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Abstract The paper deals with the Dempster’s rule for the basic probability

assignment combining from the point of view of a medical diagnosis support. The

assignment determined on different sources of information is useful to establish

symptoms weights, but often results of the combination are far from intuition. A

modification of the Dempster’s formula is proposed to make it possible to tune the

resulting assignment according to the distance between the combined assignments.

Properties of the proposed methods which are important for practical applications

are shown on simulated data.

Keywords Dempster-Shafer theory of evidence ⋅ Knowledge combining

1 Introduction

The Dempster-Shafer theory of evidence [1] still remains one of the most important

tools to represent and manage uncertainty in real-life problems of decision support.

However, its flexibility is simultaneously an advantage and a drawback of applica-

tions. We benefit from neglecting dependence of focal elements as pieces of evi-

dence, but the week point is a lack of indications in which way the basic probability

assignment (bpa) for the elements should be determined. This is particularly crucial

when the bpa expresses expert’s knowledge, for instance in medical diagnosis. In

this area a significance of a symptom is often roughly estimated and a combination

of knowledge from different sources is necessary. Small changes of values of one

bpa may be exaggerated after combination with another, also roughly determined

bpa. Deficiencies of the classical Dempster’s combination are pointed out in numer-

ous papers, but no other general and satisfactory method is proposed so far, maybe

except for the fuzzy rules aggregation, which however has its own disadvantages in
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applications [10]. Various concepts of changing Dempster’s rule of combination are

valuable and important because of their solid theoretical background, e.g. [3, 4, 9].

Still, there is no suggestion for smooth tuning of the resulting bpa, if we discover

that it does not entirely follow our intuition.

The aim of this paper is to consider introducing a factor to the combination that

will play a role similar to the fuzzifying coefficient in clustering. This means that

changing the factor we could approach soft or severe estimation of symptom weights.

Common points of the Dempster-Shafer theory and pattern recognition are noticed

in [2]. Thus, it could be profitable to use experience of the latter old and highly

developed domain to solve some application problems in knowledge combining. In

the presented method a coefficient based on the similarity of bpas is used in com-

bining. It is worth to notice that this concept can be widen for a number of similarity

definitions which can open field for further research.

The present paper tries to make several suggestions about tuning the bpa, which

hopefully are general enough to be of use in practical solutions. The proposed method

is verified through simulations of bpas designed for a model of a medical diagnosis.

2 An Interpretation of Basic Probability Assignments
as Sources of Diagnostic Knowledge

2.1 The Classical Dempster’s Combination and a Medical
Diagnosis

In medical diagnosis the bpa may represent weights of symptoms. It is particularly

convenient since dependence of symptoms can be neglected and subsets of symp-

toms which are not distinct can be freely considered. In this case the classical bpa

definition [7] is:

md(f ) = 0,
∑

Si∈𝐒,i=1,…,n
md(Si) = 1, (1)

where d denotes the diagnosis and Si is its symptom—single or complex (i.e. a subset

of symptoms). The false focal element f should be interpreted as the symptom that

is never observed. Thus, the md(Si) is the weight of the rule: IF symptom is Si THEN

diagnosis is d.

Let us assume that the bpa is set by a physician using his experience. This is not

rare and in many cases diagnostic indexes that are accepted as medical guidelines are

not entirely based on statistic data, but also on subjective estimation [10]. It is also

often that another physician has slightly different view on the diagnosis and make

his own bpa. Then a combination of the bpas according to the classical Dempster’s

formula [1] is possible:
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md(sk) =
∑

Si∩Sj=sk
md1(Si)md2(Sj)

∑
Si∩Sj≠f

md1(Si)md2(Sj)
,

k = 1… n,
i = 1… n1, j = 1… n2.

(2)

It is obvious that the denominator in (2) stands for a normalization, such that (1)

holds true. Let us denote it by:

md(sk) =
⎡
⎢
⎢⎣

∑

Si∩Sj=sk

md1(Si)md2(Sj)
⎤
⎥
⎥⎦

k = 1… n, i = 1… n1, j = 1… n2, (3)

for simplicity. Usually, the symptoms in md1 and md2 are identically defined, so

their number is stable: n = n1 = n2 and si ≡ Si, sj ≡ Sj are identical in both sets

of focal elements, but si ∩ sj ≠ ∅, because complex symptoms usually include sin-

gle symptoms which are individual focal elements in the same bpa. Let us notice,

that if f is the symptom that is never observed, then the combination deficiency

indicated by Zadeh [11], which occur when m1(a) = 0; m1(b) = 0.1; m1(c) = 0.9
and m2(a) = 0.9; m2(b) = 0.1; m2(c) = 0, is irrelevant for medical diagnosis. If

m1(a) = 0 then a should be a symptom that is never observed, so it does not occur

in m2, too. If a is a symptom that is not considered, for instance it is a result of a

laboratory test which is not performed, its bpa value should not be equal to zero,

though it could be low. Still, the classical Dempster’s combination is too restrictive

for applications for other reasons that illustrate the following example.

