
Computational Intelligence Methods
in Forward-Looking Explosive Hazard
Detection

Timothy C. Havens, Derek T. Anderson, Kevin Stone, John Becker
and Anthony J. Pinar

Abstract This chapter discusses several methods for forward-looking (FL) explo-
sive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating
radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is

that there are multiple types of targets buried at different depths in a highly-cluttered

environment. A wide array of target and clutter signatures exist, which makes detec-

tion algorithm design difficult. Recent work in this application has focused on fusion

methods, including fusion of multiple modalities of sensors (e.g., GPR and IR),

fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion

using multiple kernel and iECO learning. For this chapter, we will demonstrate

several types of EHD techniques, including kernel methods such as support vec-
tor machines (SVMs), multiple kernel learning MKL, and feature learning methods,

including deep learners and iECO learning. We demonstrate the performance of sev-

eral algorithms using FLGPR and FLIR data collected at a US Army test site. The

summary of this work is that deep belief networks and evolutionary approaches to

feature learning were shown to be very effective both for FLGPR and FLIR based

EHD.

Keywords Sensor fusion ⋅ Explosive hazard detection ⋅ Aggregation ⋅ Multiple

kernel learning ⋅ Deep learning ⋅ Fuzzy integral

T.C. Havens (✉) ⋅ J. Becker ⋅ A.J. Pinar

Department of Electrical and Computer Engineering/Department of Computer Science,

Michigan Technological University, Houghton, MI 49931, USA

e-mail: thavens@mtu.edu

J. Becker

e-mail: jtbecker@mtu.edu

D.T. Anderson

Department of Electrical and Computer Engineering, Mississippi State University,

Mississippi State, MS, USA

e-mail: anderson@ece.msstate.edu

K. Stone

Department of Electrical and Computer Engineering, University of Missouri,

Columbia, MO, USA

e-mail: kes25c@mail.missouri.edu

© Springer International Publishing Switzerland 2016

R. Abielmona et al. (eds.), Recent Advances in Computational Intelligence
in Defense and Security, Studies in Computational Intelligence 621,

DOI 10.1007/978-3-319-26450-9_2

13

14 T.C. Havens et al.

1 Introduction

An important goal for the U.S. Army is remediating the threats of explosive haz-

ards as these devices cause uncountable deaths and injuries to both Civilians and

Soldiers throughout the world. Since 2008, explosive hazard attacks in Afghanistan

have wounded or killed nearly 10,000 U.S. Soldiers; worldwide, explosive devices on

average cause 310 deaths and 833 wounded per month [25]. Systems that detect these

threats have included ground-penetrating-radar (GPR), infrared (IR) and visible-

spectrum cameras, and acoustic technologies [9, 10, 37]. Past research has exam-

ined both handheld and vehicle-mounted systems and much progress has been made

in increasing detection capabilities [7, 14]. Forward-looking (FL) systems are an

especially attractive technology because of their ability to detect hazards before

they are encountered; standoff distances can range from a few to tens of meters.

A drawback of forward-looking systems is that they are not only sensitive to explo-

sive devices, unexploded ordnance (UXO), and landmines, but also to other objects,

both above and below the ground. Because these sensors are standoff sensors, the

area being examined for targets is much larger than with downward-looking sys-

tems. Thus, clutter is a serious concern. Furthermore, the explosive hazard threat is

very diverse—they are made from many different materials, including wood, plastic,

and metal, and come in many different shapes and sizes—and this threat continues to

evolve. This means that it is nearly impossible to detect explosive hazards solely by a

modeling-based approach, and, hence, computational intelligence (CI) methods are

very appropriate. Previous work has shown that if forward-looking infrared (FLIR)

or visible-spectrum imagery is combined with L-band FLGPR, false alarm (FA)

rates can be reduced significantly [2, 16, 18, 19, 44, 45]. Hence, we focus on CI

methods for sensor-fused forward-looking detection of explosive threats, comparing

CI to other machine learning approaches.

The structure of the remainder of this study is as follows. Section 2.2 describes

the preprocessing of the sensor data into a format that is ready for prescreening

and feature extraction. The prescreener algorithms are described in Sect. 2.3, and

the feature extraction is detailed in Sect. 2.4. In Sect. 3 we describe kernel learning

methods, including support vector machine (SVM)-based methods, multiple kernel
(MK) methods, and a fuzzy integral-based MK learner. Methods that learn the fea-

tures implicitly, such as deep belief networks (DBNs), convolutional neural networks
(CNNs), and iECO feature learning, are described in Sect. 4. Results for the various

learning algorithms will be presented in the respective parts of Sects. 3 and 4. We

summarize in Sect. 5. Table 1 contains the acronyms used in this chapter. Next, we

describe the sensing technologies used to demonstrate the various EHD algorithms

in this chapter.

Computational Intelligence Methods in Forward-Looking . . . 15

Table 1 Acronyms

UXO Unexploded ordnance EHD Explosive hazard detection

GPR Ground-penetrating radar IR Infrared

FL forward looking DL Downward looking

LW long-wave MW Mid-wave

UTM Universal traverse mercator CI Computational intelligence

FA False alarm ROC Receiver operating characteristic

MK Multiple kernel SK Single kernel

MKLGL MK learning-group lasso SVM Support vector machine

FIMKL Fuzzy integral MKL CNN Convolutional neural network

RBM Restricted Boltzmann machine DBN Deep belief network

CFAR Constant false-alarm rate NAUC Normalized area under the curve

iECO Improved evolution constructed CLAHE Contrast-limited adaptive histogram

equalization

HOG Histogram of oriented gradients LBP Local binary patterns

MSER Maximally stable extramal regions GMM Gaussian mixture models

SIFT Scale-invariant feature transform AOI Area of interest

2 Explosive Hazard Detection: Background Knowledge

2.1 Sensing Technologies for FLEHD

FLGPR GPR has long been an interest to the U.S. Army for EHD, and downward-
looking (DL) systems have been shown to be very effective in operational scenarios.

However, DL systems fail to provide a standoff range from the threat; the array is

located directly above the threat upon detection. Hence, there has been much focus on

improving standoff distances by using FL systems. FLGPR aims to improve standoff

by aiming the GPR array forward, often with the center of the beam aimed 10–15 m

in front of the vehicle. Since the angle of incidence at which the beam hits the ground

surface is important for penetration—the more orthogonal the beam is to the surface,

the better the ground penetration—the arrays are usually built on some type of boom

above the vehicle. Still, due to the geometry of the FL problem, much array energy is

lost to specular reflection from the ground surface. Hence, FLGPR signal-to-noise
ratios (SNRs) are not nearly as good as with DLGPR systems. Furthermore, the

index of refraction of the soil is significantly different than that of the air, which

causes a refraction—or bending—of the radar beam at the ground surface, further

complicating image formation. These, and other challenges, mean that FLGPR-based

EHD is not as simple as looking for local regions of high intensity; more complex

EHD strategies are necessary. We talk about several approaches in this chapter.

16 T.C. Havens et al.

(a) (b)

Fig. 1 FLGPRs under research and development for use in EHD. a ALARIC L-B and FLGPR.

b L/X-Band FLGPR

Many FLGPR systems have been designed specifically for EHD, including the

two shown in Fig. 1. View (a) shows the ALARIC system, which combines an L-

band FLGPR and a visible spectrum imaging system, while (b) shows an FLGPR that

combines L- and X-band radar arrays. The FLGPR results shown in this chapter will

focus on data recorded with the L/X-band system shown in Fig. 1b. The government-

furnished FLGPR data is composed of complex radar data as well as motion data of

the vehicle from several lanes at an arid U.S. Army test site.

FLIR While numerous frequency ranges in the infrared portion of the electromag-

netic spectrum have been investigated for EHD, e.g.,mid-wave IR (MWIR) and com-

binations of IR bands for “disturbed earth” detection, we focus on recent advance-

ments in anomaly detection in long-wave IR (LWIR). However, without loss of gen-

erality the vast majority of mathematics and algorithms discussed herein are natu-

rally applicable to both MWIR and LWIR imagery with little-to-no change. LWIR

or thermal imagers are passive (i.e., they do not require illuminators) and detect

infrared radiation in approximately the 8–14µm wavelength. Objects with a tem-

perature above absolute zero emit infrared radiation in this range at their surface.

The amount of emitted thermal radiation increases with temperature. The exact rela-

tionship between an object’s temperature and the amount of emitted thermal radia-

tion depends on the emissivity, a quantity representing a material’s ability to emit

thermal radiation that varies with wavelength. A thermal imager actually sees not

only the emitted radiation of the object, but also transmitted radiation, i.e., radia-

tion from an external source which passes through the object toward the imager,

and/or reflected radiation, i.e., radiation from an external source which reflects off

the object toward the imager. These factors complicate assigning absolute tempera-

ture values to objects. However, in EHD we can exploit the fact that buried objects

will likely possess a different thermal conductivity, thermal capacity, or density than

the surrounding soil, resulting in either a cooling or warming of the soil immediately

surrounding the object. This most often leads to a change in temperature at the sur-

face above the object and results in a measurable change in the amount of emitted

Computational Intelligence Methods in Forward-Looking . . . 17

Fig. 2 Example of thermal scarring in FLIR with targets of varying difficulty at a fixed vehicle

stand off distance. (left) NVESD FLEHD multi-sensor ground vehicle platform, (top row) LWIR

and (bottom row) MWIR imagery. Columns are different (center aligned) targets co-registered in

MWIR and LWIR. Note, the MWIR camera has a higher resolution (more pixels on target)

thermal radiation compared to areas of the ground free of such objects. Figure 2

shows this phenomenon, referred to in many circles as thermal scarring.

