Chapter 2
Getting Started with [R]; a Brief
Introduction

Lianne Ippel

Abstract Inthis chapter we provide some basics into [R] that will get you started and
provide you with tools to continue the development of your skills in doing analyses
in [R].

2.1 Introduction

Many statistical software packages are out there (SPSS, SAS, STATA, Mplus, just to
name a few), each of them has its pros and cons. However, they have one common
disadvantage: they all come with a (rather expensive) price tag. In contrast, [R] is an
open source programming environment and is freely downloadable. Additionally, it
allows a researcher to conduct the analyses exactly in the way she wants the analyses
done. Data analysis in [R] does require some programming skills, for which we
provide a short introduction. For issues beyond this introduction, you will find many
of your questions answered with a search in your favorite search engine.

Step one of doing your data cleaning and analysis in [R] is, of course, to get
the program on your computer. You can download [R] from https://cran.r-project.
org.! Choose the version matching your operating system, and you are good to
go. For those who desire some point-and-click options in [R], several Integrated
Development Environments such as ‘R Studio’ exist, although we do not go into
them here.

A few remarks before you get started and confused: (1) [R] is a case sensitive
language, so be careful with how you name your variables, x1 # X 1. (2) Unlike other
program languages such as C, which read the entire script at once before executing it,
[R] reads one line at a time. [R] will continue reading until it has reached the end of

I'Note that if you use [R] for your reports, do not forget to mention the version of [R] you used,
because slightly different results may come from different versions of [R], or the packages you
used. we used [R] 3.2.2, 64-bit.

L. Ippel ()

Department of Methodology and Statistics, Tilburg University,
Warandelaan 2, 5000 AB Tilburg, The Netherlands

e-mail: g.j.e.ippel@uvt.nl

© Springer International Publishing Switzerland 2016 19
J. Robertson and M. Kaptein (eds.), Modern Statistical Methods for HCI,
Human—Computer Interaction Series, DOI 10.1007/978-3-319-26633-6_2


https://cran.r-project.org
https://cran.r-project.org

20 L. Ippel

a command or found something it does not understand, which will produce an error.
(3) Errors tell you approximately where it went wrong. However be aware, the fact
that [R] did not produce an error does not mean it has done what you intended to do,
it just has done exactly what you told it to do. What [R] did and what you wanted to
do, are not necessarily the same thing. In fortunate cases, [R] will produce a warning
when something did not fully go according to plan. Whether or not to take these
warnings seriously is dependent on the warning and what you were aiming at doing.
However in unfortunate cases, [R] does not produce an error or a warning, while still
not doing what you aimed to do. Therefore always check whether the results make
sense. (4) If you want to prevent yourself from doing the exact same command over
and over again, you won’t use the console of [R], but rather use a script (File —
New script). You run the script either by ‘right-click — run’, or ‘ctrl + 1’. Lastly (5)
to prevent you from trying to read your code a week after you produced it and being
clueless about what you tried to do: insert comments in your code. Doing so is easy:
inserting a # will tell [R] to skip this line, giving you the opportunity to write down
what the code should do.

The organization of this chapter is as follows. First we discuss the types of data
[R] can deal with and how these data are handled in [R]. We mention some useful
tools to get some insight in your data. In Sect. 2.2 we detail how you can write your
own commands with the use of functions and how to incorporate code written by
others. The final section might be the most important section, because it contains the
[R] help manual and additional literature.