2.2 Example

Let us consider two bpas m1 and m2, defined for the following set of focal ele-

ments: A = {a, b, c, bc}. Assume at first that values of the bpas are set equal, i.e.

0.25, for the each element. Next let us change the bpa values, rising them by 0.05
for a and b as well as decreasing for c and ab, in m1, while doing the opposite in m2.

Thus, at the end m1(a) = m1(b) = 0.45, m1(c) = m1(bc) = 0.05; m2(a) = m2(b) =
0.05, m2(c) = m2(bc) = 0.45. The combination is: mc(a) =

[
m1(a)m2(a)

]
; mc(b) =[

m1(b)m2(b) + m1(b)m2(bc) + m2(b)m1(bc)
]
;mc(c) =

[
m1(c)m2(c) + m1(c)m2(bc)+

m2(c)m1(bc)
]
; mc(bc) =

[
m1(bc)m2(bc)

]
; Results of calculations are in Fig. 1.

It can be noticed that though values of included bpas are at first equal, the resulting

bpa shows big differences. We would prefer that mc(b) and mc(bc) would approach

more the average value of the bpa than take extremely different values. Such phe-

nomena usually contradict intuition. However, it is enough to add a modifying factor

in the form of a power, i.e. m∗
c (a) =

[(
m1(a)m2(a)

)
𝛿

]
, for instance 𝛿 = 0.5 in Fig. 1,

to diminish changes of the final bpa.
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Fig. 1 Bpas resulting from

the classical Dempster’s

formula (mc) as well as from

the modification (m∗
c ), while

gradual change of combined

bpas (m1 and m2)
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2.3 Tuning a Combination of Probability Assignments

If we choose a bpa parameter, we can allow for the classical Dempster’s combination

or its modification by the change of its value. It would be profitable to introduce a

factor that can be decided according to the shape of combined bpas and in agreement

with knowledge engineer’s experience and intuition. Such a factor can be adjusted by

investigation of similarity of the bpas. Let us consider tuning results of combination

by means of a power coefficient, as it was suggested in Sect. 2.2. Thus:

mc ∗ (sk) =
⎡
⎢
⎢
⎢⎣

⎛
⎜
⎜⎝

∑

sk=si∩sj
m1(si)m2(sj)

⎞
⎟
⎟⎠

𝛿⎤
⎥
⎥
⎥⎦

(4)

It can be noticed, that for single focal elements indeed the combined bpas are both

taken to the 𝛿 power, i.e.

[(
m1(si)

)
𝛿
(
m2(si)

)
𝛿

]
which means that we simply mod-

erate severe opinions of experts. The 𝛿 coefficient can be determined by means of

similarity. Let us assume that the similarity is defined using a distance between the

combined bpas. The distance can be formulated in several manners [6], for instance:

d(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′𝐖(𝐦𝟏 −𝐦𝟐), (5)

where 𝐦𝟏, 𝐦𝟐 are vectors including bpa values. When 𝐖 is equal to identity matrix

(5) becomes the Euclidean distance de:

de(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′(𝐦𝟏 −𝐦𝟐). (6)
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If cardinality of focal elements is considered [5] then the Jaccard index [6] can

be used, i.e. 𝐖 elements are equal:

J(si, sj) =
|||si ∩ sj

|||
|||si ∪ sj

|||
(7)

In case of the example from Sect. 2.2, the Jaccard index matrix is:

𝐁 =
⎡
⎢
⎢
⎢⎣

1 0 0 0
0 1 0 0.5
0 0 1 0.5
0 0.5 0.5 1

⎤
⎥
⎥
⎥⎦
,

and the distance is:

db(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′𝐁(𝐦𝟏 −𝐦𝟐). (8)

Additionally, a measure of distance is introduced:

da(m1,m2) = min(||𝐦𝟏 −𝐦𝟐||) (9)

to find out what is an influence of the distance definition on the similarity coefficient.

