Suggestions to Make Dempster’s Rule
Convenient for Knowledge Combining

Ewa Straszecka

Abstract The paper deals with the Dempster’s rule for the basic probability
assignment combining from the point of view of a medical diagnosis support. The
assignment determined on different sources of information is useful to establish
symptoms weights, but often results of the combination are far from intuition. A
modification of the Dempster’s formula is proposed to make it possible to tune the
resulting assignment according to the distance between the combined assignments.
Properties of the proposed methods which are important for practical applications
are shown on simulated data.

Keywords Dempster-Shafer theory of evidence + Knowledge combining

1 Introduction

The Dempster-Shafer theory of evidence [1] still remains one of the most important
tools to represent and manage uncertainty in real-life problems of decision support.
However, its flexibility is simultaneously an advantage and a drawback of applica-
tions. We benefit from neglecting dependence of focal elements as pieces of evi-
dence, but the week point is a lack of indications in which way the basic probability
assignment (bpa) for the elements should be determined. This is particularly crucial
when the bpa expresses expert’s knowledge, for instance in medical diagnosis. In
this area a significance of a symptom is often roughly estimated and a combination
of knowledge from different sources is necessary. Small changes of values of one
bpa may be exaggerated after combination with another, also roughly determined
bpa. Deficiencies of the classical Dempster’s combination are pointed out in numer-
ous papers, but no other general and satisfactory method is proposed so far, maybe
except for the fuzzy rules aggregation, which however has its own disadvantages in
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applications [10]. Various concepts of changing Dempster’s rule of combination are
valuable and important because of their solid theoretical background, e.g. [3, 4, 9].
Still, there is no suggestion for smooth tuning of the resulting bpa, if we discover
that it does not entirely follow our intuition.

The aim of this paper is to consider introducing a factor to the combination that
will play a role similar to the fuzzifying coefficient in clustering. This means that
changing the factor we could approach soft or severe estimation of symptom weights.
Common points of the Dempster-Shafer theory and pattern recognition are noticed
in [2]. Thus, it could be profitable to use experience of the latter old and highly
developed domain to solve some application problems in knowledge combining. In
the presented method a coefficient based on the similarity of bpas is used in com-
bining. It is worth to notice that this concept can be widen for a number of similarity
definitions which can open field for further research.

The present paper tries to make several suggestions about tuning the bpa, which
hopefully are general enough to be of use in practical solutions. The proposed method
is verified through simulations of bpas designed for a model of a medical diagnosis.

2 An Interpretation of Basic Probability Assignments
as Sources of Diagnostic Knowledge

2.1 The Classical Dempster’s Combination and a Medical
Diagnosis

In medical diagnosis the bpa may represent weights of symptoms. It is particularly
convenient since dependence of symptoms can be neglected and subsets of symp-
toms which are not distinct can be freely considered. In this case the classical bpa
definition [7] is:

my)=0, D mySH=1, (1)

S;e8,i=1,...,n

where d denotes the diagnosis and S; is its symptom—single or complex (i.e. a subset
of symptoms). The false focal element f should be interpreted as the symptom that
is never observed. Thus, the m;(S;) is the weight of the rule: IF symptom is S; THEN
diagnosis is d.

Let us assume that the bpa is set by a physician using his experience. This is not
rare and in many cases diagnostic indexes that are accepted as medical guidelines are
not entirely based on statistic data, but also on subjective estimation [10]. It is also
often that another physician has slightly different view on the diagnosis and make
his own bpa. Then a combination of the bpas according to the classical Dempster’s
formula [1] is possible:
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k=1...n,
i=1l..n,j=1..n,

md(sk) =

(@)

It is obvious that the denominator in (2) stands for a normalization, such that (1)
holds true. Let us denote it by:

md(sk) = Z mdl(Si)mdz(Sj) k=1... n,i =1... f’ll,j =1... ny, (3)

