Reconfigurable Priority Ceiling Protocol:
A Safe Way to Real-Time Reconfiguration

Maroua Gasmi, Olfa Mosbahi, Mohamed Khalgui and Luis Gomes

Abstract Considerable research has been performed in applying reconfiguration
scenarios to real-time systems at run-time. In fact, a reconfiguration scenario is a
software operation that allows the addition, removal and update of real-time OS tasks
which can share resources and are generally obliged to meet corresponding dead-
lines according to user requirements. Although, applying such scenarios has several
advantageous consequences behind, it can have a severe impact on the real-time
aspect within the system. The proposed solution is a protocol called Reconfigurable
Priority Ceiling Protocol (denoted by RPCP). This protocol avoids deadlocks after
any reconfiguration scenario and changes the priorities of tasks in order to reduce
their response and blocking times to meet their deadlines. This protocol requires the
use of two virtual processors in order to guarantee the non-interruption of execution
during any reconfiguration step. A tool is developed to encode this protocol and is
applied to a case study.

Keywords Real-time system * Reconfiguration - Scheduling - Resource sharing -
Priority ceiling protocol

M. Gasmi ()
Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
e-mail: mra.gsm@gmail.com

M. Gasmi - O. Mosbahi - M. Khalgui
LISI Lab, INSAT Institute, University of Carthage, Tunis, Tunisia

O. Mosbahi
e-mail: olfamosbahi @gmail.com

M. Khalgui
e-mail: khalgui.mohamed @ gmail.com

L. Gomes
Universidade Nova de Lisboa, Lisbon, Portugal
e-mail: lugo@fct.unl.pt

© Springer International Publishing Switzerland 2016 23
J. Filipe et al. (eds.), Informatics in Control, Automation and Robotics,

Lecture Notes in Electrical Engineering 370,

DOI 10.1007/978-3-319-26453-0_2

24 M. Gasmi et al.

1 Introduction

Real-time constraints [21] are common bases to most of the actual embedded systems
[10], since the latter has many time requirements imposed on their activities. These
systems follow a definite classification [3]. The functions performed by the real-
time systems, are consistently, executed by a fixed number of tasks. Nevertheless,
the notion of time is what makes the difference between real-time and non-real-
time systems. The main rule is that the preeminent parameter, the deadline, has
to be met under even the worst circumstances [8]. In the case where several tasks
share a specific number of resources, many issues can occur preventing these tasks
from meeting their deadlines. In the perspective of solving these problems, Rate
Monotonic schedule [11], is a scheduling algorithm that assigns priorities on the
basis of the task period. Although, this algorithm, solves the mentioned problems,
others can occur as a consequence. In fact, a high priority task can be interrupted
by a lower priority one, inverting the priorities of the two tasks [19]. This prob-
lematic scenario, called priority inheritance, is solved by dint of a synchronization
protocol called priority ceiling protocol (denoted by PCP). Furthermore, a real-time
system has the ability to be reconfigured according to its surroundings [1]. In fact,
areconfiguration consists on modifying the behavior of the system depending of the
modifications that occurred in its environment [27]. The reconfiguration can either
be static, where it is only applied offline before the starting of the system, or dynamic
[22]. The dynamic form of reconfiguration can be either manual (applied by a user)
or automatic (applied by intelligent agents within the system). In the literature, the
concept of reconfiguration that we are introducing in this chapter is indicated as a
mode change since a system is able to move from one mode of execution to another.
A mode change is defined as the removal of tasks, the addition of new ones and the
change of their parameters [18]. As a matter of fact, the particularity of the work
that we propose in this chapter lies, essentially, in the possibility of reconfiguring
the resources as well as the set of tasks, optimizing the blocking times and lowering
the response times after each scenario of reconfiguration. However, several authors
treated the mode change, proposing different techniques. No one of these techniques
offers the advantages previously mentioned. Generally speaking, in a random sce-
nario of reconfiguration, the problems of deadlock and exceeding of deadline can
occur. No one in the related works treated this situation where we can have activations
of resources and tasks. we propose an original solution, denoted as Reconfigurable
Priority Ceiling Protocol (RPCP) to the previously defined problems, in addition to
the optimization of blocking and response times. To guarantee the non interruption
of execution after any reconfiguration scenario, the proposed solution starts by sep-
arating the physical processor into two virtual ones. The first continues the regular
execution of PCP, while the second one calculates the new periods and therefore
priorities that guarantee the previously defined optimizations. We developed a sim-
ulation tool at LISI Lab (University of Carthage) which is applied to a case study
in order to show the contributions of the work. This contribution was also presented
in the the 11th international conference on Informatics in control, automation and

Reconfigurable Priority Ceiling Protocol ... 25

robotics [5]. The following section gives an overview on the different axes that create
the context of the work. Section4 takes an example of reconfigurable tasks as well
as resources and shows the impact of the random reconfiguration on causing issues
in the system. After that, we formalize the elements that form mathematically our
environment. Then we explain our contribution step by step and finish by presenting
the proposed algorithm and exposing the simulation.

