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Delay System Modeling of Rotary Drilling
Vibrations
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Abstract Vibrations in rotary drilling systems are oscillations occurring without
being intentionally provoked. They often have detrimental effects on the system
performance and are important source of economic losses; drill bit wear, pipes dis-
connection, borehole disruption and prolonged drilling time. By this chapter, we
provide an improved modeling for the rotary drilling system. Among others, the
proposed modeling takes into account; the infinite dimensional settings of problem
as well as the nonlinear interconnected dynamics.
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2.1 Introduction

A rotary drilling structure is mainly composed of a rig, a drillstring, and a bit. In oil
well drilling operations, one of the most important problem to deal with consists in
suppressing harmful vibrations yielding to stick-slip and bit-bouncing oscillations.
Indeed, these undesired dynamics can cause various damages such as pipes and bit
break. This spoilage has a leaden economical effect. The drilling control failure is
mainly due to poor modeling and/or control. This chapter focuses on the modeling
task upon which the analysis and control rely on. The modeling must entail two
aspects. The first one, “physics dynamics”, consists in describing the motions equa-
tions of the phenomena occurring during the drilling processThsecond, “sensing and
transmission model”, amounts to write down equations allowing to obtain informa-
tions on the bit state, an essential information to overcome the above mentioned
problems. Unfortunately, this information is degraded and/or delayed, due to tech-
nological constraints. In this chapter, we are concerned solely by physical modeling,
yet, we are taking into account transmission in deriving an overall system’s model.
In the literature, one may find several types of models ranging from partial differ-
ential equations to ordinary differential equation ones with one or several degrees
of freedom representing the dynamics of drilling systems. This contribution is orga-
nized as follows: In the first section, we report the most relevant works concerned
by the physical modeling of the drilling vibrations. The second section is devoted
to present the PDE model that we build to account for axial and torsional vibra-
tions. The proposed model improves the known models since it addresses several
critical issues that arise when the latter are considered. The chapter is completed by
insights onWireless sensing transmission models, as well as on actuating and related
motor types. Finally, we derive a model covering most of the dynamics needed to be
taken into account for control purposes. The chapter ends with some comments in
wireless-transmission and real-time control methodology.

2.2 State of the Art

To the best of the authors’ knowledge, torsional drilling vibrations have received
much more attention compared to axial vibrations.

As underlined in [41], the simplest approximation consists in neglecting the effects
of the axial and lateral vibrations and in ignoring the finite propagation time of tor-
sional waves along the drillstring. The model turns to be a simple forced torsional
pendulum under nonlinear damping at the bit. Thus, the full spectrum of the tor-
sional vibrations is replaced by a simple torsional spring that couples the torqueΦtop

from the top-drive with the torque Φbit generated in the bit/rock interface. Such an
approximation leads to the following coupled system model
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Fig. 2.1 Drill string
two-coupled masses model

{
Φ̈top + Gtop(Φtop − Φbit ) = Tmotor (Φtop, Φbit , Φ̇top, t),

Φ̈bit + Gbit (Φbit − Φtop) = −F (Φ̇bit ),
(2.1)

where F designates the bit-torque friction, Gbit Gtop are the coupling physical
constants,Gtop = G/ρ is some positive constant proportional to the torsional rigidity
of the drillstring, Gbit = G Jtop/Jbit and Tmotor is the top control torque. Here G
denotes the shear modulus of drilling steel, ρ is the steel density, Jtop and Jbit are
respectively the inertia moment of a pipe section and the inertia moment of the drill
collar section.

In [3], the drillstring system is modeled as two coupled masses as shown in
Fig. 2.1. Jtop and Jbit are two inertial masses locally damped by dtop and dbit . The
inertias are coupled through an elastic shaft of stiffness k and damping c. Let us define
Φtop, Φbit as the angular positions of the rotary and the bit respectively; Φ̇top, Φ̇bit as
their angular velocities, u(t) = W oB is theweight on the bit control signal, v(t) is the
rotary table torque control signal used to regulate Φ̇top, μ is the friction coefficient;
A, B, H , Co are model matrices given in (2.4), Ψ (t) = Ψ (u(t)) = Hu(t), x is the
state vector and yo is the output variable. For a more detailed description, see, for
instance, [8]. With the above notations, the model is represented as follows:

ẋ(t) = Ax(t) + Bv(t) + Ψ (t)μ (2.2)

yo = Co x = Φ̇top,

where the state x = [x1 x2 x3]T is defined as follows:

x1 = Φtop − Φbit , x2 = Φ̇top, x3 = Φ̇bit (2.3)

and
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(2.4)

In [30], a piecewise-smooth model of three degrees of freedom, which exhibits
friction-induced stick-slip oscillations, is considered in order to describe a simplified
torsional lumped-parameter model of an oilwell drillstring. In [28] a piecewise finite
dimensionalmulti degree of freedom (multi DOF)model is considered for describing
the torsional motion. In [29], a more general nonlinear differential equation-based
model of a drillstring is analyzed. The aimof the proposed drillstringmodel is to avoid
simulation problems due to the discontinuities originated by dry friction. Namely,
the system of ordinary differential equations

ẋ(t) = Ax(t) + Bu(t) + T f (x(t)), (2.5)

where x(t) is the state, A and B are constantmatrices of appropriate dimension and T f

is the torque on bit. In [28], the authors reproduce stick-slip vibrations under different
operating conditions. The model used for the torque on the bit is the main difference
with respect to other models proposed in the literature. In [27], a discontinuous
lumped parameter torsional model of four degrees of freedom is considered. This
model allows to describe drill pipes and drill collars behavior. The closed-loop system
has two discontinuity surfaces where one of them gives rise to self-excited bit stick-
slip oscillations and bit sticking phenomena.