2.1.1 Data Types

[R] can handle both numerical and character input. The difference between the two
is denoted by adding quotation mark(s) in case of characters, for instance:

> # an example of a numerical variable:
> x1 <- 10
> x1

[1] 10
> x1 + x1

[1] 20
>
> # an example of a string variable:
> x2 <- ‘10’
> x2

[1] **10""
> X2 + X2

Error in x2 + X2 : non-numeric argument to binary

operator



2 Getting Started with [R]; a Brief Introduction 21

In the above example, x1 is a numerical variable containing a single value, 10, with
which you can do calculations. However x2 is a string variable because we placed
quotation marks around the input, instructing [R] it should treat it as characters,
with which you obviously cannot do computations. [R] can do all computations
(as long as it concerns numerical values) your simple calculator can do too. Besides
the obvious commands (4, —, *, /,7, sqrt(), exp()), ** can be used interchangeably
for A third data type we want to illustrate is ‘boolean’, a data type which is either
TRUE or FALSE. Although booleans look like characters, you can do computations
with them, as TRUE translates to 1 and FALSE to 0. This data type is generated
when you use a logical expression, for instance to see if two variables are equal to
each other:

> # logical expressions
> x1==10 # equal to

[1] TRUE
> x1 <= 5 # smaller or equal
[1] FALSE
> x1 > 5 # larger
[1] TRUE
> x1 != 5 # unequal to
[1] TRUE
> # an example of computations with booleans
> (x1 == x1)+1 # TRUE +1 = 2
[11 2

2.1.2 Storage

Besides different input (number vs. character), the input can be wrapped differently.
You can think of these wrappings as different storages: they vary in size and flexibility.
Depending on what you want to do with your data, one or the other storage can be
more efficient. There are five different storage types: vector, matrix, array, data frame,
and list. They all can deal with characters or numbers. In the first example (x1 and
x2) both variables were vectors with only one element. Now we focus on larger
vectors:

2.1.2.1 Vectors
We start with a vector, using command c(data):
> x3 <- c(1,2, NA)

> x3
[11] 1 2 NA



22 L. Ippel

In the example above, we created a variable x3, which is now a vector with three
elements, two knowns and one missing.” If there is input missing, whether it is non
response in your data collection or something else, you can instruct [R] to leave a
blank space using NA (Not Available).

The command ‘c()’ is one of the ways to create a vector. Other common used
commands for vectors are:

# a vector containing a sequence, is created using
# seqg(from, to, by ):

x4 <- seqg(from = 1, to = 10, by = 2)

x4

[1] 13579

vV V. VvV Vv

# note a sequence with interval of 1:
x5 <- c(1:5)

x5

(1171 2 3 4 5

vV V. VvV Vv

# a vector containing series of repeated elements,
# rep(data, times, each)

# data = what should be repeated

# times = number the data are repeated

# each = number a single element is repeated

x6 <- rep(c(l:2), times=3, each=2)

x6

fr]» » 2 2 1 1 2 2 1 1 2 2

V V.V V V V V V

You can also select separate elements from a vector, as follows.

> # select second element of vector x3
> x3[2]
[11 2
> # add fourth element to x3
> x3[4] <- 4
> x3
[11 1 2 NA 4
> # this also works:
> x3_new <- c(x3, 5)
> X3_new
(11 1 2 NA 4 5

2Be aware of how you name you variables, because you do not want to overwrite a command that
already exist in [R]. Simply typing in the name you want to use for your object in the console will
give insight in whether this name is already in use.



2 Getting Started with [R]; a Brief Introduction 23

As you can see from the above example, there are often multiple ways which yield the
exact same result. For small vectors, different ways of adding data and/or selecting
elements do not really make a difference, however once you start working with large
data sets (like data frames and lists) it pays to check for the fastest option.

2.1.2.2 Matrix

An extension of a vector is a matrix, which unlike a vector which is unidimensional,
has two dimensions: rows and columns.

> x7 <- matrix(data = c(1:4), nrow = 2, ncol = 2)
> x7
[,11 [,2]
(1,
(2,

Basically, what this command does is: you give [R] a vector and instruct [R] to break
it down into the number of rows and columns. When the matrix has more cells than
the number of elements in the provided vector, [R] will fill up the matrix, starting
from the beginning, without error or warning!