SinS.i=sk

for simplicity. Usually, the symptoms in m,; and my, are identically defined, so
their number is stable: n =n; =n, and s; = §;, 5; = §; are identical in both sets
of focal elements, but s; N's; # @, because complex symptoms usually include sin-
gle symptoms which are individual focal elements in the same bpa. Let us notice,
that if f is the symptom that is never observed, then the combination deficiency
indicated by Zadeh [11], which occur when m,(a) = 0; m;(b) = 0.1; m;(c) =0.9
and my(a) = 0.9; my(b) = 0.1; my(c) =0, is irrelevant for medical diagnosis. If
my(a) = 0 then a should be a symptom that is never observed, so it does not occur
in m,, too. If a is a symptom that is not considered, for instance it is a result of a
laboratory test which is not performed, its bpa value should not be equal to zero,
though it could be low. Still, the classical Dempster’s combination is too restrictive
for applications for other reasons that illustrate the following example.

2.2 Example

Let us consider two bpas m; and m,, defined for the following set of focal ele-
ments: A = {a,b,c,bc}. Assume at first that values of the bpas are set equal, i.e.
0.25, for the each element. Next let us change the bpa values, rising them by 0.05
for a and b as well as decreasing for ¢ and ab, in m;, while doing the opposite in m1,.
Thus, at the end m;(a) = m;(b) = 0.45, m;(c) = m;(bc) = 0.05; my(a) = my(b) =
0.05, my(c) = my(bc) = 0.45. The combination is: m (a) = [m (@)m,(@)|; m.(b) =
[my(BYm,(b) + my (bYmy(be) + my(B)my (be)|; me(c) = [my(c)my(c) + my(c)my(be)+
mz(c)ml(bc)]; m(bc) = [ml(bc)mz(bc)]; Results of calculations are in Fig. 1.

It can be noticed that though values of included bpas are at first equal, the resulting
bpa shows big differences. We would prefer that m.(b) and m.(bc) would approach
more the average value of the bpa than take extremely different values. Such phe-
nomena usually contradict intuition. However, it is enough to add a modifying factor

in the form of a power, i.e. mj(a) = [(ml (a)mz(a))(s] , for instance 6 = 0.5 in Fig. 1,

to diminish changes of the final bpa.
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Fig. 1 Bpas resulting from
the classical Dempster’s
formula (m,) as well as from
the modification (m), while
gradual change of combined
bpas (m; and m,)

2.3 Tuning a Combination of Probability Assignments

If we choose a bpa parameter, we can allow for the classical Dempster’s combination
or its modification by the change of its value. It would be profitable to introduce a
factor that can be decided according to the shape of combined bpas and in agreement
with knowledge engineer’s experience and intuition. Such a factor can be adjusted by
investigation of similarity of the bpas. Let us consider tuning results of combination
by means of a power coefficient, as it was suggested in Sect. 2.2. Thus:

mex ()= D milsymals) “

s;=s;Ns;

It can be noticed, that for single focal elements indeed the combined bpas are both
taken to the & power, i.e. [(ml(si))(S (mz(s,-))é] which means that we simply mod-

erate severe opinions of experts. The 6 coefficient can be determined by means of
similarity. Let us assume that the similarity is defined using a distance between the
combined bpas. The distance can be formulated in several manners [6], for instance:

d(my,my) = /(my — myY W(my —my), )

where my, m, are vectors including bpa values. When W is equal to identity matrix
(5) becomes the Euclidean distance d,:

dy(my,my) = y/(my — myY (my —my). (6)
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If cardinality of focal elements is considered [5] then the Jaccard index [6] can
be used, i.e. W elements are equal:

J(Sl', S/) =

)

In case of the example from Sect. 2.2, the Jaccard index matrix is:

B= ,

0
00.
10.
.5

— O

1 0
0 1
0 0
0050

and the distance is:

dy(my,my) = 1/(my — m,)'B(m; —my). (8)
Additionally, a measure of distance is introduced:
d,(m,my) = min(|m1 - m2|) 9

to find out what is an influence of the distance definition on the similarity coefficient.
Thus, the combination (4) can be used with &:

k
2—d,

o=

,d<?2 (10)

where dy is d,, dj, or d,. The k parameter in (10) allows for precise tuning of the com-
bination Fig. 4. The assumption d < 2 exclude the situation of extreme (“Zadeh’s”)
conflict between the combined bpas. In the latter case, which the author thinks is
irrelevant for practical problems of diagnosis support, the proposed modifications
cannot be used.