Several PDE models were introduced in the literature for specific describing tor-
sional vibrations. For instance, in [2], torsional vibrations are modeled by a wave
equation and the stick-slip dynamics are numerically characterized. In [35] a similar
model is studied and a flatness-based approach that avoids such undesired dynamics
is introduced. In [37, 38], a wave equation model to reproduce torsional drilling
dynamics is proposed, this model is coupled to a damped harmonic oscillator model
described by an ODE to approximates the longitudinal dynamics of the drilling sys-
tem. In [33] as well as in [19] a nonlinear analytical study is introduced for the
case of simple nonlinearities that occurs for a simplified frictional weight and torque
which are proportional to 1 + sign(dU/dt) where U denotes the axial vibration.
This model corresponds to a simplified torsional lumped-parameter model of an oil-
well drillstring. An alternative method to characterize the stick-slip motion and other
bit-sticking problems in such a drilling system is proposed. The method is based on
the study of the relationships between the different types of system equilibria and the
existing sliding motion when the bit velocity is zero. It is shown that such a sliding
motion plays a key role in the presence of non-desired bit oscillations and transitions.
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Furthermore, a proportional-integral-type controller is designed in order to drive the
rotary velocities to a desired value. The ranges of the controller and the system
parameters which lead to a closed-loop system without bit-sticking phenomena are
identified.

Unfortunately, the models considered in [27–30] are linear ones, a quite crude
approximation to the nonlinearities of the drillstring system leading to impoverish the
possible dynamics. Moreover, the friction torque is always considered as a piecewise
linear function of the state, which can be improved by the friction law that we are
discussing in some of the following paragraphs.

2.3 Wave Equation Modelling

We consider a solid homogeneous metal flexible bar of length L and of section σ0.
We are concerned by axial vibrations. Let q(x, t) be the displacement at time t of a
point x of the bar with respect to its equilibrium position. Let T (x, t) be the tension
applied on the bar at the point x at time t .

The fundamental elasticity law establishes a relation between the elongation dl :=
l − l0 and the infinitesimal tension dT := T − T0 (where we consider an element of
length l0 under the mean tension T0) by:

dT

σ0
= E0

dl

l0
, (2.6)

where E0 designates the Young modulus, or elasticity factor under the tension T0.
This law can be applied only for a sufficiently small relative elongation dl/ l0. Since
at time t , the segment (x, x + Δx) is of static length l0 and occupies the position
(x + q(x, t), x + Δx + q(x + Δx, t)). The length of the segment passes from l0 =
Δx to l = l0 + dl = Δx + ∂x qΔx , we then have

dl

l0
= ∂x q, and the elasticity law

implies:
T − T0 = E0σ0∂x q. (2.7)

Let ρ0 be the linear density at the equilibrium of the bar (that is the rate of mass per a
length unit). The fundamental principle of dynamics reads ρ0∂

2
t qΔx = ∂x T dx, by

using (2.7) we have

ρ0∂
2
t q = E0σ0∂

2
x q, (2.8)

which is a wave equation with speed ν =
√

E0σ0

ρ0
.

The axial vibrations of a solid bar constitute the essential of the sound propagation
phenomena. The obtained model can be normalized, yielding to:
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Fig. 2.2 (Left) Flexible bar, (Right) tension applied in a short segment of the bar

∂2
t q(x, t) = ∂2

x q(x, t) (2.9a)

∂x q(0, t) = −u(t) ∂x q(1, t) = 0 (2.9b)

q(x, 0) = q0(x) ∂t q(x, 0) = qt0(x) (2.9c)

where x ∈ [0, 1]. The equation (2.9a) is the normalized wave equation (2.8) where
(2.9b) is the boundary condition and (2.9c) is the initial equation. By Eqs.(2.7) and
(2.9b), one can see that we apply a control law at the point x = 0 and no tension is
applied on the free end (x = 1) (Fig. 2.2).

