
Chapter 2
Algebraic Approach to Quantum Theory

2.1 Algebraic Quantum Mechanics

Before entering the realm of the quantum theory of fields, let’s have a look at some-
thing simpler and better understood, namely quantum mechanics (QM). To prepare
the ground for what follows, we will present an abstract formulation of QM and dis-
cuss how it relates to the more standard Dirac–von Neumann axioms [Dir30, vN32].
The exposition presented in this chapter is based on [BF09b, Mor13, Fre13, Str08].

2.1.1 Functional Analytic Preliminaries

Let us start by recalling some basic definitions from functional analysis. For more
information see [Rud91, RS80, BR87, BR97, Kad83]. Readers familiar with basic
functional analysis can skip this subsection.

Definition 2.1 An algebra A over the field K = R or C is a K-vector space with an
operation · : A× A→ A called the product with the following properties:

1. (A · B) · C = A · (B · C), ∀A, B, C ∈ A (associativity),
2. A · (B + C) = A · B + A · C , (B + C) · A = B · A + C · A,

α(A · B) = (αA) · B = A · (αB), for all A, B, C ∈ A, α ∈ K (distributivity).

Wewill usually denote the algebra product · simplyby juxtaposition, i.e. A · B ≡ AB.

Definition 2.2 An algebra A is said to have a unit (i.e. A is unital) if there exists an
element 1 ∈ A such that 1A = A1 = A, for all A ∈ A.

Definition 2.3 An involutive complex algebra (a ∗-algebra) A is an algebra over
the field of complex numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A of A under the involution is written A∗. Involution is
required to have the following properties:
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4 2 Algebraic Approach to Quantum Theory

1. for all A, B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2. for every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3. for all A ∈ A: (A∗)∗ = A.

Definition 2.4 A ∗-morphism is a map ϕ : A→ B between ∗-algebras A and B,
which is an algebra morphism compatible with the involution, i.e.:

1. ϕ(AB) = ϕ(A)ϕ(B), for all A, B ∈ A,
2. ϕ(λA + B) = λϕ(A)+ ϕ(B), for all A, B ∈ A, λ ∈ C,
3. ϕ(A∗) = ϕ(A)∗ for every A ∈ A.

Up to now all the properties we have considered are purely algebraic. In order to
quantify the notion of distance between the elements of the algebra we need some
topology.

Let us start with some basic definitions and notation.

Definition 2.5 A topological space X is a pair (X, τ ), where X is a set X and τ is a
collection of subsets of X (called open sets), with the following properties:

• X ∈ τ
• ∅ ∈ τ
• the intersection of any two open sets is open: U ∩ V ∈ τ for U, V ∈ τ
• the unionof every collectionof open sets is open:

⋃
α∈A Uα ∈ τ for Uα ∈ τ ∀α ∈ A,

where A is some index set.

Consider mappings between topological spaces. A topology tells us something
about the regularity of those mappings, since it contains already a notion of “being
close to something” and we can ask ourselves to what extend a given map preserves
this notion.

Definition 2.6 A function f : X→ Y, where X and Y are topological spaces, is
continuous if and only if for every open set V ⊆ Y , the inverse image:

f −1(V ) = {x ∈ X | f (x) ∈ V } (2.1)

is open.

Given a collection of topological spaces, one can define a new topological space
by taking their Cartesian product. This is a very commonly used operation, so we
recall here the definition of a natural topology on such product.

Definition 2.7 Let X be a set such that

X =
∏

i∈I

Xi

is the Cartesian product of topological spaces Xi , indexed by i in some set I . Let
pi : X → Xi be the canonical projections. The product topology on X is defined as
the coarsest topology (i.e. the topology with the fewest open sets) for which all the
projections pi are continuous.
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In our applications the topology will not be enough to capture all the structure
we need. In the physics context it is common that we want to add certain quantities
and scale them. This leads in a natural way to a vector space structure. We want this
structure to be compatible also with the topology.

Definition 2.8 A Topological vector space (tvs) over a fieldK = R orC (with their
standard topologies) is a pair (X, τ ) ≡ X, where τ is a topology such that:

• every point of X is a closed set (i.e. its complement is an open set),
• vector additionX× X→ X and scalar multiplicationK× X→ X are continuous
functions with respect to the product topology on the respective domains.

Definition 2.9 LetX,Y be topological vector spaces over the field K. We denote by
L(X,Y) the space of continuous linear maps from X to Y and by X′ the topological
dual of X, i.e. the space of continuous linear maps from X to K.

A topology can be introduced for example by means of a norm. This leads to the
concept of a normed space.

Definition 2.10 A complex normed space is a vector spaceX overC, equipped with
a map ‖.‖ : X→ R, which satisfies:

1. ‖λA‖ = |λ|‖A‖ (scaling),
2. ‖A + B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality also called subadditivity),
3. If ‖A‖ = 0, then A is the zero vector (separates points).

One of the nice features of normed spaces is that the continuity of maps between
such spaces can be probed by convergent sequences. Recall that in general:

Definition 2.11 A point x of the topological space X is the limit of the sequence
(xn) in X if, for every neighbourhood U of x , there is an N such that, for every
n ≥ N , xn ∈ U .

In particular, for normed spaces:

Definition 2.12 A point x of a normed space (X, ‖.‖) is the limit of the sequence
(xn) if, for all ε > 0, there is an N such that, for every n ≥ N , ‖xn − x‖ < ε. A
sequence that has a limit is called convergent.

Definition 2.13 Let X, Y be topological spaces. Then a function f : X→ Y is said
to be sequentially continuous if for every convergent sequence (xn) in X with the
limit x we have f (xn) → f (x) in Y.

An elementary result from analysis states that if X, Y are normed spaces equipped
with topologies induced by the respective norms then f : X→ Y is continuous if
and only if it is sequentially continuous. However, in Sect. 2.4.1 we will consider
spaces where these two notions do not coincide.

Having defined the notion of convergence of sequences, we are now ready to
introduce the notion of completeness. First we define:
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Definition 2.14 A sequence (xn) in a normed spaceX is called aCauchy sequence if
for every ε > 0 there exists N ∈ N such that for all integers m, n such that m, n > N
we have ‖xn − xm‖ < ε.

Definition 2.15 A normed space X in which every Cauchy sequence converges to
an element of X is called complete.

Given a normed space X that is not complete one can always construct its com-
pletion,1 i.e. a complete normed space that contains X as a dense subspace.

Let us now come back to our algebras. If an algebraA is equipped with a norm, we
can ask for the continuity of the algebraic relations with respect to the norm topology
and for some notion of completeness. This leads to the following definitions.

Definition 2.16 A normed algebra A is a normed vector space whose norm ‖.‖
satisfies

‖AB‖ ≤ ‖A‖‖B‖.

If A is unital, then it is a normed unital algebra if in addition ‖1‖ = 1.

Definition 2.17 A Banach space is a normed vector space equipped with the norm-
induced topology that is complete with respect to this topology. A Banach (unital)
algebra is a Banach space and a normed (unital) algebra with respect to the same
norm.

A particularly important class of Banach algebras with involution is distinguished
by the C∗-property. We will see in this chapter that such algebras can be used to
describe spaces of observables in quantum systems.

Definition 2.18 A C∗-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying ‖A∗‖ = ‖A‖), such that the norm has the C∗-property:

‖A∗A‖ = ‖A‖‖A∗‖, ∀A ∈ A.

2.1.2 Observables and States

In this section we will see how the structures introduced in the previous section
are used in quantum physics. First note that in order to describe a physical system
we need to specify a collection of physical quantities, which we want to measure
(we call them observables) and a collection of states in which the system can be
prepared. Now we want to deduce what kind of mathematical structure is suitable
to describe observable and states. Operationally, each observable corresponds to
some measurement apparatus, which measures given properties of the system. An
example of such an apparatus is a particle detector localized in some region of space.

1The completion ofXcan be constructed as a set of equivalence classes of Cauchy sequences inX.
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Next, one considers operations that can be performed on observables. Scaling of
the measurement apparatus means multiplying the corresponding observable A by
a real number. One can also consider other functions of the observables, which
can be operationally realized as “repainting the scale”. The simplest examples are
monomials An , interpreted as measuring the observable A and taking the nth power
of the result.

Now we discuss the notion of states. We need to assume that we are able to
repeat experiments, so that we can measure a given observable repeatedly in the
same state (i.e. for the same preparation of the system). This statistical interpretation
presupposes that each experiment comes with a protocol that allows us to obtain
the same initial condition each time it is repeated. Under this assumption, a state ω
associates to an observable A a real number ω(A) obtained by averaging the results
of measurements of A for the system prepared to be in the state ω. It is natural to
assume that ω(λA) = λω(A) for λ ∈ R+ (scaling). Let 1 be the observable, which
always takes value 1. For this observable we require that ω(1) = 1. One can also
deduce the positivity of states from the fact that the average of positive numbers is
positive, so ω(A2) ≥ 0.