There is a question why not to use the average [5] instead. The reason is that
while we choose the type of the mean, for instance arithmetic, we cannot become
“more strict” or “liberal” while combining distinct or similar bpas [8]. However, let
us consider the average for a comparison of features expected from the combined
bpa in applications. Then:

m,, (s;) = % (my(s) + my(sy)) (11)

In this way four types of combinations are compared with the classical Dempster’s
rule: three based on distances (6)—(9) and 6 (10), as well as the mean (11).
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2.4 A Model of the Basic Probability Assignment
in Medical Diagnosis

In medicine many symptoms are formulated by means of laboratory tests, for instance
“test X result is low”, “test Y result is normal”. Let us use this formulation for the bpa
determination. The point of norm (x,) that indicates the symptom, is determined for
ill (diagnosis 1) and healthy (diagnosis 2) populations (see Fig.2). The norm point
is set at the intersection of distributions of “ill” and “healthy”. If patient’s result is
x, then x < x,y means “test X result is low”, while x > x, indicates “test X result is
normal”.

Let us assume that the diagnosis is based on values of three tests (variables): X,
Y and Z. Tests Y and Z may be correlated, so they should be both considered as sin-
gle focal elements as well as one complex focal element. The set of focal elements
is described in Table 1 for the diagnosis 1. Results of the tests that are lower than
the norm indicate diagnosis 1 (ill), which of course is a simplification. This assump-
tion makes data simulation easier, but it does violate the generality of the diagnostic
model. Symptoms for “healthy” (diagnosis 2) are formulated in analogy, and test
results are “normal” when x > Xy, y > yy, 2 > 2.

Fig. 2 An interpretation of 50 F = diagnosis 1
laboratory test results: a5l — | 3 diagnosis 2
histograms and re-scaled M _
normal distribution curves 40 -
for patients with the a5t —
diagnosis 1 (ill) and _ ]
diagnosis 2 (healthy). The 301 B
norm point is xy o5t
20
M
15 M
10 E
5 l_' §
‘I II Ne
-4 -2 0 6 8 10
Table 1_ Focal elements for Denotation | Heuristic meaning Determination
diagnosis 1 — =
5 X is low X <Xy
Sy “Y is low” y<yy
53 “Z is low” 7<zy
Sy “Yislow” and “Zislow” |y < yy and z < z
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3 Simulations

Values of the X, Y, Z variables were generated by Matlab® normal distribution gen-
erator. Four kinds of normally distributed samples were simulated, with the mean
(€) and variance (o), i.e. N(¢;,0;): e, =1, 01 =1, e=1,0p,=2,65=1, 05 =3,
€, =95, 0, = 1. Samples simulated for the X test were generated as not correlated
with samples for Y and Z, while the latter were correlated. Each time the samples
for diagnosis 2 (healthy) were characterized by the N(e4, 04) distribution (for all
three tests). Samples for the diagnosis 1 (ill) had different distributions: N(e;, o),
N(ey, 0;), N(e3,03). Norm points were found from samples. From these samples
basic probability assignments m1, 4, M4, M4, My Were calculated as normalized
frequencies of occurrence of symptoms. Afterwards, m; ;;, and m,,;; were combined
to obtain m;, while m, 4, and m, 4, made m ,. Calculations were performed for the
same (200/200) and different (200/100) number of data in samples used for mygi
and my4; j = 1,2, determination. The cross-validation process was performed on 50
samples.