However, FLIR is not without flaw. One challenge is diurnal cross-over, the time-

period during which the buried object comes to near thermal equilibrium with its

surroundings making targets, for all intents, unidentifiable. Another factor is the dif-

ference in emitted radiance seen at the soil surface (even for the same soil compo-

sition and object) varies based on factors such as the amount of incident thermal

radiation, which is dependent on time of day, time of year, and current weather con-

ditions. These are just some of the factors that emphasize the need to include and

fuse different sensing technologies to solve this extremely challenging real-world

problem.

The FLIR data used in our experiments was collected from two cameras. The first

camera, called DVE, was uncooled and used the DRS Infrared Technologies U6000

microbolometer detector which has a spectral response of 8–14µm. The DVE cam-

era captured 8-bit single channel imagery with a resolution of 640 × 480, and hor-

izontal and vertical fields of view of 40 and 30
◦
, respectively. The second camera

was a SELEX L20, which produces a 16 bit single channel image with resolution

640 × 512. The SELEX camera had a spectral response of 8–10µm, and horizontal

and vertical fields of view of 15 and 12
◦
, respectively. Both cameras were mounted

on a mast at the back of the vehicle as shown in Fig. 2. The mast height was approxi-

mately 3.35 m and had a downward look angle of 6.3
◦
. An inertial navigation system

was mounted next to the cameras, and the time at which each image was captured

was recorded. This allowed precise georeferencing using the dense 3D scene recon-

struction technique described in [46].

The government-furnished data consists of numerous runs from three lanes at an

arid U.S. Army test site. The number of targets per lane varied from 44 to 79, and

the area of the lanes ranged from 3,600–4,200 square meters. Emplaced targets were

buried between 1–6 in. deep, and varied in metal content (some had no metal).

18 T.C. Havens et al.

2.2 Sensor Processing

FLGPR Preprocessing We use a backpropagation procedure to form the radar

images (see [15] for a detailed description of the imaging algorithm). In brief,

the radar images are formed by coherently summing successive backpropagation

images, accounting for platform motion effects on phase and beam pattern effects.

The images are formed on a 2.5 cm-spaced grid for each antenna polarization. We

also apply a phase correction to the L-band FLGPR to account for vehicle motion

during the swept-frequency transmission [4]. The end results of the FLGPR imaging

and preprocessing are complex images for each of the L- and X-band polarizations

on a rectangular grid coordinate system. In Sect. 2.3, we discuss how we take each

FLGPR image Ip(u, v) and indicate candidate detections.

FLIR Preprocessing Numerous algorithms have been applied to the government-

furnished FLIR data for preprocessing. However, these algorithms are not the subject

of investigation in this chapter as they are not focused on CI. The reader can refer

to [3, 42, 43, 46] for more details. In general, these preprocessing algorithms are

focused on deinterlacing, denoising, and global or local contrast enhancement. For

the DVE images, preprocessing typically consists of deinterlacing, denoising, and

contrast limited adaptive histogram equalization (CLAHE) [3]. For the SELEX, the

16-bit data was converted to 8-bit by contrast stretching, with saturation limits at

0.05 and 99.95 percent of the original pixel values, so the resulting values filled the

entire 16-bit range. After contrast stretching the pixel values were divided by 256
and CLAHE was run. Next we describe how the initial hit locations are determined.

2.3 Prescreeners

Prescreener is a term used for a weak detection scheme by which candidate detections

are found and passed on to stronger classification algorithms. The main ideas are to

(i) reduce the computational load of the classificaiton algorithms, and (ii) improve

classification accuracy by only training on target-like candidate detections.

FLGPR Prescreener The result of the radar preprocessing method described in the

Sect. 2.2 is a coherently integrated image Ip(u, v), where (u, v) are the image coordi-

nates: one image for each polarization of the L-band FLGPR (HH and VV polariza-

tions) and one image of the X-band FLGPR (VV polarization). It is well known that

penetration depth increases with wavelength; hence, the L-band will have a deeper

penetration than the X-band radar. Thus, we use the L-band radar as the detection

radar for the method proposed here; although, we will show results for X-band detec-

tion and classification too.

The prescreening detector is the first algorithm that indicates candidate detection

locations—a block diagram is shown in Fig. 3a. In [15], we proposed two meth-

ods to indicate the presence of a target, both of which could be considered to be

Computational Intelligence Methods in Forward-Looking . . . 19

Complex FLGPR
image

Magnitude

Inner mean
convolution

Outer mean
convolution

Inner variance
convolution

Outer variance
convolution

Inner mean
image

-

Outer mean
image

Inner variance
image

Bhattacharya
distance image

Bhattacharya
distance

Difference-of-means
image

Difference-of-means
detection list

Bhattacharya
detection list

Maximum-ordered
filter detection

Maximum-ordered
filter detection

Outer variance
image

cross-range
radius

halo widthdown-range
radius

(a) (b)

Fig. 3 a Block diagram of prescreener detection algorithm. b Elliptical convolution kernels used

in prescreener. Detection is indicated by comparing the distribution of pixel intensities in inner

ellipse to the distribution of pixel intensities in outer halo [15]

a constant FA rate (CFAR) detector. The first prescreener indicates a hit by taking

the mean of the pixels in the inner ellipse and comparing that to the mean of the

pixels in the outer halo (as shown in Fig. 3b. Essentially, the prescreener identifies

regions that have values that are higher than the surrounding regions. The second

prescreener uses a signed Bhattacharyya distance between the distributions of the

pixel values in the center region and outer halo to indicate a hit. For a more detailed

description of these prescreeners, see [15]. In our experiments, we have determined

the following prescreener parameters to be good choices for this system: down-range

radius = 0.25m; cross-range radius = 0.5m; and halo width = 0.75m. These values

are related to the impulse-response of the FLGPR system and to expected target sizes.

Furthermore, for this chapter we will only present results for the difference-of-means

prescreener, which has been shown to be more effective than the Bhattacharyya pre-

screener for FLGPR data [15].

One could simply threshold the output of the prescreener to indicate a detection;

however, this can result in many detections in one local region. Hence, we use a max-

imum order-filter with a 3 m (cross-range) by 1m (down-range) rectangular kernel

to reduce the presence of closely grouped hits. The prescreeners are rough first-look

algorithms for indicating candidate detections—they merely indicate if a region of

pixels is different in intensity than the surrounding pixels. They do not, however,

consider higher-level features, such as texture or shape, that might indicate better

the difference between clutter and true detections. Hence, at each detection location,

we then extract a set of shape- or texture-based features, described in Sect. 2.4.

20 T.C. Havens et al.

FLIR Prescreener In [2], we outlined a FLIR prescreener for EHD which was later

extended to FLGPR in [46]. This prescreener consists of an ensemble of trainable

size-contrast (CFAR) filters, i.e., local dual sliding window detectors. Each size-

contrast filter has seven parameters: the inner window height and width, the pad

height and width (which determine the size of the outer window), a Bhattacharyya

distance threshold, a squared difference between the mean values threshold, and three

state parameters, referred to as DType (which determines whether the detector will

trigger only on bright on dark regions, dark on bright regions, or both). At each

pixel, the mean and variance of the inner and outer windows are computed, the

Bhattacharyya distance and squared difference between the mean values is calcu-

lated and these two values are compared against their corresponding threshold. If

both values are greater than their threshold, and the DType condition is met, then

the corresponding detector fires. When a detector fires, it projects the inner window

center pixel coordinate into UTM coordinates. Next, a clustering algorithm is run

on all UTM coordinates generated from individual frames. Specifically, mean-shift,

a mode seeking clustering algorithm, with an Epanechnikov kernel is used. Mean-

shift was chosen as the application requires a fast clustering algorithm (in the offline

training phase, the algorithm has to run hundreds of thousands of times on potentially

large data sets: 10,000+ points) that also does not require the user to set the number

of clusters. We have compare mean-shift results to the basic sequential algorithmic
scheme and did not see a significant different in performance. Herein, this clustering

step is referred to as spatial mean-shift, and it results in candidate hit locations. Next,

mean-shift is run a second time on the hit locations from the combination of multiple

frames (this is referred to as temporal mean-shift). Each mean-shift step requires two

parameters: the kernel bandwidth and the minimum number of points around a peak

in order to keep that cluster. Mean-shift works by performing gradient ascent on the

kernel density estimator,

̂f (x) =
N∑

i=1
K
(
xi − x

)
, K

(
xi − x

)
= k

(
‖xi − x‖2

)
, (1)

where K is the kernel function, N is the number of data points, and normalizing

constants have been omitted for brevity. Taking the gradient of this function with

respect to x and setting it to zero results in the following (well known) iterative update

equation:

xt+1 =
∑N

i=1 k
′ (‖xi − xt‖2

)
xi

∑N
i=1 k′

(
‖xi − xt‖2

) , (2)

where, k′ (x) denotes the derivative of k (x) with respect to x, and t denotes the itera-

tion. For the Epanechnikov kernel with bandwidth parameter h, the update equation

reduces to:

xt+1 =
∑

xi∈L xi
|L| , kepn(v) =

{
1 − v

h
0 ≤ v ≤ h

0 else
(3)

Computational Intelligence Methods in Forward-Looking . . . 21

Fig. 4 Illustration of FLIR prescreener, which uses an ensemble of detectors (trained under dif-

ferent criteria) and spatial and temporal weighted mean-shift

where L is the set of all points for which kepn is non-zero and | ⋅ | is cardinality.

Mean-shift is initialized at every hit location, and the update procedure is run until

convergence. For this application, convergence is defined as a change of less than

1 cm between updates (remember that the points are in UTM coordinates). Refer

to [46] for additional algorithm speedups. Figure 4 illustrates the proposed FLIR

prescreener.