> x8 <- matrix(data = c¢(1:3), nrow = 3, ncol = 2)
> x8
[,11 [,2]
(1,
[2,
[3,

So we cannot repeat this too often, check whether [R] did what you wanted to do
even, or maybe especially, when no error or warning was produced. One way to do
so is check whether the elements are positioned the way you expected. Selecting or
adding data from a matrix is very similar to a vector, with the minor difference of
having to specify two dimensions. In line with algebraic rules, [R] will take the first
input as row number and the second input as column number: [1,1] will select top left
element, while [2,1] will select the element on the second row, first column. When
you leave the first dimension open, [,1], the entire column is selected or when you
leave the second dimension open, [1,], the entire row is selected.

> # select element on second row, first column of x7
> x7[2,1]
[11 2
> # select second row
> x7[2,]



24 L. Ippel

[11 2 4
> # select second column
> xX7[,2]

[1] 3 4

> # add row to x7 using rbind(data, new_row) :
> # rbind binds the new row to the data
> x7_new_row <- rbind(x7, c(1,2))
> xX7_new_row
[,11 [,2]

[1,1 1 3

[2,] 2 4

[3,1 1 2

# add column to x7 using cbind(data, new_column)
# cbind binds the new column to the data

x7_new_column <- cbind(x7, c(5,6))

vV V. VvV Vv

X7_new_column

[,11 [,21 [,3]
[1,] 1 3 5
[2,1 2 4 6

2.1.2.3 Data Frame

A data frame is a special case of a matrix. It also consists of two dimensions, with
the cases stored in the rows and the variables in the columns. The example dataset on
fruit-based smart watch performance provided as supplementary material is a data
frame, which will be used throughout the book to explain multiple analyses. A data
frame is created as follows:

> x9 <- data.frame(id=factor(c(1:3)), obs=c(10:12))
> x9
id obs
1 1 10
2 2 11
3 3 12

where the first column (without heading), denotes the row numbers, the second col-
umn is a nominal variable of the data frame (in this case labeled ‘id’). Nominal
variables can be created using the command ‘factor()’. The third column is a numer-
ical variable (labeled ‘obs’).

Because a data frame is a special case of a matrix, selecting and adding data can
also be done similarly. However, because it is a special case and not exactly the same,
it can also be done differently. The advantage of a data frame is that the columns
have labels, which you can use to select elements or columns or add variables.



2 Getting Started with [R]; a Brief Introduction 25

> # select element on second row, first variable of x9
> x9$id[2]

[1]1 2

Levels: 1 2 3
> x9[2,1]

[11 2

Levels: 1 2 3
> # or select a case with a particular number,
> # convenient when row numbers != id numbers:
> x9[x9%1d==2,]

id obs

2 2 11
> # select variable
> x9%obs

[1] 10 11 12
> # add variable
> x9%new_var <- c(20:22)
> x9

id obs new_var

1 1 11 20
2 2 12 21
3 3 13 22

2.1.24 Array

Next we turn to the two larger storages which have a flexible number of dimensions.
First an ‘array’ which is an extension of a matrix, and can have many dimensions.
An array with only two dimensions is equivalent to a matrix.

> # array(data, dim = c(rows, columns, slices, etc.))
> x10 <- array(data = c(1:4), dim = c(1, 3, 2))
> x10



26 L. Ippel

Again we see that [R] fills up the array, starting from the beginning. Variable x10
has 1 row (first entry of the dim argument), 3 columns (second entry of the dim
argument), and 2 slices (third entry of the dim argument). The only downside of an
array is that you have to keep in mind how many dimensions you have and which
dimension is which. Of course we could continue and add more dimensions but for
the sake of clarity we stop at three dimensions. We skip adding and selecting elements
from an array, because it is similar to a matrix.

2.1.2.5 List

The last storage is a ‘list’, which is different from the other storages in the sense that
a list wraps storages. For instance, a list can contain a vector in the first cell, a data
frame in the second, an other list in the third and so on. This makes a list very flexible
and complicated at the same time. A list can be very convenient as an output of your
analyses, storing all results in one place, however selecting one single number from
a large list might end up challenging.

