
Chapter 2
LabVIEW™ FPGA

2.1 Field-Programmable Gate Array (FPGA)

An field-programmable gate array (FPGA) [1] is a device that contains a matrix of
reconfigurable gate array logic circuitry. When an FPGA is configured, the internal
circuitry is connected in a way that creates a hardware implementation of the
software application. Unlike processors, FPGAs use dedicated hardware for pro-
cessing logic and do not have an operating system. FPGAs are truly parallel in
nature, so different processing operations do not have to compete for the same
resources. As a result, the performance of one part of the application is not affected
when additional processing is added. Also, multiple control loops can run on a
single FPGA device at different rates. FPGA-based control systems can enforce
critical interlock logic and can be designed to prevent I/O forcing by an operator.
However, unlike hard-wired printed circuit board (PCB) designs which have fixed
hardware resources, FPGA-based systems can literally rewire their internal circuitry
to allow reconfiguration after the control system is deployed to the field. FPGA
devices deliver the performance and reliability of dedicated hardware circuitry.

A single FPGA can replace thousands of discrete components by incorporating
millions of logic gates in a single integrated circuit (IC) chip. The internal resources
of an FPGA chip consist of a matrix of configurable logic blocks (CLBs) sur-
rounded by a periphery of I/O blocks. Signals are routed within the FPGA matrix
by programmable interconnect switches and wire routes (see Fig. 2.1).

FPGA technology provides the reliability of dedicated hardware circuitry, true
parallel execution, and lightning fast closed-loop control performance. This appli-
cation note provides answers to frequently asked questions (FAQs) regarding the
use of reconfigurable FPGA-based hardware targets for closed-loop control appli-
cations. A compactRIO is shown in Fig. 2.2.
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2.1.1 How Do FPGA-Based Control Systems Compare
to Processor-Based Systems?

Like processor-based control systems, FPGAs have been used to implement all types
of industrial control systems (see Fig. 2.3), including analog process control, discrete
logic, and batch or state machine-based control systems. However, FPGA-based
control systems differ from processor-based systems in significant ways.

Fig. 2.1 Looking inside an FPGA chip

Fig. 2.2 NI CompactRIO is a small, rugged FPGA-based control system
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When you compile [2] your control application for an FPGA device, the result is
a highly optimized silicon implementation that provides true parallel processing
with the performance and reliability benefits of dedicated hardware circuitry. Since
there is no operating system on the FPGA chip, the code is implemented in a way
that ensures maximum performance and reliability.

In addition to offering high reliability, FPGA devices can perform deterministic
closed-loop control at extremely fast loop rates. In most FPGA-based control
applications, speed is limited by the sensors, actuators, and I/O modules rather than
the processing performance of the FPGA. For example, the proportional-integral-
derivative (PID) control algorithm that is included with the LabVIEW FPGA
Module executes in just 300 ns (0.000000300 s). PID control is commonly used for
regulating analog process values such as pressure, temperature, force, displacement,
fluid flow, or electrical current.

FPGA-based control systems offer deterministic closed control performance at
rates exceeding 1 MHz. In fact, many algorithms can be executed in a single cycle
of the FPGA clock (40 MHz). Processing is done in parallel, so multi-rate control

Fig. 2.3 Performing PID
control in LabVIEW FPGA
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systems are easy to implement. Since control logic runs in dedicated hardware
subsystems on the FPGA, applications do not slow down when additional pro-
cessing is added. In many cases, a software-defined gate array in FPGA hardware
can be used to replace a costly and time-consuming custom PCB layout.

FPGAs can digitally process signals at very high speeds and are often used to
reconfigure the I/O module functionality. For example, a digital input module can
be used to simply read the true/false state of each digital line. Alternately, the same
FPGA can be reconfigured to perform processing on the digital signals and measure
pulse width, perform digital filtering, or even measure position and velocity from a
quadrature encoder sensor.

FPGA-based systems often incorporate motion control and motor drive com-
mutation in a single FPGA-based control application. By contrast, processor-based
systems typically offload the motor drive commutation to separate hardware since
motor current or torque control requires fast loop rates (commonly 20 kHz) and
precise timing of the gate drive commutation signals. A comparison between
processors controller and LabVIEW FPGA is presented in Fig. 2.4.

2.1.2 How Do I Program My Control Application Using
the LabVIEW FPGA Module?

The LabVIEW FPGA Module enables you to use high-level graphical dataflow
programming to create a highly optimized gate array implementation of your analog
or digital control logic. You can use normal LabVIEW programming techniques to
develop your FPGA application. When you target FPGA hardware such as a
CompactRIO chassis or R Series intelligent data acquisition (DAQ) device, the
LabVIEW programming palette is simplified to contain only the functions that are
designed to work on FPGAs [3]. The primary programming difference compared to
traditional LabVIEW is that FPGA devices use integer math rather than
floating-point math. Also, there is no notion of multithreading or priorities since
each loop executes in independent dedicated hardware and does not have share
resources—in effect, each loop executes in parallel at “time critical” priority.

Performance limited to 1 kHz

Serial execution, single rate control

Performance slows as app. grows

Operating system runs control logic 

I/O modules have fixed functionality

Custom circuitry requires board layout

Separate motion control system

Closed loop performance beyond 1 MHz

Parallel execution, multi-rate control

No slow down as application grows

Control logic in dedicated hardware

I/O functionality is reconfigurable

Software defined gate array

Motion integrated with other control logic

Fig. 2.4 Processor-based control (left) compared to FPGA-based control (right)
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The LabVIEW FPGA palette contains extensive intellectual property (IP) li-
braries [4]. Table 2.1 shows a list of some of the key function blocks for developing
FPGA-based control systems. For more details, see the LabVIEW FPGA Module
user manual in NI website.

Table 2.1 Lists of some of the key function blocks for developing FPGA-based control systems

Category Key functions for control Common control applications

Programming
structures

For Loop, While Loop, Case
Structure, Feedback Node,
Sequence Structure, Single Cycle
Timed Loop, Shift Register, HDL
Interface Node

Analog process control loops,
state machines, batch control,
sequential function charts, event
response, repeated execution,
signal latching, subroutines,
sequencing, system state control
(power up, shut down, watchdog,
fault, …)

Input/Output Analog Input, Analog Output,
Digital Input, Digital Output,
Digital Port Input, Digital Port
Output

Interfacing to digital I/O, voltage,
current, temperature, load,
pressure, strain, relay, 4–20 mA,
H-bridge, CAN communication,
wireless networking, and other
signals

Analog control Discrete PID, Discrete Control
Filter, Discrete Delay, Discrete
Normalized Integrator, Initial
Condition, Unit Delay,
Zero-Order Hold, Backlash, Dead
Zone, Friction, Memory Element,
Quantizer, Rate Limiter, Relay,
Saturation, Switch, Trigger,
Linear Interpolation, Sine
Generator, Look-Up Table 1D

Analog control algorithms,
filtering of noisy signals, limiting
input/output signals, scaling
nonlinear sensor signals to
engineering unit proportional
values, function generation, sine,
cosine, log, exponential, gain
scheduling, ramp/soak

Discrete logic And, And Array Elements,
Boolean Array To Number,
Boolean To (0,1), Compound
Arithmetic, Exclusive Or, Implies,
Not, Not And, Not Exclusive Or,
Not Or, Number To Boolean
Array, Or, Or Array Elements,
Boolean Crossing

Digital control, digital logic,
Boolean logic, relay ladder logic,
sequence of events, state
transitions, control of 2-state and
3-state discrete devices, edge
detection

Comparison
functions

Equal?, Equal To 0?, Greater?,
Greater Or Equal?, Greater Or
Equal To 0?, Greater Than 0?,
Less?, Less Or Equal?, Less Or
Equal To 0?, Less Than 0?, Not
Equal?, Not Equal To 0?, Select,
Max and Min, In Range and
Coerce, Zero Crossing

Alarming, triggering, event
detection, peak detection, signal
comparison, thresholding, change
of state detection, signal selection
(high, min, max), limit testing,
selector/multiplexer,
heating/cooling split range control

(continued)
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2.1.3 How Does the LabVIEW Compiler Translate My
Graphical Code into FPGA Circuitry?

The LabVIEW FPGA module compiles your LabVIEW application to FPGA
hardware using an automatic multistep process [2]. Behind the scenes, your
graphical code is translated to text-based VHDL code. Then industry standard
Xilinx ISE compiler tools are invoked and the VHDL code is optimized, reduced,
and synthesized into a hardware circuit realization of your LabVIEW design. This
process also applies timing constraints to the design and tries to achieve an efficient
use of FPGA resources (sometimes called “fabric”).

A great deal of optimization is performed during the FPGA compilation process
to reduce digital logic and create an optimal implementation of the LabVIEW
application (see Fig. 2.5). Then the design is synthesized into a highly optimized
silicon implementation that provides true parallel processing capabilities with the
performance and reliability of dedicated hardware [5].

