel time on each road, indicating the current situation of the traffic that needs to be
adapted to. The routing algorithms implemented in the navigation devices must be
able to utilize this real-time data to self-heal the global traffic; for example, if a road
becomes congested, then the navigation devices autonomously tell the individual
cars how to adapt to the current traffic situation and send the cars to less congested
roads. Although current navigation devices are already able to utilize real-time data
for route planning, these systems were implemented without clear understanding
of the impact of real-time data on traffic as a whole and how real-time data affects
the above-mentioned self-adaptation aspects of the traffic flows. Note that in this
chapter we focus on online-data-based self-adaptation which is different from self-
adaptation based on previous experiences, like in the case of route selection from
home to work based on the experience of the previous day.

Two well-known examples of real-time information based navigation systems
are Google Maps and Waze. The planning in these systems is done on central
server(s) which may play similar role to the virtual environment in the anticipatory
vehicle routing of Claes et al. [3]. There are other traffic management systems
that combine central planning and local freedom, like the PLANETS system [8]
in which global control strategy is provided from a Traffic Management Centre, but
traffic participants have a freedom to make decisions autonomously. In our view,
self-interested agents will not conform to a central strategy if it is not individually
rational, so the global strategy must emerge from the autonomous agents’ decision.
Therefore, we believe that the basic theoretical model of the online route planning
problem should not have an explicit concept of a central planner or a virtual
environment even if the agents use the services of these abstractions.
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It is widely believed and intuitively we might think that traffic route planning is
able to self-adapt to the current situation and plan trips with shorter travel time if
we take into account real-time traffic information; however, the classical theoretical
models do not have definite answer if online-data-based car navigation is able to
self-adapt and produce better traffic or not. There is need for new theoretical studies
like the one described in this chapter, because autonomous cars are being designed
and the usage of online-data-based navigation systems is spreading and we do not
even know how to measure their benefit, not to mention how to optimize their self-
healing behaviour.

This chapter has four main sections. In Sect. 2 we shortly describe the classical
non-adaptive game theory model for the routing problem, which does not handle
real-time information. In Sect. 3 we describe the new online game theory model,
which is able to model self-adaptation to real-time information. In Sect. 4 we show
the properties of the class of simple naive online routing games, which model
the behaviour of traffic using the currently available commercial online-data-based
navigation devices. In Sect. 5 we show the properties of the class of simple naive
intention propagation (SNIP) online routing games, which model the prediction
utilizing anticipatory vehicle routing systems proposed by researchers to improve
the currently available commercial online-data-based navigation devices. Finally in
Sect. 6 we summarize the main messages of the chapter. The description of these
models and the analysis results are based on formal proofs of previous papers
[11, 12], but here we present them in an easier understandable way and put them
in the context of autonomy and self-adaptation.

2 Classic Non-adaptive Approach

In this section we highlight the main theoretical findings of routing games and online
mechanism design, because the model of autonomously self-adapting navigation is
based on them and the research in the new field of online routing games1 has to
answer similar questions.

Routing Games Algorithmic game theory studies networks with source routing
(Sect. 18 in [9]), in which end users simultaneously choose a full route to their
destination and the traffic is routed in a congestion sensitive manner. Two models
are used: non-atomic selfish routing and atomic selfish routing. Non-atomic routing
is meant to model the case when there are very many actors, each controlling a very
small fraction of the overall traffic, so a traffic flow from a source to a destination
can be divided among several routes. Atomic routing is meant to model the case
when each actor controls a considerable amount of traffic, so a single traffic flow is
not divided among several routes. Both models are studied in detail and showed

1In the generic form joint resource utilization games [11].



16 L.Z. Varga

similar properties. The main difference is that the non-atomic model basically
has continuous functions having unique extreme values, while the atomic model
has discrete functions which can approximate extreme values at several points.
The algorithmic game theory model of the routing problem is based on the triple
.G; r; c/, where G is the road network given by a directed graph, r is the total traffic
flow given by a vector of ri traffic flows from source to destination vertices and c is
the throughput characteristic of the road network given by a cost function.

A flow distribution is optimal if it minimizes the cost of the total traffic flow over
all possible flow distributions. A flow distribution is an equilibrium flow distribution
if none of the actors can change its traffic flow distribution among its possible paths
to decrease its cost. The equilibrium flow distribution is a rational choice for every
actor, because deviating from the equilibrium would increase the cost for the actor.