> # list(cell 1, cell 2, cell 3, etc.)
> x11 <- list(scalar=x1l, vector=x3, array=x10, c(1,2))
> x11

Sscalar

[1] 10

Svector
[1] 1 2 NA

Sarray
, 01
[,11 [,2]1 [,3]
(1,1 1 2 3
;. 2
[,11 [,2] [,3]
[1,] 4 1 2
[[4]]
[11 1 2

Note that you can label the different cells, but it is not necessary to do so. You label
the cells by adding the label before the object you stored in the cell: scalar = x1
labels the first cell as scalar. As mentioned above, selecting an element from a list is
somewhat odd in the sense that adding or selecting an element depends on what you
have stored in the list and whether you have labeled the different cells. If you have
labeled the cells you can select the cell just like you would select a variable in a data
frame, if you did not you select a cell using double squared brackets:



2 Getting Started with [R]; a Brief Introduction 27

> # select second cell from list x11
> xll$vector
[1] 1 2 NA
> x11[[2]]
[1] 1 2 NA

Selecting an element within a cell then depends on which storage is in the cell, and
it would be repetition of the text above to illustrate how each of them work.

2.1.3 Storage Descriptives

As mentioned above, it is very important to inspect the result [R] produced to check
whether it actually did what you intended. Sometimes looking at the entire object at
once is cumbersome. [R] has some tools that make a first inspection whether your
object looks like what you expected:

e class(x, ...): x is an arbitrary object. This function tells you which storage type is
between the brackets

e str(X, ...): xis an arbitrary object. This function tells you whether x contains strings
or numbers

e summary(x, ...): X is an arbitrary object. This function returns, depending on the
kind of object you want the summary from, statistics such as number of cases,
averages, standard deviations, etc.

e length(x): gives the length of the object x, usually x is a vector, but it works for
other objects as well.

e dim(x): x is anything but a vector. The function gives the dimensions: first number
of rows, then number of columns etc.

e nrow(x): X can be a vector, matrix, array or data frame. The function returns the
number of rows

e ncol(x): like nrow, however this function returns columns

Note that some function have ‘...” and others do not; these dots imply that additional
arguments could be included in the function.

2.2 Working with [R]
2.2.1 Writing Functions

Now you have some sense of how data looks like in [R], you of course want to
do something with these data. The tools to work with are called functions. Without
being explicit about it, we already came across many functions. All the commands
we have used so far, whether it is to make a vector (c()), or to get some summary
about an object (summary()), these are functions integrated in [R] already. You can,



28 L. Ippel

and most likely will, write functions yourself as well. Writing functions is done as
follows:

> test <- function(argument_1, argument_2, ...)
+ {

+ actions

+ return()

+ )

>

> result <- test(argument_1 = X, argument_2 = Y)

You define a function (in this case: test) and you provide the function with arguments.
A (very simple) example could be

multiplier <- function(input, times)
{

local_result<- input*times
return(local_result)

global_result <- multiplier (input=5, times=2)
global_result

[1] 10
> # note local_result is defined within the function
> # therefore it doesn’t exist globally:
> local_result

Error: object’local_result’ not found

Note that, although we indent the code, this is not required. Indentation improves
readability, but it does not have any other function in [R].

