
Preface

This book presents fuzzy logic and LabVIEW FGPA for designing fuzzy logic
controllers. This is a book for implementing fuzzy logic controllers in LabVIEW
FPGAs.

Despite the FPGA’s attractive features, their adoption by industrial control and
signal processing engineers has been slower than processors and DSPs. This is due
to several factors. First, these engineers traditionally programmed processors and
DSPs using higher level languages, such as C. However, FPGAs possessed com-
plex development tool chains that required designs to be specified using hardware
description level (HDL) and register transfer level (RTL) semantics. Furthermore,
traditional FPGA development tools lacked intellectual property (IP) blocks for
common industrial applications, such as ADC and encoder interface logic, PWM
and commutation logic, timing and triggering functions, PID control algorithms,
memory management, and data transfer functions. In addition, FPGAs natively
supported integer data types only which significantly increased development
complexity for analog control and signal processing applications that required math,
control, and digital signal processing algorithms, as opposed to floating point
processors. Also, traditional FPGA simulation tools were operated at the digital
design level and were not interoperable with the type of dynamic simulation tools
used by control systems and signal processing engineers for modeling continuous
time dynamic system response. Moreover, FPGAs compilation times were rela-
tively long, as compared to processors and DSPs. For example, typical FPGA
compilation times today range from 15 to 90 min, whereas processor and DSP
compilations are typically completed in less than one minute. Finally, the sequential
text-based semantics of traditional register level development tools made it rela-
tively difficult to specify timing and concurrency among parallel processing tasks in
a way that leverages the inherent parallel processing capability of FPGA devices.

Despite these traditional development challenges, the successful adoption of
FPGAs in application areas such as consumer electronics, and the resulting drop in
the price of FPGAs has spurred the interest of industrial control design and sim-
ulation vendors. Such vendors are creating the next generation FPGA development

ix



tools that are designed for engineers with little or no digital design expertise.
The goal of these next generation “system-level” graphical design tools is to
empower control, simulation, and signal processing engineers to harness the full
power of the FPGA technology. Graphical system design tools are intended to
provide a more intuitive, high level programming paradigm that simplifies the
creation of complex parallel processing and control applications. Also, they are
intended to provide relatively competitive performance and resource usage, as
compared to traditional HDL development tools.

Graphical data flow programming languages are a natural fit for FPGA devel-
opment due to their inherent sense of parallelism and concurrency that naturally
maps to hardware design. Also, recent technological advances are enabling
designers to place their FPGA code within a high-level dynamic simulation envi-
ronment. This ability to cross the boundary between the digital domain of the FPGA
and the analog multi-physics domain of the system is facilitating a “true” mecha-
tronics approach to development, in which the complex interplay between FPGA
silicon logic, power electronic components, electric motor drives, and mechanical
systems can all be simulated in a virtual environment without the need to wait for
long FPGA compilations.

The ability to quickly iterate and optimize the FPGA logic design in a mecha-
tronics simulation environment, combined with the new high-level programming
tools for FPGAs is reducing dramatically the barriers that prohibited wide adoption
of FPGAs in industrial control.

In addition to the improved design and simulation tools for FPGAs, the next
generation tools are providing a rapidly growing library of IP blocks for common
control and DSP algorithms through code sharing services. On the other hand, the
number of books that present Fuzzy logic Control is big as Fuzzy logic control is
one of the most important control techniques. However, several books are only
mathematical descriptions and are not focused on implementation of fuzzy logic
control. Moreover, there are not enough books that deal with implementing fuzzy
logic controllers in FPGAs. There is still a lot of vagueness and misunderstanding
around the implementation of fuzzy logic controllers implemented in LabVIEW™
FPGA.

Since this book presents a clear description of fuzzy logic control type 1 and 2
that are the most used fuzzy logic representations, the implementation in
LabVIEW™ FPGA can be developed. Several experimental examples are pre-
sented in order to show the potential of Fuzzy Logic controllers implemented in
FPGA.

Finally, a complete LabVIEW™ FPGA toolkit for fuzzy logic type 1 and type 2
is included in the book. This toolkit is based on fix point representation that
LabVIEW™ FPGA needs. This toolkit is developed for working on LabVIEW™
real-time systems.

Pedro Ponce-Cruz
Arturo Molina

Brian MacCleery

x Preface



http://www.springer.com/978-3-319-26655-8


