Hands-on Learning of ROS Using Common
Hardware

Andreas Bihlmaier and Heinz Worn

Abstract Enhancing the teaching of robotics with hands-on activities is clearly
beneficial. Yet at the same time, resources in higher education are scarce. Apart from
the lack of supervisors, there are often not enough robots available for undergraduate
teaching. Robotics simulators are a viable substitute for some tasks, but often real
world interaction is more engaging. In this tutorial chapter, we present a hands-
on introduction to ROS, which requires only hardware that is most likely already
available or costs only about 150$. Instead of starting out with theoretical or highly
artificial examples, the basic idea is to work along tangible ones. Each example is
supposed to have an obvious relation to whatever real robotic system the knowledge
should be transfered to afterwards. At the same time, the introduction covers all
important aspects of ROS from sensors, transformations, robot modeling, simulation
and motion planning to actuator control. Of course, one chapter cannot cover any
subsystem in depth, rather the aim is to provide a big picture of ROS in a coherent and
hands-on manner with many pointers to more in-depth information. The tutorial was
written for ROS Indigo running on Ubuntu Trusty (14.04). The accompanying source
code repository is available at https://github.com/andreasBihlmaier/holoruch.

Keywords General introduction + Hands-on learning + Education

1 Introduction

Individual ROS packages are sometimes well documented and sometimes not.
However, the bigger problem for somebody working with ROS for the first time
is not the poor documentation of individual packages. Instead the actual problem

A. Bihlmaier (<) - H. Worn

Institute for Anthropomatics and Robotics (IAR), Intelligent Process Control
and Robotics Lab (IPR), Karlsruhe Institute of Technology (KIT),

76131 Karlsruhe, Germany

e-mail: andreas.bihlmaier @kit.edu

H. Worn
e-mail: woern@kit.edu

© Springer International Publishing Switzerland 2016 29
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_2


https://github.com/andreasBihlmaier/holoruch

30 A. Bihlmaier and H. Wo6rn

is to understand the big picture-to understand how all the various pieces of ROS
come together.! Although the ROS community provides tutorials,” in our experience
undergraduates struggle to transfer what they have learned in the sandbox tutorials to
real systems. At the same time, it is difficult to start out with real ROS robots for two
reasons. First, real robots are expensive, easily broken and often require significant
space to work with. Therefore they are often not available in sufficient quantity for
undergraduate education. Second, real robots can be dangerous to work with. This
holds true especially if the goal is to provide a hands-on learning experience for the
students, i.e. allow them to explore and figure out the system by themselves.

Ideally, each student would be provided with a simple robot that is safe and
yet capable enough to also learn more advanced concepts. To our knowledge no
such device is commercially available in the range of less than 200$. We will not
suggest how one could be built, since building it for each student would be too time
consuming. Instead, the goal of this tutorial is to detail a hands-on introduction to
ROS on the basis of commonly available and very low-cost hardware, which does
not require tinkering. The main hardware components are one or two webcams, a
Microsoft Kinect or Asus Xtion and two or more low-power Dynamixel servos.
The webcams may also be laptop integrated. Optionally, small embedded computers
such as Raspberry Pis or BeagleBone Blacks can be utilized. We assume the reader
to understand fundamental networking and operating system concepts, to be familiar
with the basics of Linux including the command line and to know C++ or Python.
Furthermore, some exposure to CMake is beneficial.

The remainder of the chapter is structured as follows:

First, a brief background section on essential concepts of ROS. It covers the con-
cepts of the ROS master, names, nodes, messages, topics, services, parameters and
launch files. This section should be read on a first reading. However, its purpose
is also to serve as glossary and reference for the rest of the chapter.

e Second, a common basis in terms of the host setup is created.

e Third, working with a single camera, e.g. a webcam, under ROS serves as an exam-
ple to introduce the computation graph: nodes, topics and messages. In addition,
rqt and tools of the image_pipeline stack are introduced.

e Fourth, a custom catkin package for filtering sensor_msgs/Image is created.
Names, services, parameters and launch files are presented. Also, the defini-
tion of custom messages and services as well as the dynamic_reconfigure and
vision_opencv stacks are shown.

e Fifth, we give a short introduction on how to use RGB-D cameras in ROS, such
as the Microsoft Kinect or Asus Xtion. Point clouds are visualized in rviz and
pointers for the interoperability between ROS and PCL are provided.

e Sixth, working with Dynamixel smart servos is explained in order to explain the

basics of ros_control.

1At least this has been the experience in our lab, not only for undergraduates but also for graduate
students with a solid background in robotics, who had never worked with ROS before.

Zhttp://wiki.ros.org/ROS/Tutorials.


http://wiki.ros.org/ROS/Tutorials

Hands-on Learning of ROS Using Common Hardware 31

e Seventh, a simple robot with two joints and a camera at the end effector is modelled
as an URDF robot description. URDF visualization tools are shown. Furthermore,
tf is introduced.

e Eighth, based on the URDF model, a Movelt! configuration for the robot is gen-
erated and motion planning is presented exemplary.

e Ninth, the URDF is extended and converted to SDF in order to simulate the robot
with Gazebo.

2 Background

ROS topics are an implementation of the publish-subscribe mechanism, in which
the ROS Master serves as a well-known entry point for naming and registration.
Each ROS node advertises the topics it publishes or subscribes to the ROS Master. If
a publication and subscription exist for the same topic, a direct connection is created
between the publishing and subscribing node(s), as shown in Fig. 1. In order to have
a definite vocabulary, which may also serve the reader as glossary or reference, we
give a few short definitions of ROS terminology:

e Master’: Unique, well-known (ROS_MASTER_URT environment variable) entry
point for naming and registration. Often referred to as roscore.

e (Graph Resource) Name*: A name of a resource (node, topic, service or parame-
ter) within the ROS computation graph. The naming scheme is hierarchical and
has many aspects in common to UNIX file system paths, e.g. they can be absolute
or relative.

e Host: Computer within the ROS network, identified by its IP address (ROS_IP
environment variable).

e Node’: Any process using the ROS client API, identified by its graph resource
name.

e Topic’: A unidirectional, asynchronous, strongly typed, named communication
channel as used in the publish-subscribe mechanism, identified by its graph
resource name.

e Message’: A specific data structure, based on a set of built-in types,® used as type
for topics. Messages can be arbitrarily nested, but do not offer any kind of is-a
(inheritance) mechanism.