Sometimes you only want your function to perform the action if a certain condition
or conditions are satisfied, for instance if the result of the multiplier is zero, you might
want to add 1:

multiplier_not_zero<- function (input, times)
{

local_result<- input*times

if (local_result==0)

{

local_result<- 1

}

return(local_result)
}
multiplier_not_zero(input = 3, times = 0)
[11 1

>
+
+
+
+
+
+
+
+
>



2 Getting Started with [R]; a Brief Introduction 29

When there are multiple conditions you want to be satisfied before your function
should run you can make combinations using the “and” and “or” operators which
are written as “&” and “I” respectively. For example:

o |:if(x1 <= 1|x1 >=15) { action }: or-statement
e &:if(x] >= 1&x1 xx1 < 10) { action }: and-statement

2.2.2 Data: Input and Output

2.2.2.1 Loading Data into [R]

Next, we discuss how you get your data in [R] to handle them. How to get your data
into [R] depends on the format in which the data is stored. Most data formats (*.txt,
* RData, *.csv) can be easily included:

> # *.txt file: are there variable names: header=T
> # what separates different values? sep="‘’

> my_datl <- read.table(‘directory/filename.txt’,
+ header, sep='")

> # *.RData file

> my_dat2 <- load(‘directory/filename.RData’)

> # *.csv file

> my_dat3 <- read.csv(‘directory/filename.csv’,

+

header, sep='"')

For files with other extensions, you might need an additional package to load the
data, for instance the package ‘foreign’ or ‘Hmisc’ for SPSS and SAS.

To prevent yourself from typing in the same directory repeatedly and having very
long calls for your data, you can also set (and get) your working directory as follows:

> setwd ('the/directory/you/want/to/work/in")
> getwd ()
[1] ‘the/directory/you/are/working/in’

Knowing in which directory you are working saves you an elaborate search in all
your files and folders when you saved an [R] object, which can be done as follows:

# *.txt file
write.table(‘'directory/filename.txt’, header,
sep="'")

# *.RData file

save (‘directory/filename.RData’)

# *.csv file

vV V. V. V + VvV V

write.csv(‘directory/filename.csv’, header, sep=‘'"’)



30 L. Ippel
2.2.2.2 Simulate Data

When you do not have any data but you do want to practice with [R], or more likely,
you want to test a new method it is useful to create data. [R] has plenty functions
to generate (random) data. We put random between brackets because [R] will never
provide you with fully random data, simply because your computer has a set of rules
to create these data and therefore it cannot be completely random. Although this is
an interesting topic, the point we want to make is that you can get the exact same
‘random’ data by fixing the begin point of the algorithm which creates the data using
‘set.seed(number)’. For instance, if you want 3 draws from a normal distribution
with mean = 10, and standard deviation = 2:

> set.seed(64568)
> rnorm(n=3, mean=10, sd=2)
[1] 10.468961 8.574238 9.754691

You will see that if you insert this code that you will have the exact same three
numbers. Besides generating data using ‘rnorm()’ you can get other distributional
information about the normal distribution using either

e dnorm(x, mean, sd): x is a scalar, the function returns the density of normal dis-
tribution at x

e pnorm(X, mean, sd): like above, though this function returns the lower tail proba-
bility

e gnorm(x, mean, sd): opposite of the above one: x is the probability and the function
returns the quantile belonging to probability x

Similar functions exist for many distributions. Because different distributions require
different parameters, the arguments within the function differ, though the idea is
similar.

2.2.3 For Loop

One of the tools which is common in many program languages is the for loop. The
for loop in [R] is a simple function to go line by line through the data. Because it is
a simple function it makes life easy when doing for instance simulations, however
it also makes life slow. The for loop in [R] has the downfall that it can be rather
slow when working with complex computations in combination with large datasets.
In case of complex computations, you might want to look into the plyr package,
which has some integrated functions which also perform computations on every line
of data, though do it more quickly. For now, let us have a look at the for loop.



2 Getting Started with [R]; a Brief Introduction 31

The function works as follows:

> # for loop example
# 1if you want to store the result
# you have to define the result outside the for loop:
row_average <- c()
for(i in 1 : nrow(x7))
{
row_average[i] <- mean(x7[i,])

print (row_average[i])

+ + + + V. V V V

}

[11 2

(11 3

> row_average
(1] 2 3

First note that you should store the result of the computation performed by the loop
in a variable which will not be over-written. Second, objects defined within the for
loop are accessible outside the local scope of the for loop. Apart from the fact that
this is just a very simply example to illustrate for loops, the same result could have
been obtained alternatively by

> (row_average <- rowMeans (x7))
[11 2 3

> # putting brackets around an assignment
> # tells [R] to print the object
>
> # example of one of plyr functions
> adply(.data=x7, .margins=1, .fun=mean)
X1 vl
1 1 2
2 2 3

where the adply function returns a data frame with X1 the variable which indicates
the row numbers and V' 1 being the averages per row.