If we assume that physical properties of observables can be measured only by
looking at expectation values in various states of the system, it is natural to identify
the observables that give the same expectation values in all the states. Now let A be
the space of equivalence classes of observables, where A ∼ B if ω(A) = ω(B) for
all states ω of the system. A notion of a norm can be introduced by assigning to each
observable A ∈ A a finite positive number defined by

‖A‖ .= sup
ω
|ω(A)|

The operational properties of states imply that ‖λA‖ = |λ|‖A‖ for λ ∈ R and ‖A‖ =
0 implies that A = 0 (states separate observables). What is still missing is the linear
structure on A and the product. Let us start with the linear structure. We want to be
able to construct measuring devices that measure the sum of any two observables
A and B, i.e. we need the operation “A + B”. This operation has to satisfy

ω(A + B) = ω(A)+ ω(B),

for all states of the system. It is, however, not clear if an element “A + B” exists inA,
so one needs to embed the initial space of observables in a larger structure in such a
way that states will remain positive linear functionals on this enlarged space. Further
considerations (see for example [Str08]) lead to the notion of Jordan algebras [Jor33,
JvNW34] and finally, by bringing in a complex structure, to C∗-algebras, introduced
in [Gel43] and discussed in [Seg47a, Seg47b] in the context of quantum mechanics.
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We can summarize the basic axioms in the algebraic approach to QM as follows:

1. A physical system is defined by its unital C∗-algebra A.
2. States are identified with positive, normalized linear functionals on A, i.e.

ω(A∗A) ≥ 0 for all A ∈ A and ω(1) = 1.

Note that on a unital C∗-algebra a positive, normalized linear functional is auto-
matically continuous with respect to the topology induced by the C∗-norm. More
generally, we can define states also on involutive topological algebras.

Definition 2.19 A state on an involutive algebraA is a linear functionalω, such that:

ω(A∗A) ≥ 0, ω(1) = 1.

Observables are self-adjoint elements of A and possible measurement results for
an observable A are characterized by its spectrum σ(A). Recall that an element A of
a C∗-algebra is called self-adjoint if A∗ = A.

Definition 2.20 The spectrum spec(A) of A ∈ A is the set of all λ ∈ C such that
A − λ1 has no inverse in A.

A standard result from functional analysis states that a spectrum of self-adjoint
element is a subset of the real line and this agrees with the physical intuition, as
outcomes of measurements have to be real.

2.1.3 Hilbert Space Representations

Having defined the abstract setup we can proceed to a more concrete description that
provides a way to recover the Dirac–von Neumann axioms. The crucial observation
is that abstract elements of an involutive algebra A can be realized as operators on
some Hilbert space by a choice of a representation. Definitions introduced in this
section follow closely [Mor13, RS80]. First let us recall the definition of a Hilbert
space.

Definition 2.21 Let H be a complex vector space. A map 〈., .〉 : H×H → C is a
Hermitian inner product if

1. 〈u, v〉 = 〈u, v〉, ∀u, v ∈ H,
2. 〈u,αv + βw〉 = α〈u, v〉 + β〈u, w〉 (linear in the second argument),
3. 〈v, v〉 ≥ 0 where the case of equality holds precisely when v = 0 (positive defi-

nite).

Properties 1 and 2 imply that 〈., .〉 is antilinear in the first argument. One can
define a norm onH by setting

‖v‖ .= √〈v, v〉.
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Definition 2.22 AHilbert spaceH is a complex vector space with a Hermitian inner
product 〈., .〉 such that the norm induced by this productmakesH into aBanach space.

In physics separable Hilbert spaces play an important role.

Definition 2.23 AHilbert spaceH is called separable if it admits a countable subset
whose linear span is dense in H. In fact a Hilbert space is separable if it is either
finite dimensional or has a countable basis.

We are ready to define the notion of linear operators on Hilbert spaces, which is
important in the context of C∗-algebras and physical observables.

Definition 2.24 An operator A on aHilbert spaceH is a linear map from a subspace
D ⊂ H into H. In particular, if D = H and A satisfies ||A|| .= sup||x ||=1{||Ax ||} <

∞, it is called bounded.

We will always assume that D is dense inH (i.e. A is denesly defined).

Definition 2.25 Let A be a densly defined linear operator on a Hilbert spaceH. Let
D(A∗) be the set of all v ∈ H such that there exists u ∈ H with

〈Aw, v〉 = 〈w, u〉, ∀w ∈ D(A).

For each such v ∈ D(A∗) we define A∗v = u. A∗ is called the adjoint of A.

An important class of bounded operators is provided by the unitary ones.

Definition 2.26 A bounded linear operator U : H → H on a Hilbert space H is
called a unitary operator if it satisfies U ∗U = UU ∗ = 1.

Note that the spaceB(H) of bounded linear operators on a Hilbert spaceH forms
a C∗-algebra. We will see later on that one can argue the other way and realize any
abstractC∗-algebra as the algebra of bounded operators on someH. If A is a bounded
operator on a Hilbert space then the self-adjointness is the same as hermiticity, i.e.
is the condition that A∗ = A. In general this is not sufficient.

Definition 2.27 Anoperator A on aHilbert spaceHwith a dense domain D(A) ⊂ H

is called symmetric if for any vectors u, v ∈ D(A) we have 〈u, Av〉 = 〈Au, v〉. This
implies that D(A) ⊆ D(A∗). A symmetric operator A is self-adjoint if in addition
D(A∗) ⊂ D(A).

Definition 2.28 Let A be an operator on a Hilbert space H with a dense domain
D(A) ⊂ H. A self-adjoint operator A′ is called a self-adjoint extension of A if
D(A) ⊆ D(A′) and if A′v = Av for any v ∈ D(A).

A is called essentially self-adjoint if it admits a unique self-adjoint extension.

Abstract elements of an involutive algebra A are realized as operators on some
Hilbert space by a choice of a representation.
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Definition 2.29 A representation of an involutive unital algebra A is a unital ∗-
homomorphism π into the algebra of linear operators on a dense subspace K of
a Hilbert space H. In particular, a representation of a C∗-algebra A is a unital ∗-
homomorphism π : A→ B(H).

A representation π is called faithful if Ker π = {0}. It is called irreducible if there
are no non-trivial subspaces of H invariant under π(A).

Definition 2.30 Two representations (π1,H1) and (π2,H2) of a C∗-algebra A are
called unitarily equivalent, if Uπ1(A) = π2(A)U holds for all A ∈ A with some
unitary map U : H1 → H2.

In the Dirac–von Neumann axiomatic framework, one postulates that physical
observables are self-adjoint operators acting on some Hilbert space. The connection
between the algebraic formulation and the Hilbert space picture is provided bymeans
of the famous GNS (Gelfand–Naimark–Segal) theorem.

Theorem 2.1 Let ω be a state on an involutive unital algebra A. Then there exists a
representation π of the algebra by linear operators on a dense subspace K of some
Hilbert space H and a unit vector � ∈ K, such that

ω(A) = (�,π(A)�),

and K = {π(A)�, A ∈ A}.
Proof First we introduce a scalar product on the algebra A using the state ω:

〈A, B〉 .= ω(A∗B).

Linearity for the right and antilinearity for the left argument are easy to prove.
Hermiticity 〈A, B〉 = 〈B, A〉 follows from the positivity of ω and the fact that we
can write A∗B and B∗A as linear combinations of positive elements:

2(A∗B + B∗A) = (A + B)∗(A + B)− (A − B)∗(A − B),

2(A∗B − B∗A) = −i(A + i B)∗(A + i B)+ i(A − i B)∗(A − i B).

From the positivity ofω, it also follows that the scalar product is positive semidefinite,
i.e. 〈A, A〉 ≥ 0 for all A ∈ A. We now study the set

N
.= {A ∈ A|ω(A∗A) = 0}.

We show thatN is a left ideal of A. Because of the Cauchy–Schwarz inequalityN is
a subspace of A. The same inequality implies that for A ∈ N and B ∈ A we obtain

ω((B A)∗B A) = ω(A∗B∗B A) = 〈
B∗B A, A

〉

≤ √〈B∗B A, B∗B A〉√〈A, A〉 = 0,
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hence B A ∈ N. Let us define K as the quotient A/N. Clearly, the scalar product is
positive definite onK and we complete it to obtain a Hilbert spaceH. The represen-
tation π is induced by the operation of left multiplication on A, i.e.