2 State of Art

This section introduces a brief overview on the existing researches that deal with the
reconfiguration of real-time systems in general and the ones taking into consideration
the priority ceiling protocol precisely. In [17] the authors present a classification and
an evaluation of mode change protocols for single-processor, fixed priority, preemp-
tively scheduled real-time systems. Leading to a comparison between synchronous
and asynchronous protocols where promptness is poor in the first and schedulability
needs test in the latter. Thus, a protocol has been introduced based on the use of off-
sets for the first activation of new-mode tasks. The contribution in [23] consists on
presenting a method for timing analysis of single-processor multi-mode systems with
earliest deadline first (EDF) or fixed priority (FP) scheduling of tasks that supports
any task activation pattern. The approach shows how the method can be applied
to transform a non-schedulable mode change into a schedulable one by using an
offset. It also considers immediate switches between modes, and shows that such
changes often involve a transient overload of the system so an offset for the start of
the new mode should be defined. In [25] the mode changes are defined either as oper-
ations increasing the processor utilization of a task set, or operations that decrease
it. Furthermore, the approach is based on two basic concepts when it comes to the
design of the mode change protocol. The first is the notion of sufficient processor
capacity when a required synchronization is involved. The second is the preserva-
tion of the characteristics of the Priority Ceiling Protocol. The authors proved that
under this protocol there cannot be mutual deadlocks and a high priority job can be
blocked by lower priority jobs for at most the duration of one critical section, despite
the addition and deletion of tasks during the mode change. The analysis approach
in the latter work is improved and extended to deadline-monotonic scheduling in
[16]. The model is augmented with transition offsets in [16], which permits to avoid
overload situations. In the idle time protocol [24], when a mode change request
occurs, the activation of the new tasks is not done until the next idle instant takes
place. Although its implementation is simple, the latter protocol is considered to
be poor when it comes to promptness. The ceiling protocol in Multi-Moded Real-
Time Systems [4] is an approach that combines the mode changes and permits an
important degree of flexibility with immediate inheritance priority ceiling protocol
(ITPCP) which is based on using a priority for the resources that will be immedi-
ately inherited by the tasks when they access the resources. The mentioned approach
cures the problem so-called ceiling of ceilings caused by the previously specified

26 M. Gasmi et al.

combination and proposes a re-scaling algorithm that assigns new priorities to tasks
respecting the fact that a task is able to respond within its deadline in the worst case.
In the works presented in [6, 7, 9] the Priority Ceiling Protocol (PCP) is applied as an
approach to ensure the scheduling between periodic tasks but the change of priorities
of these tasks in order to minimize the response time reconfiguration is not taken into
account. Despite of their capacities and distinct strong points none of the approaches
mentioned above takes into consideration the minimization of the blocking time and
the response time corresponding to the tasks, neither the possibility of using virtual
processors in order to fasten the computation time corresponding to the assigning of
the new tasks.

3 Background

A real-time task [13], designated in this chapter as 7;, is essentially characterized by
its: (i) Arrival time A when 7; becomes ready for execution, (ii) Computation time C
known as Worst Case Execution Time (WCET), this parameter has to be determined
previously, (iii) Deadline D is the time limit by which 7; must be accomplished,
(iv) Starting time S is the moment when the system decides to start 7;. Indubitably,
it cannot be earlier than the arrival time A as before this time the task is totally
unknown, (v) Finish time F is the time when the execution of 7i finishes. It can be
depicted by the sum of the starting time S and the computation time C, (vi) Period T
which serves as a duration of one cycle on a repeating execution of a periodic task
and represents the interval between two consecutive activations. It is important to
mention that in the case of an aperiodic task, the concept of period is utterly missing,
(vii) Work Left W is the work left for a task to execute and finally (vii) response
time R is the length of time from the moment of release to the instant when the task
completes its execution. This time is given by the following formula [26]:

g—1
Rk

T

R{=0.Rl =Ci+Bi+ >
j>k

G ey

The response time of a task, denoted as Ry, is obtained once R, = RZ = Rg“ . During
its execution, a task is able to use one or several resources, referring by the latter
to any shared hardware or software object [15]. The execution runs regularly, until
the moment when several tasks wish to use a single resource [12]. It is necessary
to mention that a blocking can be caused when several tasks wish to access a sin-
gle resource [26]. Here comes the role of the real-time scheduling. Its main goal is
to assign processors and resources to tasks in such a way that all the imposed con-
straints are respected. Among the scheduling algorithms, Rate Monotonic scheduling
[13] occupies an important role. It assigns priorities in a static way: the shorter the
period of the task the higher its priority. In [19] the authors prove that this schedul-
ing protocol is optimal among the rest of static policies. One major limitation of

Reconfigurable Priority Ceiling Protocol ... 27

fixed-priority scheduling is that it is not always possible to fully utilize the CPU
[19]. The schedulability test for RMS is:

2 Ci 1
U:Z?ign*(zﬁ—l) Q)
i=1

In a system with shared resources, it is impossible to eliminate all priority inver-
sions but it is possible to limit the waiting time to minimize time and predict blocks.
For this, several approaches are introduced. PCP prevents the deadlock situation as
well as chained blocking [19]. The rules in PCP aim essentially to prohibit a task
to enter the critical section if there were any semaphores that may block this task.
This protocol supposes that every task has a fixed priority and the used resources
are known before the starting of the execution [2]. In this protocol each resource is
assigned a priority ceiling, which is a priority equal to the highest priority of any
task which may lock the resource. Hence, it should be taken into consideration that
under the priority ceiling protocol, a task is blocked at most once, by a lower priority
task, for the duration of a critical section, no matter how many tasks conflict with it.
With the given information in [14], computing the maximum blocking time Bi for a
task is possible. Above all else, we should point out that blocking time, when using
PCP in particular, may arise under 3 possibilities: Directly blocked tasks, Inheritance
blocked tasks or Avoidance blocked tasks. Therefore, the proposed protocol RPCP
is based upon both RM and PCP since the first is optimal and the second is useful for
shared resources; In fact, it is customized to fit the feasibility test and the condition
imposed by RM. Besides, the particularities of this protocol lie in its ability to change
priorities, reconfigure both tasks and resources and minimize the response as well as
the blocking times.