3http://wiki.ros.org/Master.
“http://wiki.ros.org/Names.
Shttp://wiki.ros.org/Nodes.
Ohttp://wiki.ros.org/Topics.
http://wiki.ros.org/Messages.
8http://wiki.ros.org/msg.


http://wiki.ros.org/Master
http://wiki.ros.org/Names
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Messages
http://wiki.ros.org/msg

32 A. Bihlmaier and H. Wo6rn

IP:Port

for tname

(b)

subscribe("tname",

N

ubscribe D e
data
data N‘M

Fig. 1 Overview of the ROS topic mechanism. When a publisher (a) and subscriber (b) are regis-
tered to the same topic, the subscriber receives the network address and port of all publishers (c).
The subscriber continues by directly contacting each publisher, which in return starts sending data
directly to the subscriber (d). Many nodes can publish and subscribe to the same topic resulting in
a N : M relation (e). On the network layer there are N - M connections, one for each (publisher,
subscriber) tuple. The nodes can be distributed over any number of hosts within the ROS network

e Connection A connection between a (publisher, subscriber) tuple carrying the
data of a specific topic (cf. Fig. 1), identified by the tuple (publisher-node, topic,
subscriber-node).

e Service’: A synchronous remote procedure call, identified by its graph resource
name.

e Action'®: A higher-level mechanism built on top of topics and services for long-
lasting or preemptable tasks with intermediate feedback to the caller.

e Parameters'': “A shared, multi-variate dictionary that is accessible via network
APIs.” Its intended use is for slow changing data, such as initialization arguments.
A specific parameter is identified by its graph resource name.

e roslaunch'?: A command line tool and XML format to coherently start a set of
nodes including remapping of names and setting of parameters.

Topics are well suited for streaming data, where each subscriber is supposed to get
as much of the data as he can process in a given time interval and the network
can deliver. The network overhead and latency is comparatively low because the
connections between publisher and subscriber remain open. However, it is impor-
tant to remember that messages are automatically dropped, if the subscriber queue
becomes full. In contrast, services establish a new connection per call and cannot

http://wiki.ros.org/Services.
1Ohttp://wiki.ros.org/actionlib.
Uhttp://wiki.ros.org/ParameterServer.
2http://wiki.ros.org/roslaunch.


http://wiki.ros.org/Services
http://wiki.ros.org/actionlib
http://wiki.ros.org/ParameterServer
http://wiki.ros.org/roslaunch

Hands-on Learning of ROS Using Common Hardware 33

fail without notice on the caller side. The third mechanism built on top of topics and
services are actions. An action uses services to initiate and finalize a (potentially)
long-lasting task, thereby providing definite feedback. Between start and end of the
action, continuous feedback is provided via the topics mechanism. This mapping to
basic communication mechanisms is encapsulated by the actionlib.

3 ROS Environment Configuration

For the rest of this chapter, we assume a working standard installation'> of ROS
Indigo-on Ubuntu Trusty (14.04). Furthermore, everything shown in this chapter can
be done on a single host. Therefore, a localhost setup is assumed, i.e. roscore and all
nodes run on localhost:

echo 'export ROS_MASTER_URI=http://127.0.0.1:11311' >> ~/.bashrc
echo 'export ROS_IP=127.0.0.1' >> ~/.bashrc

# run "source ~/.bashrc" or open a new terminal
echo SROS_MASTER_URI

# should: http://127.0.0.1:11311

echo SROS_IP

# should: 127.0.0.1

From here on it is presumed that roscore is always running. The second part of
setup requires a working catkin build system.'# In case no catkin workspace has been
initialized, this can be achieved with

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/src
catkin_init_workspace

Afterwards all packages in the catkin workspace source directory (~/catkin_ws/
src) can be built with

cd ~/catkin_ws
catkin_make

The catkin_make command should run without errors for an empty workspace.
In the rest of this chapter, the instruction “Install the REPOSITORY package
from source” refers to cloning the repository into the ~/catkin_ws/src direc-
tory, followed by running catkin_make. Start by installing https://github.com/
andreasBihlmaier/holoruch, which will be used throughout this chapter. After these
preliminaries, we can start the hands-on introduction to the various aspects of ROS.

13A desktop-full installation according to http://wiki.ros.org/indigo/Installation/Ubuntu.
http://wiki.ros.org/catkin.


https://github.com/andreasBihlmaier/holoruch
https://github.com/andreasBihlmaier/holoruch
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/catkin

34 A. Bihlmaier and H. Wo6rn

4 Camera Sensors: Driver, Use and Calibration

The first example is a camera sensor. A USB webcam or integrated camera must
be attached to the computer. If multiple cameras are connected to the computer, the
first one is used here.!> Where these settings are stored and how to change them will
be shown later in this section. Use guvcview to make sure the camera is working
correctly and also have a look at the “Image Controls” and “Video” tab for supported
resolutions/framerates and control settings.'¢

First, install https://github.com/ktossell/camera_umd from source:

cd ~/catkin_ws/src ; git clone https://github.com/ktossell/
<> camera_umd.git
cd ~/catkin_ws ; catkin_make

Second, start the camera driver node

roslaunch holoruch_camera webcam.launch

Third, use the command line utilities to check if the camera node is running as
expected:

rosnode list

The output should contain /webcam/uvc_camera_webcam. We also want to
check if the expected topics have been created:

rostopic list

Here, /webcam/camera_info and /webcam/image_raw is expected. If
either the node or the topics do not show up, look at the output of roslaunch
and compare possible errors to the explanation of the launch file in this section.
Next, start rgt to visualize the image data of the webcam

rosrun rgt_gui rgt_gui

Start the “Image View” plugin through the menu: “Plugins” — “Visualization” —
“Image View”. Use the upper left drop-down list to select /webcam/image_raw.
Now the webcam’s live image should appear. Note that everything is already network
transparent. If we would not be using localhost IP addresses, the camera node and
rgt could be running on two different hosts without having to change anything.