π(A)(B +N)
.= AB +N,

and we set � = 1+N. If A is a C*-algebra, one can show that the operators π(A)

are bounded, hence admitting unique continuous extensions to bounded operators
onH.

We now show that the construction is unique up to unitary equivalence. Let
(π′,K′,H′,�′) be another quadruple satisfying the conditions of the theorem. Then
we define an operator U : K→ K′ by

Uπ(A)�
.= π′(A)�′.

U is well defined, since π(A)� = 0 if and only if ω(A∗A) = 0, but then also
π′(A)�′ = 0. Moreover U preserves the scalar product and is invertible, hence it
has a unique extension to a unitary operator from H to H′. It follows that π and π′
are unitarily equivalent. �

The representation π is in general not irreducible, i.e. there may exist a nontrivial
closed invariant subspace. In this case, the state ω is not pure, which means that it is
a convex combination of other states,

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 , ω1 �= ω2.

We have seen that the algebraic formulation of quantum mechanics (QM) allows
us to characterize a physical system purely in terms of its observable C∗-algebra A
and states on it. The Hilbert space representations can then be obtained from states
by means of the GNS theorem. One can also obtain the probabilistic interpretation of
QMas follows. Given an observable A and a stateω on aC*-algebraAwe reconstruct
the full probability distribution μA,ω of measured values of A in the state ω from its
moments, i.e. the expectation values of powers of A,

∫

λndμA,ω(λ) = ω(An).

We can now apply these methods to some simple physical situations. The first
example is related to the canonical commutation relations.

Example 2.1 Let L be a real vector space with a symplectic form σ, i.e. a bilinear
form σ on L which is antisymmetric,

σ(x, y) = −σ(y, x),
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and nondegenerate,
σ(x, y) = 0 ∀ y ∈ L implies x = 0.

We consider the unital *-algebra W(L ,σ) over C generated by abstract symbols
W (x) (the Weyl generators), satisfying the relation

W (x)W (y) = eiσ(x,y)W (x + y).

The involution is defined by
W (x)∗ = W (−x)

and the unit is 1 = W (0).
We define a norm onW(L ,σ) by

∥
∥
∥
∥
∥

n∑

i=1
λi W (xi )

∥
∥
∥
∥
∥
1

=
n∑

i=1
|λi |.

This norm satisfies the condition ‖AB‖1 ≤ ‖A‖1 ‖B‖1 of an algebra norm. More-
over, the involution is isometric, ‖A∗‖1 = ‖A‖1 and we obtain an involutive normed
algebra W(L ,σ).

After [Mor13] we recall known facts about the existence of the unique C∗-norm
onW(L ,σ).

Proposition 2.1 The following hold true:

1. There exists a norm ‖.‖0 on W(L ,σ) satisfying the C∗-property,
2. In any C∗-norm Weyl generators have norm 1.
3. If we set

‖A‖c
.= sup{‖A‖0, such that ‖.‖0 :W(L ,σ) → [0,∞) is a C∗-norm},

then ‖.‖c is a C∗-norm.
4. Let W(L ,σ) be the completion of W(L ,σ) with respect to ‖.‖c, then W(L ,σ)

is a C∗-algebra, associated to (L ,σ) uniquely up to isomorphism.
5. W(L ,σ) is simple, i.e. there are no non-trivial closed, *-invariant two-sided

ideals.

Proof For proof see [BGP07] as well as [Mor13]. To see that the supremum defining
‖.‖c is finite, note that generators W (x) are of norm 1 with respect to every C∗-norm,
so if A = ∑

i ai W (xi ), then ‖A‖ ≤ ∑
i |ai | = ‖A‖1,which provides the upper bound

for the supremum. �

Let’s consider a particular example of a symplectic space (L ,σ), which realizes
canonical commutation relations for a free quantum particle in d dimensional space.
In this case L = R

2d and we write elements of L in the form X = (α,β), where
α = (α1, . . . ,αd),β = (β1, . . . ,βd) ∈ R

d . We define
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σ
(
(α,β), (α′,β′)

) = −1

2
�(α · β′ −α′ · β),

where · is the scalar product on R
d . If the generators of the resulting Weyl C∗-

algebraW(L ,σ) are represented by operators on a Hilbert space in such a way that
they depend strongly continuously2 on the parameters α,β, then such a representa-
tion is called regular. It was proven by von Neumann that all the regular reducible
representations of the resultingWeyl algebra are unitary equivalent. Another theorem
important in this context is due to Stone [Sto30]:

Theorem 2.2 Let (Ut )t∈R be a strongly continuous one-parameter unitary group.
Then there exists a unique (not necessarily bounded) self-adjoint operator A such
that

Ut = eit A, ∀t ∈ R.

Conversely, if A is a (not necessarily bounded) self-adjoint operator on a Hilbert
space H, then the one-parameter family (Ut )t∈R of unitary operators defined by
means of the Spectral Theorem for Self-Adjoint Operators (see for example Chap.9
[Mor13]) as

t �→ Ut := eit A

is strongly continuous.

For W(L ,σ) this implies that there exist self-adjoint generators q1, . . . , qd ,

p1, . . . , pd of 1-parameter groups of unitary operators

W (0, . . . ,αk, . . . , 0) = eiαk pk
, W (0, . . . ,βk, . . . , 0) = eiβk qk

,

We denote p
.= (p1, . . . , pd), q

.= (q1, . . . , qd). Generators p and q satisfy the
canonical commutation relations

[qk, p j ] = δk j , [qk, q j ] = 0, [pk, p j ] = 0

and one can write an arbitrary generator W (α,β) in the form

W (α,β) = e−
i�α·β

2 eiα· peiβ·q = e
i�α·β

2 eiβ·qeiα· p.

The Schrödinger representation of this Weyl algebra is defined on the Hilbert space
of square integrable functions L2(R

d) with

(π(W (α,β))�) (X) = e
i�α·β

2 eiβ·X�(X + �α) , (2.2)

2A net {Tα} of operators on a Hilbert space H converges strongly to an operator T if and only if
||Tαx − T x || → 0 for all x ∈ H. The definition of a net is at p. 22 in Footnote 5.
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for� ∈ L2(R
d). As mentioned before, all the regular irreducible representations are

unitary equivalent to this one. If one does not require continuity there are many more
representations. In quantum field theory this uniqueness result does not apply, and
one has to deal with a huge class of inequivalent representations. Note, however, that
the construction of the Weyl algebra makes sense also for L infinite dimensional, so
it can be applied in the context of field theory.

A particularly interesting class of states on W(L ,σ) is provided by quasi-free
states.

Definition 2.31 A state ω on W(L ,σ) is called quasi-free if there exists η : L ×
L → R, a symmetric form such that

ω (W (x)) = e−
1
2 η(x,x).

The form η is then called the covariance of the quasi-free state ω.

The following theorem provides a way to easily find quasi-free states.

Theorem 2.3 Let η : L × L → R be a symmetric form. The following are equiva-
lent:

1. ηC + i
2σC ≥ 0 on LC, the complexification of L, where ηC,σC : LC × LC → C

are canonical sesquilinear extensions of η,σ.
2. |σ(x1, x2)| ≤ 2

√
η(x1, x1)

√
η(x2, x2), for all x1, x2 ∈ L.

3. There exists a quasi-free state ωη on W(L ,σ) with covariance η.

Proof For proof see for example [AS71, DG13a]. �

This result holds also if L is infinite dimensional and will be used later in Sect. 5.3.
We define a complex scalar product on the complex vector space LC by

〈x, y〉 = ηC(x, y)+ i

2
σC(x, y). (2.3)

TheGNSHilbert space representation corresponding toωη turns out to be the bosonic
Fock space:

H =
∞⊕

n=0
(H⊗n

1 )symm ;H1 = LC/Ker(〈., .〉)

The state ωη is pure (i.e. the associated GNS representation is irreducible) if and only
if the map L → LC/Ker(〈., .〉) is surjective. The latter holds if and only if the pair
(2η,σ) is Kähler.

Definition 2.32 A pair (2η,σ) consisting of a symmetric form 2η and symplectic
form σ on L is called Kähler if the ranges of the two coincide Ran(2η) = Ran(2σ),
2η is positive definite and J

.= σ−12η satisfies J 2 = −1 (i.e. J is an anti-involution).

