Synthesis and Implementation of Parallel
Logic Controllers in All Programmable
Systems-on-Chip

Valery Sklyarov, Iouliia Skliarova and Joao Silva

Abstract The chapteris dedicated to the design of logic controllers with customizable
behavior in all programmable systems-on-chip in such a way that the desired func-

tionality is defined in software of a processing system and realized in hardware of

reconfigurable logic. The controllers implement algorithms described in form of

parallel hierarchical graph-schemes that are built in software from predefined mod-

ules. Parallel hierarchical circuits of the controllers are mapped to the reconfigurable

logic customized from software through high-performance interfaces. The circuits

generate control signals to determine the desired functionality of external devices.

A number of experiments are done in Xilinx Zyng-7000 microchips and the results

are reported.

Keywords Hardware/software architectures - Parallel logic controllers - Hierarchi-
cal finite state machines - Hierarchical algorithms - Hardware/software interactions

1 Introduction

Nowadays, the development of software and hardware becomes more and more
interrelated [1]. The emphasis has significantly shifted from general-purpose to
application-specific products in the form of embedded processing modules in vari-
ous areas such as communications, industrial automation, automotive computers, and
home electronics. There is a tendency to integrate components on a chip that not so
long ago were separated and implemented as autonomous devices. For example, the
Zyng-7000 [2] all programmable system-on-chip (APSoC) incorporates a processing

V. Sklyarov (<) - I. Skliarova - J. Silva

Department of Electronics, Telecommunications and Informatics/IEETA,
University of Aveiro, Aveiro, Portugal

e-mail: skl@ua.pt

1. Skliarova
e-mail: iouliia@ua.pt

J. Silva
e-mail: jpss@ua.pt

© Springer International Publishing Switzerland 2016 15
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,

Studies in Systems, Decision and Control 45,

DOI 10.1007/978-3-319-26725-8_2



16 V. Sklyarov et al.

system (PS) that combines the industry-standard ARM dual-core Cortex™-A9 RISC
processor and a number of peripherals such as memory controllers, USB, Gigabit
Ethernet, and UART. The same micro-chip contains a built-in gate array (program-
mable logic—PL) from the Artix-7 or Kintex-7 FPGA families that is linked with
the PS through on-chip interfaces.

APSoCs like Zynq [2] can run software that interacts with parallel processing
elements (PE) mapped to hardware. The main objective of any PE is to provide greater
performance than an equivalent software component with similar functionality that
is typically composed of a set of functions in C or methods in Java. A parallel logic
controller can be seen as one of application-specific PEs that gets inputs from the
controlled systems and generates outputs that ensure the desired functionality. Real-
time systems may require high-speed control that can be provided more easily in
hardware rather than in software. Besides, control circuits are often used in such
hardware components that replace software functions [3].

For many practical applications (such as knowledge-based systems in [4]) inter-
action between programmable logic controllers and software in a PC is widely used.
We suggest in this chapter to provide better support for such interactions using
APSoCs that run software in the dual-core processing system and hardware in the
programmable logic. The emphasis is done on the following issues:

1. Support for modularity, hierarchy and parallelism in hardware (in the PL of
APSoC) based on hierarchical (HFSM) and communicating (CFSM) finite state
machines [S5] with such functionality that can be customized and modified from
software of APSoC running in the PS.

2. Interactions between a programmable parallel logic controller implemented in
the PL and software in the PS through interrupts, general-purpose and high-
performance ports.

3. Dynamic reconfiguration of the controller from software of the PS based on the
methods [6] and potentially applying the knowledge-based technique from [4].

The remainder of the chapter is organized in five sections. Section2 suggests
architectures of parallel logic controllers implemented in APSoCs and the methods
of interaction between hardware and software components. Section 3 describes the
design and implementation of parallel logic controllers with dynamically modifi-
able functionality providing support for modularity and hierarchy. Section4 gives
more details about hardware/software interactions. Section 5 discusses the details of
implementations and examples. Section 6 concludes the chapter.

2 The Proposed Software/Hardware Architecture

Figure 1 shows the proposed hardware/software architecture. A reconfigurable paral-
lel logic controller is implemented in the PL and we will consider below the following
two models for such controllers: parallel hierarchical finite state machines (PHFSMs)
[3] and communicating finite state machines (CFSMs) [5].



Synthesis and Implementation of Parallel Logic Controllers ... 17

PS

logical controller

Software modules
4 I\./Iastér l
2 Y V. V V
Iy $
3 s On-chip memories
= =
A A A A A
1 ] )
General-purpose port AXl ports §_
I3 1
)(Chane Master S
sizr,9fco <
gf?a/s ntfo/ . <
.| Reconfigurable parallel <
[J]
2
(18]
=

PL

Fig. 1 Hardware/software architecture

Software modules in the PS are responsible for the following three functions:

1. Higher-level control that enables lower-level modules of PHFSM/CFSM to be
managed. This means that the modules are not hard linked in the PL and can
be activated/deactivated from software which much like [4] may use knowledge-
based technique.

