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Abstract This chapter discusses several methods for forward-looking (FL) explo-
sive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating
radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is
that there are multiple types of targets buried at different depths in a highly-cluttered
environment. A wide array of target and clutter signatures exist, which makes detec-
tion algorithm design difficult. Recent work in this application has focused on fusion
methods, including fusion of multiple modalities of sensors (e.g., GPR and IR),
fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion
using multiple kernel and iECO learning. For this chapter, we will demonstrate
several types of EHD techniques, including kernel methods such as support vec-
tor machines (SVMs), multiple kernel learning MKL, and feature learning methods,
including deep learners and iECO learning. We demonstrate the performance of sev-
eral algorithms using FLGPR and FLIR data collected at a US Army test site. The
summary of this work is that deep belief networks and evolutionary approaches to
feature learning were shown to be very effective both for FLGPR and FLIR based
EHD.
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1 Introduction

An important goal for the U.S. Army is remediating the threats of explosive haz-
ards as these devices cause uncountable deaths and injuries to both Civilians and
Soldiers throughout the world. Since 2008, explosive hazard attacks in Afghanistan
have wounded or killed nearly 10,000 U.S. Soldiers; worldwide, explosive devices on
average cause 310 deaths and 833 wounded per month [25]. Systems that detect these
threats have included ground-penetrating-radar (GPR), infrared (IR) and visible-
spectrum cameras, and acoustic technologies [9, 10, 37]. Past research has exam-
ined both handheld and vehicle-mounted systems and much progress has been made
in increasing detection capabilities [7, 14]. Forward-looking (FL) systems are an
especially attractive technology because of their ability to detect hazards before
they are encountered; standoff distances can range from a few to tens of meters.
A drawback of forward-looking systems is that they are not only sensitive to explo-
sive devices, unexploded ordnance (UXO), and landmines, but also to other objects,
both above and below the ground. Because these sensors are standoff sensors, the
area being examined for targets is much larger than with downward-looking sys-
tems. Thus, clutter is a serious concern. Furthermore, the explosive hazard threat is
very diverse—they are made from many different materials, including wood, plastic,
and metal, and come in many different shapes and sizes—and this threat continues to
evolve. This means that it is nearly impossible to detect explosive hazards solely by a
modeling-based approach, and, hence, computational intelligence (CI) methods are
very appropriate. Previous work has shown that if forward-looking infrared (FLIR)
or visible-spectrum imagery is combined with L-band FLGPR, false alarm (FA)
rates can be reduced significantly [2, 16, 18, 19, 44, 45]. Hence, we focus on CI
methods for sensor-fused forward-looking detection of explosive threats, comparing
CI to other machine learning approaches.

The structure of the remainder of this study is as follows. Section 2.2 describes
the preprocessing of the sensor data into a format that is ready for prescreening
and feature extraction. The prescreener algorithms are described in Sect. 2.3, and
the feature extraction is detailed in Sect. 2.4. In Sect. 3 we describe kernel learning
methods, including support vector machine (SVM)-based methods, multiple kernel
(MK) methods, and a fuzzy integral-based MK learner. Methods that learn the fea-
tures implicitly, such as deep belief networks (DBNS), convolutional neural networks
(CNNs), and iECO feature learning, are described in Sect. 4. Results for the various
learning algorithms will be presented in the respective parts of Sects.3 and 4. We
summarize in Sect. 5. Table 1 contains the acronyms used in this chapter. Next, we
describe the sensing technologies used to demonstrate the various EHD algorithms
in this chapter.
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Table1 Acronyms

UXxo Unexploded ordnance EHD Explosive hazard detection

GPR Ground-penetrating radar IR Infrared

FL forward looking DL Downward looking

LW long-wave MW Mid-wave

UTM Universal traverse mercator CI Computational intelligence

FA False alarm ROC Receiver operating characteristic

MK Multiple kernel SK Single kernel

MKLGL | MK learning-group lasso SVM Support vector machine

FIMKL | Fuzzy integral MKL CNN Convolutional neural network

RBM Restricted Boltzmann machine DBN Deep belief network

CFAR | Constant false-alarm rate NAUC | Normalized area under the curve

iECO Improved evolution constructed CLAHE | Contrast-limited adaptive histogram
equalization

HOG Histogram of oriented gradients LBP Local binary patterns

MSER | Maximally stable extramal regions | GMM Gaussian mixture models

SIFT Scale-invariant feature transform AOI Area of interest

2 Explosive Hazard Detection: Background Knowledge

2.1 Sensing Technologies for FLEHD

FLGPR GPR has long been an interest to the U.S. Army for EHD, and downward-
looking (DL) systems have been shown to be very effective in operational scenarios.
However, DL systems fail to provide a standoff range from the threat; the array is
located directly above the threat upon detection. Hence, there has been much focus on
improving standoff distances by using FL systems. FLGPR aims to improve standoff
by aiming the GPR array forward, often with the center of the beam aimed 10-15 m
in front of the vehicle. Since the angle of incidence at which the beam hits the ground
surface is important for penetration—the more orthogonal the beam is to the surface,
the better the ground penetration—the arrays are usually built on some type of boom
above the vehicle. Still, due to the geometry of the FL problem, much array energy is
lost to specular reflection from the ground surface. Hence, FLGPR signal-fo-noise
ratios (SNRs) are not nearly as good as with DLGPR systems. Furthermore, the
index of refraction of the soil is significantly different than that of the air, which
causes a refraction—or bending—of the radar beam at the ground surface, further
complicating image formation. These, and other challenges, mean that FLGPR-based
EHD is not as simple as looking for local regions of high intensity; more complex
EHD strategies are necessary. We talk about several approaches in this chapter.
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Fig. 1 FLGPRs under research and development for use in EHD. a ALARIC L-B and FLGPR.
b L/X-Band FLGPR

Many FLGPR systems have been designed specifically for EHD, including the
two shown in Fig. 1. View (a) shows the ALARIC system, which combines an L-
band FLGPR and a visible spectrum imaging system, while (b) shows an FLGPR that
combines L- and X-band radar arrays. The FLGPR results shown in this chapter will
focus on data recorded with the L/X-band system shown in Fig. 1b. The government-
furnished FLGPR data is composed of complex radar data as well as motion data of
the vehicle from several lanes at an arid U.S. Army test site.

FLIR While numerous frequency ranges in the infrared portion of the electromag-
netic spectrum have been investigated for EHD, e.g., mid-wave IR (MWIR) and com-
binations of IR bands for “disturbed earth” detection, we focus on recent advance-
ments in anomaly detection in long-wave IR (LWIR). However, without loss of gen-
erality the vast majority of mathematics and algorithms discussed herein are natu-
rally applicable to both MWIR and LWIR imagery with little-to-no change. LWIR
or thermal imagers are passive (i.e., they do not require illuminators) and detect
infrared radiation in approximately the 8—14 wm wavelength. Objects with a tem-
perature above absolute zero emit infrared radiation in this range at their surface.
The amount of emitted thermal radiation increases with temperature. The exact rela-
tionship between an object’s temperature and the amount of emitted thermal radia-
tion depends on the emissivity, a quantity representing a material’s ability to emit
thermal radiation that varies with wavelength. A thermal imager actually sees not
only the emitted radiation of the object, but also transmitted radiation, i.e., radia-
tion from an external source which passes through the object toward the imager,
and/or reflected radiation, i.e., radiation from an external source which reflects off
the object toward the imager. These factors complicate assigning absolute tempera-
ture values to objects. However, in EHD we can exploit the fact that buried objects
will likely possess a different thermal conductivity, thermal capacity, or density than
the surrounding soil, resulting in either a cooling or warming of the soil immediately
surrounding the object. This most often leads to a change in temperature at the sur-
face above the object and results in a measurable change in the amount of emitted
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Fig. 2 Example of thermal scarring in FLIR with targets of varying difficulty at a fixed vehicle
stand off distance. (left) NVESD FLEHD multi-sensor ground vehicle platform, (top row) LWIR
and (bottom row) MWIR imagery. Columns are different (center aligned) targets co-registered in
MWIR and LWIR. Note, the MWIR camera has a higher resolution (more pixels on target)

thermal radiation compared to areas of the ground free of such objects. Figure 2
shows this phenomenon, referred to in many circles as thermal scarring.