2.2.4 Apply Function

An example of a function which is already more efficient but also more advanced than
the for loop is the ‘apply’ function. It is incorporated in the [R] base, so no additional



32 L. Ippel

packages are required. The function loops through either arrays or matrix-like objects
(as long as it has more than one dimension). The function works as follows:

> # example of apply function

> # apply (array, margin, function)
> apply(x10, 1, mean)

[1] 2.166667 # mean of the 2 rows
> apply (x10, 2, sum)

[1] 5 3 5 # sum of each column

> apply (x10, 3, FUN=function (x)

+ {return(x*2)})

[,11 [.2]
(1,1 2 8
(2,1 4 2
(3,1 6 4

> # per slice the elements are multiplied by 2,
> # column 1 = slice 1, column 2 = slice 2

The apply function can deal with many preprogrammed functions. You can also write
your own functions. When you get the hang of these functions, you also might want
to look of variations of the apply function (among others):

mapply(function, arguments): multiple argument version of apply,

lapply(x, function): like apply, but it returns a list as result, of the same length as
the array you put in,

sapply(x, function): an easier function which does the same as lapply,

tapply(x, margin, function): applies a function to each cell of a ragged array.

2.2.5 Common Used Functions

You do not have to program every single function you can think of yourself, because
many of the simple descriptives are already included in [R], for instance:

e mean(x, ...): X is a vector (other storages will be vectorized), the function returns
arithmetic mean,

sd(x, ...): like the previous, returning the standard deviation,

var(X, ...): like the previous, returning the variance,

cov(x, ...): x consist of two dimensions, the function returns the covariance,
corr(x, ...): like the previous, returning the correlation,

table(x, ...): this function returns a frequency table

max(X, ...): X is an arbitrary object, the function returns highest value,

min(X, ...): like the previous, returning the lowest value.



2 Getting Started with [R]; a Brief Introduction 33

among many more. Fill in your object of interest between the brackets and [R] returns
the answer in no time. Besides these numerical descriptives of your data, [R] allows
you to inspect your data graphically with different kind of plots:

e plot(x, ...): add type=1" such that a line will connect the data points
e lines(x, ...): add more lines to your plot

e points(x, ...): add more data points to your plot

e hist(x, ...): histogram

e boxplot(x, ...)

e barplot(x, ...)

Even many analyses are ready-to-use in [R], so no additional programming is
required to do:

e anova(x, ...): X containing the results returned by a model fitting function (e.g., Im
or glm). The function can do both model testing as well as model comparisons.
glm(formula, data, ...): to fit generalized linear models

Im(formula, data, ...): to fit linear regression

princomp(formula, data, ...): to do principle component analysis

t.test(x, ...): the function wants at least one vector, additional arguments can be
included to test one or two sided etc.

2.2.6 Packages

When you want to do some analysis which is not included in [R] base, you either
have to program it yourself or see if others have done it before you (and made it
publicly available). If the latter is the case you can include this code as follows:

> install.packages (‘plyr’)

which will install the plyr package, which we already discussed above. What hap-
pens next is a pop-up window to select the server it should download the package
from. Select your country (or something close) to complete the installation of the
package. In order to use the package you have to attach the package to your working
environment as follows:

> library (plyr)

Each time you open [R] you do have to attach packages again, but you do not have
to install them every time. Thus, you do not want to put ‘install.packages()’ in your
script (but in the console), however you do want to include ‘library()’ in your script
so when you run your entire script it will automatically load the packages.