The end result is a bit stream file that contains the gate array configuration
information. When you run the application, the bit stream is loaded into the FPGA

Table 2.1 (continued)

Category Key functions for control Common control applications

Math Absolute Value, Add, Compound
Arithmetic, Decrement,
Increment, Multiply, Negate,
Quotient and Remainder, Scale
By Power Of 2, Sign, Subtract,
Saturation Add, Saturation
Multiply, Saturation Subtract,
Join Numbers, Logical Shift,
Rotate, Rotate Left With Carry,
Rotate Right With Carry, Split
Number, Swap Bytes, Swap
Words

Analog signal manipulation,
summing, counter/timers, rate of
change detection, electronic
gearing/camming, accumulator,
averaging, totalizer, digital signal
processing

Data transfer,
timing, triggering
and
synchronization

Global Variable, Local Variable,
FIFO Read, FIFO Write, Memory
Read, Memory Write, Interrupt,
Loop Timer, Tick Count, Wait,
Generate Occurrence, Set
Occurrence, Wait On Occurrence,
First Call?

Watchdogs, timers, accumulators,
pulse width
measurement/generation, timer
on/off delay

NI SoftMotion
module

Motion ControlLoop PID (32-bit),
Spline Engine (Interpolation)

Multiaxis coordinated motion
control, trajectory generation,
straight line moves, jogging, arc
move, contouring, interpolation

Digital filter
design toolkit

Filter Design, Fixed-Point Tools,
Code Generation

Digital filter design, convert
floating-point to fixed-point,
generate LabVIEW FPGA code
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chip and used to reconfigure the gate array logic. The bit stream can also be loaded
into nonvolatile flash memory and loaded instantaneously when power is applied to
the target. There is no operating system on the FPGA chip; however, execution can
be started and stopped using enable-chain logic that is built into the FPGA
application.

2.1.4 FPGAs Are Fast, but How Do Faster Loop Rates
Improve Control System Performance?

In general, the speed of the control system impacts its performance, stability,
robustness, and disturbance rejection characteristics (see Fig. 2.6). Faster control
systems are typically more stable, easier to tune, and less susceptible to changing
conditions and disturbances.

To provide stable and robust control, a control system must be able to measure
the process variable and set an actuator output command within a fixed period of
time. Systems (plants) that can change quickly require fast control systems to
guarantee reliable performance within acceptable limits. As a rule, the control loop
rate should be at least ten times faster than the time constant of the system (plant).
The time constant is a measure of the speed of the system.

Translation Optimization Synthesis Bit Stream

Timing constraints

VHDL generation
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Place and Route

Timing Verification
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Download & Run

Fig. 2.5 LabVIEW FPGA compilation process
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Fig. 2.6 Typical closed-loop control system
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For example, the current in a DC motor may change as fast as 1 A per mil-
lisecond in response to a 24 V output from an H-bridge driver. To precisely control
the motor current, the control system must sample the current quickly and make
frequent adjustments to the actuator output.

2.1.5 What FPGA Hardware Targets Are Available
from NI?

The CompactRIO reconfigurable embedded system (see Fig. 2.7) is a small modular
system for industrial applications that require the highest level of ruggedness and
reliability. CompactRIO is designed for harsh environments and offers a wide
temperature range, high shock and vibration ratings, and an array of industrial
certifications and ratings. CompactRIO is rated for marine environments, Class I,
Division 2 rating for hazardous locations, and offers up to 2300 V of isolation. Like
all FPGA targets from NI, CompactRIO uses the C Series industrial I/O modules for
low-cost connectivity directly to industrial control sensors and actuators. In addi-
tion, there are many third-party vendors around the world that offer C Series I/O and
communication modules.

The NI R Series intelligent DAQ devices are plug-in boards for PCI and PXI/
CompactPCI buses with onboard FPGA hardware for user-defined signal pro-
cessing and control. Up to 8 analog inputs, 8 analog outputs and 160 digital I/O
channels are built into the intelligent DAQ devices. You can also connect an
expansion chassis to any digital port and add C series industrial I/O modules.
The NI intelligent DAQ devices enable you to define your own hardware func-
tionality and offer limitless possibilities for timing, triggering, synchronization,
digital signal processing, and control.

The PXI R Series intelligent DAQ system offers FPGA performance and reli-
ability in the industry standard PXI form factor (see Fig. 2.8). In addition to the
intelligent DAQ devices from NI, hundreds of non-reconfigurable plug-in boards
are available from NI and other vendors around the world. The PXI system can be
booted into Windows or the LabVIEW Real-Time operating system. C Series I/O
modules provide signal conditioning and combine instrumentation grade accuracy

Fig. 2.7 NI CompactRIO
reconfigurable embedded
system
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with industrial features such as isolation or high current drive capability. The R
Series Expansion Chassis is used to connect C Series modules to intelligent DAQ
devices. For more information, see the online application notes explaining the R
Series Intelligent DAQ devices.

The PCI R Series Intelligent DAQ System enables you to add FPGA-based
control capabilities to any desktop, industrial PC, or single-board computer
(SBC) containing a PCI slot. Like all NI FPGA targets, the intelligent DAQ devices
can load their bit stream instantly at power up from nonvolatile flash storage located
on the plug-in board (see Fig. 2.9).

The National Instruments Compact Vision System (see Fig. 2.10) is a rugged
standalone platform for industrial machine vision and I/O applications such as
robotics, automated test, and automated inspection. All Compact Vision Systems

Fig. 2.8 PXI R series intelligent DAQ system

Fig. 2.9 PCI R series intelligent DAQ system
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contain a user-programmable FPGA for implementing custom triggers, counters,
pulse width modulation (PWM), motion, and other digital control operations. NI
Compact Vision systems use IEEE 1394 (FireWire) technology for interfacing to
more than 300 compatible cameras.

2.1.6 What Closed-Loop Control Performance Can I
Achieve?

In most cases, the computational performance of the FPGA is so fast that the
control loop rate is limited only by the sensors, actuators, and I/O modules (see
Fig. 2.11). This is a stark contrast to traditional control systems, where the pro-
cessing performance was typically the limiting factor.

Fig. 2.10 NI compact vision
system

I/O I/O

T

Algorithm

Fig. 2.11 The loop cycle time (T) is the time taken to execute one cycle of a control loop
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For example, using R Series intelligent DAQ devices, the input/output and
control logic calculations for discrete control applications can all be implemented at
a 20 MHz control loop rate using the 5 V TTL digital I/O lines on the boards. These
digital lines can be accessed from within a LabVIEW single-cycle timed loop
(SCTL) executing at a 25 ns rate. Significant amounts of control logic can usually
be included in a SCTL.

For 24 V discrete logic control applications using high current C Series digital
I/O modules, the loop rate is limited to the update rate of the modules. For example,
the NI 9423 digital input and NI 9474 digital output modules both have 1 μs update
rates, resulting in a maximum 24 V discrete control performance of 500 kHz.

In analog process control applications, the control loop rate is also limited by the
update rate of the I/O modules. The NI 9215 analog input and NI 9263 analog
output modules offer 16-bit resolution and simultaneous sampling capabilities at
10 μs update rates. This results in a closed-loop analog process control performance
of 50 kHz.

2.1.7 How Much Jitter Can I Expect in My FPGA-Based
Control Loops?

A common gauge of control system performance and robustness is jitter (see
Fig. 2.12), which is a measure of the variation of the actual loop cycle time from the
desired loop cycle time. In general, purpose operating systems such as Windows,
the jitter is unbounded so closed-loop control system stability cannot be guaranteed.
Processor-based control systems with real-time operating systems are commonly
able to guarantee control loop jitter of less than 100 μs. In FPGA-based applica-
tions, the control loop does not need to share hardware resources with other tasks
and control loops can be precisely timed using the FPGA clock. The jitter for
FPGA-based control loops depends on the accuracy of the FPGA clock source. In
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the case of the CompactRIO cRIO-910x reconfigurable chassis, the FPGA clock
jitter is only 250 ps (0.000000000250 s) when using a 40 MHz FPGA clock rate.

2.1.8 Creating a New LabVIEW Real-Time Project
and Adding I/O

Now it is presented how the real-time system is included in a project [6]. This step
allows to configure inputs and outputs (I/O) in real time.

1. Launch NI LabVIEW by clicking on the desktop icon. Then click on the
Real-Time Project (see Fig. 2.13) link to start a new LabVIEW project for
your NI CompactRIO system.
LabVIEW 8.20 has a Real-Time Project Wizard that makes creating and
configuring real-time applications easy. To help you get started, the wizard
enables you to choose an appropriate programming architecture and auto-
matically generates a software template application.

Fig. 2.13 Real-time project
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2. To select the working folder for your project, click the folder ( ) icon,
navigate to H:\VirtuaLab\CompactRIO and LabVIEW FPGA Getting
Started Tutorial\Exercises, and then click the Current Folder button. Name
your project Custom Trigger. Keep all of the project defaults as shown below
and click the Next button (see Fig. 2.14).