However, FLIR is not without flaw. One challenge is diurnal cross-over, the time-
period during which the buried object comes to near thermal equilibrium with its
surroundings making targets, for all intents, unidentifiable. Another factor is the dif-
ference in emitted radiance seen at the soil surface (even for the same soil compo-
sition and object) varies based on factors such as the amount of incident thermal
radiation, which is dependent on time of day, time of year, and current weather con-
ditions. These are just some of the factors that emphasize the need to include and
fuse different sensing technologies to solve this extremely challenging real-world
problem.

The FLIR data used in our experiments was collected from two cameras. The first
camera, called DVE, was uncooled and used the DRS Infrared Technologies U6000
microbolometer detector which has a spectral response of 8—14 wm. The DVE cam-
era captured 8-bit single channel imagery with a resolution of 640 X 480, and hor-
izontal and vertical fields of view of 40 and 30°, respectively. The second camera
was a SELEX L20, which produces a 16 bit single channel image with resolution
640 x 512. The SELEX camera had a spectral response of 8—10 pm, and horizontal
and vertical fields of view of 15 and 12°, respectively. Both cameras were mounted
on a mast at the back of the vehicle as shown in Fig. 2. The mast height was approxi-
mately 3.35 m and had a downward look angle of 6.3°. An inertial navigation system
was mounted next to the cameras, and the time at which each image was captured
was recorded. This allowed precise georeferencing using the dense 3D scene recon-
struction technique described in [46].

The government-furnished data consists of numerous runs from three lanes at an
arid U.S. Army test site. The number of targets per lane varied from 44 to 79, and
the area of the lanes ranged from 3,600—4,200 square meters. Emplaced targets were
buried between 1-6in. deep, and varied in metal content (some had no metal).
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2.2 Sensor Processing

FLGPR Preprocessing We use a backpropagation procedure to form the radar
images (see [15] for a detailed description of the imaging algorithm). In brief,
the radar images are formed by coherently summing successive backpropagation
images, accounting for platform motion effects on phase and beam pattern effects.
The images are formed on a 2.5 cm-spaced grid for each antenna polarization. We
also apply a phase correction to the L-band FLGPR to account for vehicle motion
during the swept-frequency transmission [4]. The end results of the FLGPR imaging
and preprocessing are complex images for each of the L- and X-band polarizations
on a rectangular grid coordinate system. In Sect. 2.3, we discuss how we take each
FLGPR image I,(u, v) and indicate candidate detections.

FLIR Preprocessing Numerous algorithms have been applied to the government-
furnished FLIR data for preprocessing. However, these algorithms are not the subject
of investigation in this chapter as they are not focused on CI. The reader can refer
to [3, 42, 43, 46] for more details. In general, these preprocessing algorithms are
focused on deinterlacing, denoising, and global or local contrast enhancement. For
the DVE images, preprocessing typically consists of deinterlacing, denoising, and
contrast limited adaptive histogram equalization (CLAHE) [3]. For the SELEX, the
16-bit data was converted to 8-bit by contrast stretching, with saturation limits at
0.05 and 99.95 percent of the original pixel values, so the resulting values filled the
entire 16-bit range. After contrast stretching the pixel values were divided by 256
and CLAHE was run. Next we describe how the initial hit locations are determined.

2.3 Prescreeners

Prescreener is a term used for a weak detection scheme by which candidate detections
are found and passed on to stronger classification algorithms. The main ideas are to
(i) reduce the computational load of the classificaiton algorithms, and (ii) improve
classification accuracy by only training on target-like candidate detections.

FLGPR Prescreener The result of the radar preprocessing method described in the
Sect. 2.2 is a coherently integrated image (i, v), where (u, v) are the image coordi-
nates: one image for each polarization of the L-band FLGPR (HH and V'V polariza-
tions) and one image of the X-band FLGPR (VV polarization). It is well known that
penetration depth increases with wavelength; hence, the L-band will have a deeper
penetration than the X-band radar. Thus, we use the L-band radar as the detection
radar for the method proposed here; although, we will show results for X-band detec-
tion and classification too.

The prescreening detector is the first algorithm that indicates candidate detection
locations—a block diagram is shown in Fig.3a. In [15], we proposed two meth-
ods to indicate the presence of a target, both of which could be considered to be
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Fig. 3 a Block diagram of prescreener detection algorithm. b Elliptical convolution kernels used
in prescreener. Detection is indicated by comparing the distribution of pixel intensities in inner
ellipse to the distribution of pixel intensities in outer halo [15]

a constant FA rate (CFAR) detector. The first prescreener indicates a hit by taking
the mean of the pixels in the inner ellipse and comparing that to the mean of the
pixels in the outer halo (as shown in Fig. 3b. Essentially, the prescreener identifies
regions that have values that are higher than the surrounding regions. The second
prescreener uses a signed Bhattacharyya distance between the distributions of the
pixel values in the center region and outer halo to indicate a hit. For a more detailed
description of these prescreeners, see [15]. In our experiments, we have determined
the following prescreener parameters to be good choices for this system: down-range
radius = 0.25 m; cross-range radius = 0.5 m; and halo width = 0.75 m. These values
are related to the impulse-response of the FLGPR system and to expected target sizes.
Furthermore, for this chapter we will only present results for the difference-of-means
prescreener, which has been shown to be more effective than the Bhattacharyya pre-
screener for FLGPR data [15].

One could simply threshold the output of the prescreener to indicate a detection;
however, this can result in many detections in one local region. Hence, we use a max-
imum order-filter with a 3 m (cross-range) by 1m (down-range) rectangular kernel
to reduce the presence of closely grouped hits. The prescreeners are rough first-look
algorithms for indicating candidate detections—they merely indicate if a region of
pixels is different in intensity than the surrounding pixels. They do not, however,
consider higher-level features, such as texture or shape, that might indicate better
the difference between clutter and true detections. Hence, at each detection location,
we then extract a set of shape- or texture-based features, described in Sect. 2.4.
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FLIR Prescreener In [2], we outlined a FLIR prescreener for EHD which was later
extended to FLGPR in [46]. This prescreener consists of an ensemble of trainable
size-contrast (CFAR) filters, i.e., local dual sliding window detectors. Each size-
contrast filter has seven parameters: the inner window height and width, the pad
height and width (which determine the size of the outer window), a Bhattacharyya
distance threshold, a squared difference between the mean values threshold, and three
state parameters, referred to as DType (which determines whether the detector will
trigger only on bright on dark regions, dark on bright regions, or both). At each
pixel, the mean and variance of the inner and outer windows are computed, the
Bhattacharyya distance and squared difference between the mean values is calcu-
lated and these two values are compared against their corresponding threshold. If
both values are greater than their threshold, and the DType condition is met, then
the corresponding detector fires. When a detector fires, it projects the inner window
center pixel coordinate into UTM coordinates. Next, a clustering algorithm is run
on all UTM coordinates generated from individual frames. Specifically, mean-shift,
a mode seeking clustering algorithm, with an Epanechnikov kernel is used. Mean-
shift was chosen as the application requires a fast clustering algorithm (in the offline
training phase, the algorithm has to run hundreds of thousands of times on potentially
large data sets: 10,000+ points) that also does not require the user to set the number
of clusters. We have compare mean-shift results to the basic sequential algorithmic
scheme and did not see a significant different in performance. Herein, this clustering
step is referred to as spatial mean-shift, and it results in candidate hit locations. Next,
mean-shift is run a second time on the hit locations from the combination of multiple
frames (this is referred to as temporal mean-shift). Each mean-shift step requires two
parameters: the kernel bandwidth and the minimum number of points around a peak
in order to keep that cluster. Mean-shift works by performing gradient ascent on the
kernel density estimator,

N
fo) = YK (xi=), K (=) = k(g =), M

i=1

where K is the kernel function, N is the number of data points, and normalizing
constants have been omitted for brevity. Taking the gradient of this function with
respect to x and setting it to zero results in the following (well known) iterative update
equation:

XL (= x1?) x
K (Il - xl12)

where, kK’ (x) denotes the derivative of k (x) with respect to x, and ¢ denotes the itera-
tion. For the Epanechnikov kernel with bandwidth parameter /4, the update equation

reduces to: 5
xeL Xi 1-Y 0<v<h
X =——, k,,,(v)= h - T 3
t+1 |L| D ( ) {0 else ( )

2

Xtt1
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Fig. 4 Illustration of FLIR prescreener, which uses an ensemble of detectors (trained under dif-
ferent criteria) and spatial and temporal weighted mean-shift

where L is the set of all points for which k,,, is non-zero and | - | is cardinality.
Mean-shift is initialized at every hit location, and the update procedure is run until
convergence. For this application, convergence is defined as a change of less than
1 cm between updates (remember that the points are in UTM coordinates). Refer
to [46] for additional algorithm speedups. Figure 4 illustrates the proposed FLIR
prescreener.