After a simple data source and consumer have been setup and before we add
more nodes, let’s look at all of the involved ROS components. First the roslaunch
file webcam. launch:

15The order is determined by the Linux kernel’s Udev subsystem.

16Note: While it does not matter for this tutorial, it is essential for any real-world application that
the webcam either has manual focus or the auto focus can be disabled. Very cheap or old webcams
have the former and better new ones usually have the latter. For the second kind try v412-ctl
-c¢ focus_auto=0.


https://github.com/ktossell/camera_umd

Hands-on Learning of ROS Using Common Hardware 35

<launch>
<node ns="/webcam"

pkg="uvc_camera" type="uvc_camera_node" name="uvc_camera_webcam"
output="screen">

<param name="width" type="int" value="640" />

<param name="height" type="int" value="480" />

<param name="fps" type="int" value="30" />

<param name="frame" type="string" value="wide_stereo" />

<param name="auto_focus" type="bool" value="False" />

<param name="focus_absolute" type="int" value="0" />

<!-- other supported params: auto_exposure,
exposure_absolute, brightness, power_line_ frequency -->

<param name="device" type="string" value="/dev/videoO" />
<param name="camera_info_url" type="string"
value="file://$(find holoruch_camera) /webcam.yaml" />
</node>
</launch>

The goal here is to introduce the major elements of a roslaunch file, not to detail all
features, which are described in the ROS wiki.'” Each <node> tag starts one node, in
our case uvc_camera_node from the uvc_camera package we installed earlier.
The name, uvc_camera_webcam can be arbitrarily chosen, a good convention
is to combine the executable name with a task specific description. If output was
not set to screen, the node’s output would not be shown in the terminal, but sent
to a log file.'® Finally, the namespace tag, ns, allows to prefix the node’s graph
name, which is in analogy with pushing it down into a subdirectory of the filesystem
namespace. Note that the nodes are not started in any particular order and there is no
way to enforce one. The <param> tags can be either direct children of <launch>
or within a <node> tag.!” Either way they allow to set values on the parameter
server from within the launch file before any of the nodes are started. In the latter
case, which applies here, each <param> tag specifies a private parameter?” for the
parent <node> tag. The parameters are node specific.

In case of the uvc_camera_node, the parameters pertain to camera settings.
This node uses the Linux Video4Linux2 API?! to retrieve images from any video
input device supported by the kernel. It then converts each image to the ROS image
format sensor_msgs/Image and published them over a topic, thereby making
them available to the whole ROS system.?? If the launch file does not work as it is,
this is most likely related to the combination of width, height and fps. Further

http://wiki.ros.org/roslaunch/XML.

18See http://wiki.ros.org/roslaunch/XML/node.
19See http://wiki.ros.org/roslaunch/XML/param.
20Cf, http://wiki.ros.org/Names.

2l http://lwn.net/ Articles/203924/.

22See also http://wiki.ros.org/image_common.


http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/roslaunch/XML/param
http://wiki.ros.org/Names
http://lwn.net/Articles/203924/
http://wiki.ros.org/image_common

36 A. Bihlmaier and H. Wo6rn

information on the uvc_camera package is available on the ROS wiki>* and in the
repository’s example launch files.*

In order to get a transformation between the 3D world and the 2D image of
the camera, an instrinsic calibration of the camera is required. This functionality
is available, for mono and stereo cameras, through the cameracalibrator.py
in the camera_calibration package. Here one essential feature and design
pattern of ROS comes into play. The cameracalibrator.py node does not
require command line arguments for changing the relevant ROS names, such as the
image topic. Instead ROS provides runtime name remapping. Any ROS graph name
within a node’s code can be changed by this ROS mechanism on startup of the node.
In our case, the cameracalibrator.py code subscribes to a "image" topic,
but we want it to subscribe to the webcam’s images on /webcam/image_raw.
The launch syntax provides the <remap> tag for this purpose:
<launch>

<node pkg="camera_calibration" type="cameracalibrator.py"

name="calibrator_webcam" output="screen"
args="--size 8x6 --square 0.0255">
<remap from="image" to="/webcam/image_raw" />
<remap from="camera" to="/webcam" />

</node>

</launch>

The same can be achieved on the command line by the oldname : =newname
syntax:
rosrun camera_calibration cameracalibrator.py \

--size 8x6 --square 0.0255 \
image:=/webcam/image_raw camera:=/webcam

In both cases, the same node with the same arguments and remappings is started,
albeit with a different node name. The monocular calibration tutorial>> explains all
steps to calibrate the webcam using a printed checkerboard. We continue with the
assumption this calibration has been done and “commited”.?®

Commonly required image processing tasks, such as undistorting and rectification
of images, are available in the image_proc package.?” Due to the flexibility of
the topic mechanism, we do not have to restart the camera driver, rather we just add
further nodes to the ROS graph.?® Run

roslaunch holoruch_camera proc_webcam.launch

2http://wiki.ros.org/uvc_camera.
24~/catkin_ws/src/camera_umd/uvc_camera/launch/example.launch.
ZShttp://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.
26Chm*¢hm1hevﬂuesofrostopic echo -n 1 /webcam/camera_info correspond to
those printed to the terminal by cameracalibrator.py.

2Thttp://wiki.ros.org/image_proc.