Combinations of m, 4 and myg; j = 1,2 were performed to obtain m;; (4) with 6
(10) for distances d, (6), d;, (8), d, (9) and the mean (11). It was necessary to define
a criterion to estimate modifications of the classical combining. The modification
results were compared to the bpa which was obtained if data from samples considered
in one step of the cross-validation procedure were embedded in one dataset. This bpa
was denoted as m,;;. The criterion was the average of absolute differences between
the result of a chosen modification and the m,; bpa, i.e.:

Vi = ZLl |ma(si) = mgy(sp)| 1

1
V# = 2500 X Vi

where # denoted e, b, a, m or c.

4 Results

During calculations it was stated that equal or different number of data in samples
had negligible influence on the value of the difference criterion (12) (changes were
smaller than 0.001). Thus, in the following only results for the different number of
data in samples are discussed. Results of combinations are denoted in Figs. 3, 4 and
5 by the following indexes: e, b, a, m, while the index ¢ stands for the classical
Dempster rule.

It is observable that bpas obtained as outcomes of the proposed modifications
bring values of v,, v, and v, within the [v,,, v.] interval. Differences among used
types of modifications are hardly influenced by the choice of the sample character-
istics. It is illustrated in the Fig.3. The diagrams (a) and (b) were obtained for X
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(a) diagnosis 1 (b) diagnosis 2

04}
0.3}
0.2}

0.1}

(©) diagnosis 1 (d) diagnosis 2
05 0.5 [
0.4}
0.3}
02}

0.1}

(e) diagnosis 1 ® diagnosis 2

05} 0.5 fo i
0.4}
0.3+
0.2+

0.1}

\Y \Y \Y V. \Y
c m a b e

Fig. 3 The average difference (12) between the result of a chosen combination: v _—classical,
V,—mean, v,—minimum, v,—Jaccard index, v,—Euclidean; and the reference bpa—rm,;. Dia-
gramsa—d fork=1,e,ffork=2
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Fig. 4 Values of bpas obtained for different combination manners (part 1). Bars in the sequence
denote: m,, my, my,;, m,, m,,, m,, m,, m,

modeled by N(&3,03), Y by N(é;,0,) and Z by N(€;,0), for the diagnosis 1 and
X, Y, Z simulated by N(€y, o4) for diagnosis 2. The diagrams (c) and (d) concern X
modeled by N(€}, ), Y by N(é,,0,) and Z by N(€3, 03), for the diagnosis 1 and X,
Y, Z simulated by N(€é,4, o4) for diagnosis 2. Values of the vy (12) are almost the same
in the corresponding diagrams. This indicate that the method is universal enough to
be used for a variety of diagnostic tests.

It is also effective, as the influence of the type of a modification as well as of its
parameter k is visible. The v,, is close to zero (Fig. 3)—which is obvious for (11)
definition. Yet, changing k in (10) we can tune the result of being closer to v, or v,,,.
This is observable while comparing diagrams (@) and (e), as well as (b) and (f) in
Fig. 3, determined for the same sample characteristics. Not only v, but also values of
bpas are regularly tuned along with the k (10) change. The Figs. 4 and 5 show values
of bpas for different methods of combinations and various k. Sample characteristics
for which bpas are calculated are the same as for diagrams (a), (), (e), (f) in Fig. 3.
For k = 0.5 the values of m,, m;, and m, are closer to m,,, while for k = 2 they are
almost equal to m,..
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Fig. 5 Values of bpas obtained for different combination manners (part 2). Bars in the sequence
denote: m;, m,, my,, m., m,,, m,, m,, m,

5 Discussion and Conclusions

In this paper modifications of the Dempster’s rule for combining two bpas are pro-
posed. Though the modifications do not eliminate “Zadeh’s conflict”, they can help
to approach intuition while bpas combining. The idea comes from the author’s expe-
rience from trials of diagnosis of combing information from different sources. In
medical diagnosis support it is necessary to determine bpas on the basis of medical
guidelines or expert’s experience which are not very precise.