2.4 PDE Models

The lumped parameter model of the drillstring described in [2] consists of an angular
pendulum of stiffness C ended with a lumped inertia J and a mass M . The latter two
are free to move axially and represent the BHA as a unique rigid body. At the top of
the drillstring, an upward force H and a constant angular velocity Ω are imposed. It
is assumed that the weight-on-bit provided by the drillstring to the bit W0 = Ws − H
is constant, which implies that the hook load H is adjusted to compensate for the
varying submerged weight of the drillstring Ws . More precisely, the authors describe
the torsional motion of a driven drillstring by the following wave equation with
boundary conditions:

⎧⎪⎨
⎪⎩

∂2
t Φ(t, s) = c2 ∂2

s Φ(t, s),

∂tΦ(t, 0) = Ω,

J ∂2
t Φ(t, L) = −G Γ ∂sΦ(t, L) + F(∂tΦ(t, L)),

(2.10)

c is a constant wave speed: c = √
G/ρ, L is the bit position with respect to the

s axis, F(∂tΦ(t, L)) the reaction frictional torque at the bit and GΓ ∂sΦ(t, L) is
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the contact torque along the drillstring, (here ∂s = ∂()/∂s is the derivation with
respect to s). In this work, the authors reduce the study of the model to the study
of the associated neutral differential equation for which they establish an analyt-
ical linearized stability criterion and give some numerical bifurcation elements.
Certainly, the infinite dimensional aspect of the above model is adequate for describ-
ing the drilling process, but ignoring the axial vibrations and their influence on the
global dynamics is disadvantageous when the aim is to establish a steadfast model.

A similar model but with different boundary conditions was already established in
[35] and exploits the flatness property of the wave equation for suppressing the stick-
slip undesired dynamics. Indeed, the author proves that the use of the top velocity
measures ensures the control and the stabilization of the torsional vibrations.

The contribution [17] is worth mentioning, where a wave equation with different
boundary conditions is used to model torsional vibrations for which the authors
establish ultimate bounds for a distributed drill pipe model. The result is obtained
through an analysis based on a difference equation model and on a wave equation
description achieved through the direct Lyapunov method.

Next, in [33] as well as in [18], the authors considered a simplified drillstring
model which describes not only the torsional vibration but also the axial one:

⎧⎪⎨
⎪⎩

I
d

dt2
Φ(t) + C(Φ(t) − Ω t) = −T (t),

M
d

dt2
U (t) = W0 − W (t).

(2.11)

The variables U and Φ denote the vertical and the angular positions of the drag bit,
respectively. The reacting weight-on-bit W (t) originates from the process of rock
destruction occurring at the bit-rock interface and T (t) is the reacting torque-on-bit.
The stick-slip dynamics is numerically studied in [33] and in [18] a nonlinear ana-
lytical study is conducted for a simple frictional weight and torque proportional to
1 + sign(dU/dt). On the one hand, themodel depicted in (2.10) neglects axial vibra-
tions and on the other hand the lumped model (2.11) loses the infinite dimensional
character of a PDE model.

In [41], the authors consider a PDEmodeling the torsional vibrations and propose
a mechanism called torsional rectification and compare it with existing soft-torque
devices through a series of mathematical models. Both analytic and numerical simu-
lations indicate that many of the volatilities suffered by existing soft-torque feedback
approaches used to avoid slip-stick can be eliminated by their proposed alternative.
Ignoring the axial vibrations and their influence on the torsional dynamics is disad-
vantageous since the study concerns exclusively the control of torsional vibrations.
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Fig. 2.3 Simplified scheme depicting an oilwell rotary drilling system

2.5 A System-Oriented Approach: Interconnected
Dynamics

Weaimat presenting an improved partial differential equationsmodelwithmore real-
istic coupled nonlinear boundary conditions. This model takes into account the axial
and torsional vibrations along the drilling system. Furthermore, an adjustable three
dependent parameters analytic model is taken for the torque on bit. The proposed
friction law is a nonlinear function allowing to continuously reproduce classical
empirical friction profiles. Moreover, the established physical model can be trans-
formed into a time-delay system. This fact is noteworthy since the measurement of
the bit state is delayed, due to technological constraints. In our opinion, this is thus
a natural way to design a model with unified structure.

The description of the considered model governing the mechanical axial/torsional
vibrations follows.

2.5.1 Drillstring Mechanics

Denoting by U the axial vibrations and by Φ the torsional vibrations, the improved
model is Fig. 2.3:
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⎧⎪⎨
⎪⎩

∂2
t U (t, s) = c2 ∂2

s U (t, s),

E Γ ∂sU (t, 0) = α1∂tU (t, 0) − α2H(t),

M ∂2
t U (t, L) = −E Γ ∂sU (t, L) + F(∂tU (t, L)),

(2.12)

and ⎧⎪⎨
⎪⎩

∂2
t Φ(t, s) = c̃2 ∂2

s Φ(t, s),

G Σ ∂sΦ(t, 0) = β1∂tΦ(t, 0) − β2Ω(t),

J ∂2
t Φ(t, L) = −G Σ ∂sΦ(t, L) + F̃(∂tU (t, L)).

(2.13)

Here G is the shear modulus of the drillstring steel and E the Young’s elasticity
modulus. Then, the wave speeds can be expressed by c = √

E/ρ and c̃ = √
G/ρ.

The inertia J = M r2 where r is taken as the averaged radius of the drill pipes, Γ

is the averaged section of the drill pipes and Σ is the quadratic momentum. The
nonlinear nature of the model is considered by taking appropriate models of the
friction profiles F and F̃ of the form: z �→ pk z/(k2 z2 + ζ ), where the parameters
k, ζ (0 < ζ � 1 and 0 < k < 1) are positive integers responsible of the sharpness of
the friction force function and p is acting on its amplitude, see [6, 7]. Moreover, the
behavior of the chosen friction model is close from the empirical model (the white
friction force) but its smoothness is very useful in experimental identifications.