A genetic algorithm (GA) is used to learn the detector parameters. To this end,

we explored two methodologies. The first, referred to as one-per-rate, trains a single

detector for each desired detection rate. The primary objective of the GA is to achieve

the desired detection rate with the secondary objective of minimizing the false alarm
rate (FAR). In [2], 19 detectors were trained at desired detection rates ranging from

0.05 to 0.95 in step sizes of 0.05. The idea behind training many detectors is that

the resulting ROC curve after fusion should be better than if a single detector were

trained and only its thresholds allowed to vary. The second method, referred to as

one-per-target, trains a single detector for each ground truth encounter in the train-

ing data. The primary objective of this GA is to detect the specific target with the

secondary objective of minimizing the FAR. For both cases, weighted mean-shift is

used to fuse the detectors (each trained with a different objective function). A weight

is learned for each detector using separable covariance matrix adaptation evolution
strategy such that the normalized area under the curve (NAUC) is maximized on the

training data. Reference [2] reports the learned detector parameters and aggregation

weights for a prior experiment.

In [46], a few improvements to the above FLIR prescreener were outlined. The

first improvement was allowing confidence information to be passed from the size-

contrast filter to the spatial mean-shift step and from the spatial mean-shift step to

the temporal mean-shift step. Previously, UTM coordinates resulting from a size-

contrast filter triggering were treated identically during spatial mean-shift. However,

this discards the Bhattacharyya distance and mean difference information which is

22 T.C. Havens et al.

useful for locating the strongest response, which generally corresponds to the center

of the object. Likewise, information about the peaks found during spatial mean-shift,

such as the number of points surrounding each peak, could be useful for the temporal

mean-shift step. To remedy this, mean-shift was replaced with weighted mean-shift

in both steps, and two new parameters were added to each detector to control whether

confidence information is passed on. This leaves it up to the GA to decide if the con-

fidence information is useful. The second improvement was the introduction of a dif-

ferent grouping algorithm as an alternative to weighted mean-shift. The alternative

method, also proposed in [46], is an ordered filter approach inspired by the MUFL

FLGPR prescreener introduced in [16]. Lastly, the separable CMA-ES optimization

for finding weights for the weighted mean-shift step which combines detectors was

eliminated as it tended to overfit the training data. Instead, three heuristics were used

to generate weights, and the set of weights which performs best in terms of NAUC

on the training data was chosen. The first method assigns equal weight to all detec-

tors; the second method assigns weights based on detection rate and the third method

assigns weights based on FAR.

2.4 Feature Extraction

While our FLIR and FLGPR prescreeners achieve relatively high positive detec-

tion rates, meaning they often do better than what an expert can identify visually,

they still suffer from an unacceptable FAR (relative to U.S. Army requirements). In

order to address this deficiency, we have explored, extended and created a number

of new image space features and descriptors, including convolutional neural net-
works (CNNs) [43], improved Evolution COnstructed (iECO) features [38], “soft”

(importance map weighted) features [42], histogram of cell-structured Gabor energy

filter and Shearlet filter bank responses [38, 46], histogram of gradients (HOG) [32]

and local binary pattern (LBP) [15, 17, 35] and “soft” edge histogram descriptor

features [2, 46]. In [2], additional anomaly evidence map features in FLIR were pro-

posed, which include features frommaximally stable extremal regions (MSERs) [33]

and Gaussian mixture models (GMMs) [41] for change detection. Unlike a CFAR

(or size-contrast) filter, which is often utilized as a local contrast feature, the above

image space features focus on texture and shape. In addition, we do not use features

“directly”, e.g., a single image gradient. Instead, high(er)-level image space descrip-

tors are formed by “pooling” features within a given spatial area of interest (AOI),

e.g., HOGs, LBPs, or edge descriptors. Furthermore, it is important to not just sim-

ply extract features and pool their values over a large spatial AOI as that often leads

to ambiguous configurations of patterns. Instead, we preserve the spatial properties

of image patterns by using a cell-structured (partially overlapping to allow patterns

to drift some in translation across detections) grid for a given AOI. It is usually of

great benefit to extract features at different scales in a given AOI, e.g., multi-scale

HOG. Convention is to concatenate these multi-scale and multi-cell features together

into a single long feature vector of high dimensionality and let a classifier (or fea-

Computational Intelligence Methods in Forward-Looking . . . 23

Fig. 5 Multiple cell-structured configurations for feature extraction at a single scale to preserve

the spatial context of features. Note that cells are not shown as overlapping for visual simplicity

ture selection algorithm) learn which are most relevant to a particular task at hand.

Figure 5 shows the use of multiple cells at a single scale.

The first feature introduced is the LBP. The LBP is a sort of texture or pattern

feature and it is calculated at each pixel according to

LBPn =
n∑

k=0
s
(
ik − ic

)
2k,

where LBPn is the LBP code, ic is the window center value, ik is the value of the

kth neighbor and function s(x) is 1 if x ≥ 0 and 0 otherwise. Ojala extended the

LBP for neighborhoods of different shapes and sizes [35]. The circular (radius r)
neighborhood version, LBPn,r includes bilinearly interpolating values at non-integer

image coordinates. Ojala also observed that there is a limited number of transitions

or discontinuities in the circular presentation of 3 × 3 texture patterns and that these

uniform patterns, LBPu
n,r, are fundamental properties of local image texture, meaning

they provide the vast majority of all patterns (accounting for 90 % at u = 2). The u
stands for no more than u 0–1 or 1–0 transitions, e.g., 00011110 has 2 transitions

and 00101001 has 5 transitions. Last, the LBP is turned into a descriptor by binning

the patterns into a histogram over an AOI. For example, for u = 2 there are only 59

patterns (thus histogram bins) for a neighborhood of size 8. In addition, Ojala put

forth a rotation robust version that consists of shifting the binary patterns until there

is a 1 in the first digit [35]. This reduces the number of patterns for a neighborhood

size of 8 to only 9. Last, most normalize the resultant histogram by its 𝓁1 or 𝓁2-norm.

Another feature is the famous HOG, popularized by David Lowe in the scale
invariant feature transform (SIFT); however it was first explored by Edelman in the

context of wet science and later popularized by Dalal-Triggs for HOG-based person

detection [11]. It is important to note that SIFT technically consists of keypoint detec-

tion, a feature descriptor and detection. The HOG (the feature descriptor in SIFT)

involves the extraction of a gradient vector per pixel in an image. For a given AOI,

one computes the magnitude of each gradient, ‖(𝜕I(x, y)∕𝜕x, 𝜕I(x, y)∕𝜕y)‖, and its

respective orientation. A histogram of B bins (a user defined or learned parameter)

is specified and each pixel’s gradient magnitude, per cell, is added to the bin with

respect to its orientation. For example, for 360
◦

and 8 bins each bin spans 45
◦

and for

a cell structured configuration of 4 × 4 we obtain a 128-length feature vector. Note,

24 T.C. Havens et al.

convention involves bilinearly interpolating each gradient magnitude for the closest

and next closest bin. Also, while SIFT identifies and then rotates the descriptor with

respect to its major orientation bin(s), this is an optional step that the user must deter-

mine relative to the given detection task at hand. In our FLEHD investigations, we

do not perform the rotation step.

In [46], we proposed a “soft” edge histogram descriptor feature. The edge his-

togram descriptor is inspired by the MPEG-7 edge histogram descriptor, which has

five simple convolution operators that represent vertical, horizontal, diagonal, anti-

diagonal and non-directional edge classes. The operators for the first four classes

closely resemble the standard Sobel and Prewitt edge operators. At each pixel, the

five operators are applied and the absolute value of the response to each is computed.

The pixel is assigned to the class of the operator generating the largest response. In

[46], we extended this feature to make it less sensitive to noise. We allow a pixel to

contribute to all classes by creating a histogram at each pixel location and we accu-

mulate the individual pixel histograms inside a window to form the final descriptor.

A pixel’s histogram is constructed by computing the absolute value of the response

to each of the edge convolution operators and then dividing each of those values by

the sum, i.e. taking the l1 norm. Linear interpolation is performed to distribute the

pixel’s contribution between the edge classes and the non-edge class by comparing

the sum of the absolute values of the operator responses to the edge threshold. If the

sum is greater than or equal to the edge threshold then the non-edge class is assigned

zero. Otherwise, the non-edge class is assigned one minus the fractional value of

the sum divided by the edge threshold, and that fractional value is multiplied to the

value of each of the edge classes in the histogram. We introduced a further change,

the addition of two new edge masks; making the total descriptor length seven. We

extract two edge histogram descriptors per cell using edge thresholds of 15 and 35.

Therefore, edge histogram descriptor gives 7 × 2 = 14 features per cell.

In [40, 42], we created a softened version of the HOG, LBP, and edge histogram

descriptor based on the extraction and utilization of an importance map. An impor-

tance map, one per each image, is simply a [0, 1]-valued image that is the same size

as the original image. Each pixel in an importance map informs us about the rele-

vance or significance of that pixel for a given task at hand. The importance map is

used to weight features, such as HOGs and LBPs, as they are added to a descriptor

like a histogram. The motivation for importance maps is that current image space

descriptors unfortunately extract both background (e.g., clutter, tire tracks, foliage,

etc.) and foreground (target) information. In many cases, the number of encountered

foreground features are extremely few relative to the background information and

their presence in the descriptor can be dwarfed. Most researchers ignore this fact

and pass the problem down the processing pipeline. That is, most extract all features

in an AOI and leave it up to the classifier or feature selection to determine what

is important. Instead, our goal is to extract feature-rich information in target areas

and more-or-less ignore extraneous information in other parts of an AOI. In [40],

Scott and Anderson used this philosophy and showed improvement in aircraft detec-

tion in remote satellite imagery across different parts of the world and times of the

year based on importance-weighted multi-scale texture and shape descriptors. Their

Computational Intelligence Methods in Forward-Looking . . . 25

importance maps were based on fuzzy integral-based fusion of differential morpho-

logical map profiles for soft object extraction. In [42], we extend this technique to

FLEHD, introducing a new way to derive an importance map for FLIR. In FLIR, we

are interested in detecting circular or elliptical (due to perspective deformation in FL

imagery) shapes for anomaly detection. Hence, we exploited this information and

created a frequency and orientation selective bank of Gabor energy filters, which we

later reduced down to a single Shearlet filter, to build an importance map. The real-

valued Gabor or Shearlet image is normalized between min and max across an AOI.