It is proven (Sect. 18 in [9]) that every non-atomic routing problem has at least
one equilibrium flow distribution and all equilibrium flow distributions have the
same total cost. The price of anarchy is the ratio between the cost of an equilibrium
flow distribution and the optimal flow distribution. If the cost functions are linear,
then the price of anarchy in any non-atomic routing problem is not more than 4� 3.
If the cost functions can be non-linear, then one can create cost functions to exceed
any given bound on the price of anarchy of non-atomic routing problems.

In atomic routing problems, the existence of equilibrium flow distribution is not
always guaranteed. Atomic routing problems have equilibrium flow distribution if
every traffic flow ri has the same value or if the cost functions are linear. If there are
more than one equilibrium flow distributions, then their total costs may be different.
If the cost functions of an atomic routing problem are linear, then the price of
anarchy is at most .3Cp5/� 2. If the cost functions of an atomic routing problem
are linear and in addition every traffic flow ri has the same value, then the price of
anarchy is at most 5� 2.

It is known that if the routing problem has an equilibrium and the actors try to
minimize their own cost (best-response), then the traffic flow distribution converges
to an equilibrium.

The algorithmic game theory investigations of the routing game revealed impor-
tant properties; however, the algorithmic game theory model contains the following
assumptions: (a) The throughput characteristic of the network does not change with
time, and the drivers can compute this characteristic or learn it by repeatedly passing
the road network. (b) The drivers simultaneously decide their optimal route. (c) The
outcome travel time for a given driver depends on the choice of all the drivers and
the characteristic of the network, but not on the schedule of the trip of the drivers.
These assumptions are not valid for car traffic where the drivers use a navigation
device exploiting online data.

The issue of traffic dynamism is studied in the field of dynamic traffic assignment
[5], but there they investigate the time-varying properties of traffic flow, whereas
here we assume that the traffic flow is basically constant and only the cost functions
may change. In our investigations the critical issue is the adaptive sequential
decision making of the agents. In the classical game theory approach, the issue of
sequential decision making of agents is studied in online mechanism design.
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Online Mechanisms Online mechanism design problem is a multi-agent sequen-
tial decision-making problem [10]. When agents participate in the mechanism, they
report to a central planner for a given period their request for certain resources at
given valuations (which may be different from their private values). The central
planner decides which resources at which cost are allocated to which agent in each
time step. All agents are trying to maximize their utility. The model of the online
mechanism problem is the five tuple .t; �; k; c; u/, where t is a sequence of time
periods, � is the set of agent types where each agent type is characterized by the
arrival/departure time of the agent and its valuation of goods, k is a sequence of
decision vectors in each time period by each agent, c is the cost function of the
decisions and u is the utility function of the agents.

In this model the � set of agent types may be model-free when no probabilistic
information is known about the agents or may be model based if probabilistic
information is known. The agents may report values different from their private
agent type, but only for the time period when they are present, at the beginning
of the reported time period and without knowing the reports of the other agents
(closed direct revelation). Usually the goal is to design online mechanisms where the
truthful revelation is the dominant strategy. The effectiveness of online mechanisms
is measured similarly as that of online algorithms: the performance of the online
mechanism is compared with that of an offline mechanism that has the complete
information about all future agent types.

The dynamic nature of online mechanisms is a good starting point to model the
online-data-based adaptive routing problem; however, the differences are consider-
able: in contrast with online mechanisms, in the online-data-based adaptive routing
problem, there is no central planner (agents make their own plan), the arrival and
departure times are not flexible (agents want to start their plan when they arrive) and
the actual cost is determined not at the decision time but at utilization time.