A genetic algorithm (GA) is used to learn the detector parameters. To this end,
we explored two methodologies. The first, referred to as one-per-rate, trains a single
detector for each desired detection rate. The primary objective of the GA is to achieve
the desired detection rate with the secondary objective of minimizing the false alarm
rate (FAR). In [2], 19 detectors were trained at desired detection rates ranging from
0.05 to 0.95 in step sizes of 0.05. The idea behind training many detectors is that
the resulting ROC curve after fusion should be better than if a single detector were
trained and only its thresholds allowed to vary. The second method, referred to as
one-per-target, trains a single detector for each ground truth encounter in the train-
ing data. The primary objective of this GA is to detect the specific target with the
secondary objective of minimizing the FAR. For both cases, weighted mean-shift is
used to fuse the detectors (each trained with a different objective function). A weight
is learned for each detector using separable covariance matrix adaptation evolution
strategy such that the normalized area under the curve (NAUC) is maximized on the
training data. Reference [2] reports the learned detector parameters and aggregation
weights for a prior experiment.

In [46], a few improvements to the above FLIR prescreener were outlined. The
first improvement was allowing confidence information to be passed from the size-
contrast filter to the spatial mean-shift step and from the spatial mean-shift step to
the temporal mean-shift step. Previously, UTM coordinates resulting from a size-
contrast filter triggering were treated identically during spatial mean-shift. However,
this discards the Bhattacharyya distance and mean difference information which is
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useful for locating the strongest response, which generally corresponds to the center
of the object. Likewise, information about the peaks found during spatial mean-shift,
such as the number of points surrounding each peak, could be useful for the temporal
mean-shift step. To remedy this, mean-shift was replaced with weighted mean-shift
in both steps, and two new parameters were added to each detector to control whether
confidence information is passed on. This leaves it up to the GA to decide if the con-
fidence information is useful. The second improvement was the introduction of a dif-
ferent grouping algorithm as an alternative to weighted mean-shift. The alternative
method, also proposed in [46], is an ordered filter approach inspired by the MUFL
FLGPR prescreener introduced in [16]. Lastly, the separable CMA-ES optimization
for finding weights for the weighted mean-shift step which combines detectors was
eliminated as it tended to overfit the training data. Instead, three heuristics were used
to generate weights, and the set of weights which performs best in terms of NAUC
on the training data was chosen. The first method assigns equal weight to all detec-
tors; the second method assigns weights based on detection rate and the third method
assigns weights based on FAR.

2.4 Feature Extraction

While our FLIR and FLGPR prescreeners achieve relatively high positive detec-
tion rates, meaning they often do better than what an expert can identify visually,
they still suffer from an unacceptable FAR (relative to U.S. Army requirements). In
order to address this deficiency, we have explored, extended and created a number
of new image space features and descriptors, including convolutional neural net-
works (CNNs) [43], improved Evolution COnstructed iIECO) features [38], “soft”
(importance map weighted) features [42], histogram of cell-structured Gabor energy
filter and Shearlet filter bank responses [38, 46], histogram of gradients (HOG) [32]
and local binary pattern (LBP) [15, 17, 35] and “soft” edge histogram descriptor
features [2, 46]. In [2], additional anomaly evidence map features in FLIR were pro-
posed, which include features from maximally stable extremal regions (MSERs) [33]
and Gaussian mixture models (GMMs) [41] for change detection. Unlike a CFAR
(or size-contrast) filter, which is often utilized as a local contrast feature, the above
image space features focus on texture and shape. In addition, we do not use features
“directly”, e.g., a single image gradient. Instead, high(er)-level image space descrip-
tors are formed by “pooling” features within a given spatial area of interest (AOI),
e.g., HOGs, LBPs, or edge descriptors. Furthermore, it is important to not just sim-
ply extract features and pool their values over a large spatial AOI as that often leads
to ambiguous configurations of patterns. Instead, we preserve the spatial properties
of image patterns by using a cell-structured (partially overlapping to allow patterns
to drift some in translation across detections) grid for a given AOL It is usually of
great benefit to extract features at different scales in a given AOI, e.g., multi-scale
HOG. Convention is to concatenate these multi-scale and multi-cell features together
into a single long feature vector of high dimensionality and let a classifier (or fea-
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Fig. 5 Multiple cell-structured configurations for feature extraction at a single scale to preserve
the spatial context of features. Note that cells are not shown as overlapping for visual simplicity

ture selection algorithm) learn which are most relevant to a particular task at hand.
Figure 5 shows the use of multiple cells at a single scale.

The first feature introduced is the LBP. The LBP is a sort of texture or pattern
feature and it is calculated at each pixel according to

n

LBP, =Y s (iy —i.)2",
k=0

where LBP, is the LBP code, i. is the window center value, i, is the value of the
kth neighbor and function s(x) is 1 if x > 0 and 0 otherwise. Ojala extended the
LBP for neighborhoods of different shapes and sizes [35]. The circular (radius r)
neighborhood version, LBP,, , includes bilinearly interpolating values at non-integer
image coordinates. Ojala also observed that there is a limited number of transitions
or discontinuities in the circular presentation of 3 X 3 texture patterns and that these
uniform patterns, LBP! , are fundamental properties of local image texture, meaning
they provide the vast rﬁajority of all patterns (accounting for 90 % at u = 2). The u
stands for no more than u# 0-1 or 1-0 transitions, e.g., 00011110 has 2 transitions
and 00101001 has 5 transitions. Last, the LBP is turned into a descriptor by binning
the patterns into a histogram over an AOI. For example, for # = 2 there are only 59
patterns (thus histogram bins) for a neighborhood of size 8. In addition, Ojala put
forth a rotation robust version that consists of shifting the binary patterns until there
is a 1 in the first digit [35]. This reduces the number of patterns for a neighborhood
size of 8 to only 9. Last, most normalize the resultant histogram by its £, or £,-norm.

Another feature is the famous HOG, popularized by David Lowe in the scale
invariant feature transform (SIFT); however it was first explored by Edelman in the
context of wet science and later popularized by Dalal-Triggs for HOG-based person
detection [11]. Itis important to note that SIFT technically consists of keypoint detec-
tion, a feature descriptor and detection. The HOG (the feature descriptor in SIFT)
involves the extraction of a gradient vector per pixel in an image. For a given AOI,
one computes the magnitude of each gradient, ||(dI(x,y)/0x, dl(x,y)/dy)||, and its
respective orientation. A histogram of B bins (a user defined or learned parameter)
is specified and each pixel’s gradient magnitude, per cell, is added to the bin with
respect to its orientation. For example, for 360° and 8 bins each bin spans 45° and for
a cell structured configuration of 4 X 4 we obtain a 128-length feature vector. Note,
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convention involves bilinearly interpolating each gradient magnitude for the closest
and next closest bin. Also, while SIFT identifies and then rotates the descriptor with
respect to its major orientation bin(s), this is an optional step that the user must deter-
mine relative to the given detection task at hand. In our FLEHD investigations, we
do not perform the rotation step.