4 Case Study

We present in this section a case study to expose our problem, and to be assumed
in the following as a running example. Let us consider a system to be scheduled
by both PCP and RM, and to be implemented by OS tasks with shared resources.
We assume that the duration of any context switching is null, that all the tasks are
activated without any delay and that we don’t have an execution overhead. The
remaining details related to these tasks are given by Table 1. The task 7; for example
is periodically executed each 60 time units, and uses the resource R1 for 5 time units.

According to the simulator Cheddar [20], the system is feasible since all the
tasks meet the related deadlines as depicted in Fig. 1. We can prove the system
feasibility by applying the RM condition Zle % = 60 % and is lower than 5 * (2§ -
1) = 74 %. We are interested in the current work in the software reconfiguration of
tasks and resources. A reconfiguration is assumed to be any operation allowing the
addition-removal of tasks or resources. No one in all related works dealing with real-
time scheduling treats this form of reconfiguration. Let we assume the following

28 M. Gasmi et al.

Table 1 Parameters of the initial tasks

Tasks Priorities Resources Computation Periods (Ti)
times (Ci)
T Pl R1 5 60
™ P2 R1 2 55
R2 3
T3 P3 R2 5 50
T4 P4 R5 2 45
R6 3
RS 2
Ts P5 R6 4 40
R7 3
1 ——

—tttft ittt i}
Task name=T1 Period= 60; Capacity= 5; Deadline= 60; Start time= 4; Priority= 5; Cpu=PC1
—t—t—t—t—tt I — - ——— __—__—_—__ ——————+—
Taskname=T2 Period= 55; Capacity= 5, Deadline= 55; Start time= 8; Priority= 4; Cpu=PC1

Pttt I —— —————————+
Task name=T3 Period= 50; Capacity= 5; Deadline= 50; Stari time= 1; Priority= 3; Cpu=PC1

Task name=T4 Period= 45; Capacity= 7; Deadline= 45; Start time= 14; Priority= 2; Cou=PC1

—t—t —t—t—t—

Task name=T5 Period= 40; Capacity= 7; Deadline= 40; Start time= 2; Priority= 1; Cpu=PC1

Fig. 1 Execution graph of the tasks

reconfiguration that adds the tasks 74 and 77, and removes 74 and 75 under well-
defined conditions described in user requirements. Table 2 depicts in detail the new
configuration of the system.

Note that this reconfiguration scenario can allow the violation of real-time prop-
erties or block and destroy the whole system in some situations, since the new tasks
have higher priorities and the old ones have to use new resources. We show in Fig. 2
the run-time problem that occurs in the system after this reconfiguration scenario.
In fact, while 7; is holding the resource R, the reconfiguration adds the resource R4
to the list of the resources belonging to the latter task. 7, the task added after the
application of this scenario, finishes the execution of R4 and keeps waiting for R; as
shown in Fig. 2. A deadlock happens in this situation.

The random application of the new configuration causes a deadlock leading auto-
matically to the violation of the feasibility conditions. In the related works the
deadlock problem was cured but without taking into account the optimization of
the computation time neither the possibility of minimizing the blocking and the
response times of the different tasks. The addition and removal of resources within
the system are original particularities in our work that we cannot find in other works.

Reconfigurable Priority Ceiling Protocol ... 29

Table 2 Parameter of the tasks after reconfiguration

Tasks Priorities Resources Computation Periods (Ti)
times (Ci)

T P1 R1 8 60
R4 12

[y P2 R1 15 55
R2 5

T3 P3 R2 3 50
R3 17

T6 P6 R3 14 45
R4 6

7 P7 R4 2 40
R1 18

R —

—— PR S T T | I SR S PR S T PR
————— - ——————+—
Task name=T2 Period= 55; Capacity= 5; Deadline= 55; Start time= 8; Priority= 4; Cpu=PC1

o b b —

Task name= Period= 50; Capacity= 5; Deadline= 50; Start time= 1; Priority= 3; Cpu=PC1

Task name=T1 Period= 60; Capacity= 5; Desdline= 60; Start time= 4; Priority= 5; Cpu=PC1

Task name=T4 Period= 45; Capacity= 7; Deadline= 45; Start time= 14; Priority= 2; Cpu=PC1

—— R
Task name=T5 Period= 40; Capacity= 7; Deadline= 40; Start time= 2; Priority= 1; Cpu=PC1

Task name=T7 I

Fig. 2 Deadlock due to the reconfiguration scenario

The same thing is applied for changing the priorities of the tasks. In this section,
the remarked problem is essentially due to an arbitrary choice of priorities after a
reconfiguration scenario. For this reason, we introduce in this chapter, a new solution
that does not only consist on preventing any deadlocks owing to a sudden change in
the set of tasks caused by an incoming reconfiguration, but also on drafting suitable
priorities that offer minimal blocking times for each task.

5 Formalization

In this section, we are interested in mathematically defining the elements of the
system and their reactions to any reconfiguration scenario as well as the proposed
representation of their characteristics. Hence, in addition to the existing parameters,

30 M. Gasmi et al.

mentioned in the section background, we propose to add the following new ones
to each task. (i) m(t): the state of a task within the system (1 if the task is active
either executed or not, O else). (i) o: the set of possible resources that can be used
by the task, (ii) Res(t): the set of resources used by the task at t, (iii) Cond(t): state
of conditions (1 if the condition that activates the task is met at t, O if not) and (iv)
Request(t): the set of resources required by the task at t. Let 75y, and Ry, respectively
be the set of all possible tasks and resources that may be executed within the system
independently from the time. Therefore, a general system that describes the global
environment, denoted as Sys, is defined by the previously mentioned couple.