3 Game Theory Model for the Online-Data-Based
Self-adapting Routing Problem

The online-data-based self-adapting routing problem is a challenging application,
because in this problem autonomous agents have access to real-time data, and based
on this information, they autonomously try to self-organize themselves by creating
adapted plans to achieve their individual goals in an environment where they jointly
utilize resources that become more costly as more agents use them. In this problem
agents are dynamically arriving and departing after completing their plans. The
plans are created by exploiting online data that describe the current status and
the current cost of the resources. There is uncertainty about the feasible decision
of an agent, because the cost of the resources will change by the time the agent
starts to use them: departing agents will release the resources as they complete
their plans, agents simultaneously creating their plans will influence each other’s



18 L.Z. Varga

costs and agents arriving later may also influence the costs of the resources used
by agents already executing their plans. This is somewhat similar to typical game
theory problems, where the outcome of the action of the agent depends on its own
decision plus the decisions of the other agents; however, in the self-adapting routing
problem, the outcome depends on even more circumstances as written above. This
type of applications are called online joint resource utilization games [11] which is
derived from algorithmic game theory [9] and online mechanisms [10]. Note that
these games are different from resource allocation or minority games [7] which are
simultaneous one shot or repeated simultaneous games where there might be some
coordination among some of the agents. In contrast, online joint resource utilization
games are continuous and non-cooperative games exploiting real-time data.

Adaptive car navigation using real-time data is a special case of online joint
resource utilization games, because the allowed order of the resource utilization
in the plan of the agents is restricted by the structure of the road network. From
theoretical point of view, online-data-based car navigation applications are called
online routing games [11]. Note that in this approach each driver makes an
individual online-data-based decision at the time of entering the network, whereas in
other approaches [2] drivers learn the best route to select, based on past experiences.

3.1 The Model of Online Routing Games

In order to have a generic model, the model of the online joint resource utilization
game was defined [11] as an extension of the algorithmic game theory model of the
routing problem and the online mechanisms. The model resembles the algorithmic
game theory routing game model in the concepts of flow, cost and resource, and it
resembles the model of online mechanisms in the sequences of time periods and
decisions. Time unit T is introduced in order to be able to compute the rate of
resource utilization. The model of online routing games [11] is like the model of
online joint resource utilization games but with a restriction on the allowed plans
represented by a graph and with somewhat different cost functions. The formal
model is described in this subsection, and there are a few examples in Sects. 4 and
5.2.

The model of the online routing game is the sextuple .t; T; G; c; r; k/, where

• t D f1; 2; : : :g is a sequence of equal time periods.
• T is a natural number with T time periods giving one time unit (e.g. 1 min).
• G is a directed graph G D .V; E/ with vertex set V and edge set E where each

e 2 E is characterized by a cost function ce which is equal to the utilization time
of the edge.

• c is the cost function of G with ce W RC ! RC for each edge e of G mapping
the incoming flow at each time period to the travel time on that edge, which is
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never less than the remaining cost of any other agent currently utilizing that edge
increased with the time gap of the flow.2

• r is the total flow given by a vector of ri flows with ri denoting the flow aiming
for a trip Pi from a source vertex si of G to a target vertex ti of G.

• k D .k1; k2; : : :/ is a sequence of decision vectors with decision vector kt D
.kt

1; kt
2; : : :/ made in time period t and kt

i the decision made by the agent of the
flow ri in time period t.

In this model, the graph G may contain parallel edges. The cost functions are non-
negative, continuous and non-decreasing. The cost functions have a constant part
which does not depend on the flow on the edge and a variable part which depends
on the flow on the edge. The variable part is not known to any of the actors of the
model until an agent exits an edge and reports it. The flow ri is given by T�ni where
ni is a natural number constant, meaning that the following distance of the units of
the flow ri are ni time periods.3 The kt

i decision is how the trip Pi is routed on a
single path of the paths leading from si to ti. The actual cost of a path .e1; e2; e3; :::/

for a flow starting at time period t is the sum of the cost of the edges, and the actual
cost of an edge is determined at the time when the flow enters the edge.

The actual cost of the edges becomes known for the agents only when an agent
reports its actual cost. Because agents do not report cost values in each time step,
the agents interested in the cost values must decrease the last reported value by
taking into account the time elapsed since the last reporting event (it is similar to the
pheromone evaporation in [4]).

The online routing game model can accommodate changes of the cost function
c over the sequence of time periods t, because the agents can get information about
the actual cost only from the cost reported by the agents exiting an edge.

Routing Strategy The critical point in the online routing game is how to determine
the best decision vector k. The algorithmic game theory approach assumes that the
agents have full information about the cost functions, and the theory tells what the
best strategy is in the case of simultaneous decisions but does not tell how the agents
can achieve this. In online mechanisms a central planner decides which resources
at which cost are allocated to which agent. In online routing games there is no
central planner. The agents in online routing games will have to apply algorithms
similar to online algorithms [1]. At this time we are not investigating how the agents
of online routing games determine their strategy; instead, we are investigating the
performance of the strategies of current navigation devices.