The contributions of the proposed model can be summarized as follows:

• Infinite-dimensional setting for modeling:As emphasized by (2.12)–(2.13), each
type of vibrations is described by a PDE. The first equation of (2.12) means that
axial vibrations U are governed by a wave equation with velocity c. In the second
equation of (2.12), the reacting force due to the drillstring at the top is seen as the
difference between the imposed vertical upward force and the actual drillstring
friction force of viscous type at the top α∂tU (t, 0). The second equation of (2.12)
describes a behavior equation sampled at the top of the hole. It simply expresses
that the difference between the H the brake motor control (upward hook force)
and the force generated by the gradient of the axial vibration at the top α∂sU (t, 0)
is nothing else than a friction force of viscous type α∂tU (t, 0). Furthermore, for
equation (2.13), torsional vibrations are also assumed to obey to a wave equation
with velocity c̃. In the second equation of (2.13) the right hand side describes the
difference between the motor speed and angular velocity of the first pipe. Finally,
the third equation of (2.12) and (2.13) are established by applying the Fundamental
Laws of Motion [1] at the bit.

• Coupled dynamics: The third equation of (2.13) generates the interconnection
between the two dynamics. Indeed, it is generally recognized that the torque on
bit, which is the main generator for friction in the drilling torsional vibrations, is
expressed as a function of the axial vibration (see for instance [19]).

• Nonlinear dynamics: Both of the functions F and F̃ are assumed to be nonlin-
ear functions allowing to reproduce continuously the classical empirical friction
profile.
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2.5.2 Actuating Part and Motor Types

The drilling system includes three motors, which convert electrical energy into
mechanical energy: one for the rotary table, one for the drawworks, and one for
the mud pump, yielding three control variables. Each machine is modeled by a sys-
tem of mechatronic equations as follows. The motor types have to be quite resistant,
wherefrom the following choices.

DC motor. A first type of motor is the direct current armature control motor. The
torque developed by themotor is proportional to the stator’s flux and the current in the
armature and we have Γ = k f ψ Ka I where Γ is the shaft torque,ψ is the magnetic
flux in the stator field, which is assumed to be constant, I is the current in the motor
armature. Since the flux is maintained constant, we can also write Γ = kT I where
kT = k f ψ Ka .

When a current carrying conductor passes through a magnetic field, a voltage Vb

appears, corresponding to the so-called back electromagnetic force Vb = ke ω where
ω is the rotation speed of the motor shaft. The constant kT and ke have the same
value. Kirchhoff’s law yields the electronic equation of the motor:

V − Vres − Vcoil − Vb = 0, (2.14)

where V is the input voltage, Vres = −R I the armature resistor voltage (R being the
armature resistor), Vcoil = L İ the armature inductance voltage (L being the armature
inductance). The motor’s electrical equation is then

L İ = −ke ω − R I + V . (2.15)

Induction motor. A second type of motor is the induction machine. When AC
current is applied to such a machine, the rotating magnetic field is set up in the stator.
This rotating field is moving with respect to the rotor windings and thus induces a
current flow in the rotor. The current flowing in the rotor windings sets up it own
magnetic field. In the stationary reference frame (ωS = 0) the stator voltage vector
can be expressed as vs

S = Rsis
S + ψ̇ S

s where i S
S and ψ S

S are the stator current and
rotor flux vectors. In the same way the rotor voltage vector can be expressed in the
rotor fixed reference frame rotating with ωR : vr

R = Rr ir
R + ψ̇ R

r , whereas i R
r and

ψ R
r are the rotor current and rotor flux vectors. The transformation in an arbitrary

reference frame rotating with ωk yields:{
vk

s = Rsik
s + ψ̇k

s + j pωkψ
k
s

vk
r = Rr ik

r + ψ̇k
r + j p(ωk − ωr )ψ

k
r .

(2.16)
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The flux vectors may be expressed as:

{
ψk

s = Lsik
s + Lmik

r

ψk
r = Lr ik

r + Lmik
s .

(2.17)

In the following the so-called D/Q-reference frame which is aligned to the rotor flux
vector will be used and the superscript will be omitted, i.e. ψr = ψrd + jψrq =
ψr

Se− jρ, whereas ρ is the rotor flux angle in the stationary reference frame.
Substituting the stator flux and rotor current vectors in (2.16) using (2.17) and
introducing η = 1 − (L2

m/Ls Lr ), χ = L2
m Rr/σ Ls L2

r + Rs/σ Ls , ζ = Rr/Lr and
ξ = Lm/σ Ls Lr . To further simplify the notations, we shall set: Isd = Id , Isq = Iq ,
the stator current components in the D/Q reference frame, ψrd = ψd the rotor flux D
component, vsd = vd , vsq = vq the stator voltage components in the D/Q reference
frame.