If (2η,σ) is Kähler, then the quadruple (L , 2η,σ, J ) is a Kähler space. We will
come back to this structure in the context of QFT in Sect. 5.3.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_5
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2.1.4 Dynamics and the Interaction Picture

If we want to model a physical system that evolves with time, we need to introduce
the notion of dynamics. A very detailed discussion of quantum dynamics can be
found in [BR87, BR97]. Here we only sketch the main ideas. Let A be a C∗-algebra
of observables and let At ∈ A be some observable corresponding to the measure-
ment apparatus A at time t .3 We postulate that the algebra of observables A doesn’t
change with time, so the assignment t �→ At can be described by a 1-parameter
group of automorphisms αt , such that At = αt (A) and we assume that αt is strongly
continuous.

For a given state ω we consider the family of states that are related to it by
time-translations and it is natural to require some stability properties from the GNS-
associated representationπω . Ifπω is irreducible, this stability requirement is realized
as the condition that αt has to be implemented by some unitary operator U (t), i.e.

πω(αt (A)) = U (t)−1πω(A)U (t), ∀A ∈ A. (2.4)

Nowwe apply Stone’s Theorem2.2 to deduce the existence of a self-adjoint generator
H , called the Hamiltonian and we write

U (t) = e−i t H ∀t ∈ R.

By differentiating (2.4) we obtain the known evolution equation in the Heisenberg
picture,

d

dt
A(t) = i[H, A(t)], (2.5)

where we have put A(t) = U (t)∗AU (t) and we have omitted the symbol πω . To get
the Schrödinger picture, we considerψ ∈ D(H) a Hilbert space vector in the domain
of essential selfadjointness (see Definition2.28) of H , and define ψS(t)

.= U (t)ψ.
We can now rewrite (2.5) in the form

i
d

dt
ψS(t) = HψS(t). (2.6)

This is time-evolution in the Schrödinger picture. If we want to construct a model
of a quantum dynamical system, we usually start with a Hamiltonian H which is
an operator on Hπ that solves (2.6) for some initial data ψS(0), within the domain
D(H). A solution to the initial value problem then defines the propagator U (t, 0),
i.e.

ψS(t) = U (t, 0)ψS(0).

3As sharp localization is physically impossible, operationally we can think of At as the average
over some interval [t − ε, t + ε] centered at t , for a fixed value of ε > 0.
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Note that themain difference between (2.5) and (2.6) is that in the Heisenberg pic-
ture states remain stationary and operators evolve with time, while in the Schrödinger
picture it is the other way round. Often, solving the initial value problem of the form
(2.6) is very difficult and it is convenient to split the Hamiltonian into two terms

H = H0 + Hint ,

where the propagator for H0 can be found relatively easily and thenwe try to solve the
problem perturbatively. This point of view is something in-between the Heisenberg
and Schrödinger pictures and we call it the interaction picture. Hint is called the
interaction Hamiltonian. Let U0

.= e−i t H0 . In the interaction picture the states are
represented by

ψI (t) = U ∗
0 ψS(t) = eit H0ψS(t) = eit H0e−i t H ψ,

where ψS is a state in the Schrödinger picture and ψ is a state in the Heisenberg
picture. Observables of the interaction picture evolve according to

A(t) = U0(t)
∗ASU0(t),

where AS denotes the Schrödinger picture observable. In particular

Hint = U0(t)
∗HintU0(t)

for the interaction Hamiltonian Hint . Now the evolution Eq. (2.6) implies that

i
d

dt
ψI = Hint ψI . (2.7)

Given initial data ψI (t0), we want to find the solution to this equation in terms of a
propagator UI (t, t0), so that

ψI (t) = UI (t, t0)ψI (t0).

By definition we have

UI (t, t0) = eit H0e−i(t−t0)H e−i t0 H0 ,

and from (2.7) it follows that the propagator has to satisfy

i
d

dt
UI (t, t0) = Hint (t)UI (t, t0), UI (t0, t0) = 1. (2.8)
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A formal solution to the above equation is then given by the Dyson series

UI (t, t0) = 1− i
∫ t

t0

Hint (t1)dt1 −
∫ t

t0

∫ t2

t0

Hint (t2)Hint (t1)dt1dt2 + . . .

= 1+
∞∑

n=1
(−i)n

∫

· · ·
∫

t0<t1<···<tn<t

Hint (tn) . . . Hint (t1)dt1 . . . dtn. (2.9)

We can simplify the notation by introducing the time-ordering operator T defined
on operators A(t) and B(t) by

T (A(t)B(t ′)) =
{

A(t)B(t ′), if t < t ′
B(t ′)A(t), if t ′ < t

. (2.10)

We can now rewrite the formula (2.9) as a time-ordered exponential, i.e.

UI (t, t0) = 1+ T

[ ∞∑

n=1

(−i)n

n!
(∫ t

t0

Hint (t
′)dt ′

)n
]

= T

[

exp

(

−i
∫ t

t0

Hint (t
′)dt ′

)]

. (2.11)

We define the Møller operators S± as the strong limits of UI (t, t0) as t0 approaches
±∞, as long as these limits exist.

S±
.= s-lim

t→±∞UI (0, t).

The scattering operator S (the S-matrix) is then defined by

S
.= S∗+S−. (2.12)

We will use these ideas later on, in Sect. 6.1 to perturbatively construct QFT models.

2.2 Causality

After introducing basic notions fromquantummechanics, the next step towards quan-
tum field theory leads through spacetime geometry. Historically, QFTwas conceived
as a framework that allows us to combine quantummechanics with special relativity.
The latter is based on concepts such as Minkowski spacetime and causality. In fact,
the algebraic approach to QFT can be generalized beyondMinkowski spacetime and
one can apply it to construct models on a wide class of Lorenzian manifolds. In

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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this section we will review some basic concepts from Lorentzian geometry that are
relevant for our framework.

Definition 2.33 A spacetime is a pair M = (M, g), where M is a smooth (4-
dimensional) manifold (we assume it to be Hausdorff, paracompact, connected) and
g is a smooth Lorentzian metric, i.e. a smooth tensor field g ∈ �(T ∗M ⊗ T ∗M), s.t.
for every p ∈ M , gp is a symmetric non-degenerate bilinear form. We require the
metric g to be of the Lorentz signature (+,−,−,−).

Remark 2.1 Let us make a few remarks concerning the above definition:

1. The assumption for a manifold to be Hausdorff means that points can be sepa-
rated (for every pair of points x , y, there exists a neighbourhood U of x and a
neighbourhood V of y such that U and V are disjoint (U ∩ V = ∅)). In general
topology one can drop this assumption and an example of a non-Hausdorff man-
ifold is a line with two origins, i.e. the quotient space of two copies of the real
line R× {a} and R× {b}, with the equivalence relation (x, a) ∼ (x, b) if x �= 0.

2. The paracompactness is needed as a sufficient condition for the existence of
partitions of unity. It means that for every open cover (Uα)α∈A, there exists a
refinement4 (Vβ)β∈B that is locally finite, i.e. each x ∈ M has a neighborhood
that intersects only finitely many sets of (Vβ)β∈B .

3. We assumed also that M is connected, i.e. it cannot be represented as a disjoint
union of two or more non-empty sets. Later on we will see that in a more general
context one has to drop this assumption and consider manifolds that are not
connected.

Definition 2.34 A spacetimeM is said to be oriented if it is equipped with a differ-
ential form of maximal degree (a volume form) that does not vanish anywhere. We
say thatM is time-oriented if it is equipped with a smooth vector field u on M such
that for every p ∈ M , g(u, u) > 0 holds.

We will always assume that our spacetimes are orientable and time-orientable.
We fix the orientation and choose the time-orientation by selecting a specific vector
field u with the above property.

Example 2.2 A standard example is 4 dimensional Minkowski spacetime M, which
is R

4 with the diagonal metric η = diag(1,−1,−1,−1).
An important feature of the Lorentzian signature, which distinguishes it from the

Euclidean signature, is that it allows to introduce some important classes of smooth
curves.

Definition 2.35 Let γ : R ⊃ I → M be a smooth curve in M , for I an interval in
R and let γ̇ be the vector tangent to the curve. We say that γ is

4An open cover (Vβ)β∈B is a refinement of an open cover (Uα)α∈A, if ∀β ∈ B, ∃α such that
Vβ ⊆ Uα.
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• timelike, if g(γ̇, γ̇) > 0,
• spacelike, if g(γ̇, γ̇) < 0,
• lighlike (null), if g(γ̇, γ̇) = 0,
• causal, if g(γ̇, γ̇) ≥ 0.

The classification of curves defined above is referred to as the causal structure.
The presence of time orientation allows for a further refinement of this classification.

Definition 2.36 Given the global timelike vector field u (the time orientation) on M ,
a causal curve γ is called future-directed if g(u, γ̇) > 0 all along γ. It is past-directed
if g(u, γ̇) < 0.

Using the causal structure one can distinguish points of spacetime that are in the
future or in the past of a given point p ∈M.