SyS = (TSys’ RSys) 3)

Running Examplel:
Through the example given in the case study, 7sy,, and Rsys are expressed as
follows:

Tsys = {T1, T2, T3, T4, Ts, Te, T7}
RSys = {R17 Rlv R39 R47 R57 R67 R7s Rg}

Let 7gy,(#) and Rg,,(?) respectively be the set of active tasks and resources within
the system at a given moment t. Pointedly, the set of active tasks , denoted as 7y (f)
at the moment 7 is represented by the group of tasks whose the state is set to be active.
This assortment is given by the following formula:

TSys(t) = {Tl € TSys/Ti'Tr(t) = 1} (4)

Respectively, the group of resources which are active at ¢ , denoted as Rgy(1), is
represented by the resources required by the active tasks at that moment. This set of
resources is given by the following formula:

Rgys(t) = {R; € Rsy /37, Ti.m(t) = 1 AR; € 7;.Request(t)} 5

As a consequence, the general system at that moment, denoted as Sys(t), is defined
by the previously mentioned couple.

Sys(t) = (Tsys (1), Rsys (1)) (6)

Running Example 2:

Through the example given in the case study, Table 1 contains the list of the
active tasks and resources at #y before the application of the reconfiguration
scenario. As a consequence, Tsys(fy) and Rgy(#o) are expressed as follows:

Reconfigurable Priority Ceiling Protocol ... 31

Tsys(t0) = {71, T2, T3, T4, 75}
RSyS‘(tO) = {RlvRZs R57 R67R77 RS}

According to user requirements, each reconfiguration scenario is automatically
applied to add or remove tasks from a system at a specific moment denoted as #;. In
fact, the couple Ty (f) and Rgy, () that takes place at #5, which is a moment coming
right before the reconfiguration, is replaced by 7sy(¢1) and Ry (t1). Let Esye(t1),
described in the formula (7), be the group of tasks to be added to the system. In fact,
a task is ready to be added when the condition that activates it is met at ¢;.

Esys(t1) = {77 € Tgys/7i.Cond (t) = 1} (7N

Let Agy (1), described in the formula (8), be the group of tasks to be removed
from the system. Similarly, a task is ready to be removed when the condition that
deactivates it is met at #;.

Agys(11) = {7i € Tsy5(11)/7i-Cond (1) = 0} ®)

Thereby, the new set of active tasks at #; after reconfiguration is expressed as the
addition of the tasks sy (f1) and the removal of the tasks Agy(#) from the old set of
tasks established at #y. The formula describing 7g,,(#1) is given as follows:

TSys(tl) = TSyx(IO) U gSys(tl) \ ASys(tl) (9)

Running Example 3:

Through the example given in the case study, the changes from Tables 1 to
2 represent a reconfiguration scenario that occurred in 7;. In fact, the actions
of addition and removal of tasks are performed. In our case, the added tasks
(&sys(11)) and the removed ones (Agy,(#1)) are given as follows:

gSys(tl) = {76, 77}
Asys(t1) = {74, 75}

Subsequently, the new set of active tasks after the reconfiguration (7sy(1)) is
expressed as follows:

Toys(11) = Tsys(t0) U Esys (1) \ Asys(t1) = {71, T2, 73, T6, T7}

32 M. Gasmi et al.

Likewise, the subset of resources can be modified by the reconfiguration. Let
&r(t)), described in the formula (10), be the group of resources to be added to the
system. In fact, a resource is considered to be active when it is added to the system
as required by a task added through &gy (#1).

§r(t1) = {Ri € Rsys/31; € E5y5(t1) A R; € T;.Request (1)} (10)

However, the list of resources which need to be deactivated is described by the
ones that are no longer required by any task. It is to mention, that if a resource is
shared by several tasks, it cannot be removed when some of them are removed. The
group of resources which cannot be removed is denoted by Ag(#) and described in
the formula (11).

Ag(11) = (R; € Ryys(11) /37 € T5y5(11) \ Agys(t1), R; € 7j.Request (1))} (11)

Conclusively, the set of resources to be deactivated is defined as the relative
complement of Rgy(f) in Ag(#;) and described in the following formula:

AR(t1) = Rsys(tr) \ Ar(t1) (12)

Finally the new set of active resources after the reconfiguration (Rgy,(#1)) is
expressed as the addition of resources z(#;) and the removal of the tasks Ag(#;)
from the old set of tasks established at fy. The formula describing Rgy(#1) is given
as follows:

RSy.v(tl) = RS}’X(IO) U gR(tl) \ AR(tl) (13)

Running Example 4:
Continuing from the previous running example, the added resources (£g (7))
and the removed ones (Ag(#))) are given as follows:

Er(t) = (R3, T4}
Agr(t1) = {Rs, R, R7, Rg}

Subsequently, the new set of active resources after the reconfiguration (Rgy,(#1))
is expressed as follows:

Ryys(t1) = Rsys(to) U Er(t1) \ Ar(t1) = {71, T2, 73, T4}

Reconfigurable Priority Ceiling Protocol ... 33

6 Contribution RPCP/RM

‘We propose in this section to resolve the chapter’s original problems that we detailed
in the case study. In fact, the automatic reconfiguration of tasks and/or resources can
lead the system to deadlocks or the possible violation of deadlines by new or old
tasks. Explicitly, the deadline is violated when a corresponding task has some work
left when it reaches it. As for the deadlock, it happens when a task holds resources that
another one is waiting for and inversely. This is properly explained in the following
formula:
/7. W > 1,.D — 11
Problem : {37;, 7;/7;.Request(t;) N 7j.Res(t,) # ¥ (14)
ATj.Request(t;) N 1;.Res(ty) # ¥