It is then blurred with a Gaussian kernel to spread out the filter response, as many

features reside at or around the edges of an object. The result is then re-normalized,

according to its min and max, back into [0, 1] (values that represent the relative worth

of different pixels in the AOI relative to the task at hand). The soft HOG, LBP, and

edge histogram descriptor features are calculated as before, however as these fea-

tures are being added to their respective bins in the histogram they are multiplied

by their corresponding per-pixel importance map weights E(x, y). The features that

we describe in this section can now be used to further reduce the number of FAs by

training classifiers to indicate prescreener hits as either FAs or true-positives. Next

we discuss kernel methods that can accomplish this task.

3 Kernel Methods for EHD

Consider some non-linear mapping function 𝜙 ∶ 𝐱 → 𝜙(𝐱) ∈ ℝDK , where DK is the

dimensionality of the transformed feature vector 𝐱. With kernel clustering, we do

not need to explicitly transform 𝐱, we simply need to represent the dot product 𝜙(𝐱) ⋅
𝜙(𝐱) = 𝜅(𝐱, 𝐱). The kernel function 𝜅 can take many forms, with the polynomial

𝜅(𝐱, 𝐲) = (𝐱T𝐲+1)p and radial-basis-function (RBF) 𝜅(𝐱, 𝐲) = exp(𝜎‖𝐱−𝐲‖2) being

two of the most well known. Given a set of n objects X, we can thus construct an n×n
kernel matrix K = [Kij = 𝜅(𝐱i, 𝐱j)]n×n. This kernel matrix K represents all pairwise

dot products of the feature vectors associated with n objects in the transformed high-

dimensional space—called the Reproducing Kernel Hilbert Space.

The main goal of kernel methods is to transform the feature vectors 𝐱 such that

the new representations, 𝜙(𝐱), are advantageous to the classification problem. We

present three methods for learning classifiers in kernel spaces, SVM, MKLGL, and

FIMKL, which we now describe.

3.1 Single Kernel

One of the most popular kernel methods for classification is the SVM. The SVM

attempts to find an optimal separating hyperplane between two classes of training

data; for the case of EHD, we use it to find a hyperplane between features that

describe FAs and those of true positives. For a detailed description of the SVM,

26 T.C. Havens et al.

see [8]. The single-kernel SVM (SKSVM) is defined as

max
𝛼

{
𝟏T𝛼 − 1

2
(𝛼 ◦ 𝐲)TK(𝛼 ◦ 𝐲)

}
, (4a)

subject to

0 ≤ 𝛼i ≤ C, i = 1,… , n; 𝛼T𝐲 = 0, (4b)

where 𝐲 is the vector of class labels, 𝟏 is the n-length vectors of 1s, K = [𝜅(𝐱i, 𝐱j)] ∈
ℝn×n

is the kernel matrix, and ◦ indicates the Hadamard product [5]. The value

C determines how many errors are allowed in the training process [8]. Note that

SKSVM reduces to the linear SVM for the kernel 𝜅(𝐱i, 𝐱j) = 𝐱Ti 𝐱j (which is simply

the Euclidean dot product).

One of the drawbacks of using the above SVM formulation is that it treats each

datum equally; hence, when there is an imbalance between the number of datum in

each class, then the SVM decision boundary is driven primarily by the data from

the class with more data points. This is a problem in explosive hazards detection as

there are typically many more FA detections than there are true positives—the true

positives only comprise a small overall area of the lane. To attack this issue, we use

a formulation of the SVM for imbalanced data which uses a different error cost for

positive (C+
) and negative (C−

) classes. Specifically, we change the constraints of

the kernel SVM formulation at (4) to

0 ≤ 𝛼i ≤ C+
,∀i|yi = +1; 0 ≤ 𝛼i ≤ C−

,∀i|yi = −1; 𝛼T𝐲 = 0; (5)

where C+
is the error constant applied to the positive class and C−

is the error

constant applied to the negative class. In our application, the positive class is true

positives and the negative class is FAs. We set C+ = n−∕n+ and C− = 1, where n−
is the number of objects in the negative class and n+ is the number of objects in the

positive class. This essentially allows for fewer errors in the true positive class.

We use LIBSVM to efficiently solve the SKSVM problem [6]. The output of LIB-

SVM is a classifier model that contains the vector 𝛼 and the bias b. A measured

feature vector 𝐱 can be classified by computing

y = sgn

[n∑

i=1
𝛼iyi𝜅(𝐱i, 𝐱) − b

]
, (6)

where sgn is the signum function. We now show the application of SKSVM to our

FLEHD problem.

Application of SKSVM to FLGPR EHD Figure 6 shows selected results of train-

ing the SKSVM on FLGPR lanes A, B, and D, and testing on Lane C. The results are

compared to random performance, which is the ROC achieved by uniform random

selection of hit locations at given FA rates. View (a) shows the prescreener ROC

Computational Intelligence Methods in Forward-Looking . . . 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160.18 0.2

false alarms / m2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

Lane C Lane C Lane C
p

ro
b

ab
ili

ty
 o

f
d

et
ec

ti
o

n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

false alarms / m2 false alarms / m2

(a) (b) (c)

Fig. 6 ROC curves showing testing performance of (a) FLGPR prescreener, and SKSVM classifier

with RBF kernel for (b) single HOG feature and (c) combination of HOG and LBP features. Percent

NAUC improvements are shown for each of the L-band (HH and VV polarizations) and X-band

FLGPRs. The performance of a uniform random detector is shown by the dotted line. a Prescreener.

b L-HH: 21 %; L-VV: 32 %; X: 64 %. c L-HH: 20 %; L-VV: 36 %; X: 7 %

curve for Lane C for the three FLGPR sensors, while views (b) and (c) show the

results of using the SKSVM classifier to reject FAs. The kernel used for this experi-

ment is the RBF kernel, which is well-known to be effective for most data. View (b)

shows the ROC curve using only the HOG feature, while view (c) shows the results

when combining the HOG and LBP features. As the figure illustrates, the SKSVM is

able to reduce the number of FAs significantly. Interestingly, the combination of fea-

tures is detrimental to SKSVM performance for the X-band FLGPR. This is because

the addition of the LBP feature to the SKSVM for the X-band radar results in over-

training (the training or resubstitution results are nearly perfect), which negatively

affects the test lane performance.

3.2 Multiple Kernel

MKL extends the idea of kernel classification by allowing the use of combinations

of multiple kernels. The kernel combination can be computed in many ways, as long

as the combination is a Mercer kernel [34]. In this chapter we assume that the kernel

K is composed of a weighted combination of pre-computed kernel matrices, i.e.,

K =
m∑

k=1
𝜎kKk, (7)

where there are m kernels and 𝜎k is the weight applied to the kth kernel. The com-

posite kernel can then be used in the chosen classifier model; we will use the SVM.

Thus, MKL SVM extends the SKSVM optimization at (4) by also optimizing over

the weights 𝜎k,

28 T.C. Havens et al.

min
𝜎∈𝛥

max
𝛼

{
𝟏T𝛼 − 1

2
(𝛼 ◦ 𝐲)T

(m∑

k=1
𝜎kKk

)
(𝛼 ◦ 𝐲)

}
, (8a)

subject to (typically)

0 ≤ 𝛼i ≤ C, i = 1,… , n; 𝛼T𝐲 = 0, (8b)

where 𝛥 is the domain of 𝜎. Note that this is the same problem as SKSVM if the

kernel weights are assumed constant [28]. This property has been used by many

researchers to propose alternating optimization procedures for solving the min-max

optimization problem. That is, solve the inner maximization for a constant kernel

K, and then update the weights 𝜎k to solve the outer minimization, and repeat until

convergence. We use the optimization procedure proposed by Xu et al. called MKL

group lasso (MKLGL) [47]. This method is efficient as it uses a closed-form (i.e.,

non-iterative) solution for solving the outer minimization in (8a);

𝜎k =
f 2∕(1+p)k

(∑m
k=1 f

2p∕(1+p)
k

)1∕p , k = 1,… ,m, (9a)

fk = 𝜎

2
k (𝛼 ⋅ 𝐲)TKk(𝛼 ⋅ 𝐲), (9b)

where p is the norm on the domain constraint, ‖𝜎‖p = 1, p > 1.

We further modify the MKLGL algorithm, as we did for SKSVM, to allow for

unbalanced classes—i.e., we apply the constraints C+
and C−

as shown at (5). The

MKLGL training algorithm is outlined in Algorithm 1. The MKLGL is simple to

implement and is efficient as the update equations for 𝜎k are closed-form. MKL can

be thought of as a classifier fusion algorithm. It can find the optimal kernel among a

set of candidates by automatically learning the weights on each kernel. The individ-

ual kernels can be computed in many ways—see our previous papers on this topic

for more discussion on the formation of the kernel matrices [15, 17].

Algorithm 1: MKLGL Classifier Training [47]

Data: (𝐱i, yi) - feature vector and label pairs; Kk - kernel matrices

Result: 𝛼, 𝜎k - MKLGL classifier solution

Initialize 𝜎k = 1∕m, k = 1,… ,m (equal kernel weights)

while not converged do
Solve unbalanced SKSVM for kernel matrix K =

∑m
k=1 𝜎kKk

Update kernel weights by Eq. (9)

Application of MKLGL to FLGPR EHD The MKLGL algorithm is applied in the

same way as the SKSVM—it acts to classify prescreener hits as either FAs or true

positives. Figure 7 shows results of the MKLGL classifier using an ensemble of RBF

Computational Intelligence Methods in Forward-Looking . . . 29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.060.08 0.1 0.12 0.14 0.160.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

Lane C Lane C Lane C
p

ro
b

ab
ili

ty
 o

f
d

et
ec

ti
o

n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

false alarms / m2 false alarms / m2 false alarms / m2

(a) (b) (c)

Fig. 7 ROC curves showing testing performance of (a) FLGPR prescreener, and MKLGL clas-

sifier for (b) single HOG feature and (c) combination of HOG and LBP features. Percent NAUC

improvements are shown for each of the L-band (HH and VV polarizations) and X-band FLGPRs.