3. Change your Target Configuration to Two loops. Under the Host
Configuration section (see Fig. 2.15), check the Include user interface box.
Then click Next.
The LabVIEW 8.20 Real-Time Project Wizard makes it easy to create a
complete CompactRIO embedded system that includes an FPGA application
(see Fig. 2.16), real-time processor application, and networked Windows host
computer application. After this exercise is complete, you could use the tem-
plate applications created by the wizard to create a complete networked system,
including a deterministic loop running on the real-time controller to commu-
nicate with the FPGA and a lower priority loop to performed network com-
munication, file logging, or additional analysis.

4. Click the Browse button to find the networked target you configured in MAX.
Expand Real-Time CompactRIO folder and wait until your CompactRIO
system is detected (see Fig. 2.17). Highlight your CompactRIO system and
click OK. Then click Next to continue creating the real-time project.

Fig. 2.14 Real-time folder
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5. Notice that the project wizard displays a preview of the project you configured.
Click Finish to finalize the creation of the new real-time project and generate
the application template code (see Fig. 2.18).
When code generation is complete, two pre-built template applications will
automatically open. The Windows host application (host–network–RT (sepa-
rate).vi) includes a chart to plot the data sent by the CompactRIO system over

Fig. 2.15 Real-time target configuration

Fig. 2.16 Real-time application
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the network, and a stop–network shared variable that is used to halt execution
of the real-time embedded application running on the CompactRIO system (see
Fig. 2.19).

6. In the target–multi-rate–variables.vi (see Fig. 2.20) real-time processor
application, navigate to Window≫Show Block Diagram.

Fig. 2.17 CompactRIO detection

Fig. 2.18 Creating a new real-time project
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This embedded processor application produces a simulated I/O signal and
sends the data to the Windows host computer using network-published shared
variables. You would place any time critical routines, such as code to interface
with your FPGA application within the top deterministic loop. Any lower
priority non-deterministic tasks such as data logging or additional analysis
would be placed in the bottom lower priority loop.

Fig. 2.19 Host–network–Real Time.vi
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7. Click the Run button on the real-time processor application (target–
multi-rate–variables.vi). While the embedded application is being deployed,
click the box next to Close on successful completion if it is not already
checked (see Fig. 2.21).

8. Click the Run button on the Windows host application (host–network–RT
(separate).vi). View the sinusoidal waveform displayed on host application
chart (see Fig. 2.22). Click the STOP button on the host application and notice
that the application stops running on both the host and real-time target.

9. In the Project Explorer window (see Fig. 2.23), right-click on the FPGA
Target and select New≫C Series Modules to add your I/O modules to the
project.

10. To automatically detect the I/O modules installed in your chassis (see
Fig. 2.24), expand the C Series Module tab by clicking on the + symbol. Click
Continue when the warning dialog window appears. A pre-built FPGA bit-
stream will be downloaded to auto-detect the installed modules.
Note: If you are working offline without a network connection to your
CompactRIO system, you can still develop your code by selecting New target or
device and manually adding the I/O modules.

Fig. 2.20 Target–multi-rate–variables
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Fig. 2.21 Real-time program deployment

Fig. 2.22 Sine waveform displayed
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11. After the modules are detected, select the modules that will be used in this
exercise (see Fig. 2.25). To do this, first click on the NI 9215 module, then hold
down the Ctrl key and click on the NI 9263 and NI 9401 modules. Click OK
to add all modules to your project.

12. In the Project Explorer window (see Fig. 2.26), right-click on the FPGA
Target and select New≫FPGA I/O to add your I/O channels to the project.
The Analog Input section is highlighted. To highlight all sections, hold down
the Shift key and click on the Digital Port Input and Output section.

13. Next click the Add button to add all of the I/O channels. Then click the OK
button to finish adding the channels to your project (see Fig. 2.27).

Fig. 2.23 Project explorer
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14. In the Project Explorer (see Fig. 2.28) window, right-click on the FPGA
Target and select Collapse All. If you click the + symbol next to the FPGA
Target, your LabVIEW Project should appear similar to what is shown below.
Click the Save All button to save the project and all subVIs.

2.2 Developing the LabVIEW FPGA Application

One of the most important steps to build a fuzzy controller is to design an FPGA
application, so the next section describes how an application is designed. When you
finish a FPGA application, the front panel and block diagram of your completed
FPGA application will look like Fig. 2.29.

Fig. 2.24 Adding targets and devices
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The next step shows how an application is developed. LabVIEW applications
are called “Virtual Instruments” or “VIs.”

1. In the LabVIEW Project Explorer, right-click on the FPGA Target and select
New≫VI to start a new LabVIEW FPGA application. When the VI opens,
navigate to File≫Save. Then browse to the H:\VirtuaLab\CompactRIO and
LabVIEW FPGA Getting Started Tutorial\Exercises folder and save the
application as “Simple AIAO (FPGA)” (see Fig. 2.30).
To make it easier to distinguish the intended execution target, it is recom-
mended that you include the words “FPGA” in the filename of your FPGA
applications.

Fig. 2.25 Modules detected
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Fig. 2.27 Modules selected in the FPGA

Fig. 2.26 FPGA I/O modules
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2. Navigate to the block diagram window for your Simple AIAO (FPGA)
application. (You can also make the block diagram appear by selecting
Window≫Show block diagram while viewing the front panel.) Right-click in
the white area of the block diagram to display the Functions palette. Click on
the thumb tack icon in the top left corner of the Functions palette to tack it
down. Then navigate to the Help menu on your VI and select Show context
help.

Fig. 2.28 Project explorer
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3. Browse through the Functions palette to familiarize yourself with the many IP
blocks that ship with LabVIEW FPGA. Be sure to browse through the
Programming Structures, Timing, Numeric, Boolean logic, Comparison,
FPGA Math and Analysis, FPGA I/O, and Synchronization palettes (see
Fig. 2.31).
If you have the NI SoftMotion Development Module installed, you will see an
additional Spline Engine function under the VisionMotion category that is
used for high-performance multiaxis coordinated motion control. Other motion
control IP blocks, such as a 32-bit motion PID controller function, are located
in the LabVIEW examples directory. To locate these examples, navigate to
Help≫Find Examples. The NI Digital Filter Design Toolkit is another pow-
erful add-on that provides the ability to generate your own custom signal
processing IP blocks for LabVIEW FPGA. For fixed-point filter design, users
can model quantization effects, optimize numeric representation/topology, and
finally deploy the design using automatically generated LabVIEW FPGA code.
A common use for LabVIEW FPGA and RIO hardware is the development of
custom triggering logic. In this exercise, you will program the FPGA to read in
data from an analog channel, compare it to a threshold, and write a
TRUE/FALSE value to a digital channel. If the analog input value exceeds the
threshold then a NI 9401 digital output channel will turn on. You will use the
indicator LED on the module and software front panel indicators on the FPGA
application to view the status.

Fig. 2.29 Font panel and block diagram in FPGA application
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Fig. 2.30 Project explorer

Fig. 2.31 Functions programming
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4. We will begin building the application by reading in analog input channel 0 at a
timed interval. First, place a While Loop from the Functions≫Structures
palette on the block diagram.

5. From the Functions≫FPGA I/O palette, place a FPGA I/O Node function
inside the While Loop.

6. Left-click on the I/O Name terminal and select Analog Input≫NI 9215≫AI0
(see Fig. 2.32).

7. Right-click on the AI0 terminal and select Create≫Indicator. Label the
indicator “AI Ch 0”.

8. From the Functions≫Structures palette enclose the FPGA I/O Node and the
AI Ch 0 indicator in a Flat Sequence Structure. Then right-click on the border
of the sequence structure and select Add Frame Before.

9. Expand the left frame to make more room. Then place a Loop Timer function
(Functions≫Time and Dialog) inside the left frame. Select μsec as the counter
units and 32 Bit as the size of the internal counter.

10. Right-click on the left input terminal of the Loop Timer function and select
Create≫Control. Label the control “AI Scan Rate (uS)”. By timing the loop,
this will set the sampling rate of the simultaneous sampling NI 9215 analog
input module. Using the sequence structure, you insure that the timing interval
between samples is correct even on the first few iterations of the loop.

11. Right-click on the conditional terminal of the while loop (see Fig. 2.33) and
select Create≫Constant. Make sure the constant is set to the default value of
FALSE. The FPGA application should appear as shown below.
By placing the loop timing function in the first frame of the flat sequence
structure, we ensure that the correct loop timing occurs on the first iteration of

Fig. 2.32 Analog Input
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the loop. If no sequence structure was used, the second acquisition would occur
immediately after the first since no delay would be added. That’s because on
first execution, the Loop Timer function sets its internal timing register but
does not add a delay to the loop. In general, for any functions placed in
parallel on the block diagram with no data dependencies, LabVIEW FPGA will
synchronize the start of each parallel function.

12. Place another While Loop structure (Functions≫Structures) on the block
diagram below the analog input loop you just created.

13. Drop down an FPGA I/O Node function (Functions≫FPGA I/O). Left-click
the I/O node and select Analog Output≫NI 9263≫AO0 to access the analog
output channel 0.