Thus, the combination (4) can be used with 𝛿:

𝛿 = k
2 − d#

, d < 2 (10)

where d# is de, db or da. The k parameter in (10) allows for precise tuning of the com-

bination Fig. 4. The assumption d < 2 exclude the situation of extreme (“Zadeh’s”)

conflict between the combined bpas. In the latter case, which the author thinks is

irrelevant for practical problems of diagnosis support, the proposed modifications

cannot be used.

There is a question why not to use the average [5] instead. The reason is that

while we choose the type of the mean, for instance arithmetic, we cannot become

“more strict” or “liberal” while combining distinct or similar bpas [8]. However, let

us consider the average for a comparison of features expected from the combined

bpa in applications. Then:

mm(sk) =
1
2
(
m1(sk) + m2(sk)

)
(11)

In this way four types of combinations are compared with the classical Dempster’s

rule: three based on distances (6)–(9) and 𝛿 (10), as well as the mean (11).
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2.4 A Model of the Basic Probability Assignment
in Medical Diagnosis

In medicine many symptoms are formulated by means of laboratory tests, for instance

“test X result is low”, “test Y result is normal”. Let us use this formulation for the bpa

determination. The point of norm (xN) that indicates the symptom, is determined for

ill (diagnosis 1) and healthy (diagnosis 2) populations (see Fig. 2). The norm point

is set at the intersection of distributions of “ill” and “healthy”. If patient’s result is

x, then x < xN means “test X result is low”, while x ≥ xN indicates “test X result is

normal”.

Let us assume that the diagnosis is based on values of three tests (variables): X,

Y and Z. Tests Y and Z may be correlated, so they should be both considered as sin-

gle focal elements as well as one complex focal element. The set of focal elements

is described in Table 1 for the diagnosis 1. Results of the tests that are lower than

the norm indicate diagnosis 1 (ill), which of course is a simplification. This assump-

tion makes data simulation easier, but it does violate the generality of the diagnostic

model. Symptoms for “healthy” (diagnosis 2) are formulated in analogy, and test

results are “normal” when x ≥ xN , y ≥ yN , z ≥ zN .

Fig. 2 An interpretation of

laboratory test results:

histograms and re-scaled

normal distribution curves

for patients with the

diagnosis 1 (ill) and

diagnosis 2 (healthy). The

norm point is xN
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Table 1 Focal elements for

diagnosis 1
Denotation Heuristic meaning Determination

s1 “X is low” x < xN
s2 “Y is low” y < yN
s3 “Z is low” z < zN
s4 “Y is low” and “Z is low” y < yN and z < zN
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3 Simulations

Values of the X, Y , Z variables were generated by Matlab® normal distribution gen-

erator. Four kinds of normally distributed samples were simulated, with the mean

(𝜖) and variance (𝜎), i.e. N(𝜖i, 𝜎i): 𝜖1 = 1, 𝜎1 = 1, 𝜖2 = 1, 𝜎2 = 2, 𝜖3 = 1, 𝜎3 = 3,

𝜖4 = 5, 𝜎4 = 1. Samples simulated for the X test were generated as not correlated

with samples for Y and Z, while the latter were correlated. Each time the samples

for diagnosis 2 (healthy) were characterized by the N(𝜖4, 𝜎4) distribution (for all

three tests). Samples for the diagnosis 1 (ill) had different distributions: N(𝜖1, 𝜎1),
N(𝜖2, 𝜎2), N(𝜖3, 𝜎3). Norm points were found from samples. From these samples

basic probability assignments m1d1, m1d2, m2d1, m2d2 were calculated as normalized

frequencies of occurrence of symptoms. Afterwards, m1d1, and m2d1 were combined

to obtain md1, while m1d2, and m2d2 made md2. Calculations were performed for the

same (200/200) and different (200/100) number of data in samples used for m1dj
and m2dj j = 1, 2, determination. The cross-validation process was performed on 50
samples.

Combinations of m1dj and m2dj j = 1, 2 were performed to obtain m∗
c (4) with 𝛿

(10) for distances de (6), db (8), da (9) and the mean (11). It was necessary to define

a criterion to estimate modifications of the classical combining. The modification

results were compared to the bpa which was obtained if data from samples considered

in one step of the cross-validation procedure were embedded in one dataset. This bpa

was denoted as mall. The criterion was the average of absolute differences between

the result of a chosen modification and the mall bpa, i.e.:

vij# =
∑4

k=1
||m#(sk) − mall(sk)||

v# =
1

2500
∑

i,j vij#
(12)

where # denoted e, b, a, m or c.