Definition 2.37 Let p ∈M be a point in a time-oriented spacetime.

(i) J±(p) is defined to be the set of all points in M which can be connected to p
by a future(+)/past(−)-directed causal curve γ : I → M so that x = γ(inf I ).

(ii) The set J+(p) is called the causal future and J−(p) the causal past of p. The
boundaries ∂ J±(p) of these regions are called respectively: the future/past
lightcone.

(iii) The future (past) of a subset B ⊂ M is defined by

J±(B) =
⋃

p∈B

J±(p) .

The physical importance of the structures presented above becomes clear in the
context of general relativity (GR). One of the postulates of GR states that massive
particles can move only on time-like curves and light travels following null curves,
i.e. nothing travels faster than light. Consequently, one of the fundamental principles
of physics, the principle of causality, states that an event happening at a point p can
be influenced only by events in J−(p) and that the consequences of this event can
influence only the events in J+(p).

Definition 2.38 A subset A ⊂ M is called past-(future-) compact if A ∩ J∓(p) is
compact for all p ∈ M .

Definition 2.39 Two subsets O1 and O2 in M are called causally separated (or
spacetime separated) if they cannot be connected by a causal curve, i.e. if for all
x ∈ O1, J±(x) has empty intersection with O2.

Another important definition is that of the causal complement of a given region O .

Definition 2.40 The causal complement O⊥ is defined as the largest open set in M
that is causally separated from O .
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It follows from the principle of causality that events happening at spacelike sepa-
rated points cannot influence each other. In classical physics this property is realized
as a consequence of some properties of normally hyperbolic partial differential equa-
tions. In Sect. 2.3 wewill see how these ideas can be implemented into the framework
of quantum theory.

Example 2.3 Consider Minkowski spacetime M = (R4, η). The set of points that
are causally separated from a given point P ∈ M is called the lighcone with apex P .
It is easy to verify that a point Q ∈ M

• lies on the lightcone with apex P if and only if the vector
−→
P Q is lightlike,

• is in the future (past) of P if and only if the vector
−→
P Q is time-like and its 0th

component is positive (negative),
• is spacelike to P if and only if

−→
P Q is spacelike.

These concepts are illustrated in Fig. 2.1.

Definition 2.41 Motivated by Example2.3 we introduce the following notation:

• V+
.= {v ∈ R

4|η(v, v) ≥ 0, v0 > 0} is called the closed future lightcone.
• V−

.= {v ∈ R
4|η(v, v) ≥ 0, v0 ≤ 0} is called the closed past lightcone.

These definitions can also be applied to subsets of tangent and cotangent spaces Tx M
and T ∗

x M , as these spaces can be mapped to R
4 with the use of appropriate charts.

Not all Lorentzian spacetimes are equally convenient for constructing quantum
field theory models. For example, several conceptual and technical problems appear
when we consider spacetimes with closed time-like curves. To exclude such situa-
tions, we will restrict ourselves to spacetimes that are globally hyperbolic.

Fig. 2.1 A lightcone in
Minkowski spacetime
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Definition 2.42 (after [BS03]) A spacetime is called globally hyperbolic if it does
not contain closed causal curves and if for any two points x and y the set J+(x) ∩
J−(y) is compact.

It was shown in [BS03] that globally hyperbolic spacetimes have many important
features. To understand them better we need to introduce some further definitions.

Definition 2.43 A causal curve is future inextendible if there is no p ∈ M such that:

∀U ⊂ M open neighborhoods of p, ∃t ′ s.t. γ(t) ∈ U ∀t > t ′.

Definition 2.44 A Cauchy hypersurface in M is a smooth subspace of M such that
every inextendible causal curve intersects it exactly once.

The significance of Cauchy hypersurfaces lies in the fact that one can use them
to formulate the initial value problem for partial differential equations and for some
classes of such equations this problem has a unique solution. The fundamental theo-
rem relating different equivalent notions of global hyperbolicity has been proven in
[BS03].

Theorem 2.4 (after [BS03]) The following definitions of global hyperbolicty of a
Lorentzian manifold M are equivalent:

• M does not contain closed causal curves and for any two points x and y the set
J+(x) ∩ J−(y) is compact.

• M contains a Cauchy surface.
• M admits a foliation by Cauchy surfaces.

2.3 Haag–Kastler Axioms

In Sect. 2.1 we introduced such fundamental notions of quantum theory as states and
observables. Now we want to make these compatible with the ideas of special and
general relativity, reviewed in Sect. 2.2, where the causal structure plays an important
role. The main conceptual difficulty is to find a way to implement the idea that “noth-
ing travels faster than light” in such a way that it doesn’t contradict the existence of
quantum correlations in the theory. The groundbreaking idea of Rudolf Haag was to
combine these notions using the principle of locality (Nahwirkungsprincip). In this
framework, locality is the feature of observables, while states might exhibit correla-
tions, i.e. they carry global information. One defines a QFT model by assigning to
each bounded regionO ⊂ M ofMinkowski spacetime the C∗-algebra of observables
A(O) that can be measured in this region. The notion of subsystem is realized by the
requirement that ifO ⊂ O′, thenA(O) ⊂ A(O′). This condition is called isotony and
it guarantees that one doesn’t lose observables when considering a larger region of
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spacetime. The complete set of axioms for algebraic quantum field theory (AQFT)
can be found in [HK64, Haa93, Ara99]; we will recall them briefly in this section.

The Haag–Kastler axioms (also called Araki-Haag–Kastler axioms) for a net5 of
C∗-algebras O �→ A(O) are:

• Isotony. For O ⊂ O′ we have A(O) ⊂ A(O′) , see Fig. 2.2.
• Locality (Einstein causality). Algebras associated to spacelike separated regions
commute: if O1 is spacelike separated from O2, then [A, B] = 0, ∀A ∈ A(O1),
B ∈ A(O2), where the commutator is taken in the sense of the inductive limit
algebra A (see the Definition2.45 below). This expresses the “independence” of
physical systems associated to regions O1 and O2.

• Covariance. Minkowski spacetime has a large group of isometries, namely the
connected component of thePoincaré groupP.We require that for each L ∈ P there
exists an isomorphism αO

L : A(O) → A(LO), and that forO1 ⊂ O2 the restriction
of αO2

L to A(O1) coincides with αO1
L and αLO

L ′ ◦ αO
L = αO

L ′L .• Time slice axiom: The algebra of a neighborhood of a Cauchy surface of a given
region coincides with the algebra of the full region. Physically this correspond
to the well-posedness of an initial value problem, i.e. we only need to determine
our observables in some small time interval (t0 − ε, t0 + ε) to reconstruct the full
algebra.

• Spectrum condition. Physically this condition is interpreted as the positivity of
energy. One assumes that there exists a compatible family of faithful represen-
tations πO of A(O) on a fixed Hilbert space (i.e. the restriction of πO2 to A(O1)

coincides with πO1 for O1 ⊂ O2) such that translations are unitarily implemented,
i.e. there is a unitary representation U of the translation group satisfying

U (a)πO(A)U (a)−1 = πO+a(αa(A)) , A ∈ A(O),

and such that the joint spectrum of the generators Pμ of translations ea·P = U (a),
a · P = ∑3

μ=0 aμ Pμ, is contained in the closed future lightcone: σ(P) ⊂ V+.

Definition 2.45 The inductive limit of local algebras A(O) defines the quasilocal
algebra A

.= ⋃

O

A(O) (the bar means taking the completion in the norm topology).

All these axioms, apart from the Spectrum condition, can be generalized to
QFT’s on general globally hyperbolic spacetimes. We will discuss this in more detail
in the next section. There are many important conceptual results that have been
proven in the AQFT framework. The first major success was the development of the
Haag–Ruelle scattering theory [Haa58, Rue62], which provided an explanation why
quantum field theory yields a theory of interacting particles. It is, however, an open
question, whether all states in the vacuum representation admit a particle interpre-
tation (the problem of asymptotic completeness). For recent works on that topic see
[DT11, DG14b, DG14a]. Another remarkable result of AQFT is the Reeh–Schlieder

5A net in a topological spaceX is a function from some directed set (nonempty set with a reflexive
and transitive binary relation) A to X.
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Fig. 2.2 Diagram
representing inclusion of
spacetime regions and
corresponding C∗-algebras

Theorem [Haa93, RS61], see [BS14] for a recent discussion. Another known result
achieved with the AQFT methods is the analysis of the superselection structure of
QFT models [DHR71, DHR74]. Despite all this insight into the general structure of
QFT, there remains the difficulty of constructing 4 dimensional interacting models
that fulfil the Haag–Kastler axioms. For models in 2 dimensions see [Lec08, Tan12,
BT13, Ala13, BC13] and references therein.