14. Right-click on the AO0 terminal and select Create≫Control. Label the control
“AO Ch 0”.

15. Following the same process as you did before, enclose the FPGA I/O Node in
a Flat Sequence Structure, add a frame to the left, and drop in a Loop Timer
function. Select μsec as the counter units and 32 Bit as the size of the internal
counter.

16. Right-click on the input terminal to the Loop Timer2 function and select
Create≫Control. Label the control “AO Scan Rate (uS).” This control will
set the update rate of the NI 9263 analog output module.

17. Right-click on the conditional terminal of the while loop and select
Create≫Constant. Make sure the constant is set to the default value of
FALSE. The FPGA application should appear as shown below in Fig. 2.34.
Note that in LabVIEW FPGA, each loop will execute in parallel. Unlike pro-
cessors, FPGAs use dedicated hardware for processing logic and do not have
an operating system. FPGAs are truly parallel in nature so different processing
operations do not have to compete for the same resources. As a result, the
performance of one part of the application is not affected when additional
processing is added. Also, multiple loops can run on a single FPGA device at
different rates. To learn more, view the FPGA-based Control FAQ.

Fig. 2.33 While loop
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18. Next we will add another loop to perform custom triggering and digital output.
Drop down an additional While Loop below the first two loops.
In this application, we will look for a trigger condition to see if the analog input
is above or below the threshold. This custom trigger logic is implemented
inside a SCTL, which will execute at a 40 MHz rate. If a change is detected, we
will set a digital output on the NI 9401 module to the appropriate value. The NI
9474 module has a worst-case output propagation delay of 1 μs.

19. Place a Timed Loop (Functions≫Structures≫Timed Structures) inside the
while loop.

20. Right-click on the AI Ch 0 indicator and select Create≫Local Variable. Place
the local variable inside the Timed Loop structure. Right-click on the local
variable and select Change To Read.

21. Drop a Greater? function (Functions≫Comparison) on the block diagram
and wire the AI Ch 0 local variable to the top input terminal. Then right-click
on the lower terminal and select Create≫Control. Label the control
“Threshold.”

22. Right-click on the border of the Timed Loop and select Add Shift Register.
This register will store the value of the comparison function and pass it from
one iteration of the loop to the next. Connect the output of the Greater?
function to the input of the shift register on the right border of the timed loop.

Fig. 2.34 Condition terminal while loop
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23. Place a Not Equal? function (Functions≫Comparison) to the right of the
Greater? function and connect the green signal wire to the top terminal of the
Not Equal? function. Then wire the Shift Register value from the left side of
the timed loop to the bottom terminal the Not Equal? function. Finally, wire
the output of the Not Equal? function to the conditional terminal of the timed
loop. If the analog in value has risen above or dropped below the threshold
value then we will stop the timed loop and update the digital output (see
Fig. 2.35).
The SCTL structure instructs the LabVIEW compiler to execute the code inside
of it within a single 25 ns clock cycle of the FPGA (40 MHz). Code inside of a
SCTL not only executes faster, but also uses fewer FPGA resources or “slices.”
However, certain functions are not supported in the SCTL such as analog input
and analog output I/O nodes and the Quotient and Remainder function (an
integer math divide function). If you use an unsupported function inside of a
SCTL, you will get a compile error early in the compilation process.

24. Right-click the output of the Shift Register on the right border of the timed
loop and select Create≫Indicator. Name this indicator “Over Threshold.”

25. Drop down an FPGA I/O Node (Functions≫FPGA Device I/O) next to your
Over Threshold indicator (outside of the timed loop). Left-click the FPGA
I/O Node and select Digital Line Input and Output≫NI 9401≫DIO0 to
access the digital output channel 0. Right-click on the FPGA I/O Node and
select Change to Write. Then wire the output signal from the right shift
register to the Digital Output node.

26. Wire a FALSE Boolean Constant to the Loop Condition terminal of the outer
while loop. The FPGA application should appear similar to that shown below in
Fig. 2.36.

Fig. 2.35 Time loop

2.2 Developing the LabVIEW FPGA Application 99



27. Navigate to the front panel of your FPGA application and arrange the controls
and indicators as shown in Fig. 2.37. Set the AI Scan Rate (uS) to 1000. Set
the AO Scan Rate (us) to 10. Set AO Ch 0 to 2000. Then navigate to the Edit
menu and select Make current values default.
This will set the FPGA application so that at startup the analog output loop
runs at 100 kS/s (10 μs) and the analog input loop runs at 1 kS/s (1000 μs).

Fig. 2.36 Loop conditional terminal
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Setting the Threshold to 0 and the NI 9263 analog output value (AO Ch 0) to
2000 (about 0.653 V) will cause the digital output to go high due to an over
threshold condition when the application starts. For more information about
the scaling from integer values to voltage outputs on the NI 9263, refer to the
NI 9263 Operating Instructions manual.

28. When you are ready to compile navigate to File≫Save All to save all open
applications and the project.

2.3 Compiling the FPGA Application

In this section you will compile the LabVIEW FPGA application and learn more
about the compilation process and view the compilation report.

1. Click the Run button to start the compile process.
2. Sit back and enjoy 5–10 min of relaxation while your LabVIEW FPGA

application compiles. To better understand the LabVIEW FPGA compilation
process, review the information below.

Fig. 2.37 FPGA applications
front panel
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2.3.1 Understanding the LabVIEW FPGA Compilation
Process

The LabVIEW FPGA Module [7] uses an industry standard Xilinx ISE compiler.
First, your graphical LabVIEW FPGA code is translated to text-based VHDL code.
At this time, the Generating Intermediate Files dialogue is displayed (see
Fig. 2.38).

Then the Xilinx ISE compiler tools are invoked and the VHDL code is optimized,
reduced, and synthesized into a hardware circuit realization of your LabVIEW
design. This process also applies timing constraints on the circuit design that
ensure an efficient use of FPGA resources (sometimes called “fabric”).

A great deal of optimization is performed during the compilation process to
reduce digital logic and create an optimal implementation of the LabVIEW
application. The end result is a highly optimized silicon implementation that pro-
vides true parallel processing with the performance and reliability benefits of
dedicated hardware circuitry. Since there is no operating system on the FPGA chip,
the code is implemented in a way that ensures maximum performance and relia-
bility (see Fig. 2.39).

The end result is a bit stream file that is loaded into your LabVIEW FPGA.VI
file. When you run the application, the bitstream is loaded into the FPGA chip to
configure the gate array logic. While the application is running on the FPGA, data
for the front panel controls and indicators is passed over the network several times
per second to enable Interactive Mode testing of the application. The update rate in
interactive mode communication is typically limited to about 10 S/s. Later you
could build a real-time host interface to the FPGA application that enables
high-speed data transfer and interrupt synchronization between the floating-point
host processor and integer-based FPGA chipset.

The diagram shown in Fig. 2.40 is a summary of the LabVIEW FPGA compi-
lation process. To learn more, click to view an application note on FPGA-based
control.

Fig. 2.38 FPGA compilation
process
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2.3.2 FPGA Clock Speed

By default, the FPGA clock runs at 40 MHz. This means that one Tick of the FPGA
clock is equal to 25 ns. By changing the compile options, you can increase the
FPGA clock speed up to 200 MHz (5 ns). There are some drawbacks to using
higher clock speeds that you should be aware of before changing the compile
option. For more information, refer to the CompactRIO Technical Developers
Library by visiting [8] or by right-clicking on the 40 MHz Onboard Clock item in
the project and selecting Help.

2.3.3 The Compilation Report

When the compilation is complete, the compile report will be generated. This report
shows the start and end compilation time, the number of SLICEs used, a compiled
clock rate (40 MHz), and an estimated maximum clock rate (see Fig. 2.41).

Fig. 2.39 FPGA compilation server

Fig. 2.40 Summary of the LabVIEW FPGA compilation process
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A SLICE is a collection of logic components on the FPGA. The percentage
shown is the percentage of the FPGA used. In most cases, you can actually fit more
onto the FPGA and run the code faster than this report would lead you to believe.
For small applications, the compiler does not “try as hard” to optimize, as long as
the timing and other design constraints are met. As the FPGA reaches greater than
90 % usage, the compiler performs heavy optimization to make the most efficient
use of resources.

2.4 Advanced Methods for LABVIEW FPGA

This section covers a number of advanced tips and tricks to cut your development
time when creating high-performance control systems with LabVIEW FPGA and
CompactRIO. It will be introduced the debugging techniques such as simulation
that will make you confident before you hit the compile button. You will also learn
a number of recommended programming practices, how to avoid common mis-
takes, and numerous methods to create fast, efficient, and reliable LabVIEW FPGA
applications. Throughout this section, we will be walking you a number of
examples that were developed to create a high performance control system for a
brushed DC motor. We will be showing you a variety of the programming tech-
niques that were used in the creation of LabVIEW FPGA subVIs for generating the
PWM Drive signal, decoding the digital pulses from the Quadrature Encoder
sensor, and performing PID control to close the motor position loop. The end result
is a high performance control system with sub-nanosecond timing jitter, multiple
40 MHz processing loops, and that consumes only 17 % of a 3 million gate FPGA.