We thus obtain conclude with the description of the induction machine model:
its electric model and its mechanical model which respectively consist of four and a
two dimensional nonlinear system. Indeed, the current/flux equations are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇d = −ζ(ψd − Lm Id)

ρ̇ = pωR + ζ Lm
Id

ψd

İd = −χ Id + ζ ξψd + pωR Iq + ζ Lm

I 2q
ψd

+ vd

ηLs

İq = −χ Iq − pξωR Id − ζ Lm
Iq Id

ψd
+ vq

ηLs

, (2.18)

and the mechanical model is defined by

{
J ω̇R = μψrd Isq − Tl

θ̇R = ωR,
(2.19)

whereas μ = 3pM/2Lr and θR is the rotor angle and Tl the load torque.

2.6 Integration into a More Complete
Traction-Compression/Torsional Model

2.6.1 Step by Step Description

A more complete model can be established by considering the BHA length and
vibrations, neglected in the previous model. Thus, the length of the drillistring L
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denotes L p + Lb where L p is the pipes length and Lb is the BHA length. Here, the
vibrations along the pipes will be distinguished from the ones along the BHA. Thus
the model for axial vibrations Up and torsional vibrations Φp along the pipes and
axial vibrations Ub and torsional vibrations Φb along the BHA are governed by the
system of PDE (2.20)–(2.27).

Pipe Drillstring The pipe drillstring deformation is modelled through a wave equa-
tion with both internal viscoelastic Kelvin-Voigt damping, and simple viscous damp-
ing:

{
ρ Ap∂

2
t Up(t, s) = E Ap ∂2

s Up(t, s) + εi
Up

∂t∂sUp(t, s) + γ v
Up

∂tUp(t, s)

ρ Jp∂
2
t Φp(t, s) = G Jp ∂2

s Φp(t, s) + εi
Φp

∂t∂sΦp(t, s) + γ v
Φp

∂tΦp(t, s),
(2.20)

where 0 < s < L p, the internal damping coefficients are εi
Up
, εi

Φp
, and the viscous

damping coefficients are γ v
Up
, γ v

Φp
. Additionally, ρ is the steel density, E (resp. G)

denotes Young’s (resp. the shear) modulus of drillstring steel, and Ap, Jp are the
cross-section and polar inertia moment of one section, given by:

Ap = π(r2po − r2pi ), Jp = π

2
(r4po − r4pi ),

with rpi and rpo the inner and outer pipe radius.

Top Boundary Conditions At s = 0, we consider the following boundary condition
for Φp:

Jtop∂
2
t Φp(t, 0) = G Jp∂sΦp(t, 0) + uT (t), (2.21)

with Jtop the top drive inertia, and uT the torque produced by the rotary table motor,
taken as a control input. which is a more realistic boundary condition compared to
the one in [2, 19]: Φp(t, 0) = Ω0t . Note that Eq. (2.21) can also be completed by
the mechanical equation of an induction machine in place of (2.19).

The upward force H acts in the top hole device composed mainly of the derrick,
the crown block and the traveling block. This whole setting is modeled as a two
coupled mass spring system, following [32]

{
Mrg1 ζ̈rg1 (t) + γrg1 ζ̇rg1 (t) + Mrg1g = uF (t) + krg12 (ζrg2 (t) − ζrg1 (t)) − krg01ζrgini (t)

Mrg2 ζ̈rg2 (t) + γrg2 ζ̇rg2 (t) + Mrg2g = −H(t) − krg12 (ζrg2 (t) − ζrg1 (t)).
(2.22)

Here, ζrg1 accounts for vibrations in all drilling rig elements except the drilling string,
BHA, cables, drawworks, travelling and crown blocks ; ζrg2 accounts for elasticity
in cables, crown and travelling blocks ; the effort krg01ζrgini represents the ground
reaction force and uF (t) = krg01(ζrg1(t) − ζrg0(t)) is a tension force in the cable at
the drawworks level, taken as a control input (being directly related to the drawworks
rotation motor). The parameters Mrgi , γrg1 and krgi j are equivalent masses, damping
coefficients and stiffness coefficients, respectively.
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For Up consider the boundary condition at s = 0:

Mtop∂
2
t Up(t, 0) = E Ap∂sUp(t, 0) + H(t). (2.23)

with Mtop the top drive mass. In [19], a simpler boundary condition is adopted:
E Ap∂sUp(t, 0) = H(t). The initial conditions are taken such that Φp, ∂tΦp, ∂sΦp,
Up, ∂tUp, ∂sUp vanish at t = 0.

Drill Collars The BHA equations for axial vibrations Ub and torsional vibrations
Φb are given by

{
ρ Ab∂

2
t Ub(t, s) = G Ab ∂2

s Ub(t, s) + εi
Ub

∂t∂sUb(t, s) + γ v
Ub

∂tUb(t, s)

ρ Jb∂
2
t Φb(t, s) = E Jb ∂2

s Φb(t, s) + εi
Φb

∂t∂sΦb(t, s) + γ v
Φb

∂tΦb(t, s),
(2.24)

where L p < s < L , and Ab, Jb are, as above, the cross-section and polar inertia
moment of one section, given by

Ab = π(r2bo − r2bi ), Jb = π

2
(r4bo − r4bi ),

with rbi and rbo are inner and outer drill collar radius.