2.4 pAQFT Axioms

In this book we explore the possibility of dropping some of the assumptions of the
Haag–Kastler framework, in order to allow for models that exist only in the for-
mal, perturbative sense. The resulting framework is called perturbative Algebraic
Quantum Field Theory (pAQFT). The generalization of the HK axioms to the pertur-
bative context has been developed in a series of papers [DF01a, DF02, DF04, DF07,
DF01b, BD08, Boa00, DB01, BDF09, Rej11b].

The generalization of the HK framework to curved spacetime has been for a
long time an independent development. Some important early contributions include
[Kay78, Dim80, KW91, Dim92]. Later these two generalizations met as the pAQFT
on curved spacetimes after a seminal series of papers [BFK96, BF97, BF00, BFV03,
HW01, HW02a, HW02b, HW05].

Abelian gauge theorieswere later treated in [DF98],while theYang–Mills theories
are the subject of [Hol08]. At the same time the mathematical foundations of pAQFT
became better understood, mainly with the use of the functional approach, which is
also the approach we take in this book. In [FR12b, FR12a, Rej11a] this framework
was used to add theBatalin–Vilkovisky (BV) formalism to the pAQFT toolbox,which
allows us to treat very general theories possessing local symmetries, including the
bosonic string [BRZ14] and effective quantum gravity [BFR13].



24 2 Algebraic Approach to Quantum Theory

2.4.1 More Functional Analysis

On the functional analytic side, we leave the realm of Banach spaces and allow for
structures that have more general topologies. This involves some technical compli-
cations, but gives more flexibility in terms of model building. The most general class
of topological vector spaces that we will use is the class of locally convex ones.

Definition 2.46 A topological vector space X ≡ (X, τ ) is called a locally convex
topological vector space (lcvs) if there is a local base T whose members are con-
vex.

Here by a local base we mean a collectionT , of neighborhoods of 0 such that every
neighborhood of 0 contains a member of T . The open sets of X are then precisely
those that are unions of translates of members of T .

There is another way to characterize locally convex vector spaces, which allows
us to make a connection with normed spaces, introduced in Definition2.10. Instead
of having one norm that characterizes the topology, we have a family of seminorms.
A seminorm differs from a norm by not fulfilling property 3 in Definition 2.10. More
precisely:

Definition 2.47 A seminorm on a vector space X is a real-valued function p on X
such that:

1. p(x + y) < p(x)+ p(y) for all x, y ∈ X .
2. p(λx) = |λ|p(x) for all x ∈ X and all scalars λ ∈ K.

We see that a seminorm already provides us with a lot of information, but it
doesn’t separate points. However, it is possible that a certain family of seminorms is
separating.

Definition 2.48 A familyP of seminorms on X is said to be separating if for each
x �= 0 there exists at least one p ∈P with p(x) �= 0.

Note that a separating family of seminorms already allows us to distinguish two
elements of X .

Theorem 2.5 To each separating family of seminorms on X we can associate a
locally convex topology τ on X and vice versa: every locally convex topology is
generated by some family of separating seminorms.

Proof See [Rud91]. �

In the pAQFT framework a lcvs is usually the best that one can expect. Unfor-
tunately it doesn’t share many of the nice properties of a Banach space, but there
are some distinguished classes of lcvs that are relatively well behaved and good
for defining calculus on them. The “nicest” ones are Fréchet spaces. They are dis-
tinguished by the fact that their topology can be described in terms of a metric.
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Theorem 2.6 A locally convex topological vector space X = (X, τ ) is metrizable
if and only if τ can be defined by P = {pn : n ∈ N} a countable separating family
of seminorms on X. One can equip X with a metric which is compatible with τ and
which provides a family of convex balls.

Proof See [Köt69, Rud91]. �

Usually a Fréchet space topology is defined explicitly by providing a countable
separating family of seminorms. A lcvs from Theorem2.6 can be equipped with the
metric:

d(x, y) :=
∑

n∈N
2−n pn(x − y)

1+ pn(x − y)
(2.13)

This metric is compatible with τ but in general it doesn’t provide convex balls (see
the discussion in [Rud91] after Theorem 1.24 and Exercise 18). Nevertheless it is
good to know that you have a metric that can actually be written down in a closed
form.

Definition 2.49 If X is complete with respect to the metric from Theorem 2.6, it is
a Fréchet space.

In locally convex topological vector spaceswhich are not Fréchet, using sequences
to probe continuity of maps is not enough and some important properties like for
example completeness have to be formulated in terms of nets (for definition of a net,
see Footnote 5 in Sect. 2.3).

Definition 2.50 A Cauchy net in a locally convex space is a net {xα}α such that
for every ε > 0 and every seminorm p, there exists an α such that for all λ,μ > α,
p(xλ − xμ) < ε. A locally convex space is complete if and only if every Cauchy net
converges.

Compare this with Definitions2.14 and 2.15 that are valid in normed space. For a
locally convex topological vector space that is not complete, one can always construct
a completion.

To end this section we remark on one more important aspect of lcvs, namely the
definition of tensor products. In quantum theory tensor products are used to model
systems that consist of independent subsystems. This is closely related to the notion
of causality and we will come back to this issue in Sect. 2.5.

Definition 2.51 Let E and F be locally convex topological vector spaces and let
⊗ : E × F → E ⊗ F be the canonical map into the corresponding tensor product.
The finest topology on E ⊗ F that makes⊗ continuous is called the projective tensor
topology or the π-topology. The space E ⊗ F equipped with this topology is denoted
by E ⊗π F and its completion by E⊗̂π F .

It can be shown that the topology π is locally convex. Another possible topology
on E ⊗ F is the so called injective tensor topology. Its definition is a little bit more
involved. In some sense it is the weakest well behaved topology one can put on
E ⊗ F , while the projective tensor topology is the strongest.
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The idea behind the injective topology is to define it via the topology on the space
of continuous linear mappings L(E ′

γ, F).

Definition 2.52 Weequip E ′ with the finest locally convex topology γ that coincides
with the weak one on equicontinuous6 sets. One can identify E ⊗ F with a subspace
of L(E ′

γ, F). Next we equip L(E ′
γ, F) with the topology of uniform convergence

on equicontinuous compact sets in E ′. We denote the resulting topological space by
EεF . It is called the ε-product of E and F . The corresponding topology induced on
E ⊗ F is called the ε-topology and E ⊗ F equipped with it is the injective tensor
product E ⊗ε F . The corresponding completion is denoted by E⊗̂εF

This topology is better behaved if we want to consider vector-valued distributions
and was used (in a slightly modified version) by L. Schwartz in [Sch57, Sch58].
Inequivalent notions of tensor products on lcvs can create problems, but there is a
large class of spaces where these notions coincide. These are nuclear locally convex
topological vector spaces, studied by A. Grothendieck in [Gro55].

2.4.2 Axioms

In this section we introduce the generalization of the Haag–Kastler axioms which is
the foundation of pAQFT. It is in fact convenient to extend the pAQFT framework
also to classical field theory, to keep a uniform language.

Definition 2.53 A classical field theory model on a spacetimeM is a net of locally
convex topological Poisson ∗-algebras P(O), each with sequentially continuous
product and Poisson bracket �.,.�;

O �→ P(O),

whereO ⊂M are bounded, simply-connected regions. The global algebra is obtained
as the inductive limit

P(M)
.= lim

O⊂M
P(O).

We require that Locality holds, i.e. if O1 is spacelike separated from O2, then

�A, B� = 0,

∀A ∈ P(O1), B ∈ P(O2), where the Poisson bracket �, � is taken in P(M).

6A set A of continuous functions between two topological spaces E and F is equicontinuous at the
points x0 ∈ E and y0 ∈ F if for any open setO around y0, there are neighborhoods U of x0 and V
of y0 such that for every f ∈ A, if the intersection of f (U ) and V is nonempty, then f (U ) ⊆ O.
One says that A is equicontinuous if it is equicontinuous for all points x0 ∈ E , y0 ∈ F . The notion
of equicontinuity becomes more intuitive, if we choose E and F to be metric spaces. The family A
is equicontinuous at a point x0 if for every ε > 0, there exists a δ > 0 such that d( f (x0), f (x)) < ε
for all f ∈ A and all x such that d(x0, x) < δ. In other words we require all member of the family
A to be continuous and to have equal variation over a given neighbourhood.
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InChap.4we showhow to constructmodels of classical field theories in agreement
with the above definition. In Chaps. 5–8 we will show how to quantize such classical
models perturbatively. The resulting structure is not a net of C∗-algebras, due to the
perturbative character of the construction. Nevertheless, many of the features of a
Haag–Kastler net are still present.