As a consequence to the mentioned problems, the execution of the hardware
processor is split into two virtual processors in the purpose of pre-computing the
proposed optimizations when applying the reconfiguration at #;. One of the virtual
processors continues the normal execution of old tasks normally without interrup-
tion while the other one computes the right set of periods and priorities. The latter
mentioned procedure is decomposed in several sub-steps: the blocking time mini-
mization of the new and old tasks, response time minimization, assuring feasibility
without deadlock due to the addition of resources and meeting the RM condition.

6.1 Virtual Processors

In order to guarantee the non-interruption of the system execution, spreading the
physical processor into two distinguished virtual processors, which are time slots,
was taken into consideration. The idea behind, is to gain in terms of computation
without having any time gaps during the execution of the old tasks. In this study, two
virtual processors are proposed. The first one, denoted as V Py takes the responsibility
of computing the new appropriate periods and priorities to be assigned to both the old
and new tasks after the reconfiguration. The second one, V P,, executes normally the
old tasks by using the regular PCP. Figure 3 explains how the two virtual processors
operate in order to switch safely from a configuration to another without interrupting
the current execution.

Reconfiguration request

VP, I Computation

VP, Executing under confl Free resources Executing under conf2

ti t, t, Time

Fig. 3 Roles of the virtual processors within the system

34 M. Gasmi et al.

The instant #;, like we mentioned before, corresponds to when exactly the recon-
figuration request occurred, , when the computation ended and #3 when V P, ends
the freeing of resources. In fact, V P, executes the old tasks and does not switch to the
new configuration until V P finishes its computation and reveals the new assortment
of priorities and periods related to each task. The step that proceeds the switch from
a configuration to another, consists on allowing the tasks that hold some resources to
finish their execution under the previous configuration. Let Newconf be the group of
tasks saved at #; to be used in the computation done by V P;. It is formulated by using
(9). However, at ty, Tsys(#1) changes and represents the group of tasks which did not
finish their execution time when the reconfiguration takes place. It is therefore given
in the following formula:

Tsys(t1) = {7 € Tsys(t0) /7.8 < t1 AT W (1) # 0} (15)

As a consequence, The group of resources Rsy(¢;) within the actual system
depends on the change that occurred to 7sy,(#1) as remarked in the formula (5). Thus,
the moment 73, previously described as when VP, ended freeing the resources, is
disposed in the following formula:

13 = max(71;.E; /T € Tsys(t1)) (16)

The phase of computation to be realized by V Py, consists on finding the right set
of periods and priorities. After this phase, the actual virtual processor V P, will be
able to run under the new configuration. The exact moment when the latter virtual
processor starts applying the new configuration is depicted as #,,,, and described as
follows:

Tnew = max(, 13) (17)

Running Example 5:

Proceeding further in the example given in the case study, the results obtained at
11, b, t3 and t,,,, are explained in details. At ¢, Newconf = {1, T, T3, T6, T7}
and 7sy(t;) = {71}. At t,, VP, finishes the computation and the application
of the new periods and priorities of the task set Newconf. At t3, 7 finishes
executing Ry. At thew, Tsys(trew) = Newconf.

6.2 Appropriate Set of Periods

At tye, VP, is able to run the new set of tasks resulting from the computation
done by V P;. In our contribution, Tsy(#,ew), previously defined in (9), is described
as the modification of the priorities and periods that belong to the group of tasks

Reconfigurable Priority Ceiling Protocol ... 35

Newconf generated from the reconfiguration request. This modification that we pro-
pose, described in the formula (18), is performed by the recursive function ¥ which
is computed in several steps.

TSys(tnew) = W(NEU)COI’lf) (18)

Furthermore, in order to calculate the new temporal configurations of tasks, some
steps need to be followed. The function ¥ is the composition of several other sub-
functions such that each one corresponds to a calculation step. This is shown by the
formula (19).

W=W40’1/3OWQOW1 (19)

In fact, to calculate the new system configuration Ty, (#,..), We need to compute
at first time, ¥ (Newconf) which is in charge of finding the right arrangement of
priorities that ensures a minimum blocking time. Then we apply the sub-function ¥,
to the result of ¥|(Newconf) which is responsible for finding the right periods for
which the response time of each task is minimum. W5 is applied to the result of ¥;:
it is bound to find the periods for which the deadline constraint is respected. Finally,
Y, is applied to the result of ¥s: it adjusts the obtained periods to meet the condition
of RMS. It is to mention, that these recursive functions are not contradictory and are
applied to this configuration without proposing opposed values.

6.2.1 W¥;: Minimum Blocking Time

For the purpose of identifying the minimum array of blocking times related to the
tasks, we use an algorithm that reads through all the possible arrangements of prior-
ities that the tasks may have. Thereafter, it spots the right set for which the blocking
times are at their minimum. The number of possibilities of priorities that a vector of
tasks can have, is based on the same principle in combinatorics. For each of these
arrangement possibilities, the corresponding array of blocking times is computed.
Accordingly, the comparison between the resulting vectors is performed by the cal-
culation of the Euclidean norm. As a result, the proposed function ¥ is defined as a
n-tuple formed by pairs of priorities and tasks. Let {(Py,71), ..., (P,,7,)} denoted as
E| be the actual n-tuple corresponding to the group of tasks Newconf and {(P;,1),
..., (Px,m)} denoted as E, be the resulting arrangement of tasks. The definition of
the function is regarded by the following formula:

n

Zn:T,-.BZ = min(> wB) (0
i=1

k=1,(Py,7k)€E}

¥, El - E2)NVN(P;, 1) € Ey

where [P}, ..., P¢] is the same as the vector of priorities [Py, ..., P,] just in a different
order of its elements. It is important to retain that the priority with the least index is
the highest among all priorities.