In [46], we proposed a “soft” edge histogram descriptor feature. The edge his-
togram descriptor is inspired by the MPEG-7 edge histogram descriptor, which has
five simple convolution operators that represent vertical, horizontal, diagonal, anti-
diagonal and non-directional edge classes. The operators for the first four classes
closely resemble the standard Sobel and Prewitt edge operators. At each pixel, the
five operators are applied and the absolute value of the response to each is computed.
The pixel is assigned to the class of the operator generating the largest response. In
[46], we extended this feature to make it less sensitive to noise. We allow a pixel to
contribute to all classes by creating a histogram at each pixel location and we accu-
mulate the individual pixel histograms inside a window to form the final descriptor.
A pixel’s histogram is constructed by computing the absolute value of the response
to each of the edge convolution operators and then dividing each of those values by
the sum, i.e. taking the /; norm. Linear interpolation is performed to distribute the
pixel’s contribution between the edge classes and the non-edge class by comparing
the sum of the absolute values of the operator responses to the edge threshold. If the
sum is greater than or equal to the edge threshold then the non-edge class is assigned
zero. Otherwise, the non-edge class is assigned one minus the fractional value of
the sum divided by the edge threshold, and that fractional value is multiplied to the
value of each of the edge classes in the histogram. We introduced a further change,
the addition of two new edge masks; making the total descriptor length seven. We
extract two edge histogram descriptors per cell using edge thresholds of 15 and 35.
Therefore, edge histogram descriptor gives 7 X 2 = 14 features per cell.

In [40, 42], we created a softened version of the HOG, LBP, and edge histogram
descriptor based on the extraction and utilization of an importance map. An impor-
tance map, one per each image, is simply a [0, 1]-valued image that is the same size
as the original image. Each pixel in an importance map informs us about the rele-
vance or significance of that pixel for a given task at hand. The importance map is
used to weight features, such as HOGs and LBPs, as they are added to a descriptor
like a histogram. The motivation for importance maps is that current image space
descriptors unfortunately extract both background (e.g., clutter, tire tracks, foliage,
etc.) and foreground (target) information. In many cases, the number of encountered
foreground features are extremely few relative to the background information and
their presence in the descriptor can be dwarfed. Most researchers ignore this fact
and pass the problem down the processing pipeline. That is, most extract all features
in an AOI and leave it up to the classifier or feature selection to determine what
is important. Instead, our goal is to extract feature-rich information in target areas
and more-or-less ignore extraneous information in other parts of an AOL In [40],
Scott and Anderson used this philosophy and showed improvement in aircraft detec-
tion in remote satellite imagery across different parts of the world and times of the
year based on importance-weighted multi-scale texture and shape descriptors. Their



Computational Intelligence Methods in Forward-Looking ... 25

importance maps were based on fuzzy integral-based fusion of differential morpho-
logical map profiles for soft object extraction. In [42], we extend this technique to
FLEHD, introducing a new way to derive an importance map for FLIR. In FLIR, we
are interested in detecting circular or elliptical (due to perspective deformation in FL
imagery) shapes for anomaly detection. Hence, we exploited this information and
created a frequency and orientation selective bank of Gabor energy filters, which we
later reduced down to a single Shearlet filter, to build an importance map. The real-
valued Gabor or Shearlet image is normalized between min and max across an AOL
It is then blurred with a Gaussian kernel to spread out the filter response, as many
features reside at or around the edges of an object. The result is then re-normalized,
according to its min and max, back into [0, 1] (values that represent the relative worth
of different pixels in the AOI relative to the task at hand). The soft HOG, LBP, and
edge histogram descriptor features are calculated as before, however as these fea-
tures are being added to their respective bins in the histogram they are multiplied
by their corresponding per-pixel importance map weights E(x,y). The features that
we describe in this section can now be used to further reduce the number of FAs by
training classifiers to indicate prescreener hits as either FAs or true-positives. Next
we discuss kernel methods that can accomplish this task.

3 Kernel Methods for EHD

Consider some non-linear mapping function ¢ : x — ¢(x) € R, where Dy is the
dimensionality of the transformed feature vector x. With kernel clustering, we do
not need to explicitly transform x, we simply need to represent the dot product ¢(x) -
¢(x) = k(x,x). The kernel function x can take many forms, with the polynomial
k(x,y) = x"y+1)? and radial-basis-function (RBF) k(x,y) = exp(c||x—y||?) being
two of the most well known. Given a set of n objects X, we can thus construct an nXn
kernel matrix K = [K; = k(x;, x;)]"™". This kernel matrix K represents all pairwise
dot products of the feature vectors associated with n objects in the transformed high-
dimensional space—called the Reproducing Kernel Hilbert Space.

The main goal of kernel methods is to transform the feature vectors x such that
the new representations, ¢(x), are advantageous to the classification problem. We
present three methods for learning classifiers in kernel spaces, SVM, MKLGL, and
FIMKL, which we now describe.

3.1 Single Kernel

One of the most popular kernel methods for classification is the SVM. The SVM
attempts to find an optimal separating hyperplane between two classes of training
data; for the case of EHD, we use it to find a hyperplane between features that
describe FAs and those of true positives. For a detailed description of the SVM,
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see [8]. The single-kernel SVM (SKSVM) is defined as
max {1Ta - %(a oy) K(ao y)} , (4a)

subject to
0<a<C,i=1,...,n; al'y =0, (4b)

where y is the vector of class labels, 1 is the n-length vectors of 1s, K = [k (X;, xj)] €
R™" js the kernel matrix, and o indicates the Hadamard product [5]. The value
C determines how many errors are allowed in the training process [8]. Note that
SKSVM reduces to the linear SVM for the kernel x(x;, x;) = xl.ij (which is simply
the Euclidean dot product).

One of the drawbacks of using the above SVM formulation is that it treats each
datum equally; hence, when there is an imbalance between the number of datum in
each class, then the SVM decision boundary is driven primarily by the data from
the class with more data points. This is a problem in explosive hazards detection as
there are typically many more FA detections than there are true positives—the true
positives only comprise a small overall area of the lane. To attack this issue, we use
a formulation of the SVM for imbalanced data which uses a different error cost for
positive (C*) and negative (C™) classes. Specifically, we change the constraints of
the kernel SVM formulation at (4) to

0<aq<CHVily,=+1; 0<a; < C,Vily,=-1; a’y = 0; 5)

where C* is the error constant applied to the positive class and C~ is the error
constant applied to the negative class. In our application, the positive class is true
positives and the negative class is FAs. We set C* = n~ /nt and C~ = 1, where n~
is the number of objects in the negative class and n* is the number of objects in the
positive class. This essentially allows for fewer errors in the true positive class.

We use LIBSVM to efficiently solve the SKSVM problem [6]. The output of LIB-
SVM is a classifier model that contains the vector @ and the bias b. A measured
feature vector x can be classified by computing

y =sgn lz a;y;k(X;, X) — b] , 6)
i=1

where sgn is the signum function. We now show the application of SKSVM to our
FLEHD problem.

Application of SKSVM to FLGPR EHD Figure 6 shows selected results of train-
ing the SKSVM on FLGPR lanes A, B, and D, and testing on Lane C. The results are
compared to random performance, which is the ROC achieved by uniform random
selection of hit locations at given FA rates. View (a) shows the prescreener ROC
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Fig.6 ROC curves showing testing performance of (a) FLGPR prescreener, and SKSVM classifier
with RBF kernel for (b) single HOG feature and (¢) combination of HOG and LBP features. Percent
NAUC improvements are shown for each of the L-band (HH and VYV polarizations) and X-band
FLGPRs. The performance of a uniform random detector is shown by the dotted line. a Prescreener.
b L-HH: 21 %; L-VV: 32 %; X: 64 %. ¢ L-HH: 20 %; L-VV: 36 %; X: 7%

curve for Lane C for the three FLGPR sensors, while views (b) and (¢) show the
results of using the SKSVM classifier to reject FAs. The kernel used for this experi-
ment is the RBF kernel, which is well-known to be effective for most data. View (b)
shows the ROC curve using only the HOG feature, while view (c) shows the results
when combining the HOG and LBP features. As the figure illustrates, the SKSVM is
able to reduce the number of FAs significantly. Interestingly, the combination of fea-
tures is detrimental to SKSVM performance for the X-band FLGPR. This is because
the addition of the LBP feature to the SKSVM for the X-band radar results in over-
training (the training or resubstitution results are nearly perfect), which negatively
affects the test lane performance.