Simple Naive Strategy Typical navigation software currently installed in cars use
simple shortest path search in the road network, possibly modifying the distances
with the online information about the actual traffic delay. We call this decision

2In this model cars cannot overtake the cars already on the road and there is a time gap, i.e.
minimum “following distance”.
3So if T D 6 time steps and ni D 2, then one car enters the network every second time step and
the intensity of the flow is 3, because 3 cars enter the network in a time unit.
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strategy simple naive strategy. This strategy is investigated because of its practical
importance. Note that the simple naive strategy is by definition deterministic; thus
it is a pure strategy.

3.2 The Benefit of Online Real-Time Data

We would like to be able to tell if the agents are better off by autonomously trying to
self-adapt to the observed online real-time data or not. In order to be able to compare
the costs of the agents using online data with the costs of the agents not using online
data, we have to know what we are going to compare with what.

If we take the approach of online algorithms, then we would compare the results
of the online routing game with the results of an oracle that has all the information
needed. One might think that in our case the oracle with all information would be
the central planner, because the central planner has all the information and can tell
each agent which route to take.

The central planning oracle might be good to measure the global effectiveness
of the agents in the online routing game model; however, it evaluates not only
the benefits of making decisions based on online data, but in addition, it evaluates
the different decision-making strategies as well. In the online routing game model
there is no coordination among the agents and the agents make decisions using,
for example, the simple naive strategy, while in the central planning and the
algorithmic game theory approaches, the agents are coordinated and they exploit
their knowledge about the cost functions. Therefore, if we want to evaluate only the
benefits of autonomous self-adaptation using online real-time data, then we want to
compare the results with an “oracle” using the same decision-making strategy.

In the algorithmic game theory model, there is equilibrium and the price of
anarchy concept is the ratio between the equilibrium and the optimum. Later in
this chapter (in Theorem 1), we will see that there are simple naive strategy online
routing games which do not have equilibrium at some flow values. If there is no
equilibrium, then we must have different measures for the best, worst, and average
cases (which are guaranteed to exist if there is finite sequence of time periods).
Depending on the type of application, we are interested in the different types of
benefits. The most important is the worst case, because it can be used to provide a
guarantee in critical applications. The best case can be used in applications, where
we have to make sure that a certain value is achieved at least once. The average
case is seldom useful in itself; usually we have to consider statistical distribution
parameters as well.

The above discussion is concluded with the definition of the different benefits
of online real-time data [11]. If these benefits are below 1, then the agents have a
benefit, because their costs (travel times) are reduced. If these benefits are greater
than 1, then they are in fact a “price” like the price of anarchy.
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Definition 1 The worst/best/average case benefit of online real-time data at a given
flow is the ratio between the cost of the maximum/minimum/average cost of the flow
and the cost of the same flow with an oracle using the same decision-making strategy
and only the fixed part of the cost functions.

Classes of Online Routing Games Online routing games using the same type of
decision strategies belong to the same class of online routing games. Each class
needs to be evaluated how much benefit they make out of online real-time data,
in order to be able to determine the type of application where they are suitable.
The evaluation should include formal proofs. In this paper we discuss the formal
analysis of the class of simple naive strategy online routing games and the class of
SNIP online routing games.

Although the simple naive decision strategy is often applied in real world, it
is not the best, because it does not alternate the agents of a flow among two or
more paths, whereas the optimal central planning and the algorithmic game theory
approach use several paths for the same flow. Further research is needed to study
different online routing game decision strategies derived from other related games
like resource allocation or minority games [7] and the El Farol Bar problem in [6].

4 Simple Naive Strategy Online Routing Games

The simple naive strategy was introduced in Sect. 3.1 and now we discuss properties
of simple naive strategy online routing games [11]. The first property states that if
the agents of the car navigation system use simple naive strategy to autonomously
adapt to the current situation of the traffic, then at some flow values they may make
the traffic fluctuate.

Theorem 1 There are simple naive strategy online routing games which do not
have equilibrium at certain flow values.