Pipe/Drill Collar Continuity Conditions To achieve continuity in speed and effort,
Φp, Φb, Ub and Up satisfy the connexion conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tΦb(t, L p) = ∂tΦp(t, L p)

∂sΦb(t, L p) = Jp

Jb
∂sΦp(t, L p)

∂tUb(t, L p) = ∂tUp(t, L p),

∂sUb(t, L p) = Ap

Ab
∂sUp(t, L p),

(2.25)

where J∗ and A∗ are J∗ = π(r4∗o − r4∗i )/2 and A∗ = π(r2∗o − r2∗i ).

Bottom Hole Boundary ConditionsThe boundary conditions at s = L for torsional
vibrations Φb are

Jbit∂
2
t Φb(t, L) = −G Jb ∂sΦp(t, L) + Tbit (t), (2.26)

where Tbit is the reaction torque at the bit. For axial vibrations, the bottom boundary
condition is

Mbit∂
2
t Ub(t, L) = −E Ab∂sUp(t, 0) + Wbit (t). (2.27)
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where Mbit is the bit’s mass, and Wbit (t), the reaction force at the bit due to the so
called dynamic weight on bit (DWOB).

Forces/Moments Expressions The bottom hole force and moment can be decom-
posed into a cutting and a frictional part

Tbit = Tc + T f , Wbit = Wc + W f , (2.28)

Friction Force/Moment. The expressions for T f and W f are taken as (see for instance
[19, 31]):

T f (t) = a2

2
γμσ l F (‖Vb(L , t)‖), W f (t) = alσ F (‖Vb(L , t)‖),

where a is the bit radius, l the length of the wearflat, σ the contact stress, γ accounts
for the distribution and orientation of the frictional forces acting at the wearflat/rock
interface, μ the ratio between the horizontal and the vertical components of the
frictional force, Vb = (∂tUp, ∂tΦp) and sgn(Vb) designate the orientation of Vb with
respect to the horizontal plane, and F is an adimensional friction function. We
consider the following expressions for such an F , as for instance in [31]

F (r) = αr√
r2 + ε2

, (2.29)

or in [42]

F (r) = β

(
tanh(r) + γ1

1 + γ2r2

)
. (2.30)

Cutting Force/Moment. The expressions for Tc and Wc are taken as (see e.g. [19]):

Tc(t) = a2

2
εd(t), Wc(t) = aζεd(t),

where a is the bit radius, d the depth of cut, ε is the intrinsic specific energy, and ζ

the ratio of the vertical to the horizontal force for a sharp cutter. Here the cut depth
d(t) is deduced from the relation

d(t) = n(Ub(t, L) − Ub(t − tn, L)), (2.31)

where n is the bit number of blades and tn is implicitly given through the relation

2π

n
= Φb(t, L) − Φb(t − tn, L). (2.32)
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The range of tn is given by tn0 = 2π/(nΩ0), with Ω0 a nominal rotating speed at
the top. Note that, in [31], Tc is defined by:

Tc(t) = −a4(F (‖Vb(L , t)‖)))2d(t). (2.33)

2.6.2 Full Model Summary

Let us rewrite the previous model in a more compact form.

Pipe Drillstring Pipes wave equation (torsion—traction/compression)

ρ Ap∂
2
t Up(t, s) = E Ap ∂2

s Up(t, s) + εi
Up

∂t∂sUp(t, s) + γ v
Up

∂tUp(t, s), (2.34a)

ρ Jp∂
2
t Φp(t, s) = G Jp ∂2

s Φp(t, s) + εi
Φp

∂t∂sΦp(t, s) + γ v
Φp

∂tΦp(t, s). (2.34b)

Top Boundary Conditions Induction motor (torsion):

ψ̇Φd = −ζΦ(ψΦd − LΦm Id) (2.35a)

ρ̇Φ = pωΦ R + ζΦ LΦm
IΦd

ψΦd
(2.35b)

İΦd = −χΦ IΦd + ζΦξΦψΦd + pΦωΦ R IΦq + ζΦ LΦm

I 2Φq

ψΦd
+ vΦd

ηΦ LΦs
(2.35c)

İΦq = −χΦ IΦq − pΦξΦωΦ R IΦd − ζΦ LΦm
IΦq IΦd

ψΦd
+ vΦq

ηLΦs
. (2.35d)

Drill pipes top boundary condition (torsion):

Jtop∂
2
t Φp(t, 0) = G Jp∂sΦp(t, 0) + uT (t). (2.36)

Induction motor (traction/compression):

ψ̇Ud = −ζU (ψUd − LUm Id) (2.37a)

ρ̇U = pωU R + ζU LUm
IUd

ψUd
(2.37b)

İUd = −χU IUd + ζU ξU ψUd + pU ωU R IUq + ζU LUm

I 2Uq

ψUd
+ vUd

ηU LUs
(2.37c)

İUq = −χU IUq − pU ξU ωU R IUd − ζU LUm
IUq IUd

ψUd
+ vUq

ηLUs
. (2.37d)
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Top hole assembly (traction/compression):