3.2 Multiple Kernel

MKL extends the idea of kernel classification by allowing the use of combinations
of multiple kernels. The kernel combination can be computed in many ways, as long
as the combination is a Mercer kernel [34]. In this chapter we assume that the kernel
K is composed of a weighted combination of pre-computed kernel matrices, i.e.,

K=Y oK, )
k=1

where there are m kernels and o, is the weight applied to the kth kernel. The com-
posite kernel can then be used in the chosen classifier model; we will use the SVM.
Thus, MKL SVM extends the SKSVM optimization at (4) by also optimizing over
the weights o,
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' 1 m
rglelzlm‘?x{lra— E(aoy)T <; o-kKk>(aoy)}, (8a)

subject to (typically)
0<aq,<C,i=1,...,n; a’y =0, (8b)

where A is the domain of o. Note that this is the same problem as SKSVM if the
kernel weights are assumed constant [28]. This property has been used by many
researchers to propose alternating optimization procedures for solving the min-max
optimization problem. That is, solve the inner maximization for a constant kernel
K, and then update the weights o, to solve the outer minimization, and repeat until
convergence. We use the optimization procedure proposed by Xu et al. called MKL
group lasso (MKLGL) [47]. This method is efficient as it uses a closed-form (i.e.,
non-iterative) solution for solving the outer minimization in (8a);

f2/(]+P)
o, = k — k=1,...,m, (9a)
<ka 1szp/<l+p>> /p
fi=op(a -y Ka-y), (9b)

where p is the norm on the domain constraint, ||o|[, =1, p > 1.

We further modify the MKLGL algorithm, as we did for SKSVM, to allow for
unbalanced classes—i.e., we apply the constraints C* and C~ as shown at (5). The
MKLGL training algorithm is outlined in Algorithm 1. The MKLGL is simple to
implement and is efficient as the update equations for o, are closed-form. MKL can
be thought of as a classifier fusion algorithm. It can find the optimal kernel among a
set of candidates by automatically learning the weights on each kernel. The individ-
ual kernels can be computed in many ways—see our previous papers on this topic
for more discussion on the formation of the kernel matrices [15, 17].

Algorithm 1: MKLGL Classifier Training [47]

Data: (x;,y;) - feature vector and label pairs; K, - kernel matrices
Result: a, 6, - MKLGL classifier solution
Initialize o, = 1/m, k = 1, ..., m (equal kernel weights)
while not converged do
L Solve unbalanced SKSVM for kernel matrix K = X, | 6,K;
Update kernel weights by Eq. (9)

Application of MKLGL to FLGPR EHD The MKLGL algorithm is applied in the
same way as the SKSVM—it acts to classify prescreener hits as either FAs or true
positives. Figure 7 shows results of the MKLGL classifier using an ensemble of RBF
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Fig. 7 ROC curves showing testing performance of (a) FLGPR prescreener, and MKLGL clas-
sifier for (b) single HOG feature and (c) combination of HOG and LBP features. Percent NAUC
improvements are shown for each of the L-band (HH and VV polarizations) and X-band FLGPRs.
The performance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH:
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kernels on the same training and testing lanes as shown for SKSVM in Fig. 6. The
NAUC results show that the MKLGL is able to match and sometimes improve upon
the results obtained using the SKSVM. The MKLGL improvement of the L-band
VV NAUC is especially noteworthy.

3.3 Fuzzy Integral-Based Multiple Kernel (FIMKL)

The Fuzzy Integral-based MK (FIMKL) [22, 23] extends MKL by using a non-linear
aggregation operator, the fuzzy integral (FI). The fusion of information using the
Sugeno or Choquet FI has a rich history; for a recent review, see [1]. Depending on
the problem domain, the input to the FI can be experts, sensors, features, similari-
ties, pattern recognition algorithms, etc. The FI is defined with respect to the fuzzy
measure (FM), a monotone and often normal capacity. With respect to a set of m
information sources, X = {x, ..., x,,}, the FM encodes the (often subjective) worth
of each subset in 2X. For a finite set of sources, X, the FM is a set-valued function
g : 2¥ — [0, 1] with the following conditions:

1. (Boundary condition) g(¢) = 0,
2. (Monotonicity) If A, B C X with A C B, then g(A) < g(B).

Note, if X is an infinite set, there is a third condition guaranteeing continuity and
we often assume g(X) = 1 (although it is not necessary in general). Numerous FI
formulations have been proposed to date for generalizability, differentiability, and to
address different types of uncertain data [1]. In [22, 23], we investigated the Sugeno
and Choquet FIs for MKL. We proposed a solution based on sorting at the matrix
level. Assume each kernel matrix K has a numeric “quality.” This can be computed,
for example, by computing the classification accuracy of a base-learner that uses
kernel K, (or by a learning algorithm like a GA). Let v, € [0, 1] be the kth kernel’s
qualiry. These qualities can be sorted, v(j) > V) = ... 2 V,,. Given m base Mercer
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kernels, {x, ..., k,,}, FM g, and a sorting vy, > V) 2 ..o 2 Vi, the difference-in-
measure Choquet FI is computed by

m

Ky = Y Gry = Gatot) Ke)y = D, @Kl 7 € 11,0m), (10)
k=1 k=1

where ; = (G, = Goi-1))» Griy = 8 ({Xp(1ys -+ 2%y })s Groy = 0, and #(i) is a
sorting on X such that h(x,)) > ... > h(x,,)- The MK formulation at (10) pro-
duces a Mercer kernel as multiplication by positive scalar and addition are positive
semidefinite (PSD) preserving operations. Since (10) involves per-matrix sorting, it
can be compactly written in a simpler (linear algebra) form, i.e., K = Y" | @ K 1)

Prior works in MKL rely on the relatively linear convex sum (LCS) formulation.
It is often desired due to its advantage in optimization, e.g., MKLGL. Both FIMK
and LCS MK are of type convex sum, i.e., w, € R’ and ZZLI w, = 1. However,
one is linear, the other is not, and the weights are derived from the FM. The Cho-
quet FI is capable of representing a much larger class of aggregation operators. For
example, it is well known that the Choquet FI can produce, based on the selection
of FM, the maximum, minimum, ordered weighted average (OWA), order statistics,
etc. However, the machine learning LCS form is simply m weights anchored to the
individual inputs. The LCS is a subset (one of the aggregation operators) of the FI.

In [22, 23], we reported improved SVM accuracies and lower standard devia-
tions over the state-of-the-art MKLGL on publicly available benchmark data. We
proposed a GA, called FIGA, based on learning the densities for the Sugeno A-FM.
In that work we demonstrated that the GA approach is more effective than MKLGL,
even in light of the fact that our GA approach used far fewer component kernels.
In particular, the FIGA approach achieved a mean improvement of nearly 10 % over
MKLGL on the Sonar data set. The performance of FIGA comes at a cost though,
as MKLGL is much faster in terms of actual running time than FIGA. We also saw
that FIGA using a combination of FM/FIs is somewhat more effective than the FIGA
LCS form. These findings are not surprising as our intuition tells us that the nonlin-
ear aggregation allowed by the FM/FI formulation is more flexible than just the LCS
aggregation; hence, these results reinforce our expectation. Overall, these results are
not surprising as different data sets require different solutions, and while an LCS may
be sufficient for a given problem, it may not be appropriate for a different problem.
Also, it should be noted that the FM/FI formulation includes LCS aggregation as a
subset of its possible solutions; hence, when LCS is appropriate the FM/FI aggrega-
tion can mimic the LCS. In summary, the learner (GA vs GL) appears to be the most
important improvement factor, followed by a slight improvement by using the non-
linear FM/FI aggregation versus LCS. While FIMKL has not been applied to date
for EHD, this computational intelligence method is reviewed as it is an improvement
to classical MKL and stands to be of relevance and benefit to EHD.
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4 Deep Learners and Feature Learning for EHD

Deep learning architectures were initially designed to mimic the human brain, more
specifically, the neocortex [36]. This part of the brain has been shown to have six lay-
ers and a forward-backward structure to classify image data collected by the eye [26].
In brief, deep learning architectures extend “shallow” neural networks by adding
multiple hidden layers—these additional layers act as generalized feature detectors.
Deep learning algorithms have been shown to perform very well on a variety of
classification tasks, such as facial recognition [29], document classification [30], and
speech recognition [39]. We will present results for two types of deep learning archi-
tectures: deep belief networks (DBNs) and convolutional neural networks (CNNs).