Fig. 2.41 Compilation report
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2.4.1 Introduction

To help you understand the role of the FPGA in a typical CompactRIO control
system application, first we will review a typical software architecture (see
Fig. 2.42).

First, the FPGA provides an interface to the I/O modules using an elemental I/O
node interface. In some cases, the I/O is as simple as reading the voltage from an
analog input module. For more complicated I/O types like the Quadrature encoder
sensors that are common in motor control, the FPGA performs additional pro-
cessing to convert raw digital signals into a meaningful measurement, such as the
position and speed of a motor. In addition to I/O, the FPGA is commonly used for
analog PID control, digital true/false logic, and event response.

Sending data from the FPGA to the real-time processor is as simple as creating a
control or indicator on the front panel of the LabVIEW FPGA application. For
high-speed buffered data, you can use DMA to stream data from FPGA memory to
processor memory. The FPGA can also generate interrupts, which cause lower
priority tasks to be interrupted on the host processor. This provides a way for the
FPGA to synchronize the execution of code on the host processor, which can then
perform calculations and respond in a deterministic fashion. In general, the
real-time processor is slower than the FPGA but offers an extensive palette of
floating-point control, math, and signal processing functions.

The CompactRIO processor executes a multithreaded, hard real-time operating
system and is programmed using LabVIEW Real-Time. By multithreaded, we mean
that it can execute multiple pieces of code, or loops, at different priorities. That
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Fig. 2.42 Typical software architecture
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means that you can add functionality to your application, such as data logging,
lower speed control loops, or alarming without interfering with higher priority tasks
that are more time sensitive. You can share data between loops of different priorities
without causing interference using RT FIFO shared variables.

While the CompactRIO system is capable of standalone operation, many
applications involve networking and a human–machine interface, or HMI. The two
easiest ways to communicate with your CompactRIO system are through the web
browser HMI or through file transfer protocol, or FTP. CompactRIO features a
built-in web server that can host the front panel user interface of the lower priority
loops in the embedded application. Alternately, you can use the LabVIEW Touch
Panel module to create a low-cost HMI for your system. CompactRIO also has a
built-in Modbus server that can publish or receive data from networked devices
such as PLCs. Modbus/TCP is one of the most commonly used industrial net-
working protocols over Ethernet.

Let us take a look at five key development techniques that will help you create
reliable and high-performance LabVIEW FPGA applications.

2.4.2 Technique 1: Use Single-Cycle Timed Loops (SCTLs)

The first development technique we will introduce is the use of SCTLs, in
LabVIEW FPGA.

SCTLs work by telling the LabVIEW FPGA compiler to optimize the code
inside, and add the special timing constraint that the code must execute in a single
tick of the FPGA clock. Code compiled inside a SCTL is more optimized and takes
up less space on the FPGA compared to the same code inside of a regular while
loop. Code inside a SCTL also executes extremely fast. At the default clock rate of
40 MHz, one cycle is equal to just 25 ns.

Below are two identical LabVIEW FPGA applications (see Fig. 2.43)—the one
on the left uses normal while loops, while the one on the right uses SCTLs in its
subVIs. This example shows off the power of parallel processing. The upper loop is
reading and processing the digital signals from a quadrature encoder sensor on a
motor and the lower loop is performing PWM, or PWM, to control the amount of
power being sent to the motor. This application is written for the NI 9505 motor
drive module which can control up to 8 A, 30 V brushed DC motors. This code runs
extremely fast—in the application on the right we are running two different loops at
a 40 MHz clock rate.

The results from our compile report are also shown. The application built with
SCTLs uses fewer SLICEs, but it takes longer to compile because the compiler has
to work harder to meeting the timing constraints applied by the SCTL.

Now let us take a look at how the SCTL works in more depth.
When code is compiled in a normal while loop, LabVIEW FPGA inserts

flip-flops to clock data from one function to the next, thereby enforcing the syn-
chronous dataflow nature of LabVIEW and preventing race conditions. The
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flip-flops are marked here with the FF boxes drawn at the output of each function
(see Fig. 2.44).

Below is the same code compiled into a SCTL. Here you see that only the inputs
and outputs of the loop have flip-flops (see Fig. 2.45). The internal code is
implemented in a more parallel fashion and more logic reduction is done to opti-
mize the code in between the inputs and outputs of the loop.

As you can see, SCTLs are a simple way to optimize your LabVIEW FPGA
code. So what is the catch? Why would not you always use the SCTL? There are
some limitations to the use of SCTLs as it is shown in Table 2.2.

Single-Cycle Timed Loops

Number of SLICEs: 2456 out of 14336  17%

While Loops

Number of SLICEs: 3245 out of 14336  22%

Fig. 2.43 Two loop cycles

Fig. 2.44 Single-cycle time loop

Fig. 2.45 Single-cycle time loop only I/O have flip-flops
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To use the SCTL all operations inside the SCTL must fit within one cycle of the
FPGA clock. In the beginning of the compile process, the code generator will give
an error message if the SCTL cannot generate the proper code for the compiler.
That means that long sequences of serial code may not be able to fit in a SCTL. By
serial code, we mean code where the results of one calculation are needed by the
next operation, preventing the calculations from being executed in parallel. To fix
this you can rewrite the code to make it more parallel. For example, you can insert a

Feedback Node ( ) to pass the results from one calculation to the next on the

following iteration of the loop—this also known as pipelining. You can use the
pipelining technique to reduce the length of each run through the SCTL by breaking
up the code among multiple iterations of the SCTL.

The Quotient and Remainder function is another one that cannot be used in a
SCTL. If you need to divide a number by an integer value, you can use the Scale by
Power of 2 function instead. This function lets you multiply or divide by powers of
two, i.e., 2, 4, 8, 16, 32, etc. For a fixed-point result, you can use the Fixed-Point
Math Library for LabVIEW FPGA. The fixed-point divide subVI and configuration
panel is shown in Fig. 2.46, including the Execution Mode control which enables
the function to be used within a SCTL.

The Fixed-Point math Library contains LabVIEW FPGA IP blocks that imple-
ment a variety of elementary and transcendental math functions. These functions
use the Fixed-point data type introduced in LabVIEW 8.5 extending the current
offering of functions to include Divide, Sine, Cosine, and many more important
math operations. All functions are verified for usage inside and outside a SCTL as
well as in Windows and FPGA simulation on the Development computer. The
toolkit comes with help documentation that includes details for each function to
learn more about individual usage. To download the free toolkit, follow the link
below [9].

If you are trying to make a subVI for use inside of a SCTL, you can use a
feedback node to hold state information in the subVI. This eliminates the need to
use a while loop inside of a SCTL. The LabVIEW FPGA example below calculates
one of the differential equations for a DC motor using functions from the

Table 2.2 Single cycle time loop limitations

Items not allowed in
SCTL

Suggested alternative

Long sequences of
serial code

Make the code more parallel. Insert feedback nodes in the wires to
add pipelining

Quotient and remainder Use a scale by power of 2 to do integer division, or use the
fixed-point math library

Loop timer, wait
functions

Use a tick count function to trigger an event instead

Analog input, analog
output

Place in a separate while loop and use local variables to send data

While loops For nested subVIs, use feedback nodes to hold state
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fixed-point math library (see Fig. 2.47). After each fixed-point math function, a
feedback node is used to pipeline the result and thereby pass the value from one
iteration to the next. In the upper right corner, a Tick Count function is also used in
combination with a feedback node to calculate the loop rate of the subVI execution.

In Fig. 2.48 you can see the top-level SCTL in the FPGA application, which
calls the motor simulation subVI. Since the subVI is nested within a SCTL, the
Loop Rate (Ticks) value returned is always equal to 1. However, due to pipelining
there is a six-tick latency from the voltage (V) input to the i (A) current output of
the subVI.

In addition to pipelining, you can use a State machine within the SCTL to better
organize your code and run through a sequence of steps. The basic component of the
State machine is a Case structure with each containing one state and using a shift
register to determine the next state after each iteration of the loop. Of course each state
must be able to run in one clock cycle if the subVI is to be placed in a SCTL. In
addition, you can use shift registers and a counter value to implement the functionality
of a For Loop or add a specific number of Wait states to your program execution.

Fig. 2.46 Fixed-point divide
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Note: Adding a loop timer or wait function will cause the code to execute slower
than one tick, and therefore cannot be used within a SCTL. Analog input and
analog output functions also take more than one clock tick to execute and cannot be
used in a SCTL. However, you can put them a normal while loops and use local
variables to share data with the SCTLs.

2.4.3 Creating Counters and Timers

If you need to trigger an event after a period of time, use the Tick Count function to
measure elapsed time as shown in Fig. 2.49. Do not use the iteration terminal that is
built into while loops and SCTLs because it will eventually saturate at its maximum
value. This happens after 2,147,483,647 iterations of the loop. At a 40 MHz clock

Fig. 2.47 DC motor deferential equation

Fig. 2.48 SCTL in the FPGA application
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rate, this takes only 53.687 s. Instead, make your own counter using an unsigned
integer and a feedback node. The tick count function is to provide time based on the
40 MHz FPGA clock.