36 M. Gasmi et al.

Running Example 6:

This example aims to find the right set of priorities that guarantee a minimum
blocking time for each task in Newconf. The following table contains the
resulting minimum blocking time and the corresponding new priority to each
task.

Tasks|Initial blocking times| Minimum blocking times|Old Priority New priority
1 0 6 Ps Py
™ 12 12 Py P3
T3 15 14 P3 Py
T6 17 0 Py Ps
T7 15 15 P 1 P 2

The norm of the values of the initial blocking times is 29.71. As for the one
corresponding to the Minimum blocking times, its value is 24.51.

6.2.2 W,: Minimum Response Time

Once the first step dealing with ¥; is done we apply its result to the function ¥,.
Attaining a specific set of priorities, is only effective when it comes to acquiring the
appropriate values of periods. As matter of fact, the next step consists on finding
the right periods for which the response time of each task is at its minimum. In this
contribution, we can define the minimum response time that a task can have (as long
as the priority of the latter is not the maximum) as the sum of its blocking time, its
execution time and the execution times of the more prioritized tasks. For each task
Ti, the minimum response time, denoted as R; ,,, i therefore given by the following
formula:

Ci+ B;if P;=max(Py,...,Py,)
Rimin = Ci+Bi+ > Cyelse (2D
Py>P;

The obtained response times allow the possibility of defining the boundaries of
the period. In fact, the generalization consists on limiting the periods of all the tasks
(except the one with the lowest priority) with the maximum of response times among
the least prioritized ones. Referring to the previous analysis, let 7,4, be the set of tasks
except the least prioritized (respecting the order set by ¥;). The function ¥, replaces
the values of periods of tasks belonging to 7, with the maximum of response times
of the prioritized tasks incremented by one. This is given in the following formula:

l1/2:Ti.T—>max(Rk)—|—1/Vk:Pk<P,~ (22)

Reconfigurable Priority Ceiling Protocol ... 37

Running Example 7:
After assigning new priorities to the given tasks mentioned in the case study,
the process of finding the minimum possible periods starts.

Tasks|Minimum response times |New periods
T 11 23
05 22 23
T3 19 45
To 22 @
T 44 23

6.2.3 W;: Feasibility Test

Once the application of ¥, is done, the results of the previous steps are applied to
;. Going further in finding the periods, the respect of the constraint of feasibility
should be promulgated. In fact, bearing in mind the feasibility condition imposed by
the system can allow limiting the period. So far, let Boundaryy be the inferior limit
of the resulting period.

_ | Ak + Ry if T is the least prioritized task
Boundary, = [max(Ax + Re, .T)) if not (23)
Thus, the definition of our submitted function ¥; is:
U3 V1« . T — Boundaryy + 1 24)

Running Example 8:
Continuing in the example of the case study, the process of finding the possible
periods that permit the respect of the feasibility continues.

Tasks |Starting times (A)|A+R |Periods obtained from ¥, |New Periods
T 3 14 23 24
™ 1 23 23 24
T3 5 24 45 46
T6 2 28 0 29
™ 4 48 23 49

The new periods obviously correspond to the maximum between the sum of
A and R, and the periods previously obtained from ¥,.

38 M. Gasmi et al.
6.2.4 W,;: RM Condition Test

Once ¥; is well executed, we apply its result to ¥y. Basically, the procedure is done by
incrementing the values of the periods until fulfilling the RM condition. Therefore, we
make a place for a system that minimizes the response time, allows the feasibility and
respects the condition imposed by the Rate Monotonic Scheduling (RMS). Hence,
the function ¥, is proposed to guarantee the respect of the latter condition which is
expressed in the following formula:

n C.

W V7. 7.T — 7,.T/ E %571*(25—1) (25)
; J

j=1

Running Example 9:

Finally, the following table describes the list of periods obtained after running
a loop of incrementation that allows to obtain the required periods of tasks
that respect the RM condition.

Tasks |Execution times|New Periods
T1 5 32
T2 5 31
g 5 53
To 7 36
T7 7 56

It is to mention that the obtained value of 7; and 7, is the same in this example.
But, since 7 is less prioritized than 7,, we incremented it in order to point out
the distinct priorities. The value of stz | % is around 73 % which is less than

74.35 % (the value of 5 * (25 — 1)).