4.1 Deep Belief Networks

DBNSs are a type of deep learning network formed by stacking Restricted Boltzmann
Machines (RBMs) in successive layers to reduce dimensionality, making a com-
pressed representation of the input. DBNs are trained layer by layer using greedy
algorithms and information from the previous layer. In this subsection, we will first
discuss RBMs and how to train them, then move on to training DBNs.

RBMs are simple binary learners that consist of two layers: one visible and one
hidden. The visible layer is the input layer and typically consists of an n-length vec-
tor of normalized values. The hidden layer is the feature representation layer. The
defining equation of the RBMs is the energy equation,

E(w,h) = =b"v —c¢"h — v/ Wh, (11)

where v is the input vector, h is the hidden feature vector, b and ¢ are the visible and
hidden layer biases, respectively, and W is the weight matrix that connects the layers.
It should be noted that weights only exist between the hidden and visible layers, that
is to say, that the nodes in either layer are not interconnected. v is the input and used
to train hidden layer h as

h =o(c+ WTv). (12)

The hidden layer is then used to reconstruct the visible layer in the same manner,

A = o(b + Wh). 13)

recon

The reconstruction of the visible layer v is then used in (12) to form h and

then the weight update is calculated as

recon recon
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recon )
where € is the learning rate. Iterated over several epochs, this weight update performs
a type of gradient descent called contrastive divergence [36].

To form a DBN, layers of RBMs are stacked as shown in Fig. 8a, where the hidden
layer of the lower RBM becomes the input/visible layer of the next RBM. Once the
input RBM is trained, its reconstructed hidden layer h is used to create the visible
layer of the next RBM by

recon

Vor1 = O-(Cn + threcon,n) (15)

where n denotes the layer number. The (n+ 1)th RBM is now trained and this cycle is
repeated for the number of layers desired. After all layers have been trained, the DBN
is typically then mirrorred to make an encoder-decoder as shown in Fig. 8b [21]. An
input to the encoder-decoder thus produces a reconstruction of itself, where

encoder: X, = W,X,; (16a)

. — w7 .
decoder: X, .onn-1 = W, _ Xpoconns (16b)

and x; € R? is the input vector and Xreconl = Xrecon € R4 is the reconstruction.
Note that the final hidden layer in the encoder is the first layer in the decoder, x,, | =
X, econns1» Where n is the number of RBMs in the DBN. Fine-tuning of the weight
matrices can be performed as shown in Fig. 8c. This fine-tuning is often done using
stochastic gradient descent (backpropagation) or Hinton’s up-down algorithm [20].
Note that this gives the DBN more flexibility as the weight matrices are adjusted for
each of the encoder and decoder.
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Application of DBNs to FLGPR EHD To apply DBNs to the FLEHD problem, we
take the extracted features from each prescreener hit location in the training data and
apply the DBN to learn the representation of the FAs; this is due to the imbalance
between the number of FA and target examples in the training data. The reconstruc-
tion root mean-square error (RMSE),

d

RMSE = \| Y (% = Xpoeoms) (17)
i=1

of the DBN is thus a measure of how well an input feature vector matches to the
learned representation of the FAs—true positives ideally have high RMSE and false
positives ideally have low RMSE. Hence, the RMSE can be directly used as the
confidence of a true positive in the ROC curve. The DBNs for the results here are
trained on three lanes of data and then tested on a separate lane (in essence, 4-fold
cross-validation).

Since DBNs are flexible in their construction, we tested many different architec-
tures, learning rates, and epoch limits. The best DBN we found for overall EHD
performance was a network that uses two hidden layers of sizes 40 and 20, giving
a full encode-decode stack architecture of [x 40 20 40 x,,.,, ], where X is the d X 1
input feature vector and X,,.,, is the d X 1 reconstruction (see Fig. 8). The learning
rate is 0.9, and 30 epochs of contrastive divergence was used for RBM training.

Several combinations of features were tested with the DBN classifier. Figure 9
illustrates selected results from our comprehensive evaluation of DBNs for FLGPR
EHD. These ROC curves show the performance of the DBN classifier on Lane C
(training on Lanes A, B, and D). The percent NAUC improvements clearly show
that the DBN significantly improves NAUC, by up to 85% for the case of the
X-band FLGPR using HOG & LBP features (note that the X-band FLGPR also has
the most room for improvement in this case).
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Fig.9 ROC curves showing testing performance of a FLGPR prescreener, and DBN classifiers for
b single HOG feature and ¢ combination of HOG and LBP features. Percent NAUC improvements
are shown for each of the L-band (HH and V'V polarizations) and X-band FLGPRs. The perfor-
mance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH: 28 %;
L-VV:52%; X:53%. ¢ L-HH: 23 %; L-VV: 52 %; X: 85 %
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Fig. 10 Illustration of a convolutional neural network [31, 36]

4.2 Feature Learning

Convolutional Neural Networks CNNs are a type of neural network with a unique
architecture. Inspired by the visual system, these networks consist of alternating
convolutional and sub-sampling layers. The convolutional layers generate feature
maps by convolving kernels over the data from the previous layers and then the sub-
sampling layers downsample the feature maps [36]. CNNs work directly on the 2D
data as opposed to most other forms of deep networks which reorganize the data into
1D feature vectors. Figure 10 illustrates a convolutional neural network.
The Ith convolutional layer is generated from a jth feature map by

d=o(l+ Y d x k), (18)

ieM!
J

where ¢ is the activation function, usually hyperbolic tangent or sigmoid, b; is a
scalar bias, MJI is an index vector of feature maps i in layer [ — 1, x is the 2D convo-

lution operator and kl’“ is the kernel used on map i in layer / — 1. A sub-sample layer
[ is generated from a feature map j by

ajl. = down(ajl._l,Nl), (19)

where down is a down-sampling function, such as mean-sampling, that
down-samples by factor N’ [36]. The output layer is then generated by

0=’ + W°x,), (20)

where x, denotes a feature vector concatenated from the feature maps of the previous
layer, b? is a bias vector, and W° is a weight matrix. The parameters to be learned are
thus kfj, bl, b° and W°. Gradient descent is used to learn these parameters and this
can be eff{ciently performed through the use of convolutional backpropagation [36].
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Fig. 11 ROC curves showing testing performance of a FLGPR prescreener, and b CNN classifier
using the HOG feature. Percent NAUC improvements are shown for each of the L-band (HH and
VYV polarizations) and X-band FLGPRs. The performance of a uniform random detector is shown
by the dotted line. a Prescreener. b L-HH: 13 %; L-VV: 1.4 %; X: 28 %

Application of CNNs to FLGPR EHD Unlike the SVM, MKLGL, and DBN, the
CNN operates on 2D feature maps. Fortunately, the HOG, LBP, and FFST are all
2D features and thus can be used as input for the CNN; we also used the raw image
data (imagelet) surrounding each prescreener hit as input to the CNN. The output of
the CNN is a 2-element vector—one element to indicate FA and one to indicate true
positive. As shown in Fig. 10, we use two convolutional layers and two subsampling
layers. The learning rate was 0.9 and 350 epochs were used for training, which were
shown to be good choice in a more comprehensive parameter study we performed.
Figure 11 shows selected results from our comprehensive evaluation of CNNs for
FLGPR EHD. These ROC curves show the performance of the CNN classifier on
Lane C (training Lanes A, B, and D). As is evidenced by the percent NAUC improve-
ment values, the CNN is the least effective of the classifiers that we have applied to
the FLGPR EHD. Furthermore, many of the results (which we do not show) that we
compiled using the CNN were very poor. Hence, we do not recommend the CNN at
this time for FLGPR EHD.