Mrg1 ζ̈rg1 (t) + γrg1 ζ̇rg1 (t) + Mrg1g = uF (t) + krg12 (ζrg2 (t) − ζrg1 (t)) − krg01ζrgini (t)
(2.38a)

Mrg2 ζ̈rg2 (t) + γrg2 ζ̇rg2 (t) + Mrg2g = −H(t) − krg12 (ζrg2 (t) − ζrg1 (t)). (2.38b)

Drill pipes top boundary condition (traction/compression):

Mtop∂
2
t Up(t, 0) = E Ap∂sUp(t, 0) + H(t). (2.39)

Drill Collars

ρ Ab∂
2
t Ub(t, s) = G Ab ∂2

s Ub(t, s) + εi
Ub

∂t∂sUb(t, s) + γ v
Ub

∂tUb(t, s), (2.40a)

ρ Jb∂
2
t Φb(t, s) = E Jb ∂2

s Φb(t, s) + εi
Φb

∂t∂sΦb(t, s) + γ v
Φb

∂tΦb(t, s). (2.40b)

Pipe/Drill Collar Continuity Conditions

∂tΦb(t, L p) = ∂tΦp(t, L p) (2.41a)

∂sΦb(t, L p) = Jp

Jb
∂sΦp(t, L p) (2.41b)

∂tUb(t, L p) = ∂tUp(t, L p) (2.41c)

∂sUb(t, L p) = Ap

Ab
∂sUp(t, L p). (2.41d)

Bottom Hole Boundary Conditions Drill collar bit boundary condition (torsion):

Jbit∂
2
t Φb(t, L) = −G Jb ∂sΦp(t, L) + Tbit (t). (2.42)

Drill collar bit boundary condition (traction/compression):

Mbit∂
2
t Ub(t, L) = −E Ab∂sUp(t, 0) + Wbit (t). (2.43)

Forces/Moments Expressions Bottom hole force and moment:

Tbit = Tc + T f , W = Wc + W f . (2.44)
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Friction Force/Moment:

T f (t) = a2

2
γμσ l F (‖Vb(L , t)‖), W f (t) = alσ F (‖Vb(L , t)‖).

Adimensional friction function expressions:

F (r) = αr√
r2 + ε2

First expression (2.45)

F (r) = β

(
tanh(r) + γ1

1 + γ2r2

)
Second expression (2.46)

Cutting Force/Moment:

Tc(t) = a2

2
εd(t), Wc(t) = aζεd(t)

Cut depth d(t) defined by d(t) = n(Ub(t, L) − Ub(t − tn, L)).

One revolution duration tn such that 2π
n = Φb(t, L) − Φb(t − tn, L).

2.7 Wireless-Transmission and Real-Time Control
Methodology

In this section, we focus on the way to bring the measurement from downhole to
surface so we can use it in order to improve the observer/controller behavior. There
aremainly three types of transmission: (i) through telemetry signals along the drilling
fluid, often referred to as mud-pressure pulses, (ii) through acoustic waves along the
drillstring [10], (iii) through wired drill pipes.

In most of the literature, electronic equipments are designed for data acquisition
and for modulation purpose. It should be implemented as an autonomous system
energized either by a mud operated electrical turbine or by a battery pack [39].

Mud-pulse telemetry This technology uses the mud that goes through the drilling
system as a transmission media. The data will be represented by pressure pulses.
According to [39], the pulser actuator (a stepper-motor-based device) and a main
valve restricts the flow and creates some pressure-pulse sequence. A piezoelectric
device captures these variations that are then analyzed by a micro-controller. Evi-
dently, due to the irregular nature themudflow, the low frequencyvibrations produced
by mud pumps and pulsation dampeners the signals are corrupted by noise. Further-
more, they have an important attenuation. Some characteristics to highlight are [10,
16, 23] its cost-effective data transfer, its very low bite rate (1 or 2 bits per second).
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Fig. 2.4 Testbed schematics with sonar pulses

Mud-pulse velocity declines with the disturbances of mud density, gas content and
mud compressibility. It becomes more difficult with increasing well depth. Pulse
waves travel through the borehole at 1200m/s [23], hence the measure arrives with
some delay that increases up to tmax τmax ≈ 6.6s.

Acoustic data transmission over a drill string Since the acoustic wave propagation
velocity in the string material is at least three times superior to that in the mud of the
borehole [10], and a higher transmission rate is possible (typically 6 bps), acoustic
transmission seems to be the best way to emit pulses to the surface. These acoustic
waves are generated by torsional contractions created by magneto restrictive rings
set inside the pipe [15]. In this case τmax ≈ 2.2 s. It is useful to note that there
exists an attenuation of around 4dB/300m [14]. However, we can neglect it because
there is always a possibility of setting a repeater at any joint at each 10–15m of the
section. We consider that this fact does not add any extra considerable delay since
the repeater’s amplification can occur almost instantaneously.