The performance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH:

21 %; L-VV: 46 %; X: 67 %. c L-HH: 21 %; L-VV: 47 %; X: 67 %

kernels on the same training and testing lanes as shown for SKSVM in Fig. 6. The

NAUC results show that the MKLGL is able to match and sometimes improve upon

the results obtained using the SKSVM. The MKLGL improvement of the L-band

VV NAUC is especially noteworthy.

3.3 Fuzzy Integral-Based Multiple Kernel (FIMKL)

The Fuzzy Integral-based MK (FIMKL) [22, 23] extends MKL by using a non-linear

aggregation operator, the fuzzy integral (FI). The fusion of information using the

Sugeno or Choquet FI has a rich history; for a recent review, see [1]. Depending on

the problem domain, the input to the FI can be experts, sensors, features, similari-

ties, pattern recognition algorithms, etc. The FI is defined with respect to the fuzzy
measure (FM), a monotone and often normal capacity. With respect to a set of m
information sources, X = {x1,… , xm}, the FM encodes the (often subjective) worth
of each subset in 2X . For a finite set of sources, X, the FM is a set-valued function

g ∶ 2X → [0, 1] with the following conditions:

1. (Boundary condition) g(𝜙) = 0,

2. (Monotonicity) If A, B ⊆ X with A ⊆ B, then g(A) ≤ g(B).

Note, if X is an infinite set, there is a third condition guaranteeing continuity and

we often assume g(X) = 1 (although it is not necessary in general). Numerous FI

formulations have been proposed to date for generalizability, differentiability, and to

address different types of uncertain data [1]. In [22, 23], we investigated the Sugeno

and Choquet FIs for MKL. We proposed a solution based on sorting at the matrix
level. Assume each kernel matrix Kk has a numeric “quality.” This can be computed,

for example, by computing the classification accuracy of a base-learner that uses

kernel Kk (or by a learning algorithm like a GA). Let 𝜈k ∈ [0, 1] be the kth kernel’s

quality. These qualities can be sorted, 𝜈(1) ≥ 𝜈(2) ≥ … ≥ 𝜈(m). Given m base Mercer

30 T.C. Havens et al.

kernels,
{
𝜅1,… , 𝜅m

}
, FM g, and a sorting 𝜈(1) ≥ 𝜈(2) ≥ … ≥ 𝜈(m), the difference-in-

measure Choquet FI is computed by

ij =
m∑

k=1
(G

𝜋(k) − G
𝜋(k−1))(K𝜋(k))ij =

m∑

k=1
𝜔k(K𝜋(k))ij, i, j ∈ {1,… , n}, (10)

where 𝜔i =
(
G

𝜋(i) − G
𝜋(i−1)

)
, G

𝜋(i) = g
(
{x

𝜋(1),… , x
𝜋(i)}

)
, G

𝜋(0) = 0, and 𝜋(i) is a

sorting on X such that h(x
𝜋(1)) ≥ … ≥ h(x

𝜋(m)). The MK formulation at (10) pro-

duces a Mercer kernel as multiplication by positive scalar and addition are positive
semidefinite (PSD) preserving operations. Since (10) involves per-matrix sorting, it

can be compactly written in a simpler (linear algebra) form, i.e.,  =
∑m

k=1 𝜔kK𝜋(k).

Prior works in MKL rely on the relatively linear convex sum (LCS) formulation.

It is often desired due to its advantage in optimization, e.g., MKLGL. Both FIMK

and LCS MK are of type convex sum, i.e., wk ∈ ℜm
+ and

∑m
k=1 wk = 1. However,

one is linear, the other is not, and the weights are derived from the FM. The Cho-

quet FI is capable of representing a much larger class of aggregation operators. For

example, it is well known that the Choquet FI can produce, based on the selection

of FM, the maximum, minimum, ordered weighted average (OWA), order statistics,

etc. However, the machine learning LCS form is simply m weights anchored to the

individual inputs. The LCS is a subset (one of the aggregation operators) of the FI.

In [22, 23], we reported improved SVM accuracies and lower standard devia-

tions over the state-of-the-art MKLGL on publicly available benchmark data. We

proposed a GA, called FIGA, based on learning the densities for the Sugeno 𝜆-FM.

In that work we demonstrated that the GA approach is more effective than MKLGL,

even in light of the fact that our GA approach used far fewer component kernels.

In particular, the FIGA approach achieved a mean improvement of nearly 10% over

MKLGL on the Sonar data set. The performance of FIGA comes at a cost though,

as MKLGL is much faster in terms of actual running time than FIGA. We also saw

that FIGA using a combination of FM/FIs is somewhat more effective than the FIGA

LCS form. These findings are not surprising as our intuition tells us that the nonlin-

ear aggregation allowed by the FM/FI formulation is more flexible than just the LCS

aggregation; hence, these results reinforce our expectation. Overall, these results are

not surprising as different data sets require different solutions, and while an LCS may

be sufficient for a given problem, it may not be appropriate for a different problem.

Also, it should be noted that the FM/FI formulation includes LCS aggregation as a

subset of its possible solutions; hence, when LCS is appropriate the FM/FI aggrega-

tion can mimic the LCS. In summary, the learner (GA vs GL) appears to be the most

important improvement factor, followed by a slight improvement by using the non-

linear FM/FI aggregation versus LCS. While FIMKL has not been applied to date

for EHD, this computational intelligence method is reviewed as it is an improvement

to classical MKL and stands to be of relevance and benefit to EHD.

Computational Intelligence Methods in Forward-Looking . . . 31

4 Deep Learners and Feature Learning for EHD

Deep learning architectures were initially designed to mimic the human brain, more

specifically, the neocortex [36]. This part of the brain has been shown to have six lay-

ers and a forward-backward structure to classify image data collected by the eye [26].

In brief, deep learning architectures extend “shallow” neural networks by adding

multiple hidden layers—these additional layers act as generalized feature detectors.

Deep learning algorithms have been shown to perform very well on a variety of

classification tasks, such as facial recognition [29], document classification [30], and

speech recognition [39]. We will present results for two types of deep learning archi-

tectures: deep belief networks (DBNs) and convolutional neural networks (CNNs).

4.1 Deep Belief Networks

DBNs are a type of deep learning network formed by stacking Restricted Boltzmann
Machines (RBMs) in successive layers to reduce dimensionality, making a com-

pressed representation of the input. DBNs are trained layer by layer using greedy

algorithms and information from the previous layer. In this subsection, we will first

discuss RBMs and how to train them, then move on to training DBNs.

RBMs are simple binary learners that consist of two layers: one visible and one

hidden. The visible layer is the input layer and typically consists of an n-length vec-

tor of normalized values. The hidden layer is the feature representation layer. The

defining equation of the RBMs is the energy equation,

E(𝐯,𝐡) = −𝐛T𝐯 − 𝐜T𝐡 − 𝐯TW𝐡, (11)

where 𝐯 is the input vector, 𝐡 is the hidden feature vector, 𝐛 and 𝐜 are the visible and

hidden layer biases, respectively, and W is the weight matrix that connects the layers.

It should be noted that weights only exist between the hidden and visible layers, that

is to say, that the nodes in either layer are not interconnected. 𝐯 is the input and used

to train hidden layer 𝐡 as

𝐡 = 𝜎(𝐜 +WT𝐯). (12)

The hidden layer is then used to reconstruct the visible layer in the same manner,

𝐯recon = 𝜎(𝐛 +W𝐡). (13)

The reconstruction of the visible layer 𝐯recon is then used in (12) to form 𝐡recon and

then the weight update is calculated as

32 T.C. Havens et al.

Fig. 8 Illustration of DBN

training: numbers in

rectangles indicate the

number of neurons in each

layer. a Pretraining.

b Unrolling. c Fine tuning

(a)

(b)
(c)

𝛥W = 𝜖

([
𝐯𝐡T

]
data −

[
𝐯𝐡T

]
recon

)
, (14)

where 𝜖 is the learning rate. Iterated over several epochs, this weight update performs

a type of gradient descent called contrastive divergence [36].

To form a DBN, layers of RBMs are stacked as shown in Fig. 8a, where the hidden

layer of the lower RBM becomes the input/visible layer of the next RBM. Once the

input RBM is trained, its reconstructed hidden layer 𝐡recon is used to create the visible

layer of the next RBM by

𝐯n+1 = 𝜎(𝐜n +WT
n 𝐡recon,n) (15)

where n denotes the layer number. The (n+1)th RBM is now trained and this cycle is

repeated for the number of layers desired. After all layers have been trained, the DBN

is typically then mirrorred to make an encoder-decoder as shown in Fig. 8b [21]. An

input to the encoder-decoder thus produces a reconstruction of itself, where

encoder: 𝐱n+1 = Wn𝐱n; (16a)

decoder: 𝐱recon,n−1 = WT
n−1𝐱recon,n; (16b)

and x1 ∈ ℝd
is the input vector and xrecon,1 = xrecon ∈ ℝd

is the reconstruction.

Note that the final hidden layer in the encoder is the first layer in the decoder, 𝐱n+1 =
𝐱recon,n+1, where n is the number of RBMs in the DBN. Fine-tuning of the weight

matrices can be performed as shown in Fig. 8c. This fine-tuning is often done using

stochastic gradient descent (backpropagation) or Hinton’s up-down algorithm [20].

Note that this gives the DBN more flexibility as the weight matrices are adjusted for

each of the encoder and decoder.