281f the camera driver and image processing is running on the same host, it is good practice to
use nodelets instead of nodes for both-in order to reduce memory and (de)serialization overhead.
However, this does not substantially change anything.


http://wiki.ros.org/uvc_camera
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/image_proc

Hands-on Learning of ROS Using Common Hardware 37

rqt_gul_cpp_node_23431

ey —— —
C_imat_gul_cpp_nede 23431
e s

Fig.2 The screenshot shows rgt with the “Image View” plugin on the fop and the “Node Graph” on
the bottom. The graph visualizes the simple image processing pipeline consisting of uvc_camera
and image_proc

Afterwards rostopic 1list should show additional topics in the /webcam
namespace. For a live view of the undistorted image, update the drop-down list
in the “Image View” rgt plugin and select /webcam/image_rect_color.
So far the ROS graph is simple. There only exists the uvc_camera_node,
whose image_raw and camera_info topics are subscribed by the image_
proc_webcam node, whose image_rect_color topic is in turn subscribed
by the rgt plugin. However, graphs of real systems often contain dozens of nodes
with hundreds of topics. Fortunately, ROS provides introspection capabilities. That
is, ROS provides mechanisms to acquire some key information about the current
system state. One important information is the structure of the computation graph, i.e.
which nodes are running and to which topics is each one publishing or subscribing.
This can be visualized with the “Node Graph” rgt plugin (under “Plugins” —
“Introspection”). The current ROS graph can be seen in Fig. 2. Next, we will write a
custom ROS node that does custom image processing on the webcam image stream.

5 Custom Node and Messages for Image Processing
with OpenCV

In this section we will create a custom catkin package for image processing on
a sensor_msgs/Image topic.29 Also, the definition of custom messages and
services as well as the dynamic_reconfigure and vision_opencv stacks

29The goal of this section is to provide an example which is short, but at the same time very close
to a real useful node. Standalone examples of how to create ROS publishers and subscribers in C++



38 A. Bihlmaier and H. Wo6rn

are shown. First, create a new package, here holoruch_custom, and specify all

dependencies that are already known’:

cd ~/catkin_ws/src
catkin_create_pkg holoruch_custom roscpp dynamic_reconfigure
cv_bridge

The slightly abbreviated code for the core node functionality in holoruch_
custom/src/holoruch_custom_node. cpp is shown below

int main(int argc, char **argv) {
ros::init(argc, argv, "holoruch_custom") ;
ros: :NodeHandle n;

1
2
3
4
5 sub n.subscribe ("image_raw", 1, imageCallback) ;
6 pub = n.advertise<sensor_msgs::Image> ("image_edges", 1);
7

8 ros::spin() ;

9 return 0;

10 1}

11

12 void imageCallback (const sensor_msgs::ImageConstPtr& msg) {

13 cv_bridge: :CvImagePtr cvimg = cv_bridge: :toCvCopy (msg, "bgr8");

14

15 cv::Mat img_gray;

16 cv::cvtColor (cvimg->image, img_gray, CV_BGR2GRAY) ;

17 cv::Canny (img_gray, img_gray, cfg.threshLow, cfg.thresHigh);

18 cv::Mat img_edges_color (cvimg->image.size (), cvimg->image.type(),
19 cv::Scalar (cfg.edgeB, cfg.edgeG, cfg.edgeR
200 ));

21 img_edges_color.copyTo (cvimg->image, img_gray); // use img_gray as
22  mask

23

24 pub.publish (cvimg->toImageMsg()) ;

25 1}

After initializing the node (2), we create a subscriber to receive the images (5) and
a publisher to send the modified ones (6). The remaining work will be done in the
subscriber callbacks, which are handled by the ROS spinner (8). Each time a new
image arrives, the imageCallback function is called. It converts the ROS image
format to the OpenCV format (13) using the cv_bridge package.’' Afterwards
some OpenCV functions are applied to the data (15-20), the resulting image is
converted back to ROS and published (22). In the example, we apply an edge filter

(Footnote 29 continued)

and Python are available in the ROS wiki: http://wiki.ros.org/ROS/Tutorials. Very basic standalone
packages with examples can also be found at: https://github.com/andreasBihlmaier/ahb_rospy_
example and https://github.com/andreasBihlmaier/ahb_roscpp_example.

30These steps are for illustration only, the full holoruch_custom and
holoruch_custom_msgs package is already contained in the holoruch repository.

31See http://wiki.ros.org/cv_bridge. We will not go into any OpenCV details such as color encod-
ings here. For more information see http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeTo
ConvertBetweenROSImagesAndOpenCVImages and the OpenCV documentation at http://opencv.
org/documentation.html.


http://wiki.ros.org/ROS/Tutorials
https://github.com/andreasBihlmaier/ahb_rospy_example
https://github.com/andreasBihlmaier/ahb_rospy_example
https://github.com/andreasBihlmaier/ahb_roscpp_example
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://opencv.org/documentation.html
http://opencv.org/documentation.html

Hands-on Learning of ROS Using Common Hardware 39

to the image and overlay the edges on the original one. There is much more to be
learned about working with images in ROS. However, since the goal of this tutorial
is to give the big picture, we cannot go into further details here.

Now we add the functionality to change the filter settings during runtime
using dynamic_reconfigure. If the goal would be to change the settings
only on startup (or very seldom), we would use the parameter server instead.*’
First, we need to define the parameters, which is accomplished by creating a
holoruch_custom/cfg/filter.cfg file:

# imports omitted from listing

g = ParameterGenerator ()

# Name Type Rcfg-1vl Description Default Min Max
g.add("edgeR", int_t, O, "Edge Color Red", 255, 0, 255)
g.add("edgeG", int_t, O, "Edge Color Green", 0, 0, 255)
# further parameters omitted from listing

exit (g.generate (PACKAGE, "holoruch_custom", "filter"))

Second, we need to initialize a dynamic_reconfigure in main. Therefore, we
add the following in line 7 above

dynamic_reconfigure: :Server<holoruch_custom::filterConfig> server;
server.setCallback (boost: :bind(&dynamic_reconf_cb, 1, _2));

and a new callback function, e.g. after line 23, for reconfigure

void dynamic_reconf_cb(holoruch_custom::filterConfig &ncfg, uint32_t 1vl
)
{ // cfg is a global variable: holoruch_custom::filterConfig cfg

cfg = ncfg;
}
We refer to the holoruch_custom repository regarding the required additions in
CMakeLists. txt.