Definition 2.54 A perturbative algebraic quantum field theory (pAQFT) model on a
spacetimeM is a net of topological ∗-algebras with sequentially continuous product

O �→ A(O),

whereO ⊂M are bounded, simply-connected regions and we require Locality. The
global algebra is obtained as the inductive limit

A(M)
.= lim

O⊂M
A(O).

The remaining Haag–Kastler axioms from Sect. 2.3, apart from the Spectrum
condition, can be easily translated to a pAQFT context.

Definition 2.55 Further axioms:

1. A classical/quantum field theory model on a globally hyperbolic spacetime M

satisfies the Time-slice axiom if the algebra of a neighborhood of a Cauchy
surface of a given region coincides with the algebra of the full region.

2. If the underlying spacetimeMhas a non-trivial groupof symmetriesG,we say that
a model is Covariant on M, if for β ∈ G there exists a family of isomorphisms
αO

β : A(O) → A(βO), such that for O1 ⊂ O2 the restriction of αO2
β to A(O1)

coincides with αO1
β and α

gO
β′ ◦ αO

β = αO
β′β .

The spectrum condition cannot be meaningfully defined on an arbitrary globally
hyperbolic spacetime, as it relies on the action of translations, which is a special fea-
ture of M. We will replace this condition with a requirement we impose on preferred
states on our net of algebras. These preferred states are called Hadamard states and
they realize the idea of positivity of energy. We discuss them in detail in Sect. 5.1.

2.5 Locally Covariant Quantum Field Theory

In the previous section we recalled the Haag–Kastler axioms and reviewed the gen-
eralization of these axioms to the situation where we drop some of the regularity
conditions on the topology of local algebras andwe drop the restriction toMinkowski
spacetime, allowing for general globally hyperbolic backgrounds. We can go a step
further and see what happens if we replace the embeddings of bounded regions O
into a fixed spacetimeMwith arbitrary embeddings between pairs of globally hyper-
bolic spacetimes N and M. We formalize this idea by introducing the notion of an
admissible embedding.

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_8
http://dx.doi.org/10.1007/978-3-319-25901-7_5
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Definition 2.56 We call an embedding χ :M→ N of a globally hyperbolic mani-
foldM into another oneN admissible if it is an isometry and it preserves orientations
and the causal structure. The property of preserving the causal structure is defined
as follows: for any causal curve γ : [a, b] → N , if γ(a), γ(b) ∈ χ(M) then for all
t ∈]a, b[ we have: γ(t) ∈ χ(M) .

The generalization of AQFT which we discuss in this section is called Locally
Covariant Quantum Field Theory (LCQFT). For a recent extensive review of the
area, see [FV15].

As in the original AQFT framework, we assign algebras of observables to globally
hyperbolic spacetimes and we also want to require that for each such admissible
embedding there exists an injective homomorphism

αχ : A(M) → A(N) (2.14)

of the corresponding algebras of observables assigned to them, moreover if χ1 :
M→ N and χ2 : N → L are embeddings as above then we require the covariance
relation

αχ2◦χ1 = αχ2 ◦ αχ1 . (2.15)

Such an assignment A of algebras to spacetimes and algebra-morphisms to embed-
dings can be interpreted in the language of category theory as a covariant functor
between two categories: the category Loc which is an appropriate sub-category of
the category whose objects are globally hyperbolic spacetimes and arrows are the
admissible embeddings; and the category Obs of topological ∗-algebras. The pre-
cise choice of the category Loc depends on the kind of objects we want to study. If
the physical theory we consider is sensitive to some topological (hence non-local)
features of the underlying manifold, one first restricts the class of objects considered
and then studies possible extensions. The detailed analysis of such topological effects
has been provided in [BSS14]. In this section we will present the framework in the
simplest version, suitable for the study of scalar fields, as introduced in [BFV03].
First we recall some basic notions of category theory, which are relevant for LCQFT.

Definition 2.57 A category C consists of:

• a class of objects Obj(C),
• a class of morphisms (arrows) Hom(C), such that each f ∈ Hom(C) has a unique

source object and target object (both are elements of Obj(C)). For a fixed a, b ∈
Obj(C), we denote by Hom(a, b) the set of morphisms with a as a source and b
as a target,

• a binary associative operation ◦ : Hom(a, b)× Hom(b, c) → Hom(a, c), f, g �→
f ◦ g, called composition of morphisms,

• the identity morphism idc for each c ∈ Obj(C).
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Definition 2.58 LetC,D be categories. A covariant functor F assigns to each object
c ∈ C and object F(c) ofD and to each morphism f ∈ Hom(C), a morphism F( f ) ∈
Hom(D) in such a way that the following two conditions hold:

• F(idc) = idF(c) for every object c ∈ C.
• F(g ◦ f ) = F(g) ◦ F( f ) for all morphisms f : a → b and g : b → c.

Definition 2.59 Let F andG be functors between categories C and D, then a natural
transformation η fromF toG associates to every objecta ∈ C amorphismHom(D) �
ηa : F(a) → G(a), such that for every morphism Hom(C) � f : a → b we have:

ηb ◦ F( f ) = G( f ) ◦ ηa .

We denote the family of natural transformations between F and G by Nat(F,G).

For more details on categories and functors, see [ML78]. In LCQFT applied to
scalar fields we adopt the following definitions of categories Loc and Obs.

Definition 2.60 The category Loc is a category where objects are globally hyper-
bolic, oriented time-oriented spacetimes and morphisms are admissible embeddings
(see Definition2.56).

Remark 2.2 Note that Loc is a large category, i.e. its class of objects Obj(Loc) is
not a small set. It was shown in [Few07] that one can improve the situation with the
use of the Whitney embedding theorem, which states that every smooth manifold
of dimension d may be embedded as a smooth submanifold of R

2d+1. Hence the
collection of isomorphism equivalence classes in Obj(Loc) may be identified with
a subset of the power set of R

2d+1, so it is a small set. This makes Loc essentially
small.

Definition 2.61 Depending on the context, we have the following choices for the
category of observables.

(i) In the non-perturbative setting: Obs is the category with unital C∗-algebras as
objects and injective unit-preserving ∗-homomorphisms as arrows.

(ii) In classical theory:Obsc is the categorywith locally convex topological Poisson
algebras as objects and injective Poisson homomorphism as arrows.

(iii) In the perturbative setting:Obsp is the category with locally convex topological
unital ∗-algebras as objects and injective unit-preserving ∗-homomorphisms as
arrows.

We are now ready to give a definition of a classical/quantum field theory model
in the LCQFT setting.

Definition 2.62 In the LCQFT framework, a model is a functor A from Loc to …

(i) …Obs for a non-perturbative locally covariant QFT model,
(ii) …Obsc for a locally covariant classical field theory model,
(iii) …Obsp for a perturbative locally covariant QFT model.
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If we don’t want to specify the context, we write Obs∗. Moreover, we often use the
notation αχ ≡ Aχ, where χ ∈ Hom(Loc).

Another useful category is the category of locally convex topological vector
spaces.

Definition 2.63 DefineVec to be the categorywhose objects are locally convex topo-
logical vector spaces (lcvs) and whose morphisms are injective homomorphisms of
lcvs.

The requirement thatA is a covariant functor already generalizes theHaag–Kastler
axioms of Isotony and Covariance. We can impose further requirements:

• Einstein causality: let χi :Mi →M, i = 1, 2 be morphisms of Loc such that
χ1(M1) is causally disjoint from χ2(M2), then we require that:

[αχ1(A(M1)),αχ2(A(M2))] = {0},

• Time-slice axiom: let χ : N →M, if χ(N) contains a neighborhood of a Cauchy
surface � ⊂M, then αχ is an isomorphism.

The Einstein causality requirement reflects the commutativity of observables
localized in spacelike separated regions. From the point of view of category theory,
this property is encoded in the tensor structure of the functor A. In order to make
this statement precise, we need to equip our categories Loc and Obs∗ with tensor
structures (for a precise definition of a tensor category, see [ML78]).

Definition 2.64 We call a category C strictly monoidal (tensor category) if there
exists a bifunctor⊗ : C × C → C which is associative, i.e.⊗(⊗× 1) = ⊗(1×⊗)

and there exists an object e which is a left and right unit for⊗. If⊗ is associative up
to a natural isomorphism, then C is called monoidal.