By using an unsigned integer for the counter value, elapsed time calculations
will still be correct when the counter rolls over. This is because if you subtract one
count value from another using unsigned integers, you still get the correct answer
even if the counters overflows.

Another common type of counter is an iteration counter that measures the
number of times a loop has executed (see Fig. 2.50). Unsigned integers are typically
preferred for iteration counters because they give the largest range before rolling
over. The unsigned 64-bit integer data type we are using for the counter provides a
huge counting range—equivalent to about 18 billion–billion. Even with the FPGA
clock running at 40 MHz, this counter will not overflow for more than 14,000 years.

Now let us talk about another technique that will help you create well-written
and efficient LabVIEW FPGA code.

2.4.4 Write Your FPGA Code as Modular, Reusable SubVIs

The next major development technique we will suggest is modular development—
break your application into independent functions that can each be individually
specified, designed, and tested. It seems like a simple concept, but for FPGA
development it can have some especially nice benefits. Here is a simple example—a
function designed to measure the rate of the loop in which it is placed and count the
number of time it executes. Inside the loop we have a Tick Count function that
reads the current FPGA clock and subtracts it from the previous value, which is
stored in a shift register. In addition, we have a 64-bit counter that increments each

Fig. 2.49 Tick count function to measure elapsed time

Fig. 2.50 An iteration counter

2.4 Advanced Methods for LABVIEW FPGA 111



time the function is called. This function uses a SCTL so it only takes a single 25 ns
clock tick to execute—therefore, this subVI is designed to be placed inside of a
normal while loop without affecting its execution speed (see Fig. 2.51).

Here is the front panel. The indicators have been assigned to the two right
terminals of the subVI so data can be passed to the upper level LabVIEW FPGA
application in which it is placed.

Fig. 2.52 shows an application example where the function is used. The subVI is
placed inside another loop to measure the execution rate of the top-level code.

Some of the top benefits of writing the code this way are presented in Table 2.3.
Writing modular code is almost always a good idea, but when you are designing

FPGA logic it has extra advantages.

Fig. 2.51 FPGA subVI

Fig. 2.52 The subVI placed inside another loop
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First, the code is easier to debug and troubleshoot. One big benefit is that the
subVI can be tested on Windows before you compile it for the FPGA. We will
show some examples of that later.

Second, it is easier to document and track changes because the code is modular
and you can include help information in the VI documentation.

Third, the intended functionality of the code is typically cleaner, easier to
understand, and more reusable. The options you want to offer the programmer are
typically made available as terminals on the subVI. Most often the user will not
need to modify the underlying code—they can just use the parameters you provide,
such as in this Pulse Width Modulation (FPGA) example (see Fig. 2.53).

Now let us take a look at some tips for how to create modular, reusable subVIs
for LabVIEW FPGA.

Table 2.3 Top benefits of writing the code

Benefit Explanation

Easier to debug and troubleshoot Code can be tested on Windows before
compiling

Easier to document and track changes Help information can be included in the VI
documentation

Creates a cleaner, more easily understood
top-level diagram

Code is more intuitive to other programmers

Fig. 2.53 PWM example
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2.4.5 Separate Logic from I/O

The first tip is to keep I/O nodes out of your subVIs. This makes them more
modular and portable and makes the top-level diagram more readable. Particularly
for control applications, it is nice to have all of the I/O operations made clearly
visible when viewing the top-level diagram for the application, like we have shown
here in this PWM loop written for the NI 9505 motor drive module (see Fig. 2.54).

Rather than embedding the I/O node into the subVI, a terminal is used to pass the
data from the subVI to the top-level diagram. This makes the FPGA code easier to
debug, since the subVI can be tested individually in Windows using simulated I/O.
This will be explained in more detail in a subsequent section (see Fig. 2.55).

Taking this approach also tends to reduce unnecessary I/O node instances that
might otherwise be included multiple times in the subVI, resulting in unnecessary
gate usage due to the need for the compiler to add the extra arbitration logic
necessary to handle multiple callers accessing the same shared resource.

Finally, this approach makes the top-level application more readable—all I/O
read and write operations are explicitly shown on the top-level diagram and not
hidden from view.

Often when you are writing function blocks like this, the subVI will need some
local memory capability so it can hold state values, such as elapsed time, and pass
that information from one iteration to the next.

Fig. 2.54 PWM example for the NI 9505

Fig. 2.55 PWM SubVI
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2.4.6 Holding State Values in a Function Block

In the example below, you can see that we have added shift register nodes to our
loop that enable us to pass information from one iteration of the loop to the next.
The iteration counter increments each time the function block is called.

Notice that the Loop Condition terminal has a constant wired to it that causes
the loop to run for only one iteration each time it is called. We are not really looping
in this case—we are simply using the SCTL to optimize the code and to hold the
state values using shift registers (see Fig. 2.56).

Note: It is important to note that the shift register must be un-initialized for the
subVI to hold state this way. On first call the shift register value is the default value
for the data type—for integers that is 0, for Booleans that is False. If you need to
initialize the value to something else, use a First Call? function and a Select
function to initialize the value.

You may be wondering how to create a modular function block that works inside
a SCTL, since you are not allowed to nest one SCTL within another.

To do this, use feedback nodes to accomplish the same task, as shown below.
The main benefit of this approach is that the feedback nodes can be easily ini-
tialized, and the subVI could now be placed within a top-level SCTL because it
contains no nested loop structure (see Fig. 2.57).

A third option is the use of VI-scoped memory (see Fig. 2.58). This is a block of
memory that can be used locally by the subVI and does not have to be manually

Fig. 2.56 Single-cycle timed loop
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Fig. 2.57 Measure loop

Fig. 2.58 VI memory
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added to the project. This makes the code more modular and portable when moving
it between projects.

In this simple example, using VI-scoped memory is probably overkill for the
application. We only have two memory locations and we are only storing one data
point in each memory location. However, VI-scoped memory is a powerful tool for
applications that need to store arrays of data. In general, you should always avoid
using large front panel arrays as a data storage mechanism—use VI-scoped memory
instead.

2.4.7 Run-Time Updateable Look-up Table (LUT)

A common use for local memory in FPGA-based control applications is to store
table data, such as the calibration table for a nonlinear sensor, a pre-calculated math
formula (such as log or exponential), or an arbitrary waveform that can be replayed
by indexing through the table addresses. Below is an FPGA-based look-up table
(LUT) configured to store 10,000 fixed-point values and perform linear interpola-
tion between stored values. Because VI-scoped memory is used, the LUT values
can be changed while the application is running and without the need to recompile
the FPGA (see Figs. 2.59 and 2.60).

Fig. 2.59 Look-up table

2.4 Advanced Methods for LABVIEW FPGA 117



Let us take a look at the configuration pages for the VI-Scoped Memory block in
this example. You can configure the depth, data type, and even define initial values
for the memory elements (see Fig. 2.61).

Now let us look at another tip for creating modular FPGA subVIs that have to do
with the timing of how the code runs.

Fig. 2.60 Fix point frontal panel and block diagram
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2.4.8 Do not Place Delay Timers in the SubVI

In general, it is a good idea to avoid using Loop Timer or Wait functions within
your modular subVIs. If the subVI has no delays, it will execute “as fast as pos-
sible” and thereby inherent the timing properties of the calling VI, rather than

Fig. 2.61 Memory properties
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slowing down the caller. Also, code can typically be more easily adapted for use in
a SCTL if it has no internal functions that cause delays (see Fig. 2.62).

Below we have adapted the PWM code on the left to use a Tick Count function
rather than a Loop Timer function. We use a feedback node to hold an elapsed time
count value, and we turn the output on and off at the appropriate times and reset the
elapsed time counter at the end of the PWM cycle. The code may look a bit more
complicated, but it can be dropped inside of a top-level loop without affecting the
overall timing of the loop—it is more portable (see Fig. 2.63).

Now let me share one more tip before we move on to the next topic—how to
make the code so that multiple copies of a subVI can be placed in the same
application and each copy is independent of the others.

2.4.9 Reentrancy

Reentrancy is a setting in the subVI execution properties that enable multiple copies
of the function block to be executed in parallel with distinct and separate data
storage (see Fig. 2.64).

Figure 2.65 shows an example. In this case our subVI is set to reentrant, meaning
all four of these loops will run simultaneously and any internal shift registers, local
variables, or VI-scoped memory data will be unique to each instance.

Fig. 2.62 Do not place delay times
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In the case of LabVIEW FPGA, it also means that each copy of the function uses
its own FPGA slices—so reentrancy is great for code portability but it does use
more gates.