The telemetry system sends signals directly to the surface through the channel.
Usually, there is an embedded sensor measuring φ̇b downhole. A measurement noise
S(t) is added to the data and then coded all together, so that it can be transmitted
through the acoustic channel G. At surface, a receiver will read the encoded signal
with the noise N (t). Furthermore, a digital algorithm is used to decode this data and
make it available for the use for further treatments. Both methods can be modeled
by the schematic as shown in Fig. 2.4. On the bit state measurement side, there are
mainly three types of transmission:

Transmission delay range and friction hypothesis Due to technical considerations
we can assume that the transmission media is, as a first approximation, like a pure
delay system with delay time τ ∈ [0, τmax ]. Moreover, the well’s depth increases
at a very slow rate and it stops each 10–15m. In this procedure, the delay can be
recalculated. Hence, the delay can be defined as a constant, that is τ̇ = 0.

On the other hand, we will consider that the friction coefficient is constant or at
least slow time variant τ̇ ≈ 0. This approximation is often assumed in the context of
adaptive control. This hypothesis means that the rate of variation of the rock friction
coefficient does not exhibit substantial changes during drill-operation. Even if the
drilled surfaces may have different friction characteristics, the rate of penetration
remains small (ḋ ≈ 0).
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Real-time control The general real time control architecture has to handle output
signal transmission, state observation under variable delay and signal noises pres-
ence as well as the state feedback control calculation and actuation update. A detailed
description of a such an architecture is given in [3] where more emphasis is put on
observer performance in presence of transmission delay variations, noise perturba-
tion and friction coefficient variation. Due to these parameter variation the overall
observer/controller order is increased which has to be considered in the specification
of real time control architecture. We will not go further in the specification and the
design of overall real time communication and calculation architecture which is out
of the scope of this work, but it is important to emphasize the fact that the relia-
bility, bandwidth and signal to noise ratio of data transmission channel is of great
importance in the quality of state observation and control.

2.8 Concluding Remarks:

The complete description of a Drilling oilwell machine involves three interconnected
systems: (i) A mechanical system, more precisely, the drillstring that is the down-
hole part of the drilling device, (ii) The mechatronic system: composed mainly from
two induction machines: the first acting axially and the second acting in rotation, (iii)
A transmission system that consists from sensors (piezoelectric) and a transmission
vector that can be for instance the wireless technology.

Briefly, the interconnection of such components can be summarized as follows:
The drilstring and the induction machine are connected via the derrick, the crown
and the traveling block for the axial actions and via the rotary table for angular
rotation. Moreover, the induction motors are the only actuators leading to the control
for guaranteeing a regular drilling process. The success of such a task lies mainly
on the bit-data (the mechanical system) furnished by the sensors and transmitted by
wireless to the top. The transmitted data are then responsible on the motor actions.

Finally, it is worthy to note that the preceding model does not take into account
the bending vibrations (leading to whirling) of the drilling collar, nor the drilling
fluid dynamics.
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Appendix: Notations table

Variable Signification
L p Pipe length
Lb Bor Hole Assemble length
L = L p + Lb

Up , Ub Pipe, drill collar traction/compression deformation
Φp , Φb Pipe, drill collar torsional deformation
εi

Up
, εi

Φp
Internal damping coefficients

γ v
Up

, γ v
Φp

Viscous damping coefficients
ρ Steel density

E , G Young’s, shear modulus of drillstring steel
Ap , Jp Cross-section and polar inertia moment of one pipe section
Ab, Jb Cross-section and polar inertia moment of one drill collar section

rpo, rpi Outer, inner pipe radius
rbo, rbi Outer, inner drill collar radius

ΨΦd , ΨUd D component of rotary table (torsion) induction motor flux
LΦm , LUm Torsion, traction/compression induction motor mutual inductance
IΦd , IΦq D, Q component of stator current in torsion induction motor
IUd , IUq D, Q component of stator current in traction/compression induction

motor
Jtop Top drive inertia
uT Rotary table motor torque, taken as a control input
H Force acting in the top hole device

ζrg1 Accounts for vibrations in all drilling rig elements except the drilling
string, BHA, cables, drawworks, travelling and crown blocks

ζrg2 Accounts for elasticity in cables, crown and travelling blocks
krg01ζrgini Ground reaction force

uF (t) = krg01 (ζrg1 (t) − ζrg0 (t)), tension force in the cable at the drawworks
level, taken as a control input

Mrgi , γrg1 , krgi j Equivalent masses, damping coefficients and stiffness coefficients
Mtop Top drive mass

Ub, Φb axial, torsional vibrations
Tbit Bit reaction torque
Mbit Bit’s mass

Wbit (t) Reaction force at the bit
Tc, Wc Bottom hole cutting torque and force
T f , W f Bottom hole friction torque and force

a Bit radius
l Length of the wearflat
σ Contact stress
γ accounts for the distribution and orientation of the frictional forces act-

ing at the wearflat/rock interface
μ Ratio between the horizontal and the vertical components of the fric-

tional force
Vb = (∂t Up, ∂tΦp)

sgn(Vb) designate the orientation of Vb with respect to the horizontal plane
F Adimensional friction function
d Depth of cut
ε Intrinsic specific energy
ζ Ratio of the vertical to the horizontal force for a sharp cutter
n Bit blade number
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