After compiling the workspace with catkin_make, we can now run our cus-
tom node. This time we use the ROS_NAMESPACE environment variable to put
holoruch_custom_node, and thereby its depend names, into /webcam.

env ROS_NAMESPACE=/webcam rosrun holoruch_custom holoruch_custom_node \
image_raw:=image_rect_color

Again, the same could be achieved by remapping alone or by the roslaunch ns tag as
shown in the previous section. The result is shown in Fig. 3, the filter settings can be
continously changed while the node is running by use of the “Dynamic Reconfigure”
rqgt plugin.

So far we have only used predefined ROS message types. Let’s assume we want
to publish the number of connected edge pixel components, which are detected by
our node, together with the number of pixels in each one. No adequate predefined

32Good documentation and tutorials to delve into this topic can be found at http://wiki.ros.
org/image_common, http://wiki.ros.org/camera_calibration and http://wiki.ros.org/cv_bridge. For
more information on ROS supported sensors, see “Cameras” and “3D sensors” at http://wiki.ros.
org/Sensors.

33See http://wiki.ros.org/roscpp/Overview/ParameterServer. for an example.


http://wiki.ros.org/image_common
http://wiki.ros.org/image_common
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/Sensors
http://wiki.ros.org/Sensors
http://wiki.ros.org/roscpp/Overview/ParameterServer

40 A. Bihlmaier and H. Wo6rn

rot_gui_cpp_node_23431

rat_gul_py_node_23431

Fig. 3 A screenshot of the custom image processing node’s output /webcam/image_edges in
rqgt. Compared to Fig. 2, the “Dynamic Reconfigure” plugin was added in the upper right and the
“Node Graph” in the bottom shows the additional node holoruch_custom and its connections

message exists for this purpose, thus we will define a custom one.>* We could put
the message definitions into holoruch_custom, but it is favorable to have them
in a separate package. This way other nodes that want to use the custom message
only have to depend on the message package and only compile it. Thus we create it

catkin_create_pkg holoruch_custom_msgs \
message_generation message_runtime std_msgs

Our custom message holoruch_custom_msgs/EdgePixels, is defined by
the file holoruch custom msgs/msg/EdgePixels.msg>:

std_msgs/Header header
int32[] edge_components

Again, see the repository for details about message generation with CMakeLists.
txt. After running catkin_make, the custom message is available in the same
manner as predefined ones:

rosmsg show holoruch_custom_msgs/EdgePixels

The custom message can now be used in holoruch_custom_node.cpp to
communicate information about edge components in the image. We would create a
second publisher in main at line 6:

compPub = n.advertise<holoruch_custom_msgs::EdgePixels>("edges", 1);

341t is highly advisable to make sure that no matching message type already exists before defining
a custom one.

35For available elementary data types see http://wiki.ros.org/msg.


http://wiki.ros.org/msg

Hands-on Learning of ROS Using Common Hardware 41

and the code to calculate and afterwards publish the components would be inserted at
line 21 in imageCallback. Without going into the details of catkin dependencies,
please refer to the holoruch repository and wiki documentation,® it is necessary
to add a dependency to holoruch_custom_msgs into holoruch_custom/
package.xml and holoruch_custom/CMakeLists. txt. This concludes
the introduction to creating a custom ROS node. Next, we look a different kind of
optical sensor.

6 RGB-D Sensors and PCL

RGB-D sensors such as the Microsoft Kinect or the Asus Xtion provide two kinds of
information: First, a RGB image just like a normal camera. Second, a depth image
usually encoded as a grayscale image, but with each gray value measuring distance to
the camera instead of light intensity. Separately, the RGB and depth image can be used
as shown in the previous sections. However, the depth image can also be represented
as a point cloud, i.e. an ordered collection of 3D points in the camera’s coordinate
system. If the RGB and depth image is registred to each other, which means the
external camera calibration is known, a colored point cloud can be generated. The
ROS community provides a stack for OpenNI-compatible devices,*” which contains
a launch file to bring up the drivers together with the low-level processing pipeline’®:

roslaunch openni2_launch openni2.launch

Use dynamic reconfigure, e.g. the “Dynamic Reconfigure” plugin, to activate “depth
registration” and “color_depth_synchronisation” for the driver node. Because by
default no RGB point clouds are generated.

The most interesting new ROS subsystems that become relevant when working
with RGB-D sensors, or with the sensor_msgs/PointCloud2 message, are
rviz and the Point Cloud Library (PCL). If no RGB-D sensor is available, but
two (web)cameras, have a look at the stereo_image_proc stack®, which can
calculate stereo disparity images and process these to point clouds, as well. We want
to stress this point once more, since it is one of the big benefits when-properly-using
ROS: Message types, sent over topics, represent an abstract interface to the robot
system. They abstract not only on which machine data is generated, transformed
or consumed, but also how this data has been acquired. In the case at hand, once
a sensor_msgs/PointCloud2 has been created, it does not matter whether it

36http://wiki.ros.org/ROS/Tutorials/CreatingPackage.

37Since the end of 2014 there also exists a similar stack for the Kinect One (aka Kinect v2): https://
github.com/code-iai/iai_kinect2.

381f openni?2 does not work, also try the older openni stack.

¥n case of using two webcams, do not start a seperate driver node for each, instead
use uvc_stereo_node. For stereo calibration refer to http://wiki.ros.org/camera_calibration/
Tutorials/StereoCalibration.


http://wiki.ros.org/ROS/Tutorials/CreatingPackage
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration

42 A. Bihlmaier and H. Wo6rn

P

B B israsnr i R . 51 i s i

| nm

Fig. 4 Live visualization of RGB point clouds (sensor_msgs/PointCloud2) with rviz. In
order to show the colored point cloud, the “Color Transformer” of the “PointCloud2” plugin must
be set to RGB8

originates from a stereo camera or a RGB-D sensor or from a monocular structure
from motion algorithm and so forth.