Proof The proof [11] is informally illustrated in Fig. 1. The traffic will fluctuate
between the roads e1 and e2 if at some flow value the non-congested travel time on
e2 is smaller than the non-congested travel time on e1, which is smaller than the

Fig. 1 Simple naive online routing game with fluctuation
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congested travel time on e2, which is smaller than the congested travel time on e1.
In the beginning the traffic starts to flow on e2, so the travel time on e2 starts to
increase, and when the travel time on e2 exceeds the non-congested travel time on
e1, then the traffic at vertex v1 switches to e1, and then the travel time on e2 starts
to decrease, and when the travel time on e2 drops below the travel time of e1, the
traffic switches to e2, so the travel time on e2 starts to increase and the cycle starts
again. ut

The second property is the possibility of single flow intensification: if the agents
of the navigation system use simple naive strategy to autonomously adapt to the
current situation of the traffic and only a single flow enters the road network, then at
some flow value at some time there may be a road somewhere in the network, where
the flow is bigger than the flow that entered the network. The formal statement is
the following:

Theorem 2 There are simple naive strategy online routing games, where the total
traffic flow has only one incoming flow, i.e. r D .r1/; however, the flow on some of
the edges of the road network G sometimes may be more than r1.

Proof The proof [11] is informally illustrated here with the network of Fig. 2, where
road e2 is not susceptible to congestion, the non-congested travel time on road e1 is
smaller than the travel time on e2, which is smaller than the congested travel time
on e1 at some flow value, which is smaller than 1.5 times the travel time on e2.
In addition, the travel time on e2 is more than 2 time units. In this network it may
happen that a platoon of the full incoming flow going on e1 is caught up by some
agents that go on e2 and arrive at vertex v2 at the same time, so a bigger flow will
go into e3 than the one that enters the network. ut

The third property is that the online information may have a “price”: if the agents
of the car navigation system use simple naive strategy to autonomously adapt to
the current situation of the traffic, then sometimes they may be worse off than
without exploiting information about the current situation. The formal statement
is the following:

Theorem 3 There are simple naive strategy online routing games where the worst
case benefit of online real-time data is greater than one, i.e. in these games the worst
case benefit is a “price”.

Fig. 2 Simple naive online routing game with “single flow intensification”
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Proof The proof [11] is informally illustrated here with the network of Fig. 2 if road
e3 is susceptible to congestion. Without online information all the agents would
select the path .e1; e3/; however, if the agents exploit online information, then in
accordance with Theorem 2, at some flow value at some time, the incoming flow
of e3 will be a platoon of the full incoming flow of the network from e1 plus some
other flow from e2. The result is that the travel time on path .e1; e3/ in this case will
be longer than the travel time without online information. ut

5 Simple Naive Intention Propagation Strategy Online
Routing Games

As we have seen, if the agents of car navigation systems use the simple naive
strategy to autonomously adapt to the current situation of the traffic, then the traffic
may have properties that we are not happy with. These findings are in line with
the simulation results, like the simple scenario consisting of two parallel routes
investigated in [13]. The simulations also showed that online information often leads
to oscillations in the number of cars on the routes, the velocity and the travel times,
which lead to worse overall performance. In the discussion the authors conclude that
one of the reasons for the oscillations is that the real-time travel information reflects
the state of the network some time ago. Another reason for the oscillation is that the
agents do not coordinate their actions. In order to improve these, the authors advise
the usage of anticipatory traffic forecast based on the broadcast route choice of the
agents, which basically means that the agents share or propagate their intentions. In
order to improve the simple naive strategy, the approach of intention propagation
was proposed in the anticipatory vehicle routing system using delegate multi-agent
systems [3]. In this section we discuss how the online routing game model [11] is
used to investigate some of the properties of the usage of intention-propagation-
based prediction in autonomously self-adapting car navigation.

5.1 Intention Propagation

The anticipatory vehicle routing proposed in [3] uses the individual planned routes
of the agents to forecast future traffic density. Every vehicle is represented by a vehi-
cle agent running on a smart device inside the vehicle. Vehicle agents communicate
with the delegate multi-agent system. The delegate multi-agent system represents
the traffic environment and is able to make forecast of future traffic density based
on the current traffic situation and the planned routes of the vehicles. The delegate
multi-agent system provides the traffic forecast back to the vehicle agents which use
this information to plan their trip.
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The delegate MAS can predict future travel times based on the intention
notifications that it has received from all vehicle agents. The delegate MAS has
a parametrized model that describes the relationship between the travel time and
the intention notifications. The parameters are continuously updated based on both
historical and real-time data, so basically the delegate MAS computes the cost
functions of the online routing game model with the ability to handle adapting cost
functions.