The category of globally hyperbolic manifoldsLoc can be extended to amonoidal
categoryLoc⊗, if we extend the class of objectswith finite disjoint unions of elements
of Obj(Loc),

M =M1  . . .  Mk,

where Mi ∈ Obj(Loc). Morphisms of Loc⊗ are isometric embeddings, preserving
orientations and causality. More precisely, they are maps χ :M1  . . .  Mk →M

such that each component satisfies the requirements for a morphism of Loc and
additionally all images are spacelike to each other, i.e., χ(Mi ) ⊥ χ(M j ), for i �= j .
Loc⊗ has the disjoint union as a tensor product, and the empty set as unit object. It
is a monoidal category and, using the results of [JS93], it is tensor equivalent to a
strict monoidal category, which we will denote by the same symbol Loc⊗.

On the level of C*-algebras the choice of a tensor structure is less obvious, since, in
general, the algebraic tensor product A1 " A2 of two C∗-algebras can be completed
to a C∗-algebra with respect to many non-equivalent tensor norms. The choice of an
appropriate norm has to be based on some further physical indications. This problem
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was discussed in [BFIR14], where it is shown that a physically justified tensor norm
is the minimal C∗-norm ‖.‖min defined by

‖A‖min
.= sup{‖(π1 ⊗ π2)(A)‖B(H1⊗H2)} , A ∈ A1 ⊗ A2,

where π1 and π2 run through all representations of A1 and of A2 on Hilbert
spaces H1, H2 respectively. B denotes the algebra of bounded operators. If we
choose π1 and π2 to be faithful, then the supremum is achieved, i.e. ‖A‖min =
‖(π1 ⊗ π2)(A)‖B(H1⊗H2). The completion of the algebraic tensor product A1 " A2

with respect to the minimal norm ‖A‖min is denoted by A1 ⊗
min

A2. It was shown in

[BFIR14] that, under some technical assumptions, a functor A : Loc → Obs satis-
fies the axiom of Einstein causality if and only if it can be extended to a tensor
functor A⊗ : Loc⊗ → Obs⊗, which means that

A⊗ (M1  M2) = A⊗(M1)⊗min A
⊗(M2), (2.16)

A⊗(χ⊗ χ′) = A⊗(χ)⊗ A⊗(χ′), (2.17)

A⊗(∅) = C. (2.18)

In the perturbative setting, we face a similar problem with extending Obsp to a
tensor category, as there are many possibilities to chose a tensor product. The most
natural choices are the injective tensor product (Definition2.52) and the projective
tensor product (Definition2.51). A way out is to restrict Obsp to the category of
nuclear topological algebras, where these two notions coincide.

Let us now discuss the Time slice axiom. We use it to describe the evolution
between different Cauchy surfaces. We fix a spacetime M = (M, g). Let N , K be
subsets of M . We denote by ιK N the inclusion ofN

.= (N , g �N ) intoK
.= (K , g �K )

and byαK N
.= AιK N , the corresponding morphism in Hom(Obs). These morphisms

allow us to associate to each Cauchy surface � the inverse limit

A(�) = lim
N⊃�

A(N), (2.19)

which comes with natural projections αM� from the algebra A(�) into A(M).
From the time slice axiom it follows that each homomorphism αK N is an isomor-

phism. Hence αM� is also an isomorphism, and we obtain the “propagator” between
two Cauchy surfaces �1 and �2 by

αM
�1�2

= α−1
M�1

◦ αM�2 . (2.20)

This construction resembles constructions in topological field theory [Seg].
Another important notion in LCQFT is that of a local quantum field. In the Haag–

Kastler framework on Minkowski spacetime an essential ingredient was the transla-
tion symmetry. This symmetry allowed the comparison of observables in different
regions of spacetime. This is not possible in the generally covariant framework
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we describe here, because on a generic spacetime the isometry group might be triv-
ial. It follows that there is a priori no natural way to say what it means to have the
same observable in a different region. We need to introduce some extra labels for the
observables, which make such a comparison possible. This is where locally covari-
ant quantum fields come into the game. We can think of them as operator-valued
distributions assigned to all the objects of Loc in a coherent way. Before we give the
precise definition, we need to make clear what we mean by test function spaces.

Definition 2.65 Let D denote the functor from Loc to Vec that associates to every
spacetime M its space of compactly supported C∞-functions,

D(M) = D(M)
.= C∞c (M, R) , (2.21)

and to every embedding χ : M → N of spacetimes the pushforward of test functions
f ∈ D(M)

Dχ ≡ χ∗ χ∗ f (x) =
{

f (χ−1(x)) x ∈ χ(M)

0 else
. (2.22)

Note that D is a covariant functor. We are now ready to state the definition of a
locally covariant quantum field.

Definition 2.66 A locally covariant quantum/classical field� is defined as a natural
transformation from the functor D of test function spaces to the functor A of field
theory composed with the forgetful functor from Obs∗ to Vec.

More concretely, � is defined by a family of morphisms �M : D(M) → A(M),
M ∈ Obj(Loc) such that

Aχ ◦�M = �N ◦Dχ (2.23)

The category theory language, which is used to formulate the axioms of LCQFT,
is not only a convenient way to phrase known results, but also leads to new insights.
For example, one can use it to formulate what it means to have the same physics in all
spacetimes. This property, called SPASS, is a property of the QFT functor and it has
been extensively studied in [FV11a, FV11b]. Further study of structures appearing
in LCQFT led recently to construction of new theories by using symmetries of the
QFT functor [Few13].

The structure of Loc introduced above is suitable for scalar fields, but things get
more complicated if we want to consider Dirac fields or 1-forms (like in electrody-
namics). A convenient and operationally motivated way to do this is to extend the
LCQFT framework to the situation where Loc is replaced by the category of framed
manifolds. This idea has been proposed in [FV15] to prove the locally covariant
version of the spin-statistics theorem and presented in more detail in [Few15]. In this
book, we apply these concepts in Sect. 6.5.1 to describe the construction of time-
ordered products of local functionals that involve derivatives of field configurations.
Let us recall after [Few15] some basic definitions.

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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Definition 2.67 Define the objects of the category FLoc to be pairs M
.= (M, e),

where M is a smooth manifold of a fixed dimension (in our context equal to 4),
e = (ea)a=0,...,3 is a co-tetrad, (a collection of four smooth linearly independent
1-forms on M) and M , equipped with the metric, orientation and time-orientation
induced by e is an object in Loc.

The metric induced by e is defined by

g =
3∑

a,b=0
ηabeaeb, (2.24)

where η is theMinkowskimetric in four dimensions. The existence of orientation and
time-orientation is guaranteed if we require that e0 ∧ · · · ∧ e3 is everywhere positive
and that e0 is future-directed.

Definition 2.68 Given (M, e), (M′, e′) ∈ Obj(FLoc), a morphism ψ in
Hom((M, e), (M ′, e′)) is a smooth map between the underlying manifolds induc-
ing a Loc-morphism (M, e) → (M′, e′) and obeying ψ∗e′ = e, whereM = (M, g),
M′ = (M ′, g′) and g, g′ are defined by (2.24).

Given a co-tetrad we obtain its dual tetrad (a set of four independent vector fields)
(ea)a=0,...,3 by requiring that

ea(eb) = ea
μeμ

b = δa
b ,

where δa
b is the Kronecker delta.

Geometrically, the four vector fields (ea)a=0,...,3 define aglobal sectionof the frame
bundle (a parallelization of M), i.e. they provide an isomorphism T M ∼= M × R

4.
The operational interpretation for elements of Obj(FLoc) is provided in terms of

rods and clocks, but this description is redundant. This corresponds to the freedom to
make global frame rotations by elements of the proper orthochronous Lorentz group
� ∈ L

↑
+ (the group of isometries ofMinkowski spacetime that leave the origin fixed).

There is a representation of this group as automorphisms of FLoc and given a locally
covariant QFT functor A one obtains a family of theories by applying such frame
rotations. More precisely, to each� ∈ L

↑
+, there is a functorT (�) : FLoc → FLoc

T (�)(M, e) = (M,�e), where (�e)a = �a
beb, � ∈ L

↑
+. (2.25)

Physically, theories defined byA ◦T (�) for different� ∈ L
↑
+ have to be equivalent,

so one needs to impose an additional condition onA that guarantees that this is indeed
the case.

• Independence of global frame rotations To each � ∈ L
↑
+, there exists a natural

transformation η(�) : A→ A ◦T (�), such that

η(�)(M,e)α(M,e) = α(M,�e)η(�)(M,e), ∀α ∈ Aut(A), (2.26)
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where Aut(A) is the group of natural transformations that are automorphisms of
the functor A, see [Few13] for more detail.

The next step in LCQFT research is the proper understanding of the structures
of gauge theories, where the topological features lead to new difficulties [DL12,
SDH14, BSS14]. It would be desirable to obtain for local symmetries a framework
similar to the DHR analysis done for global symmetries [DHR71, DHR74].
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