Computational Intelligence Methods in Forward-Looking . . . 33

Application of DBNs to FLGPR EHD To apply DBNs to the FLEHD problem, we

take the extracted features from each prescreener hit location in the training data and

apply the DBN to learn the representation of the FAs; this is due to the imbalance

between the number of FA and target examples in the training data. The reconstruc-

tion root mean-square error (RMSE),

RMSE =

√√√√
d∑

i=1

(
xi − xrecon,i

)2
, (17)

of the DBN is thus a measure of how well an input feature vector matches to the

learned representation of the FAs—true positives ideally have high RMSE and false

positives ideally have low RMSE. Hence, the RMSE can be directly used as the

confidence of a true positive in the ROC curve. The DBNs for the results here are

trained on three lanes of data and then tested on a separate lane (in essence, 4-fold

cross-validation).

Since DBNs are flexible in their construction, we tested many different architec-

tures, learning rates, and epoch limits. The best DBN we found for overall EHD

performance was a network that uses two hidden layers of sizes 40 and 20, giving

a full encode-decode stack architecture of [𝐱 40 20 40 𝐱recon], where 𝐱 is the d × 1
input feature vector and 𝐱recon is the d × 1 reconstruction (see Fig. 8). The learning

rate is 0.9, and 30 epochs of contrastive divergence was used for RBM training.

Several combinations of features were tested with the DBN classifier. Figure 9

illustrates selected results from our comprehensive evaluation of DBNs for FLGPR

EHD. These ROC curves show the performance of the DBN classifier on Lane C

(training on Lanes A, B, and D). The percent NAUC improvements clearly show

that the DBN significantly improves NAUC, by up to 85 % for the case of the

X-band FLGPR using HOG & LBP features (note that the X-band FLGPR also has

the most room for improvement in this case).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

false alarms / m2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

Lane C Lane C Lane C

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

0 0

false alarms / m2 false alarms / m2

(a) (b) (c)

Fig. 9 ROC curves showing testing performance of a FLGPR prescreener, and DBN classifiers for

b single HOG feature and c combination of HOG and LBP features. Percent NAUC improvements

are shown for each of the L-band (HH and VV polarizations) and X-band FLGPRs. The perfor-

mance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH: 28 %;

L-VV: 52 %; X: 53 %. c L-HH: 23 %; L-VV: 52 %; X: 85 %

34 T.C. Havens et al.

Fig. 10 Illustration of a convolutional neural network [31, 36]

4.2 Feature Learning

Convolutional Neural Networks CNNs are a type of neural network with a unique

architecture. Inspired by the visual system, these networks consist of alternating

convolutional and sub-sampling layers. The convolutional layers generate feature

maps by convolving kernels over the data from the previous layers and then the sub-

sampling layers downsample the feature maps [36]. CNNs work directly on the 2D

data as opposed to most other forms of deep networks which reorganize the data into

1D feature vectors. Figure 10 illustrates a convolutional neural network.

The lth convolutional layer is generated from a jth feature map by

alj = 𝜎(blj +
∑

i∈Ml
j

al−1j ∗ klij), (18)

where 𝜎 is the activation function, usually hyperbolic tangent or sigmoid, blj is a

scalar bias, Ml
j is an index vector of feature maps i in layer l − 1, ∗ is the 2D convo-

lution operator and klij is the kernel used on map i in layer l − 1. A sub-sample layer

l is generated from a feature map j by

alj = down(al−1j ,Nl), (19)

where down is a down-sampling function, such as mean-sampling, that

down-samples by factor Nl
[36]. The output layer is then generated by

o = f (𝐛o +Wo𝐱v), (20)

where 𝐱v denotes a feature vector concatenated from the feature maps of the previous

layer, 𝐛o is a bias vector, and Wo
is a weight matrix. The parameters to be learned are

thus klij, b
l
j, 𝐛

o
and Wo

. Gradient descent is used to learn these parameters and this

can be efficiently performed through the use of convolutional backpropagation [36].

Computational Intelligence Methods in Forward-Looking . . . 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L-band HH DOM
L-band VV DOM
X-band VV DOM
Random

Lane C Lane C

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

p
ro

b
ab

ili
ty

 o
f

d
et

ec
ti

o
n

false alarms / m2 false alarms / m2

(a) (b)

Fig. 11 ROC curves showing testing performance of a FLGPR prescreener, and b CNN classifier

using the HOG feature. Percent NAUC improvements are shown for each of the L-band (HH and

VV polarizations) and X-band FLGPRs. The performance of a uniform random detector is shown

by the dotted line. a Prescreener. b L-HH: 13 %; L-VV: 1.4 %; X: 28 %

Application of CNNs to FLGPR EHD Unlike the SVM, MKLGL, and DBN, the

CNN operates on 2D feature maps. Fortunately, the HOG, LBP, and FFST are all

2D features and thus can be used as input for the CNN; we also used the raw image

data (imagelet) surrounding each prescreener hit as input to the CNN. The output of

the CNN is a 2-element vector—one element to indicate FA and one to indicate true

positive. As shown in Fig. 10, we use two convolutional layers and two subsampling

layers. The learning rate was 0.9 and 350 epochs were used for training, which were

shown to be good choice in a more comprehensive parameter study we performed.

Figure 11 shows selected results from our comprehensive evaluation of CNNs for

FLGPR EHD. These ROC curves show the performance of the CNN classifier on

Lane C (training Lanes A, B, and D). As is evidenced by the percent NAUC improve-

ment values, the CNN is the least effective of the classifiers that we have applied to

the FLGPR EHD. Furthermore, many of the results (which we do not show) that we

compiled using the CNN were very poor. Hence, we do not recommend the CNN at

this time for FLGPR EHD.

Application of CNNs to FLIREHD In [43], CNNs were evaluated for EHD in FLIR

imagery. Image chips extracted at prescreener alarm locations were fed directly as

input to a CNN. CNN classification results were compared to a baseline algorithm

which extracted five hand-engineered feature sets and performed classification using

a SVM. Due to the lack of training data for training a conventional deep CNN model,

two alternative CNN approaches were explored.

The first approach used a deep CNN model pre-trained on the ImageNet dataset

[12]. This model is referred to herein as DPT-CNN, and was made available through

the open source python package DeCAF [13]. DPT-CNN uses the architecture

proposed by Krizhevsky et al. in [27], which won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). The architecture consists of five convo-

lutional layers, some followed by Rectified Linear Unit (ReLU) activation, response

normalization, and max pooling, followed by three fully connected layers. The last

fully connected layer is fed to a 1000-way softmax function.

36 T.C. Havens et al.

DPT-CNN was trained on the ILSVRC2012 training data, which consisted of

more than 1.2 million training images from 1000 object classes. It was shown in

[13] that values from intermediate layers of this pre-trained network work well as

features for new vision tasks. Specifically, tasks with small amounts of training data,

where a deep CNN trained directly performed poorly. For our tests, the alarm image

chips were input to DPT-CNN, and intermediate values were saved at six stages.

These intermediate values were used to train a SVM which was evaluated the same

way as the baseline algorithm. The first two sets of intermediate values came from

the second and first fully connected layers after ReLU activation. These are referred

to as FC7-ReLU and FC6-ReLU, respectively. The ReLU activation takes the form

𝜙(v) = max(0, v). The next two intermediate values, POOL5 and CONV5, came

from the last convolutional layer. CONV5 is before max-pooling, and POOL5 is after

pooling. The last two sets, RNORM1 and POOL1, came from the first convolutional

layer. RNORM1 is after pooling and response normalization. POOL1 is after pooling

but before response normalization.

The fully connected layer outputs, which no longer convey spatial position, were

not expected to be useful for this EHD task since position in the image chip is

extremely important. The POOL5 and CONV5 features do retain some spatial infor-

mation. The RNORM1 and POOL1 features retain more, but since they are not deep

features they may not be as descriptive. Table 2 shows the NAUC results for the

DPT-CNN features, as well as for the baseline algorithm and the best individual

baseline feature, for a three lane leave-one-lane-out cross validation test using two

FLIR cameras.

As expected, the fully connected layer features did not perform well. Performance

improved significantly when moving to the POOL5 features, and again when moving

to the CONV5 features. The CONV5 features compared well with the top performing

hand-engineered image feature, multi-scale HOG, even outperforming it on Lane A.

Surprisingly, the POOL1 features scored better overall than the CONV5 features on

the DVE camera image chips, but show a pronounced drop on the SELEX image

chips.

Table 2 DPT-CNN: DVE/Selex cameras: NAUC at 0.01 FA∕m
2

Feature All lanes Lane A Lane B Lane C

FC7-ReLU 0.435/0.451 0.321/0.355 0.420/0.418 0.556/0.573

FC6-ReLU 0.479/0.469 0.353/0.365 0.480/0.454 0.598/0.582

POOL5 0.557/0.501 0.404/0.386 0.600/0.500 0.658/0.609

CONV5 0.615/0.566 0.471/0.423 0.655/0.604 0.712/0.662

RNORM1 0.623/0.525 0.454/0.389 0.709/0.553 0.699/0.624

POOL1 0.624/0.519 0.458/0.386 0.710/0.545 0.695/0.617

BASE: HOG 0.645/0.584 0.453/0.421 0.722/0.615 0.753/0.708

BASE: ALL 0.677/0.610 0.496/0.445 0.766/0.652 0.762/0.727
CONV5 + BASE 0.676/0.607 0.508/0.449 0.748/0.649 0.764/0.714

*Bold indicates best result for each camera and lane

Computational Intelligence Methods in Forward-Looking . . . 37

The DPT-CNN results indicated that a deep CNN model was not necessary to

achieve good performance on this FLIR EHD task. This was not particularly surpris-

ing since the task requires little in the way of translation, scale, or orientation invari-

ance. The primary difficulty is intra-class variation. Thus, a second CNN approach

using a shallow CNN trained directly using the image chips was pursued. The shal-

low architecture consists of a single convolutional layer followed by an output layer

containing a single neuron followed by the sigmoid activation function. The out-

put of the sigmoid was used as the alarm confidence value. For all experiments,

weights were learned using stochastic gradient descent (SGD) with momentum and

the cross entropy error function. To address class imbalance, for each training pat-

tern presentation an example was chosen randomly from either the true target class

or the false alarm class with equal probability. Evaluation was performed using the

same methodology as for DPT-CNN.