The rviz “PointCloud2” plugin provides a live 3D visualization of a point cloud
topic. We start rviz using rosrun

rosrun rviz rviz

and use the “Add” button in order to create a new instance of a visualization plugin.
Next we select the “By topic™ tab and select the depth_registeredPointCloud2
entry. The resulting display can be seen in Fig. 4. Furthermore, as will become evident
till the end of this chapter, rviz is able to combine a multitude of sensor and robot
state information into a single 3D visualization.

A custom ROS node for processing point clouds with PCL is very similar to the
custom OpenCV node shown in the previous section. Put differently, it is simple and
only requires a few lines of code to wrap existing algorithms-based on frameworks
such as OpenCV or PCL-for ROS. Thereby benefiting from network transparency and
compatibility with the large amount of software available by the ROS community.
Again working with stereo cameras or RGB-D sensors is a large topic in its own
right and we cannot go into further details here.*’ Having gained experience with
two different optical sensor types and a lot of fundamental knowledge in working
with ROS, we turn our attention to actuators.

40We refer to the excellent documentation and tutorials in the ROS wiki (http://wiki.ros.org/pcl/
Overview) as well as those for OpenCV (http://opencv.org/documentation.html) and PCL (http://
pointclouds.org/documentation/).


http://wiki.ros.org/pcl/Overview
http://wiki.ros.org/pcl/Overview
http://opencv.org/documentation.html
http://pointclouds.org/documentation/
http://pointclouds.org/documentation/

Hands-on Learning of ROS Using Common Hardware 43

Fig. 5 A simple pan-tilt unit
is shown, it consists of two
Dynamixel AX-12A
actuators together with a
USB2Dynamixel adapter.
Any small webcam or
RGB-D camera can be
attached to the pan-tilt unit,
in the image a Logitech C910
is used. Together the pan-tilt
unit and the camera can be
used for tabletop robotics
experiments. They provide a
simple closed sensor actuator
loop, allowing to teach
advanced robotics concepts

7 Actuator Control: Dynamixel and ROS Control

The Robotis Dynamixel actuators are integrated position or torque controlled “smart
servo” motors and can be daisy chained. It is sufficient to connect them on one end
of the daisy chain to a computer via an USB adapter and to a 9-12 V power supply.
For this chapter we use two Dynamixel AX-12A and one USB2Dynamixel adapter.
Each AX-12A has a stall torque of 1.5Nm, smooth motion is possible up to about
1/5th of the stall torque.*' As of 2015 the overall cost of the three items is less than
150$. The Dynamixel actuators are popular in the ROS community because-among
other things-they can be used out-of-the-box with the dynamixel_motor stack.*?
We built a simple pan-tilt unit, which is depicted in Fig. 5. The goal here is not an
introduction to dynamixel motor,* rather we provide a hands-on example of
working with actuators under ROS.

First we need to start the node, which directly accesses the Dynamixel motors via
USB:

roslaunch holoruch_pantilt pantilt_manager.launch
Before proceeding make sure that motor data is received:
rostopic echo /motor_states/pan_tilt_port

Now we spawn a joint controller for each axis in the pan-tilt unit:

4 http://www.robotis.com/xe/dynamixel_en.
42http://wiki.ros.org/dynamixel_motor.

4In depth tutorials are available in the ROS wiki: http://wiki.ros.org/dynamixel_controllers/
Tutorials.


http://www.robotis.com/xe/dynamixel_en
http://wiki.ros.org/dynamixel_motor
http://wiki.ros.org/dynamixel_controllers/Tutorials
http://wiki.ros.org/dynamixel_controllers/Tutorials

44 A. Bihlmaier and H. Wo6rn

roslaunch holoruch_pantilt pantilt_controller_spawner.launch

Note that the above call will terminate after spawning the joint controllers. Before
moving the motors, one can set the positioning speed (default is 2.0):

rosservice call /pan_controller/set_speed 'speed: 0.5
rosservice call /tilt_controller/set_speed 'speed: 0.1'

To check whether everything worked, try to move each axis:

rostopic pub -1 /pan_controller/command std _msgs/Float64 -- 0.4
rostopic pub -1 /tilt_controller/command std_msgs/Float64 -- 0.1

Now we could control our pan-tilt unit through a custom node that publishes to each
axis’ command topic. However, ROS provides higher level mechanisms to work
with robots. The next step will thus be to create a model of our two axis “robot”.

8 Robot Description with URDF

In ROS robots are described, in terms of their rigid parts (= links) and (moveable) axis
(= joints), by the URDF format. The complete holoruch_pantilt.urdf can
be found in the hol oruch repository. Only the general URDF structure is described
here:

<robot name="holoruch_pantilt">

1

2 <link name="base_link">

3 <visual>

4 <geometry>

5 <box size="0.15 0.13 0.01" />

6 </geometry>

7 </visual>

8 e

9 </link>

10

11 <joint name="base_to_pan_joint" type="fixed">
12 <origin xyz="0 0 0.021" rpy="0 0 0"/>

13 <parent link="base_link"/>

14 <child link="pan_link"/>

15 </joint>

16

17 <link name="pan_link">

18 <visual>

19 <geometry>

20 <mesh filename="package://holoruch_pantilt_description/
21 meshes/AX-12A.stl" />

22 </geometry>

23 </visual>

24 <collision>

25 <geometry>

26 <mesh filename="package://holoruch_pantilt_description/
27 meshes/AX-12A_convex.stl" />