34 L. Ippel
2.2.6.1 Useful Packages

There are a lot of packages available, not all of them of very good quality. Here we
shortly list packages that are useful and/or used throughout the book

e digest: allows users to easily compare arbitrary [R] objects by means of hash
signatures

e directlabels: adds nice labels to (the more fancy) plots

foreign: allows you to include data files from other software programs such as

SPSS

GGeally: to make a matrix of plots produced by ggplot2

ggplot2: to make pretty plots

gridExtra: to arrange multiple grid-based plots on a page

lattice: to make pretty plots

Ime4: to do multi-level analyses

MASS: functions and datasets to support Venables and Ripley (2002)

plyr: for faster for loops

poLCA: to perform latent structure analysis

psych: for multivariate analysis and scale construction using factor analysis, prin-

cipal component analysis, cluster analysis and reliability analysis

reshape?2: to transform data between wide and long formats

e xtable: export tables to LaTeX or HTML

2.3 Mastering [R]

This is of course a very short introduction in [R] which allows you to do the very
basics of data analysis and hopefully understand what the authors of the following
chapters are doing. There is only one way to truly learn [R], which is hands on.
Practice (eventually) makes perfect, so do not be discouraged when you are faced
with many errors, warnings or unexpected results. There is an extensive help function
in [R]: if you do not know how a function works, you can get information by putting
it within the help function or, put one or two question marks before the name of the
function.

> help(plot)
> ?plot
>??plot

One question mark will provide you with the web page with information about
the particular function including examples. Two question marks will give you an
overview of closely related topics. When these pages do not provided you with the
information you need or understand, there is also a large community of [R] users,
which have answered many questions at the many forums out there. Do not be afraid



2 Getting Started with [R]; a Brief Introduction 35

to plug your error, warning, or problem in a search engine on the Internet, because
you will be amazed about the amount of information, examples and ready-to-use
solutions that is out there, whether you have beginner questions or more advanced
problems.

2.3.1 Further Reading

Below we listed some readings, which are either focused on introducing and working
with [R], or on statistics using [R], both have proven to be useful.

e http://cran.r-project.org/doc/manuals/R-intro.pdf: A users guide to [R] in which
the topics covered in this chapter are discussed in more details, including some
code to work with

e http://cran.r-project.org/doc/contrib/Torfs+Brauer- Short-R-Intro.pdf: This arti-
cle has besides what is mentioned in this chapter, an additional overview of some
integrated functions

e Discovering statistics using R by Field et al. (2012): This is more a stats book than
a [R] manual, but it does what you expect: it explains statistics in [R]

e Bayesian computation in [R] by Albert (2009): Similar story to the above one,
though dealing with Bayesian analysis

e Introduction to Applied Bayesian Statistics and Estimation for Social Scientist by
Lynch (2007): different angle, similar in content to the above one

References

Albert J (2009) Bayesian computation with R, 2nd edn. Springer

Field A, Miles J, Field Z (2012) Discovering statistics using R. Sage, London

Lynch SM (2007) Introduction to applied Bayesian statistics and estimation for social scientist.
Springer

Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn. Springer


http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

2 Springer
http://www.springer.com/978-3-319-26631-2

Modern Statistical Methods for HCI
Robertson, |.; Kaptein, M. (Eds.)
2016, XX, 348 p, 77 illus., Hardcover
ISBM: 878-3-319-26631-2



	2 Getting Started with [R]; a Brief  Introduction
	2.1 Introduction
	2.1.1 Data Types
	2.1.2 Storage
	2.1.3 Storage Descriptives

	2.2 Working with [R]
	2.2.1 Writing Functions
	2.2.2 Data: Input and Output
	2.2.3 For Loop
	2.2.4 Apply Function
	2.2.5 Common Used Functions
	2.2.6 Packages

	2.3 Mastering [R]
	2.3.1 Further Reading

	References