In [24], Jarrett et al. found that the single most important factor for recogni-

tion accuracy in a CNN model, considering architecture choices such as activation

function, sub-sampling type, and response normalization, was the use of a rectify-

ing non-linearity. While they used the absolute value function (AVF), the ReLU in

Krizhevskys architecture performs a similar operation. Therefore, the first exper-

iment evaluated performance when using either no non-linearity, ReLU, or AVF

following the convolutional layer. These results are presented in Table 3. Both acti-

vations improved performance. AVF performed better than ReLU, and was chosen

for further experiments.

We next investigated forcing the convolutional filters to have zero-mean and zero-

phase. The intuition being that only the non-dc frequency characteristics are impor-

tant, and that shifting of the output is meaningless for classification. To enforce

these characteristics, transformation functions were inserted before the variables in

question were used. The transformation functions modify their inputs to enforce

the desired constraint. During SGD learning, derivatives are propagated through

the transformations. For example, if the original convolutional layer is OUTPUT =
CONV(INPUT,X), to enforce zero-mean for the kernel X the expression becomes

OUTPUT = CONV(INPUT,G(X)), where G(X) modifies X to have the zero-mean

characteristic. No significant performance improvement was seen from enforcing

either constraint.

Table 3 Rectifying Nonlinearity: DVE Camera: NAUC at 0.01 FA∕m
2

Convolution

filter radius

None, # filters ReLU, # filters AVF # filters

4 8 16 4 8 16 4 8 16

3 0.492 0.482 0.503 0.519 0.517 0.499 0.555 0.573 0.566

5 0.508 0.510 0.509 0.550 0.552 0.565 0.600 0.602 0.603
7 0.487 0.483 0.475 0.555 0.545 0.537 0.596 0.580 0.592

*Bold indicates best result for each filter radius

38 T.C. Havens et al.

Table 4 Learning in freq domain: DVE camera: NAUC at 0.01 FA∕m
2

Convolution

filter radius

Spatial—# of filters Frequency—# of filters

4 8 16 4 8 16

3 0.555 0.573 0.566 0.636 0.636 0.640
5 0.600 0.602 0.603 0.617 0.619 0.618

7 0.596 0.580 0.592 0.614 0.613 0.619
*Bold indicates best result for each filter radius

We then experimented with learning the convolutional filters’ frequency domain

representations instead of their spatial domain representations. This was done by

using the inverse FFT as a transformation function. Table 4 shows the results for

learning the convolutional filters in the frequency domain versus the spatial domain.

Zero-mean and zero-phase were enforced in the frequency domain. A slight perfor-

mance improvement was seen across all combinations.

Based on these results, shallow CNN networks with eight zero-mean, zero-phase

filters learned in the frequency domain were scored on the DVE and SELEX data.

Table 5 shows the per lane results for various kernel radii, as well as the DPT-CNN

and baseline results for comparison. Overall, the shallow CNN results were very

similar to those of DPT-CNN. The shallow CNN achieved a slightly better overall

result on DVE, and a slightly worse overall result on SELEX when comparing to

the CONV5 features of DPT-CNN. When comparing to the POOL1 and RNORM1

features, the shallow CNN SELEX result is much better. The baseline algorithm,

which includes features that cannot be expressed via convolution, outperforms both

CNN approaches.

iECOFeature Learning In [38], the algorithm improved Evolutionary COnstructed
(iECO) feature descriptors (referred to hereafter as simply iECO) was put forth for

FLIR-based EHD. The iECO algorithm is a feature learning technique that looks to

Table 5 Shallow CNN: NAUC at 0.01 FA∕m
2

DVE camera SELEX camera

All lanes Lane A Lane B Lane C All lanes Lane A Lane B Lane C

CNN

radius 3

0.635 0.464 0.734 0.700 0.562 0.397 0.626 0.656

CNN

radius 5

0.616 0.478 0.694 0.670 0.559 0.413 0.611 0.645

CNN

radius 7

0.612 0.460 0.697 0.673 0.557 0.409 0.628 0.626

Pre-

trained

CNN

0.624 0.458 0.710 0.695 0.566 0.423 0.604 0.662

Baseline 0.677 0.496 0.766 0.762 0.610 0.445 0.652 0.727
*Bold indicates best result

Computational Intelligence Methods in Forward-Looking . . . 39

exploit important cues in data that often elude non-learned (often referred to as “hand

crafted”) features such as HOGs, LBPs and edge histogram descriptors. Each hand

crafted feature is ultimately an attempt to more-or-less sculpt (force) a signal/image

into some predisposed mathematical framework which may or may not reveal the

information that a user/system needs. Instead of coming to the table with a limited

set of tools and trying to make everything look like a nail, iECO learns the tool based

on the task at hand.

While the field of deep learning has demonstrated state-of-the-art performance,

the ECO (and iECO respectively) work of Lillywhite et al. has the advantage over

CNNs of interpretability (it is not a black box) and it does not predispose the solu-

tion to that of convolution. At its core, ECO is the GA-based learning and (ensemble-

based) use of a population of chromosomes that are compositions of functions (image

processing transformations). Each chromosome is of variable length and the goal is

to learn the image transformations and respective parameters relative to some task.

An advantage of this approach, versus CNNs, is that it makes use of a relatively wide

set of different heterogeneous image transformations to seek a new tailored solution.

In [38] we used 19 different image transformations which range from a Harris corner

detector to a square root, Hough circle, median blur, rank transform, LoG, mathe-

matical morphology and Shearlet and Gabor spatial frequency domain filtering, just

to name a few. In many cases, emergent behaviour arises and the chromosomes can

be manually examined and studied, potentially revealing additional domain informa-

tion such as what features or physics in IR or GPR are most important for a task like

EHD. Figure 12 shows the iECO process (not learning, but application of iECO to a

given AOI).

Fig. 12 iECO applied to a prescreener hit in FLIR. Learned iECO chromosomes, in different pop-

ulations, are applied to the input image. Finally, different descriptors are extracted relative to each

transformed image

40 T.C. Havens et al.

In iECO, we address a shortcoming of the ECO features– the so-called

“features” which are the unrolling of image pixels into a single vector. ECO suffers

from the curse of dimensionality and the naive unrolling does not intelligently take

into account various spatial and scale cues. In [38], we extract ECO features relative

to different high-level descriptors and cell-structured configurations. Specifically, we

explored the HOG, EHD and statistical features; which include the local mean, stan-

dard deviation, kurtosis, l2-norm, and the difference between the local values and

their corresponding global values. A separate GA population is maintained and a

separate search is conducted relative to each high-level descriptor. iECO, like CNN

learning is not a computationally trivial task. As a result, we have not yet attempted

to learn the different populations in a single simultaneous algorithm. Furthermore,

in [38] we showed that each descriptor learns/prefers different chromosomes that

have varying fitness values. With respect to classification, we experimented with

taking a single best chromosome per descriptor (highest fitness), taking the top 50%
of chromosomes relative to each descriptor, and the identification of the top 5 most

diverse chromosomes (which is currently a manual process). Our results indicate that

the concatenation of multiple chromosome features leads to improved performance.

Furthermore, we showed that if one pipeline is applied to a different descriptor than

it was learned for, then the result is a significant drop in performance (fitness). This

is interesting as it tells us that iECO appears to learn a tailored pre-processing of

imagery relative to each descriptor in order to better highlight salient information.

Figure 13 shows different learned iECO pipelines.

In [38], we introduced constraints on each individual’s chromosome to help pro-

mote population diversity and prevent infeasible solutions. This allows us to search

for quality solutions faster and it typically results in shorter length chromosomes

that are computationally simpler to realize (which is important for a real-time causal

EHD system). In ECO, there are no direct mechanisms incorporated into the GA,

Fig. 13 iECO on FL LWIR. a Average iECO output of four chromosomes across 50 different

buried targets. Each image is scaled to [0, 1] for visual display and they are shown in Matlab jetmap

color coding, where blue is 0 and red is 1. These images show that diversity exists across chro-

mosomes and different aspects of targets are learned, e.g., local contrast, orientation specific edge

information, etc. b Output of highest fitness chromosones for each descriptor for a single target.

These images show that each descriptor prefers a different iECO pipeline. a Average iECO output.

b Different iECO populations

Computational Intelligence Methods in Forward-Looking . . . 41

Fig. 14 Vertically averaged ROC curves with 95 % confidence intervals. aTesting lane 1. bTesting

lane 2

outside of mutation, to promote diversity in the population. In [38], we introduced

diversity promoting constraints that consider the uniqueness and complexity of the

ECO’s search space. We designed a set of diversity promoting constraints that define

what percentage of the population is allowed overlapping genes at each layer of the

individual’s gene segment. Next, we addressed the issue of the occurrence of the

same gene back-to-back. Such a scenario is undesirable, e.g., it does not typically

make sense to perform a rank transform back-to-back. In addition, this increases the

computational complexity of the system as a consequence of the unnecessary image

transforms. We combat this by collapsing consecutive uses of the same gene type,

i.e., if any gene occurs more than once consecutively then only the first occurrence

is retained. Elitism is used in iECO.

In summary, in [38] we showed that the above diversity promoting constraints

and the combination of high-level image descriptors leads to the discovery of sig-

nificantly higher quality solutions for EHD. We showed that iECO continuously

identifies higher performance solutions, i.e., an impressive drop in the FAR for a

given PDR, populations are more diverse, which was verified manually, and the

resultant chromosomes are significantly shorter and thus give rise to a simpler system

(computationally and memory utilization-wise) to realize. Figure 14 is ROC results

for iECO versus ECO features. iECO clearly outperforms ECO.