4 Results

During calculations it was stated that equal or different number of data in samples

had negligible influence on the value of the difference criterion (12) (changes were

smaller than 0.001). Thus, in the following only results for the different number of

data in samples are discussed. Results of combinations are denoted in Figs. 3, 4 and

5 by the following indexes: e, b, a, m, while the index c stands for the classical

Dempster rule.

It is observable that bpas obtained as outcomes of the proposed modifications

bring values of ve, vb and va within the [vm, vc] interval. Differences among used

types of modifications are hardly influenced by the choice of the sample character-

istics. It is illustrated in the Fig. 3. The diagrams (a) and (b) were obtained for X
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Fig. 3 The average difference (12) between the result of a chosen combination: vc—classical,

vm—mean, va—minimum, vb—Jaccard index, ve—Euclidean; and the reference bpa—mall. Dia-

grams a–d for k = 1, e, f for k = 2
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Fig. 4 Values of bpas obtained for different combination manners (part 1). Bars in the sequence

denote: m1, m2, mall, mc, mm, ma, mb, me

modeled by N(𝜖3, 𝜎3), Y by N(𝜖2, 𝜎2) and Z by N(𝜖1, 𝜎1), for the diagnosis 1 and

X, Y , Z simulated by N(𝜖4, 𝜎4) for diagnosis 2. The diagrams (c) and (d) concern X
modeled by N(𝜖1, 𝜎1), Y by N(𝜖2, 𝜎2) and Z by N(𝜖3, 𝜎3), for the diagnosis 1 and X,

Y , Z simulated by N(𝜖4, 𝜎4) for diagnosis 2. Values of the v# (12) are almost the same

in the corresponding diagrams. This indicate that the method is universal enough to

be used for a variety of diagnostic tests.

It is also effective, as the influence of the type of a modification as well as of its

parameter k is visible. The vm is close to zero (Fig. 3)—which is obvious for (11)

definition. Yet, changing k in (10) we can tune the result of being closer to vc or vm.

This is observable while comparing diagrams (a) and (e), as well as (b) and (f ) in

Fig. 3, determined for the same sample characteristics. Not only v#, but also values of

bpas are regularly tuned along with the k (10) change. The Figs. 4 and 5 show values

of bpas for different methods of combinations and various k. Sample characteristics

for which bpas are calculated are the same as for diagrams (a), (b), (e), (f ) in Fig. 3.

For k = 0.5 the values of ma, mb and me are closer to mm, while for k = 2 they are

almost equal to mc.
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Fig. 5 Values of bpas obtained for different combination manners (part 2). Bars in the sequence

denote: m1, m2, mall, mc, mm, ma, mb, me

5 Discussion and Conclusions

In this paper modifications of the Dempster’s rule for combining two bpas are pro-

posed. Though the modifications do not eliminate “Zadeh’s conflict”, they can help

to approach intuition while bpas combining. The idea comes from the author’s expe-

rience from trials of diagnosis of combing information from different sources. In

medical diagnosis support it is necessary to determine bpas on the basis of medical

guidelines or expert’s experience which are not very precise.

It should be noted that bpas combing is important not only from the point of

view of calculation of the belief and plausibility of the diagnosis, but also as a tool

for determination of symptoms weights. The right weights may help in planning

diagnostic procedures, hence a moderate opinion is more valuable than two diverse

judgments. Therefore, bpas combination is inevitable.

The presented modifications are based on the distance of combined bpas and gen-

erally aim at softening counter-intuitive effects while combining very similar or quite

diverse bpas. A distance is chosen as a measure of similarity of the bpas. It is shown



Suggestions to Make Dempster’s Rule Convenient for Knowledge Combining 27

that the proposed concept works for several distance definitions. This may indicate

that not only other manners of distance determination, but also other measures of

similarity, not necessary based on distances, can be used to improve the Dempster’s

rule, by means of the introduced coefficient.

Simulations confirm that proposed methods make it possible to tune the resulting

bpa towards mean or classical rule outcomes. Thus, it is possible to obtain results

similar to the average, without explicit use of the mean. This allows for free change

of final bpa to improve its conformity with intuition, whenever it is necessary.

The proposed modifications are numerically simple and do not show dependence

on variables (symptoms) characteristics. Therefore, hopefully they can be used in

many applications of medical diagnosis support.
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