6.2.5 Solution

The global function ¥ allowing the correct reconfiguration of the real-time system
(applied to both the old and new tasks) is composed of ¥, ¥,, ¥; and ¥,. It permits
to have a group of tasks that implement the system while satisfying the following
items: (i) avoiding the deadlock anomaly, (ii) respecting the RM condition as well
as minimizing (iii) the response time of the tasks and (iv) their blocking times.
Subsequently, the resulting group of tasks that implement the system are free from
the problems mentioned in (12) and characterized as follow:

Reconfigurable Priority Ceiling Protocol ... 39

[(VirtualProcessors)¥;, V7 /T # T
AT;.Request(t) N 7;.Rest(t) = B(i)
W) V1;/7:.B = Minimum(T;.B) (iv)
Solution : { (W) V7;/7;.R = Minimum(7;.R) (iii) (26)
W) V7;/7.W < 1;.D — 1, (ii)

W) Y1/ 3D <k 2F — 1))
i=1

7 Simulation

Defining the procedures mentioned in the formalization in an algorithmic way
consists on running two distinguished threads. The first one executes the actually
active tasks with regular PCP. The second computes the blocking times and right

(a) (b)
]]m'nmwmﬂm]mrm.] | Tasks | Reconfiguration | Run | Response Time |

Index Ressource Index Index Ressource Index

Execution Arrival Execution Arrival

S —] | g

Index: 1 Taskindex: 1 Ressourceindex: 1 Execuion: B Asrival: § 2 Index: 4 Taskindex: 2 Resscurceindex: 2 Execuion: 5 Amival: 1 2

Index: 2 Taskindex: 1 Ressource index: 4 Execution: 12 Asrival: 16 Index: 5 Taskindex: 3 Ressourceindex: 2 Execuion: 3 Amhal: 13

Index: 3 Taskinder: 2 Ressourceindex: 1 Execution:15 Asival: 32 Index: 6 Taskindex: 3 Ressourceindex: 3 Execulion:17 Amhal: 17

Index: 4 Taskinder: 2 Ressource index: 2 Execution: 5 Awmival: 1

Index: § Taskindex: 3 Ressourceindex: 2 Execuion: 3 Asival: 13

Index: 6 Taskindexr: 3 Ressourceindex 3 Execulion 17 Amival 17

wpddTask*: Taskingex: 5 Ressource ingex: 3 Ewscution: ¥ Amnval: 33
v *AddTask™: Taskindex: & Ressource index: 4 Ewecufion: ® Amval: 33 v

Index to Delete l Delete: | i Finsh I Index to Delete Delete Finish
(e) (d)

[Tasks | Reconfiguration | Run | Response Time | [Tasks | Reconfiguration | Run | Response Time |

| e | =y —

srrrenes DOP ararase
M t=1s; thetaskT3 useR3 for15s

Al t=16s; thetaskT1 useR2 for30s
+++++++ Error: A blocking occured

==+ Before RPCP
the response time ofthe task 1is: 15

e RPCP T the response time of the task 2is: 30

the response time of the task 3 is : 26

Task 3 with priority (3)use R3 at1 the response time of the tasks is : 30
Task 1 with priority (2) use R2 at 16 the response time of the task7 is: 59

++++ Reconfiguration att= 17 ++++++
Task 3 with priority (2) use R2 at 17

Task 3 with priority (2) use R1 at 37 «+ After RPCP _

Task 1 with priority (1) use R1 at 47 the response time of the task 1is: 11
Task 1 with priority (1) use R2 at 67 the response time of the task 2 is - 22
Task 4 with priority (3) use R1 at 97 the response time of the task 3is : 19
Task 2 with priority (4) use R1at1 14] the response time ofthe task6is: 22

the response time of the task 7 is : 44

Fig. 4 Interfaces of the developed simulator. a Initial tasks parameters interface. b Reconfiguration
tasks parameters interface. ¢ Execution before and after RPCP. d Response time details

40 M. Gasmi et al.

arrangements of priorities, then starts the procedure of calculating the response times
and the periods. Finally it checks the feasibility and the RM Condition in order to
deliver the new information to the first thread. For the purpose of simulating the
RPCP and showing its contribution compared to random behavior towards recon-
figuration, we developed a tool at LISI Laboratory of INSAT Institute (Fig. 4a) that
allows the user to fill in with the desired parameters of the tasks. Afterward, it is
possible to fill with the parameters of the tasks that had been added to the system
after the reconfiguration through the interface presented in Fig. 4b. The testing of the
system behavior before and after the application of RPCP is pin pointed through the
interface depicted in Fig. 4c. It is possible to notice that a blocking occurred when
using the random reaction to the reconfiguration and how this problem was solved by
using RPCP and the system continues its execution smoothly. The response time is
then computed for each of the tasks and an average response time for both before and
after the application of the RPCP (Fig. 4d). We show the gain in terms of response
time due to RPCP. Through the test done over the case study, the improvement is
noticeably obvious. In fact, the blocking time is managed to get reduced to almost
80 %. Consequently, the response time decreased to 75 % compared to the initial
procedures.

8 Conclusions

In this chapter, we introduce RPCP as a protocol that solves well-defined real-time
problems due to random reaction to reconfiguration. In fact, the power within this
protocol lies on two different bases. The first one, corresponds to the choice of
well-based scheduling methods and their ability to solve problems and optimize
the parameters of the system. Surely, the use of a solid scheduling algorithm such
as Rate Monotonic and an efficient protocol like Priority Ceiling Protocol reflects
an important benefit to conclude from the proposed solution. Since the first one is
known for its utility and optimality in the industrial field, and the second one is able to
prevent deadlocks as well as chained blocking. The second advantage of the proposed
protocol RPCP, is its ability to fix the deadlock problems and to prevent exceeding
the deadlines. Moreover, this protocol works on minimizing the blocking and the
response times by changing the priorities of the tasks, leading to an optimal system
that runs effectively. We plan in the future to apply this protocol to real complex case
studies in order to evaluate the contributions of the current work.

Acknowledgments This chapter is a collaboration between LISI Lab (INSAT at University of
Carthage in Tunisia), PASRI (Ministry of High Study and Research in Tunisia) and Universidade
Nova de Lisboa in Portugal. It is financially supported as a MOBIDOC grant from the European
Commission. We thank Mr. Wael Bouslama for his fruitful collaboration in the experimental part.