Note: If you are really squeezed for FPGA gates, you can make your function
multiplexed rather than reentrant. This is an advanced topic we will not cover here
but it basically involves using local memory to store the register values for each of
the calling loops, which identify themselves with an integer “ID tag” value. Since

Fig. 2.64 Reentrancy

Fig. 2.63 Tick count
function
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the loops are all using the same underlying FPGA slices (with different memory
addresses for the data), each caller will block the other callers resulting in slower
execution. However, gate usage is much less since the same hardware SLICE logic
is reused. For many control applications where the FPGA is already much faster
than the I/O, this is a nice option for saving gates. Several functions on the
LabVIEW FPGA palette use multiplexing techniques to enable high channel count
operation with minimal FPGA gate usage. These include the PID, Butterworth
Filter, Notch Filter, and Rational Resampler functions. To see how this works,
drop one of these functions onto the block diagram and configure it for multiple
channels. Then right-click on the function and select Convert to SubVI to reveal
the underlying code.

Now let us take a look at a major development benefit you get from writing your
LabVIEW FPGA code as described in the sections above.

2.5 Use Simulation Before You Compile

This third development technique is really powerful because it provides a way to
get around the longer compilation time and more limited debugging capabilities of
LabVIEW FPGA. One of the most powerful aspects of LabVIEW code for
embedded developers is the portability of the code. Code written for LabVIEW
FPGA is still just LabVIEW code—it can be run on Windows or other devices and
operating systems. The main difference between these processing targets is the
speed at which the code runs and whether they support true parallel processing like

Fig. 2.65 SubVI is set to reentrant
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an FPGA or simulated parallel processing like a multithreaded operating system for
a microprocessor.

LabVIEW FPGA includes the ability to run the entire LabVIEW FPGA appli-
cation in simulation mode, and this can be done in conjunction with the host
processor application for testing purposes with either random data used for FPGA
I/O read operations or using a custom VI to generate the simulated I/O signals. This
is particularly useful for testing FPGA to host communication including DMA data
transfers.

However, the disadvantage of this approach is that the entire FPGA application
is simulated. For the development and testing of new LabVIEW functions, it can be
advantageous to test the code one function at a time. This section will focus on a
capability called functional simulation, which enables a “divide and conquer”
approach to debugging which allows each function to be tested individually before
compiling to the FPGA. Below are screens from two functional simulation exam-
ples running on Windows that were used for testing and debugging purposes (see
Fig. 2.66).

The example below shows the front panel and block diagram of a test application
used to debug a LabVIEW FPGA subVI for PWM. The test application is located in
theMy Computer section of the LabVIEW project, and when it is opened it runs in
Windows (see Fig. 2.67).

2.5.1 Providing Tick Count Values for Simulation

The Conditional Disable Structure in LabVIEW lets you modify what underlying
code is used when the subVI is compiled for different processing targets. In this
case, I have got a Tick Count function that is executed when the code is compiled
for the FPGA and a front panel control that is executed when the code is executed
on Windows. This lets me use a “simulated” tick count value when I am testing the

Fig. 2.66 FPGA simulation
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code in Windows, providing the ability to create both bit accurate and cycle
accurate simulations (see Fig. 2.68).

This technique is used in the PWM test example above—when the subVI is
executed in Windows a simulated FPGA clock is passed to the subVI using the
Iteration terminal of the top-level while loop.

Fig. 2.67 Debugging a LabVIEW FPGA subVI for pulse width modulation
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As you have seen, functional simulation lets you test, iterate and be confident in
your FPGA logic before you compile. It also enables you to use the full LabVIEW
debugging toolset while the code is running, and you can create “test patterns” that
enable you to verify the code under a variety of conditions that otherwise might be
hard to test. Here are some of the top benefits of using simulation as a step in your
development process.

• Quickly iterate and add features
• Be confident in your LabVIEW FPGA code before you compile
• Use full LabVIEW debugging capabilities (probes, highlight execution, etc.)
• Verify the code under a variety of conditions

Now let us take simulation a step farther and create a simulation that accurately
mimics the dynamic closed-loop behavior of the physical system within which our
LabVIEW FPGA code will be connected.

2.5.2 Test the LabVIEW FPGA Code Using the LabVIEW
Control Design & Simulation Module

The LabVIEW Control Design & Simulation Module (CD&Sim) includes
state-of-the-art technology for simulating mechatronic systems like the DC motor
we will be controlling with our LabVIEW FPGA application. Figure 2.69 shows the
theoretical model equations for a brushed DC motor driven by a PWM chopper
circuit and connected to a simple inertial load with viscous friction.

This is implemented using a LabVIEW CD&Sim subsystem containing formula
node. The two differential equations shown above are entered into the formula

nodes in text format as shown below. Integrator functions ( ) are used to

convert from higher order derivatives, such as from acceleration to velocity and
from velocity to position (see Fig. 2.70).

The Brushed DC Motor.vi subsystem is placed within a top-level simulation
loop and connected to the LabVIEW FPGA function to simulate the pulsed voltage
signal used to drive the motor. The result is a high fidelity closed-loop simulation of

Fig. 2.68 FPGA code compiled by Windows and FPGA
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how the LabVIEW FPGA code will behave when connected to the real-world
electromechanical system (see Fig. 2.71).

The simulation results have been validated against actual measurements from the
deployed LabVIEW FPGA application controlling a motor using the NI 9505 motor
drive module, which showed a nearly identical match between the simulated and
measured waveforms.

Fig. 2.69 DC drive motor model

Fig. 2.70 DC drive model
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This approach lets you take code validation way beyond basic functional vali-
dation. Think of this like a virtual machine emulator that lets you anticipate how
your code will perform in the real world. You can use simulation to help make
design decisions, evaluate performance, select components, and test worst-case
conditions. You can even tune the PID control loops for your control system in
simulation and see how well that tuning works with different motors and load
conditions. Simulation can also help you select the right physical components for
your system, such as picking the right motor to meet your performance
requirements.

Fig. 2.71 Brushless motor drive
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2.6 Synchronize Your Loops

Now for our fourth development technique—how to control the timing and syn-
chronization of your LabVIEW FPGA code.

For most control applications, the timing of when the code executes is very
important to the performance and reliability of the system. Fortunately,
LabVIEW FPGA gives you both unprecedented speed and complete control over
the timing of the code. Unlike a processor, an FPGA executes code in a truly
parallel fashion rather than only being able to execute one instruction at a time. That
makes programming easier because you do not have to worry about setting prior-
ities and sharing the processor time among the different tasks. Each control loop is
like a custom designed processor that is completely dedicated to its task. The result
is high reliability and high-performance code. One of the benefits of this perfor-
mance is that control loops are typically more stable, easier to tune, and more
responsive to disturbance when they run at a fast rate.

In this motor control example, we have two different clock signals—a Sample
Clock and a PID Clock. These are Boolean signals we generate in the application to
provide synchronization among the loops. We can trigger on either the rising or
falling edge of these clock signals (see Fig. 2.72).

Now let us take a look at the LabVIEW FPGA code used to monitor these
signals and trigger on either the rising or falling edge.

Typically triggering a loop based on a Boolean clock signal works like this—
first wait for the rising or falling edge to occur, and then execute the
LabVIEW FPGA code that you want to run when the trigger condition occurs.
A sequence structure is often used where the first frame of the sequence is used to
wait for the trigger, and the second frame is used to execute the triggered code, as
shown below.

Rising Edge Trigger: In this case we are looking for the trigger signal to transition
from False (or 0) to True (or 1). This is done by holding the value in a shift register
and using the Greater Than? Function (see Fig. 2.73). (Note: A True constant is
wired to the iteration terminal to initialize the value and avoid an early trigger on
the first iteration.)

Fig. 2.72 Trigger on either the rising or falling edge
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Falling Edge Trigger: In this case we use a Less Than? function to detect the
transition from True (or 1) to False (or 0) (see Fig. 2.74). (Note: A False constant is
wired to the iteration terminal to initialize the value.)

Analog Level Trigger: Here we use a Greater Than? function to detect when the
analog signal is greater than our analog threshold level, and then use the Boolean
output of the function as our trigger signal (see Fig. 2.75). This case actually a
rising or falling edge detector since we are using the Not Equal? function to detect
any transition.

Now let us take a look at another common triggering use case—this is where we
want to latch the value of a signal when a trigger event occurs.

2.6.1 Latching Values

In this case we use a rising edge trigger to latch the Analog Input (see Fig. 2.76)
value from another loop into the Latched Analog Input register. This value is held
constant until the next trigger event occurs. In this example, the actual analog input
operation is occurring in another loop and we are using a local variable for

Fig. 2.73 Rising edge trigger

Fig. 2.74 Falling edge trigger
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communication between the loops. (Note: Local variables are a good way to share
data between asynchronous loops in LabVIEW FPGA.)

2.6.2 Application Example

Below is an example (see Fig. 2.77) that shows these triggering and latching
techniques in practice. LabVIEW FPGA offers true parallel execution. In this case
we have three independent loops. This is like having three custom designed pro-
cessors running at the same time within the chip. Each loop is completely dedicated
to its own task—resulting in the highest level of reliability. It also makes pro-
gramming control in an FPGA easier to architect—unlike with a processor, you do
not have to worry your existing code slowing down when you add new code.