Application of CNNs to FLIR EHD In [43], CNNs were evaluated for EHD in FLIR
imagery. Image chips extracted at prescreener alarm locations were fed directly as
input to a CNN. CNN classification results were compared to a baseline algorithm
which extracted five hand-engineered feature sets and performed classification using
a SVM. Due to the lack of training data for training a conventional deep CNN model,
two alternative CNN approaches were explored.

The first approach used a deep CNN model pre-trained on the ImageNet dataset
[12]. This model is referred to herein as DPT-CNN, and was made available through
the open source python package DeCAF [13]. DPT-CNN uses the architecture
proposed by Krizhevsky et al. in [27], which won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). The architecture consists of five convo-
lutional layers, some followed by Rectified Linear Unit (ReLLU) activation, response
normalization, and max pooling, followed by three fully connected layers. The last
fully connected layer is fed to a 1000-way softmax function.
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DPT-CNN was trained on the ILSVRC2012 training data, which consisted of
more than 1.2 million training images from 1000 object classes. It was shown in
[13] that values from intermediate layers of this pre-trained network work well as
features for new vision tasks. Specifically, tasks with small amounts of training data,
where a deep CNN trained directly performed poorly. For our tests, the alarm image
chips were input to DPT-CNN, and intermediate values were saved at six stages.
These intermediate values were used to train a SVM which was evaluated the same
way as the baseline algorithm. The first two sets of intermediate values came from
the second and first fully connected layers after ReLU activation. These are referred
to as FC7-ReLU and FC6-ReLU, respectively. The ReLU activation takes the form
¢(v) = max(0,v). The next two intermediate values, POOL5 and CONVS5, came
from the last convolutional layer. CONVS is before max-pooling, and POOLS is after
pooling. The last two sets, RNORM1 and POOL1, came from the first convolutional
layer. RNORM 1 is after pooling and response normalization. POOL1 is after pooling
but before response normalization.

The fully connected layer outputs, which no longer convey spatial position, were
not expected to be useful for this EHD task since position in the image chip is
extremely important. The POOLS and CONVS5 features do retain some spatial infor-
mation. The RNORM1 and POOL1 features retain more, but since they are not deep
features they may not be as descriptive. Table 2 shows the NAUC results for the
DPT-CNN features, as well as for the baseline algorithm and the best individual
baseline feature, for a three lane leave-one-lane-out cross validation test using two
FLIR cameras.

As expected, the fully connected layer features did not perform well. Performance
improved significantly when moving to the POOLS features, and again when moving
to the CONVS features. The CONVS5 features compared well with the top performing
hand-engineered image feature, multi-scale HOG, even outperforming it on Lane A.
Surprisingly, the POOL1 features scored better overall than the CONVS features on
the DVE camera image chips, but show a pronounced drop on the SELEX image
chips.

Table 2 DPT-CNN: DVE/Selex cameras: NAUC at 0.01 FA /m?

Feature All lanes Lane A Lane B Lane C

FC7-ReLU 0.435/0.451 0.321/0.355 0.420/0.418 0.556/0.573
FC6-ReLLU 0.479/0.469 0.353/0.365 0.480/0.454 0.598/0.582
POOLS5 0.557/0.501 0.404/0.386 0.600/0.500 0.658/0.609
CONV5 0.615/0.566 0.471/0.423 0.655/0.604 0.712/0.662
RNORM1 0.623/0.525 0.454/0.389 0.709/0.553 0.699/0.624
POOL1 0.624/0.519 0.458/0.386 0.710/0.545 0.695/0.617
BASE: HOG 0.645/0.584 0.453/0.421 0.722/0.615 0.753/0.708
BASE: ALL 0.677/0.610 0.496/0.445 0.766/0.652 0.762/0.727
CONVS + BASE | 0.676/0.607 0.508/0.449 0.748/0.649 0.764/0.714

*Bold indicates best result for each camera and lane
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The DPT-CNN results indicated that a deep CNN model was not necessary to
achieve good performance on this FLIR EHD task. This was not particularly surpris-
ing since the task requires little in the way of translation, scale, or orientation invari-
ance. The primary difficulty is intra-class variation. Thus, a second CNN approach
using a shallow CNN trained directly using the image chips was pursued. The shal-
low architecture consists of a single convolutional layer followed by an output layer
containing a single neuron followed by the sigmoid activation function. The out-
put of the sigmoid was used as the alarm confidence value. For all experiments,
weights were learned using stochastic gradient descent (SGD) with momentum and
the cross entropy error function. To address class imbalance, for each training pat-
tern presentation an example was chosen randomly from either the true target class
or the false alarm class with equal probability. Evaluation was performed using the
same methodology as for DPT-CNN.

In [24], Jarrett et al. found that the single most important factor for recogni-
tion accuracy in a CNN model, considering architecture choices such as activation
function, sub-sampling type, and response normalization, was the use of a rectify-
ing non-linearity. While they used the absolute value function (AVF), the ReLU in
Krizhevskys architecture performs a similar operation. Therefore, the first exper-
iment evaluated performance when using either no non-linearity, ReLU, or AVF
following the convolutional layer. These results are presented in Table 3. Both acti-
vations improved performance. AVF performed better than ReLU, and was chosen
for further experiments.

We next investigated forcing the convolutional filters to have zero-mean and zero-
phase. The intuition being that only the non-dc frequency characteristics are impor-
tant, and that shifting of the output is meaningless for classification. To enforce
these characteristics, transformation functions were inserted before the variables in
question were used. The transformation functions modify their inputs to enforce
the desired constraint. During SGD learning, derivatives are propagated through
the transformations. For example, if the original convolutional layer is OUTPUT =
CONV(INPUT,X), to enforce zero-mean for the kernel X the expression becomes
OUTPUT = CONV(INPUT,G(X)), where G(X) modifies X to have the zero-mean
characteristic. No significant performance improvement was seen from enforcing
either constraint.

Table 3 Rectifying Nonlinearity: DVE Camera: NAUC at 0.01 FA /m?

Convolution | None, # filters Rel U, # filters AVF # filters
filter radius

4 8 16 4 8 16 4 8 16
3 0492 |0.482 |0.503 |0.519 |0.517 |0.499 |0.555 [0.573 | 0.566
5 0.508 |0.510 |0.509 |0.550 [0.552 |0.565 |0.600 |0.602 |0.603
7 0487 |0.483 |0475 |0.555 |0.545 0.537 [0.596 | 0.580 | 0.592

*Bold indicates best result for each filter radius
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Table 4 Learning in freq domain: DVE camera: NAUC at 0.01 FA /m?

Convolution | Spatial—# of filters Frequency—+# of filters
filter radius

4 8 16 4 8 16
3 0.555 0.573 0.566 0.636 0.636 0.640
5 0.600 0.602 0.603 0.617 0.619 0.618
7 0.596 0.580 0.592 0.614 0.613 0.619

*Bold indicates best result for each filter radius

We then experimented with learning the convolutional filters’ frequency domain
representations instead of their spatial domain representations. This was done by
using the inverse FFT as a transformation function. Table 4 shows the results for
learning the convolutional filters in the frequency domain versus the spatial domain.
Zero-mean and zero-phase were enforced in the frequency domain. A slight perfor-
mance improvement was seen across all combinations.