It should be noted that bpas combing is important not only from the point of
view of calculation of the belief and plausibility of the diagnosis, but also as a tool
for determination of symptoms weights. The right weights may help in planning
diagnostic procedures, hence a moderate opinion is more valuable than two diverse
judgments. Therefore, bpas combination is inevitable.

The presented modifications are based on the distance of combined bpas and gen-
erally aim at softening counter-intuitive effects while combining very similar or quite
diverse bpas. A distance is chosen as a measure of similarity of the bpas. It is shown
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that the proposed concept works for several distance definitions. This may indicate
that not only other manners of distance determination, but also other measures of
similarity, not necessary based on distances, can be used to improve the Dempster’s
rule, by means of the introduced coefficient.

Simulations confirm that proposed methods make it possible to tune the resulting
bpa towards mean or classical rule outcomes. Thus, it is possible to obtain results
similar to the average, without explicit use of the mean. This allows for free change
of final bpa to improve its conformity with intuition, whenever it is necessary.

The proposed modifications are numerically simple and do not show dependence
on variables (symptoms) characteristics. Therefore, hopefully they can be used in
many applications of medical diagnosis support.

References

1. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. 30(2), 205-247 (1968).
Wiley, New Jersey

2. Denoeux, T.: A k-nearest neighbor classification rule based on the Dempster-Shafer theory.
IEEE Trans. Syst. Man Cubernetics 25(5), 804-813 (1995)

3. Denoeux, T.: Conjunctive and dijunctive combination of belief functions induced by nondis-
tinct bodies of evidence. Artif. Intell. 172, 234-264 (2008)

4. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion process.
Fuzzy Sets Syst. 142, 143-161 (2004)

5. Han, D., Dezert, J., Yang, Y.: Evaluations of evidence combination rules in terms of statistical
sensitivity and divergence. In: Proceedings of the 17th International Conference on Information
Fusion (FUSION), pp. 1-7 (2014)

6. Jousselme, A.-L., Maupin, P.: Distances in evidence theory:comprehensive survaey and gen-
eralizatiuons. Int. J. Approx. Reason. 53, 118-145 (2012)

7. Kacprzyk, J., Fedrizzi, M. (eds.): Advances in Dempster-Shafer Theory of Evidence. Wiley,
New York (1994)

8. Murphy, C.K.: Combining belief functions when evidence conflicts. Decis. Support Syst.
29(1), 1-9 (2000)

9. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian
theorem. Int. J. Approx. Reason. 9(1), 1-35 (1993)

10. Straszecka, E.: Measures of Uncertainty and Imprecision in Medical Diagnosis Support.
Wydawnictwo Politechniki Slaskiej, Gliwice (2010)

11. Zadeh, L.A.: Review of mathematical theory of evidence by G. Shafer. Al Mag. 5(3), 81-83
(1984)



2 Springer
http://www.springer.com/978-3-319-26210-9

Movel Developments in Uncertainty Representation and
Frocessing

Advances in Intuitionistic Fuzzy Sets and Generalized
Mets - Proceedings of 14th International Conference on
Intuitionistic Fuzzy Sets and Generalized Nets
Atanassov, K.T.; Castillo, 0.; Kacprayk, J.; Krawczak, M.;
Melin, P.; Sotirow, 5.; Sotirova, E.; Szmidt, E.; De Tré, G.;
Zadrozny, 5. (Eds.)

2016, X, 400 p. 128 illus., 60 illus. in color., Softcover
ISEM: 978-3-319-26210-9



	Suggestions to Make Dempster's Rule Convenient for Knowledge Combining
	1 Introduction
	2 An Interpretation of Basic Probability Assignments as Sources of Diagnostic Knowledge
	2.1 The Classical Dempster's Combination and a Medical Diagnosis
	2.2 Example
	2.3 Tuning a Combination of Probability Assignments
	2.4 A Model of the Basic Probability Assignment  in Medical Diagnosis

	3 Simulations
	4 Results
	5 Discussion and Conclusions
	References