Fig. 2.75 Analog level trigger

Fig. 2.76 Latched analog input
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Observations:

• One loop is used to generate synchronization clocks used by other loops.
• The encoder function needs to run at full speed to avoid missing any digital

pulses. This function runs at 40 MHz but latches the Position (Counts) and
Velocity (Counts/Interval) signals to synchronize the data with the other loops.

• The PID function needs to run at a specific speed (20 kHz or 2000 ticks) and
avoid any jitter in its timing. This is because the integral and derivate gains
depend on the time interval, Ts. If the time interval was varying, or if the same
old value was passed multiple times into the function, the integral and derivative
gains would be incorrect.

• In the bottom loop, you can see that the execution is triggered by the rising edge
of the PID clock signal. We read a local variable for the signal in this SCTL, and
exit the loop when a rising edge is detected. Then we execute the 32-bit PID
algorithm that is included with the NI SoftMotion Development module. This
reads the commanded position, compares it to the position measured by the
encoder, and then generates a command for the PWM loop. In this case, we are
using a Scale by Power of 2 function to divide the PID output signal by 2^−4,
which is equivalent to dividing by 16. This scales the value to the ±2000 ticks
range needed by the PWM function. A value of 1000 ticks is equal to a 50 %
duty cycle since the PWM period is 2000 ticks.

• Note that the upper two loops are running at a 40 MHz loop rate, where the
lower loop is triggered to run at a 20 kHz loop rate by the PWM clock signal.
(When triggered, the SoftMotion PID function takes 36 ticks to execute.)

Fig. 2.77 Triggering and latching techniques
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2.7 Technique 5: Avoid “Gate Hogs”

Now that you understand four key techniques that are useful for developing
LabVIEW FPGA code, let us talk about one last technique—how to avoid “gate
hogs.” These are often “innocent looking” code that eats up lots of your FPGA
gates (also known as slices). Here are three of the most common offenders.

Large Arrays or Clusters: Creating a large array or cluster with a front panel
indicator or control is one of the most common programming mistakes that eat up
lots of FPGA gates. If you do not need a front panel indicator for communication
with the host processor, then do not create one. If you need to transfer more than a
dozen or so array elements, use DMA instead as a way to pass the data. Also, avoid
using array manipulation functions like this Rotate 1D Array function whenever
possible (see Fig. 2.78).

Quotient and Remainder: This function does integer division. (The quotient
output, floor(x/y), is x divided by y, rounded down to the closest integer. The
remainder output, x-y*floor(x/y), is whatever is left over. For example, 23 divide
by 5 gives a quotient of 4 and a remainder of 3.) This function is gate intensive and
takes multiple clock cycles to execute so it cannot be used in a SCTL. Be sure to
wire up the minimum data type needed to the terminals when using this function
and use constants rather than controls when possible (see Fig. 2.79).

Scale By Power of 2: If the n terminal is positive, this function multiplies the
x input by 2 to the power of n (2^n). If n is negative, the function divides by
2^n. For example, setting n to +4 would multiply by 16, while setting it to −4
would divide by sixteen. This function is much more efficient than the Quotient
and Remainder function. However, use a constant of the minimum data size
needed for the n terminal whenever possible (see Fig. 2.80).

Note: DMA is a better way to send an array of data to the host than creating a
front panel indicator for the array and using the FPGA Read/Write method. Arrays

Fig. 2.78 Rotate 1D array
function

Fig. 2.79 Quotient and remainder
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are useful for collecting a set of simultaneously sampled data to be fed into a DMA
buffer for transfer to the host computer. It is okay to use an array to collect the data
points together for indexing into the DMA Write function as long as you do not
create a front panel indicator for the array. Using auto-indexing on the for loop used
to write the data into the DMA, buffer is fine as long as you do not create a front
panel indicator for the array because the compiler does a good job of optimizing
arrays passed into For Loops for indexing purposes.

2.7.1 Avoid Front Panel Arrays for Data Transfer

When optimizing your code for the amount of space it uses on the FPGA, you
should consider the front panel controls and indicators you are using. Each front
panel object and the data it represents take up a significant portion of the FPGA
space. By reducing the number of these objects and reducing the size of any arrays
used on the front panel, you can significantly reduce the FPGA space required by
the VI (see Fig. 2.81).

Instead of creating large arrays to store data and transfer it to the host application
(shown above), use DMA to transfer an array of analog input samples to the host
processor as shown in Fig. 2.82.

Fig. 2.80 Scale by power of 2

Fig. 2.81 Optimized FPGA code
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2.7.2 Use DMA for Data Transfer

DMA uses FPGA memory to store data and then transfer it at high speed to host
processor memory with very little processor involvement. This uses much fewer
processor cycles when sending large blocks of data compared to the front panel
indicator with FPGA Read/Write method (see Fig. 2.83).

Fig. 2.82 DMA FIFO

Fig. 2.83 MDA FIFO host

134 2 LabVIEW™ FPGA



Here are some programming instructions for implementing DMA:

• When setting the FPGA buffer size, you can use the default size (1023).
Creating a larger FPGA memory buffer typically does not have benefits.

• You should set the host buffer size to a large value than the default size. By
default, the host buffer size is 2 times bigger than the FPGA buffer. You should
actually set it to at least two times the Number of Elements you plan to use.

• If you are passing an array of data, the Number of Elements input should
always be an integer multiple of the array size. For example, if you are passing
an array of 8 elements, the Number of Elements should be an integer multiple
of 8 (such as 80, which would give 10 samples of 8 elements each.)

• Each DMA transaction has overhead, so reading larger blocks of data is typi-
cally better. The DMA FIFO.Read function automatically waits until the
Number of Elements you requested become available, minimizing processor
usage.

• Packing 16-bit channel data into a U32 (since DMA uses U32 data type) typ-
ically does not have benefits on CompactRIO, because the PCI bus has very
high bandwidth for sending DMA data, so you most likely are nowhere near to
using up all of the bus bandwidth. Instead, it is typically the processor that is the
bottleneck in processing the data being streamed. Packing the data in the FPGA
means it has to be unpacked on the processor, adding additional processor
overhead. In general, you should send each channel as a U32 even if you are
acquiring 16-bit data.

• The Full output on the DMA FIFO Write function is actually an error indicator.
Under normal operation this should never occur so it is recommended that you
stop the application if this error occurs and reset the FPGA before restarting.

2.7.3 Use the Minimum Data Type Necessary

Remember to use the minimum data type necessary when programming in
LabVIEW FPGA. For example, using an 32-bit integer (I32) to index a Case
Structure is probably overkill since it is unlikely that you will be writing code for 2
billion different cases. Usually, an unsigned 8-bit integer (U8) does the trick, since
it works for up to 256 different cases (see Fig. 2.84).

2.7.4 Optimizing for Size

The FPGA application shown in Fig. 2.85 is too large to compile, because it uses an
array to store sine data.
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The array is indexed to get a value. In addition, four previous points are stored in
shift registers. The previous four values are averaged. This VI is too large to
compile. What can be done to help optimize this code?

Gate hogs found in the code: Large front panel arrays, Remainder, and Quotient
functions.

To improve the application, we replace the array with a look-up table as shown
below (see Fig. 2.86).

This change alone has allowed us to compile the program and now it uses only
18 % of a 1 million gate FPGA. Can we further optimize the program?

Next we remove both Quotient Remainder (QR) functions. One of the QR
functions was being used to index through the look-up table. This was replaced by a
shift register counter operation. This shift register counter operation is a very

Fig. 2.84 Unsigned 8-bit integer

Fig. 2.85 Array to store sine data
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common technique in FPGA. The other QR function was replaced by a scale by 2 to
the power of n. Because the scale by 2 has a constant input, it uses very little FPGA
space (see Fig. 2.87). Note: Scale by 2^−2 is equal to dividing by 4.

Now the application takes only 9 % of the FPGA gates.

Fig. 2.86 Look-up table to store sine data

Fig. 2.87 Removed both quotient remainder functions
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2.7.5 Additional Techniques to Optimize Your FPGA
Applications

For more information on this topic, see the “Optimizing FPGA VIs for Speed and
Size” topic on the NI Developer Zone [10]. The document contains detailed
information on more than ten techniques you can use to optimize your
LabVIEW FPGA applications. Table 2.4 shows some optimization methods for
LabVIEW FPGA that can be implemented in your code.
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Table 2.4 Optimization methods for LabVIEW FPGA

Optimization technique FPGA speed FPGA size

Reduce combinatorial paths ✓

Use pipelining when appropriate ✓

Use single-cycle timed loops ✓ ✓

Use parallel operations ✓

Select appropriate arbitration options ✓ ✓

Use non-reentrant subVIs ✓

Use reentrant subVIs ✓

Limit the number of front panel objects, such as arrays ✓

Use the smallest data type possible ✓ ✓

Avoid large VIs and functions, if possible ✓ ✓

Schedule timing using handshaking signals ✓ ✓
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