5 Conclusions

This chapter described the EHD problem and various methods for preprocessing,

prescreening, and false rejection for FLGPR and FLIR. The methods discussed for

FLGPR-based EHD were SKSVM, MKLGL, DBNs, and CNNs. The best overall

detection and classification method for the FLGPR was the DBN using a combination

of HOG and LBP features, showing up to 85 % improvement in NAUC. The weakest

FLGPR-based method was the CNN. In the future, we are going to investigate more

advanced CNN architectures and training methods for CNNs as applied to FLGPR

42 T.C. Havens et al.

EHD. Several EHD methods were discussed for FLIR-based detection, including

baseline SVM detection, CNNs, and iECO feature learning. Several CNN architec-

tures were tested. While the CNN architectures showed promise, especially those that

use frequency-domain AVF filters, the baseline SVM-based feature-fusion approach

outperformed the CNN. Lastly, iECO feature learning was demonstrated for FLIR-

based EHD. In the future, we aim to further apply our fuzzy integral-based multiple

kernels methods for EHD as FIMKL has been shown to be superior to MKLGL for

benchmark data sets. We also aim to extend the deep learning approaches for online

and active learning for EHD.

Acknowledgments This work is funded in part by a National Institute of Justice grant (2011-

DN-BX-K838), U.S. Army (W909MY-13-C0013, W909MY-13-C0029) and Army Research Office

(W911NF-14-1-0114 and 57940-EV) in support of the U.S. Army RDECOM CERDEC NVESD.

Superior, a high performance computing cluster at Michigan Technological University, was used

in obtaining results presented in this work.

References

1. Anderson, D.T., Havens, T.C., Wagner, C., Keller, J., Anderson, M.F., Wescott, D.J.: Extension

of the fuzzy integral for general fuzzy set-valued information. IEEE Trans. Fuzzy Syst. 22(6),

1625–1639 (2014)

2. Anderson, D.T., Stone, K., Keller, J.M., Spain, C.: Combination of anomaly algorithms and

image features for explosive hazard detection in forward looking infrared imagery. IEEE J. Sel.

Topics Appl. Earth Obs. Remote Sens. 5(1), 313–323 (2012)

3. Anderson, D.T., Stone, K., Keller, J.M., Rose, J.: Anomaly detection ensemble fusion for buried

explosive material detection in forward looking infrared imaging for addressing diurnal tem-

perature variation. In: Proceedings of the SPIE, vol. 8357, p. 83570T (2012)

4. Becker, J., Havens, T.C., Pinar, A., Schulz, T.J.: Deep belief networks for false alarm rejection

in forward-looking ground-penetrating radar. In: Proceedings of the SPIE (2015)

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers.

In: ACM Workshop on COLT, pp. 144–152 (1992)

6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.

Sys. Tech. 2(3), 1–27 (2011)

7. Collins, L.M., Torrione, P.A., Throckmorton, C.S., Liao, X., Zhu, Q.E., Liu, Q., Carin, L.,

Clodfelter, F., Frasier, S.: Algorithms for landmine discrimination using the NIITEK ground

penetrating radar. Proc. SPIE. 4742, 709–718 (2002)

8. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

9. Costley, R.D., Sabatier, J.M., Xiang, N.: Forward-looking acoustic mine detection system.

Proc. SPIE. 4394, 617–626 (2001)

10. Cremer, F., Chavemaker, J.G., deJong, W., Schutte, K.: Comparison of vehicle-mounted

forward-looking polarimetric infrared and downward-looking infrared sensors for landmine

detection. Proc. SPIE. 5089, 517–526 (2003)

11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. vol. 1,

pp. 886–893 (2005)

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical

image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009.

CVPR 2009, pp. 248–255 (2009)

Computational Intelligence Methods in Forward-Looking . . . 43

13. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep

convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013),

http://arxiv.org/abs/1310.1531

14. Gader, P.D., Grandhi, R., Lee, W.H., Wilson, J.N., Ho, K.C.: Feature analysis for the NIITEK

ground penetrating radar using order weighted averaging operators for landmine detection. In:

Proceedings of the SPIE, vol. 5415, pp. 953–962 (2004)

15. Havens, T.C., Becker, J.T., Pinar, A.J., Schulz, T.J.: Multi-band sensor-fused explosive hazards

detection in forward-looking ground-penetrating radar. In: Proceedings SPIE, vol. 9072, p.

90720T (2014)

16. Havens, T.C., Ho, K.C., Farrell, J., Keller, J.M., Popescu, M., Ton, T.T., Wong, D.C., Soumekh,

M.: Locally adaptive detection algorithm for forward-looking ground-penetrating radar. In:

Proceedings of the SPIE, vol. 7664, p. 76442E (2010)

17. Havens, T.C., Keller, J.M., Stone, K., Ho, K.C., Ton, T.T., Wong, D.C., Soumekh, M.: Multiple

kernel learning for explosive hazards detection in FLGPR. In: Proceedings of the SPIE, vol.

8357, p. 83571D (2012)

18. Havens, T.C., Spain, C.J., Ho, K.C., Keller, J.M., Ton, T.T., Wong, D.C., Soumekh, M.:

Improved detection and false alarm rejection using ground-penetrating radar and color imagery

in a forward-looking system. In: Proceedings of the SPIE, vol. 7664, p. 76441U (2010)

19. Havens, T.C., Stone, K., Keller, J.M., Ho, K.C.: Sensor-fused detection of explosive hazards.

In: Proceedings of the SPIE, vol. 7303, p. 73032A (2009)

20. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural

computation 18(7), 1527–1554 (2006)

21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006)

22. Hu, L., Anderson, D.T., Havens, T.C.: Multiple kernel aggregation using fuzzy integrals. In:

IEEE International Conference Fuzzy Systems, pp. 1–7 (2013)

23. Hu, L., Anderson, D.T., Havens, T.C., Keller, J.M.: Efficient and scalable nonlinear multiple

kernel aggregation using the choquet integral. In: Laurent, A., Strauss, O., Bouchon-Meunier,

B., Yager, R. (eds.) Information Processing and Management of Uncertainty in Knowledge-

Based Systems. Communications in Computer and Information Science, vol. 442, pp. 206–215.

Springer (2014)

24. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture

for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp.

2146–2153 (2009)

25. JIEDDO COIC MID: Global IED monthly summary report (2012)

26. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4 edn. McGraw-Hill,

New York (2000)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances

in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

28. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel

matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

29. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-

network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278–2324 (1998)

31. LeCun, Y., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker, J.S., Drucker, H., Guyon,

I., Müller, U., Säckinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for

handwritten digit recognition. In: International conference on artificial neural networks, vol. 60

(1995)

32. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Confer-

ence Computer Vision, pp. 1150–1157 (1999)

33. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable

extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

http://arxiv.org/abs/http://arxiv.org/abs/1310.1531

44 T.C. Havens et al.

34. Mercer, J.: Functions of positive and negative type and their connection with the theory of

integral equations. Philos. Trans. R. Soc. A 209, 441–458 (1909)

35. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classi-

fication based on featured distributions. Patt. Recognit. 29(1), 51–59 (1996)

36. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Ph.D.

thesis, Technical University of Denmark (2012)

37. Playle, N., Port, D.M., Rutherford, R., Burch, I.A., Almond, R.: Infrared polarization sensor

for forward-looking mine detection. Proc. SPIE. 4742, 11–18 (2002)

38. Price, S.R., Anderson, D.T., Luke, R.H.: An improved evolution-constructed (iECO) features

framework. In: IEEE Symposium Series on Computational Intelligence (2014)

39. Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language call-

routing. In: IEEE International Conference Acoustics, Speech and Signal Processing, pp.

5680–5683 (2011)

40. Scott, G.J., Anderson, D.T.: Importance-weighted multi-scale texture and shape descriptor for

object recognition in satellite imagery. In: IEEE International Geoscience and Remote Sensing

Symposium, pp. 79–82 (2012)

41. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking.

In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999,

vol. 2 (1999)

42. Stone, K., Keller, J.M.: Clutter rejection by cluster analysis in an automatic detection system

for buried explosive hazards in forward looking imagery. In: Proceedings of the SPIE (2013)

43. Stone, K., Keller, J.M.: Convolutional neural network approach for buried target recognition

in FL-LWIR imagery. In: Proceedings of the SPIE (2014)

44. Stone, K., Keller, J.M., Ho, K.C., Gader, P.D.: On the registration of FLGPR and IR data for

the forward-looking landmine detection system and its use in eliminating FLGPR false alarms.

In: Proceedings of the SPIE, vol. 6953 (2008)

45. Stone, K., Keller, J.M., Popescu, M., Havens, T.C., Ho, K.C.: Forward-looking anomaly detec-

tion via fusion of infrared and color imagery. In: Proceedings of the SPIE, vol. 7664, p. 766425

(2010)

46. Stone, K.E., Keller, J.M., Anderson, D.T., Barclay, D.B.: An automatic detection system for

buried explosive hazards in fl-lwir and FL-GPR data. In: Proceedings of the SPIE Conference

Detection and Sensing of Mines, Explosive Objects, and Obscured Targets (2012)

47. Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple kernel learning by

group lasso. In: Proceedings of the Interence Conference Machine Learning, pp. 1175–1182

(2010)

http://www.springer.com/978-3-319-26448-6

	Computational Intelligence Methods in Forward-Looking Explosive Hazard Detection
	1 Introduction
	2 Explosive Hazard Detection: Background Knowledge
	2.1 Sensing Technologies for FLEHD
	2.2 Sensor Processing
	2.3 Prescreeners
	2.4 Feature Extraction

	3 Kernel Methods for EHD
	3.1 Single Kernel
	3.2 Multiple Kernel
	3.3 Fuzzy Integral-Based Multiple Kernel (FIMKL)

	4 Deep Learners and Feature Learning for EHD
	4.1 Deep Belief Networks
	4.2 Feature Learning

	5 Conclusions
	References