Based on these results, shallow CNN networks with eight zero-mean, zero-phase
filters learned in the frequency domain were scored on the DVE and SELEX data.
Table 5 shows the per lane results for various kernel radii, as well as the DPT-CNN
and baseline results for comparison. Overall, the shallow CNN results were very
similar to those of DPT-CNN. The shallow CNN achieved a slightly better overall
result on DVE, and a slightly worse overall result on SELEX when comparing to
the CONVS features of DPT-CNN. When comparing to the POOL1 and RNORM1
features, the shallow CNN SELEX result is much better. The baseline algorithm,
which includes features that cannot be expressed via convolution, outperforms both
CNN approaches.

iECO Feature Learning In [38], the algorithm improved Evolutionary COnstructed
(iECO) feature descriptors (referred to hereafter as simply iECO) was put forth for
FLIR-based EHD. The iECO algorithm is a feature learning technique that looks to

Table 5 Shallow CNN: NAUC at 0.01 FA/m?
DVE camera SELEX camera
Alllanes |Lane A |Lane B |Lane C |Alllanes |[Lane A |Lane B |Lane C

CNN 0.635 0.464 0.734 0.700 0.562 0.397 0.626 0.656
radius 3
CNN 0.616 0.478 0.694 0.670 0.559 0.413 0.611 0.645
radius 5
CNN 0.612 0.460 0.697 0.673 0.557 0.409 0.628 0.626
radius 7

Pre- 0.624 0.458 0.710 0.695 0.566 0.423 0.604 0.662
trained
CNN

Baseline |0.677 0.496 0.766 0.762 0.610 0.445 0.652 0.727

*Bold indicates best result
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exploit important cues in data that often elude non-learned (often referred to as “hand
crafted”) features such as HOGs, LBPs and edge histogram descriptors. Each hand
crafted feature is ultimately an attempt to more-or-less sculpt (force) a signal/image
into some predisposed mathematical framework which may or may not reveal the
information that a user/system needs. Instead of coming to the table with a limited
set of tools and trying to make everything look like a nail, iECO learns the tool based
on the task at hand.

While the field of deep learning has demonstrated state-of-the-art performance,
the ECO (and iECO respectively) work of Lillywhite et al. has the advantage over
CNN s of interpretability (it is not a black box) and it does not predispose the solu-
tion to that of convolution. At its core, ECO is the GA-based learning and (ensemble-
based) use of a population of chromosomes that are compositions of functions (image
processing transformations). Each chromosome is of variable length and the goal is
to learn the image transformations and respective parameters relative to some task.
An advantage of this approach, versus CNN:ss, is that it makes use of a relatively wide
set of different heterogeneous image transformations to seek a new tailored solution.
In [38] we used 19 different image transformations which range from a Harris corner
detector to a square root, Hough circle, median blur, rank transform, LoG, mathe-
matical morphology and Shearlet and Gabor spatial frequency domain filtering, just
to name a few. In many cases, emergent behaviour arises and the chromosomes can
be manually examined and studied, potentially revealing additional domain informa-
tion such as what features or physics in IR or GPR are most important for a task like
EHD. Figure 12 shows the iECO process (not learning, but application of iECO to a
given AOI).
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Fig.12 iECO applied to a prescreener hit in FLIR. Learned iECO chromosomes, in different pop-
ulations, are applied to the input image. Finally, different descriptors are extracted relative to each
transformed image
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In iECO, we address a shortcoming of the ECO features— the so-called
“features” which are the unrolling of image pixels into a single vector. ECO suffers
from the curse of dimensionality and the naive unrolling does not intelligently take
into account various spatial and scale cues. In [38], we extract ECO features relative
to different high-level descriptors and cell-structured configurations. Specifically, we
explored the HOG, EHD and statistical features; which include the local mean, stan-
dard deviation, kurtosis, /,-norm, and the difference between the local values and
their corresponding global values. A separate GA population is maintained and a
separate search is conducted relative to each high-level descriptor. iECO, like CNN
learning is not a computationally trivial task. As a result, we have not yet attempted
to learn the different populations in a single simultaneous algorithm. Furthermore,
in [38] we showed that each descriptor learns/prefers different chromosomes that
have varying fitness values. With respect to classification, we experimented with
taking a single best chromosome per descriptor (highest fitness), taking the top 50 %
of chromosomes relative to each descriptor, and the identification of the top 5 most
diverse chromosomes (which is currently a manual process). Our results indicate that
the concatenation of multiple chromosome features leads to improved performance.
Furthermore, we showed that if one pipeline is applied to a different descriptor than
it was learned for, then the result is a significant drop in performance (fitness). This
is interesting as it tells us that iECO appears to learn a tailored pre-processing of
imagery relative to each descriptor in order to better highlight salient information.
Figure 13 shows different learned iECO pipelines.

In [38], we introduced constraints on each individual’s chromosome to help pro-
mote population diversity and prevent infeasible solutions. This allows us to search
for quality solutions faster and it typically results in shorter length chromosomes
that are computationally simpler to realize (which is important for a real-time causal
EHD system). In ECO, there are no direct mechanisms incorporated into the GA,

(a) (b)
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Fig. 13 iECO on FL LWIR. a Average iECO output of four chromosomes across 50 different
buried targets. Each image is scaled to [0, 1] for visual display and they are shown in Matlab jetmap
color coding, where blue is 0 and red is 1. These images show that diversity exists across chro-
mosomes and different aspects of targets are learned, e.g., local contrast, orientation specific edge
information, etc. b Output of highest fitness chromosones for each descriptor for a single target.
These images show that each descriptor prefers a different iECO pipeline. a Average iECO output.
b Different iECO populations
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Fig. 14 Vertically averaged ROC curves with 95 % confidence intervals. a Testing lane 1. b Testing
lane 2

outside of mutation, to promote diversity in the population. In [38], we introduced
diversity promoting constraints that consider the uniqueness and complexity of the
ECQO’s search space. We designed a set of diversity promoting constraints that define
what percentage of the population is allowed overlapping genes at each layer of the
individual’s gene segment. Next, we addressed the issue of the occurrence of the
same gene back-to-back. Such a scenario is undesirable, e.g., it does not typically
make sense to perform a rank transform back-to-back. In addition, this increases the
computational complexity of the system as a consequence of the unnecessary image
transforms. We combat this by collapsing consecutive uses of the same gene type,
i.e., if any gene occurs more than once consecutively then only the first occurrence
is retained. Elitism is used in iECO.

In summary, in [38] we showed that the above diversity promoting constraints
and the combination of high-level image descriptors leads to the discovery of sig-
nificantly higher quality solutions for EHD. We showed that iECO continuously
identifies higher performance solutions, i.e., an impressive drop in the FAR for a
given PDR, populations are more diverse, which was verified manually, and the
resultant chromosomes are significantly shorter and thus give rise to a simpler system
(computationally and memory utilization-wise) to realize. Figure 14 is ROC results
for iECO versus ECO features. iECO clearly outperforms ECO.

5 Conclusions

This chapter described the EHD problem and various methods for preprocessing,
prescreening, and false rejection for FLGPR and FLIR. The methods discussed for
FLGPR-based EHD were SKSVM, MKLGL, DBNs, and CNNs. The best overall
detection and classification method for the FLGPR was the DBN using a combination
of HOG and LBP features, showing up to 85 % improvement in NAUC. The weakest
FLGPR-based method was the CNN. In the future, we are going to investigate more
advanced CNN architectures and training methods for CNNs as applied to FLGPR
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EHD. Several EHD methods were discussed for FLIR-based detection, including
baseline SVM detection, CNNs, and iECO feature learning. Several CNN architec-
tures were tested. While the CNN architectures showed promise, especially those that
use frequency-domain AVF filters, the baseline SVM-based feature-fusion approach
outperformed the CNN. Lastly, iECO feature learning was demonstrated for FLIR-
based EHD. In the future, we aim to further apply our fuzzy integral-based multiple
kernels methods for EHD as FIMKL has been shown to be superior to MKLGL for
benchmark data sets. We also aim to extend the deep learning approaches for online
and active learning for EHD.
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