28 </geometry>



Hands-on Learning of ROS Using Common Hardware 45

29 </collision>

30 <inertial>

31 <origin rpy="0 0 0" xyz="0 0 0"/>

32 <mass value="0.055"/>

33 <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
34 </inertial>

35 </1link>

36

37 <joint name="pan_joint" type="revolute">

38 <origin xyz="0 0 0.06" rpy="0 0 0"/>

39 <parent link="pan_link"/>

40 <child link="tilt_link"/>

41 <limit lower="-1.57079" upper="1.57079" effort="1.0" velocity=
42 "1.0" />

43 <axis xyz="0 0 1" />

44 </joint>

45

46 <link name="tilt_link"> ... </link>

47 <joint name="tilt_joint" type="revolute"> ... </joint>

48 <link name="camera_link"> ... </link>

Each <1ink> tag has at least a <visual>, <collision> and <inertial>
child tag. The visual elements can be either geometric primitives (5) or mesh files
(20). For the collision element the same is true with one very important exception:
Collision meshes must always be convex. If this is not minded, collision checking
might not work correctly when using the URDF in combination with Movelt! (cf.
the following section). Each <joint> tag has an origin relative to its parent
link and connects it with a chi1d link. There are several different joint types, e.g.
fixed (11) and revolute (35). Furthermore, if the joint is moveable, its axis
of motion has to be specified together with a 1imi t. To understand how coordinate
systems are specificed in URDF please see the relevant drawings in the ROS wiki.**

At any time the XML is valid, the current appearance of the robot can be tested
by a utility from the urdf_tutorial package:

roslaunch urdf_tutorial display.launch gui:=True model:=some_robot.urdf

This starts rviz including the required plugins together with a joint_state_
publisher, which allows to manually set the joint positions through a GUIL
Figure 6 depicts a screenshot for the pan-tilt unit.

Once a robot description has been created it can be used by the rviz “Robot-
Model” plugin to visualize the current robot state. Furthermore, the URDF is the
basis for motion planning, which will be covered next.

“http://wiki.ros.org/urdf/XML/model, http://wiki.ros.org/urdf/ XML/link and http://wiki.ros.org/
urdf/XML/joint.


http://wiki.ros.org/urdf/XML/model
http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/joint
http://wiki.ros.org/urdf/XML/joint

46 A. Bihlmaier and H. Wo6rn

i€ia_link

U nk

—

bal

[ i

B T st 17001 i Lrriamar | 2 11

Bt Lo TR s S TR e LT Bl R St Wl e B o

Fig. 6 rviz displaying the live state of the pan-tilt unit. The fixed frame is the base link
of the pan-tilt unit (base_1link). The “RobotModel” plugin uses the URDF robot descrip-
tion from the parameter server (/pantilt_controller/robot_description) to visu-
alize the robot links according to the current joint position. The “TF” plugin shows all t£
frames. In the screenshot these are only the frames of the pan-tilt joints. These joint frames
are provided by the robot_state_publisher based on the robot description and a
sensor_msgs/JointState topic (joint_states)

9 Motion Planning with Movelt!

The Movelt! framework® gives ROS users an easy and unified access to many motion
planning algorithms. This does not only include collision free path planning accord-
ing to meshes, but also works in combination with continuously updated obstacles.
Furthermore, it provides rviz plugins to interactively view trajectory execution
and specify motion targets with live pose visualization. In order to use Movelt!, a
lot of additional configuration is required. Fortunately, a graphical setup assistant is
provided, which takes care of (almost) all required configuration:

roslaunch moveit_setup_assistant setup_assistant.launch

We will not go through the configuration process here, the completly configured
holoruch_pantilt_moveit_config, however, is contained in the reposi-
tory. For more details and background information, we refer to the online available
Movelt! setup assistant tutorials.*® After completion of the setup, we can directly
use the generated demo . launch to test all planning features but without actually
sending the trajectory goals to the robot (cf. Fig. 7). Although having a generic
motion planner can be demonstrated by means of more impressive examples than

#Shttp://moveit.ros.org/.
4Shttp://docs.ros.org/indigo/api/moveit_setup_assistant/html/doc/tutorial.html.


http://moveit.ros.org/
http://docs.ros.org/indigo/api/moveit_setup_assistant/html/doc/tutorial.html

Hands-on Learning of ROS Using Common Hardware 47

- o

Fig.7 The “MotionPlanning” rviz plugin provided by Movelt! is shown in combination with the
pan-tilt unit. Target positions can be specified by moving the interactive marker. Once the desired
target is set, a trajectory from the current pose to the target can be planned by pressing the “Plan”
button. If a motion plan is found, it can be directly visualized in different ways. However, this barely
scratches the surface of the available “MotionPlanning” functionality

by a two axis pan-tilt unit, Movelt! also works in this case and could be even useful
in applications such as visual servoing. The last point is especially relevant when
considering that no modification of code is required when switching between robots
with completely different kinematics if the Movelt! API-or at least the actionlib
together with trajectory_msgs/JointTrajectory-is used instead of cus-
tom solutions.

At this point, we have seen how to work with sensor data and control actuators
using ROS. In addition, it should have become clear, at least the big picture of it,
how one can write custom nodes that process incoming sensor data in order to plan
and finally take an action by sending commands to the actuators. The last section
of this tutorial will show how the Gazebo simulator can be used together with ROS
in order to work without access to the real robot.*’ Everything written so far about
ROS, processing sensor data as well as moving robots, can be done without any
modification with simulated sensors and simulated actuators. Nodes do not even
have to be recompiled for this. Most of the time, even the same launch files can be
used.

4TThere are also many other important uses for simulated robot instances. One of these is “Robot Unit
Testing”, which brings unit and regression testing for robotics to a new level, for more information
see [1].