If the predicted future travel times show that a new travel route is preferable,
then the vehicle agent is free to change its route plan. If the vehicle agent changes
its route plan, then it notifies the delegate MAS of its change of intention. The old
intention is then invalidated and the new intention is registered in the delegate MAS.

Although the vehicle agent could use several strategies to revise its intention,
we assume that vehicle agents always select the shortest travel time which is called
simple naive decision strategy in the online routing game model.

5.2 Properties of Intention-Propagation-Based Prediction
in Online Routing Games

A slightly modified version of the above anticipatory vehicle routing system is used
to define and formally analyse the class of online routing games that use intention-
propagation-based prediction in their decision mechanism [12]. This class of online
routing games are called SNIP online routing games.

Definition 2 Simple naive intention propagation online routing games (SNIP
online routing games) are online routing games where the decision-making agents
of the flows ri are the vehicle agents of the anticipatory vehicle routing system; the
vehicle agents use the delegate MAS as described in the previous section to predict
the travel time for each path pj of their trip Pi; and their decision kt

i is to select the
path with the shortest travel time among the predicted travel times on the different
paths of their trip Pi. The vehicle agent notifies the delegate MAS of its selected
path, and the delegate MAS remembers this selection while the vehicle agent is in
the network and invalidates it when the vehicle agent exits the road network.

Note that SNIP online routing games are a little bit different from the anticipatory
vehicle routing system of Claes et al. [3], because the SNIP vehicle agents select
their route when they enter the road network, and in accordance with the online
routing game model, they do not revise it during their trip.

The agents receive a prediction of future traffic in SNIP online routing games, so
we would expect that this additional information can be used to improve the proper-
ties of simple naive online routing games. Unfortunately intention propagation does
not solve the “single flow intensification” problem, as the next Theorem 4 says.
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Fig. 3 The network of the SNIP online routing game SN5:1

Theorem 4 There are SNIP online routing games where the total traffic flow has
only one incoming flow, i.e. r D .r1/; however, the flow on some of the edges of the
network G sometimes may be more than r1.

Proof In this paper we are informally highlighting the essence of the proof [12]
of the theorem with the SNIP online routing game SN5:1. The network of SN5:1

is shown in Fig. 3. The cost functions are ce1 D 10 C x, ce2 D 10; 5 C
x and ce3 D 1 C x, where x is the total incoming flow on the edge. The
network has only one incoming flow from v1 to v3. Because the flow receives
predictions, normally it alternates the flow between the roads e1 and e2. Because
the cost functions of e1 and e2 are different, the flow fluctuates on road e3.
As a result, the flow on e3 will be bigger, for a short time, than the incoming
flow. ut

The above Theorem 4 shows that “single flow intensification” may happen in
SNIP online routing games, but it does not happen the same way as in simple naive
online routing games. The proof of the above theorem cannot be continued to prove
that the worst case benefit of online data in SNIP online routing games may be
more than one the same way as it was done in [11]. However, there is an additional
alternative proof in the next Theorem 5, and this proof points out another reason for
possible worst case benefit above one.

Theorem 5 There are SNIP online routing games where the worst case benefit of
online real-time data is greater than one.

Proof We are informally highlighting the essence of the proof [12] of the theorem
with the SNIP online routing game SN5:2. The network is shown in Fig. 4. The cost
functions are ce1 D 1, ce2 D 1, ce3 D 10 C x and ce4 D 10:5 C 10 � x, where
x is the total incoming flow on the edge. The total traffic flow is r D .r1; r2/ with
flow r1 D 1 from the source v0 to the target v3 and flow r2 D 1 from v1 to v3.
Without online data, both flow would select the road e3, so the cost of both flow
would be 13 and the total cost 26. With online data, the flows realize at some time
that the cost of e3 will go above the cost of e4. This happens at the same time for
both flows, and they are not aware that the other flow is going to change to e4 at the
same time, so they do not take into account the additional cost on e4. This is because
the traffic forecaster is only aware of the intention propagations before the current
time step, but does not know and cannot forecast the decisions at the current time
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Fig. 4 The network of the SNIP online routing game SN5:2

step. Because e4 is more susceptible to congestion than e3, the cost on e4 will be
more than on e3, so the total cost may go above 26. ut

The situation is even worse than in the theorem above, because the worst case
benefit of online data can be arbitrarily large as the next theorem shows. Note
that Theorem 6 is not specific to intention propagation, just this property was not
investigated for simple naive online routing games.