Reconfigurable Priority Ceiling Protocol ... 41

References

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Brennan, R.W., Fletcher, M., Norrie, D.H.: An agent-based approach to reconfiguration of

real-time distributed control systems. IEEE Trans. Robot. Autom. 18(4), 444451 (2002)

. Chen, M.L, Lin, K.J.: A priority ceiling protocol for multiple-instance resources. In: Twelfth

Proceedings on Real-Time Systems Symposium, pp. 140-149. IEEE (1991)

. Colnaric, M., Verber, D.: Distributed Embedded Control Systems: Improving Dependability

with Coherent Design. Springer (2007)

. Farcas, E.: Scheduling multi-mode real-time distributed components. Ph.D. thesis, Department

of Computer Sciences, University of Salzburg (2006)

. Gasmi, M., Mosbahi, O., Khalgui, M., Gomes, L.: Reconfigurable priority ceiling protocol—

under rate monotonic based real-time scheduling. In: ICINCO 2014 - Proceedings of the 11th
International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 42-52
(2014)

. Gharbi, A., Gharsellaoui, H., Khalgui, M., Valentini, A.: Safety Reconfiguration of Embedded

Control Systems (2011)

. Gharbi, A., Khalgui, M., Ben Ahmed, S.: The embedded control system through real-time

task. In: 5th International Conference on Modeling, Simulation and Applied Optimization
(ICMSAO), pp. 1-8. IEEE (2013)

. Kalinsky, D.: Basic concepts of real-time operating systems. LinuxDevices Mag. (2003)
. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed embedded-

control systems. IEEE/ASME Trans. Mechatron. 16(4), 684—-694 (2011)

. Lee, L., Leung, J.Y., Son, S.H.: Handbook of Real-Time and Embedded Systems. CRC Press

(2007)

Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact characterization
and average case behavior. In: Proceedings of the Real Time Systems Symposium, pp. 166—171.
IEEE (1989)

Lipari, G., Bini, E.: Resource partitioning among real-time applications. In: Proceedings of the
15th Euromicro Conference on Real-Time Systems, pp. 151-158. IEEE (2003)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM (JACM) 20(1), 46-61 (1973)

Liu, F, Narayanan, A., Bai, Q.: Real-time systems. Citeseer (2000)

Mok, A.K., Feng, X., Chen, D.: Resource partition for real-time systems. In: Proceedings of the
Seventh IEEE Real-Time Technology and Applications Symposium, pp. 75-84. IEEE (2001)
Pedro, P., Burns, A.: Schedulability analysis for mode changes in flexible real-time systems.
In: Proceedings of the 10th Euromicro Workshop on Real-Time Systems, pp. 172-179. IEEE
(1998)

Real, J., Crespo, A.: Mode change protocols for real-time systems: a survey and a new proposal.
Real-Time Syst. 26(2), 161-197 (2004)

Sha, L., Rajkumar, R., Lehoczky, J., Ramamritham, K.: Mode change protocols for priority-
driven preemptive scheduling. Real-Time Syst. 1(3), 243-264 (1989)

Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39(9), 1175-1185 (1990)

Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling frame-
work. In: ACM SIGAda Ada Letters. vol. 24, pp. 1-8. ACM (2004)

Stankovic, J.A.: Real-time and embedded systems. ACM Comput. Surv. (CSUR) 28(1), 205—
208 (1996)

Stewart, D.B., Volpe, R.A., Khosla, P.K.: Design of dynamically reconfigurable real-time soft-
ware using port-based objects. IEEE Trans. Softw. Eng. 23(12), 759-776 (1997)

Stoimenov, N., Perathoner, S., Thiele, L.: Reliable mode changes in real-time systems with
fixed priority or edf scheduling. In: proceedings of the Conference on Design, Automation and
Test in Europe, pp. 99-104. European Design and Automation Association (2009)

Tindell, K., Alonso, A.: A very simple protocol for mode changes in priority preemptive
systems. Technical report, Universidad Politécnica de Madrid (1996)

42

25.

26.

27.

M. Gasmi et al.

Tindell, K.W., Burns, A., Wellings, A.J.: Mode changes in priority preemptively scheduled
systems. In: Real-Time Systems Symposium, pp. 100-109. IEEE (1992)

Tokuda, H., Nakajima, T., Rao, P.: Real-time mach: towards a predictable real-time system. In:
USENIX Mach Symposium, pp. 73-82 (1990)

Wang, J.C., Chiang, H.D., Darling, G.R.: An efficient algorithm for real-time network recon-
figuration in large scale unbalanced distribution systems. In: IEEE Conference Proceedings on
Power Industry Computer Application Conference, pp. 510-516. IEEE (1995)

2 Springer
http://www.springer.com/978-3-319-26451-6

Informatics in Control, Automation and Robotics

11th International Conference, ICINCO 2014 Vienna,
Austria, September 2-4, 2014 Revised Selected Papers
Filipe, J.: Gusikhin, 0.; Madani, K.; Sasiadek,). (Eds.)
2016, XV, 318 p. 153 illus., 116 illus. in color.,
Hardcover

[SBM: 978-3-319-26451-6

	Reconfigurable Priority Ceiling Protocol: A Safe Way to Real-Time Reconfiguration
	1 Introduction
	2 State of Art
	3 Background
	4 Case Study
	5 Formalization
	6 Contribution RPCP/RM
	6.1 Virtual Processors
	6.2 Appropriate Set of Periods

	7 Simulation
	8 Conclusions
	References