48 A. Bihlmaier and H. Wo6rn

10 Robot Simulation with Gazebo

Due to historical reasons, ROS and Gazebo use different formats to describe robots.
The former, URDF, has been introduced in the previous section. The Gazebo for-
mat is called SDF and has a similar structure to URDF, i.e. there are links which
are connected by joints-however, there are also some important differences on the
conceptual level, for example how coordinate systems are represented. Thankfully
it is possible to automatically convert from URDF to SDF*®:

gz sdf --print robot.urdf > model.sdf

We have to convert holoruch_pantilt.urdf in this manner and also add a
model .config.*” The model.sdf and model.config file must be copied
into their own subdirectory of ~/ . gazebo/models/. Afterwards Gazebo can be
started and we can add our simulated pan-tilt unit via the “Insert” tab in the left side
menu:

rosrun gazebo_ros gazebo

After adding the model to the world, the simulated gravity will slowly pull the tilt
axis down until the camera rests on the motor. This happens for two different reasons:
First, we did not specify a <dynamics> tag, which contains friction, for our
model. Second, the SDF does not contain any sensor or model plugins.

We will add two plugins to the SDF file: First, a simulated camera sensor™:

<link name='camera_link'>

<sensor name="cam_sensor" type="camera">
<always_on>1l</always_on>
<visualize>0</visualize>
<pose>
00 0.116
3.14159 3.14159 -1.5708
</pose>
<update_rate>30</update_rate>
<camera>
<horizontal_ fov>1.0</horizontal_fov>

<clip>
<near>0.0100000</near>
<far>100.000000</far>

“8In case one starts with the SDF description, this can also be converted to an URDF using
sdf2urdf.py model.sdf robot.urdf, see http://wiki.ros.org/pysdf. This option might
become even more attractive with the graphical model editor in Gazebo 6, cf. http://gazebosim.org/
tutorials ?tut=model_editor.

49Cf. http://gazebosim.org/tutorials ?tut=build_robot\&cat=build_robot.
SOhttp://gazebosim.org/tutorials?tut=ros_gzplugins.


http://wiki.ros.org/pysdf
http://gazebosim.org/tutorials?tut=model_editor
http://gazebosim.org/tutorials?tut=model_editor
http://gazebosim.org/tutorials?tut=build_robot&cat=build_robot
http://gazebosim.org/tutorials?tut=ros_gzplugins

Hands-on Learning of ROS Using Common Hardware 49

</clip>

</camera>

<plugin name="cam_sensor_ros" filename="libgazebo_ros_camera.so"
>
<alwaysOn>true</alwaysOn>
<cameraName>/simcam</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameralInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>sim_ cam</frameName>

</plugin>

</sensor>
</link>

Second, a plugin to control the joints of our simulated model’':

<plugin name="joint_pos_control" filename=
"libRobotJointPositionControlPlugin.so">
<robotNamespace>/pantilt</robotNamespace>
<jointsReadTopic>get_joint_positions</jointsReadTopic>
<jointsWriteTopic>set_joint_positions</jointsWriteTopic>
</plugin>
</model>

Fig.8 The screenshot shows a simulated world containing the pan-tilt unit in Gazebo together with
the live image provided by the simulated camera in rgt. Since the camera images are sent over a
standard sensor_msgs/Image topic, we could run the simulated images through our common
node created in an earlier section

SlFor ease of use, we use a custom plugin here. It must be installed from source https://
github.com/andreasBihlmaier/robot_joint_position_controller_gazebo. Alternatively Gazebo also
provides ROS control interfaces, however they require the robot to be externally spawned via
spawn_model, see http://gazebosim.org/tutorials/ ?tut=ros_control.


https://github.com/andreasBihlmaier/robot_joint_position_controller_gazebo
https://github.com/andreasBihlmaier/robot_joint_position_controller_gazebo
http://gazebosim.org/tutorials/?tut=ros_control

50 A. Bihlmaier and H. Wo6rn

Both plugins provide the usual ROS interface as would be expected from real hard-
ware. The complete model . sdf is available in holoruch_gazebo. Figure 8
shows the simulated pan-tilt unit in Gazebo together with the simulated camera
image shown in rviz. This concludes the last part of our hands-on introduction to
ROS.

Reference

1. A. Bihlmaier, H. Worn, Automated endoscopic camera guidance: a knowledge-based system
towards robot assisted surgery, in Proceedings for the Joint Conference of ISR 2014 (45th Inter-
national Symposium on Robotics) and ROBOTIK 2014 (8th German Conference on Robotics),
pp. 617-622 (2014)

Authors’ Biography

Andreas Bihlmaier Dipl.-Inform., obtained his Diploma in computer science from the Karlsruhe
Institute of Technology (KIT). He is a Ph.D. candidate working in the Transregional Collabora-
tive Research Centre (TCRC) “Cognition-Guided Surgery” and is leader of the Cognitive Medical
Technologies group in the Institute for Anthropomatics and Robotics-Intelligent Process Control
and Robotics Lab (IAR-IPR) at the KIT. His research focuses on cognitive surgical robotics for
minimally-invasive surgery, such as a knowledge-based endoscope guidance robot.

Heinz Worn Prof. Dr.-Ing., studied electronic engineering at the University of Stuttgart. He did
his Phd thesis on “Multi Processor Control Systems”. He is an expert on robotics and automation
with 18 years of industrial experience. In 1997 he became professor at the University of Karlsruhe,
now the KIT, for “Complex Systems in Automation and Robotics” and also head of the Institute
for Process Control and Robotics (IPR). Prof. Worn performs research in the fields of industrial,
swarm, service and medical robotics.



2 Springer
http://www.springer.com/978-3-319-26052-5

Robot Operating System (ROS)

The Complete Reference (Wolume 1]

Koubaa, A, (Ed.)

2016, XN, 728 p. 352 illus., 86 illus. in color., Hardcover
ISEM: 978-3-319-26052->



	Hands-on Learning of ROS Using Common Hardware
	1 Introduction
	2 Background
	3 ROS Environment Configuration
	4 Camera Sensors: Driver, Use and Calibration
	5 Custom Node and Messages for Image Processing  with OpenCV
	6 RGB-D Sensors and PCL
	7 Actuator Control: Dynamixel and ROS Control
	8 Robot Description with URDF
	9 Motion Planning with MoveIt!
	10 Robot Simulation with Gazebo
	Reference