Theorem 6 Given any arbitrarily large number ˛, there are SNIP online routing
games with linear cost functions, where the worst case benefit of online real-time
data is bigger than ˛.

Proof Basically the proof [12] of this theorem is based on the SNIP online routing
game SN5:2 of the above Theorem 5. In short and informally, if the cost function
of the road e4 is steep enough, then the flows can incur big enough cost when they
change to e4 at the same time. ut

The last question is whether intention propagation can help to avoid fluctuation?
Unfortunately the answer is not positive, as the next theorem shows.

Theorem 7 There are SNIP online routing games which do not have equilibrium
at certain flow values.

Proof In short and informally, the proof [12] of this theorem is the continuation of
the scenario of Theorem 5. Once the two flows change to e4 at the same time, they
immediately realize from the prediction that this has high cost, so they revert to e3,
but after a while the cost of e4 drops below the cost of e3, so both flows change to
e4 again at the same time. Then this fluctuating cycle continues. ut

6 Conclusions

Information and communication technologies allow that modern car navigation
devices utilize live online data from road traffic networks to optimize the route of
vehicles. The navigation devices in cars are autonomous agents, because they plan
their route based on their intentions and local information instead of following the
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instructions of some centralized planner. The routing algorithms implemented in the
navigation devices must be able to utilize real-time data to self-heal the global traffic
and autonomously tell the individual cars how to adapt to the current traffic situation.
Although current navigation devices are already able to utilize real-time data for
route planning, these systems were implemented without clear understanding of how
real-time data affects the autonomous and self-adaptation aspects of traffic flows.

In order to be able to measure and prove properties of autonomous traffic routing
based on online data, the formal model of online routing games was developed.
This model is an extension of the models of routing games of the algorithmic game
theory approach and the online mechanisms. Different classes of online routing
games are foreseen, and two of them were discussed here. One is the class of simple
naive online routing games, which models the currently available commercial real-
time-data-based navigation devices. The other is the class of SNIP online routing
games, which models the prediction utilizing anticipatory vehicle routing systems
proposed by researchers to improve the currently available commercial online-data-
based navigation devices.

Several properties of these two classes of online routing games were proved
in [11, 12]. Here we informally presented these proofs, discussed them in an
easily understandable way and highlighted the critical phenomena that are behind
these properties. In the class of simple naive online routing games, stability is not
guaranteed, so it makes sense to talk about worst, average and best case benefit
of online data. Simple naive online routing games may have the “single flow
intensification” property. The result of this is that the worst case benefit of online
data may be bigger than 1, which means that sometimes some of the autonomous
cars are worse off with utilizing online data for the self-adaptation of traffic flows,
than without utilizing online data.

The class of SNIP online routing games may also have the “single flow
intensification” property. The worst case benefit of online data may also go above
1 and the traffic may fluctuate. We have pointed out that one of the reasons of
this surprising result is the “simultaneous decision” problem: the traffic forecaster
predicts future traffic conditions based on the intentions of the vehicles already on
the road, but it does not predict the intentions of the vehicles currently making
decisions. If many vehicles make decisions at the same time, then they may try
to take the same alternative route to avoid the already predicted congestion and
cause congestion on the alternative route. Obviously, intention propagation helps
the vehicles to detect the possibility of congestion formation before the congestion
is actually formed, and thus there is smaller “time window” to make the same
“wrong” decision to head towards the newly forming congestion than in the case
of the simple naive online routing games. The technique of intention propagation
and traffic forecast is therefore an important improvement to the simple naive online
strategy.

The issues discussed here point out notions and characteristics that can become
the basis to guide future research. These issues also challenge future research
to develop online routing game decision strategies that have worst case benefits
of online data below 1 or prove that it is not possible to develop such strategy.
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If such strategies are possible, then we expect that the application of these new
strategies will be individually rational choice, and therefore the decision strategies
can be implemented in the navigation devices themselves instead of the centralized
planning approaches like those of Google Maps and Waze, because some users are
reluctant to provide private data for the centralized approach.
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