2. Run-time reconfiguration of lower-level modules allowing different functionali-
ties to be implemented using the same hardware.

3. Test and debug of the lower-level modules.

Interaction between software and hardware modules is provided through the fol-
lowing interfaces:

1. General-purpose ports (GPP) [2] for exchange of control signals.

2. High-performance ports (HPP) to configure (reconfigure) modules of the parallel
logic controller.

3. Interrupts generated in hardware and handled by software to support high-priority
requests from hardware that need immediate reaction, which is important for real-
time systems.

Figure 2 shows communication mechanisms between software and hardware with
more details. The PHFSM/CFSM contains modules that can be executed in parallel.
Any module is considered to be either a conventional finite state machine (FSM) or
a hierarchical FSM (HFSM) and has pre-defined signals that are:

a) An input signal start indicating that the module has to be reset to the initial state
and begin execution.



V. Sklyarov et al.

. PS
These operationsare controlled Uploading configuration
by software modules files from selected
{ A \ memories
—| startl finish | resetlstate | configurel dedicated :GPP ‘ ‘ HPP
Reconfigurable parallel logical controller Configuration controller
. TR AN o1 A
' ‘ : : ‘ . 24 ; Ly
PL ¢ ; | Internal inputs and outputs

‘V \'/‘ H H
Y \ J

External outputs  External inputs

Fig. 2 Details of interactions between software and hardware modules

b)

¢

d)

€)

a)

b)

An output signal finish designating that the module has completed the associated
operations and is suspended.

An input signal reset requiring transition to the initial state of the module. This
signal may also reset the relevant registers in the attached execution unit (data-
path).

An output vector named state represents the current state of HFSM/FSM memory
(state register). This vector can be used efficiently for debugging purposes. Indeed,
software is capable of monitoring this signal and concluding if the desired func-
tionality is properly provided or if there is an unusual situation. Many potential
deadlocks can be found and eliminated.

An input signal configure requests customization of the module and points to the
first address in on-chip memory with the reconfiguration file. On such arequest the
module is reconfigured by a configuration controller and as soon as this operation
is completed the signal finish is generated.

Some signals are dedicated to particular module functionality and we will discuss
them later.

Software modules set/check the GPP signals using two ways:

Periodically and on internal requests generated according to the implemented
algorithms. For example, as soon as one task is completely solved the hardware
module responsible for the task may be reconfigured to solve the subsequent task.
Immediately on interrupts from hardware modules.

Hardware modules may be configured statically or dynamically. Static configu-

ration is done when the relevant bit-stream is uploaded to the PL section. Dynamic
reconfiguration is provided during execution time, i.e. after bit-stream has been
loaded. This is done with the aid of the methods described in [6] (see the next
section). PHFSM/CFSM may be used for the following three types of applications:



Synthesis and Implementation of Parallel Logic Controllers ... 19

1. External devices connected to APSoC pins, such as those described in [7].

2. Internal blocks that may be used for different purposes, for example to accelerate
time consuming segments of software modules.

3. A composition of external and internal devices, for example, some modules of the
HFSM/CFSM may control components of an assembly line [7] and some other
modules may be used for solving optimization problems such as planning the
sequence of operations, etc.

Apart from applications described above, PHFSMs/CFSMs can be used as hard-
ware accelerators of software programs, such as [1]. We will show below that for such
applications capabilities of parallelism, modularity, hierarchy and dynamic recon-
figuration are also very useful and important.

3 Design and Implementation of the Parallel Logic
Controller

We have already mentioned that the parallel logic controllers considered here are
based on different FSM models. Basically, we can distinguish three types of FSM
models, which are simple sequential, hierarchical, and parallel. In turn, they can
be further divided (for example, we can consider recursive and iterative hierarchical
models).

Methods of synthesis for simple sequential FSMs are very well studied [8, 9] and
they are considered just as a basis for more complicated hierarchical and parallel
FSMs.

A hierarchical FSM is composed of other hierarchical and simple sequential FSMs
(modules), which can be activated much like procedures in software programs. Thus,
any module can be triggered from either another or the same module (see Fig. 3) [5].

Callingmodule

Called module

Module (HFSM) 0
\v \—\\erafCh‘ca\ c @

Another
module

\z\ Hierarchicalrewm (HFSM)

1O

Fig. 3 Execution of hierarchical modules



20 V. Sklyarov et al.

Callingmodule
Called module Called module

. Module (HFSM)
\

Another A Another
module module
(HFSM)

(HFSM) | areicaretum | N Y

\\ /

Modulesexecuted in parallel

©

Fig. 4 Execution of parallel modules

A parallel FSM enables different modules to be executed in parallel (see Fig.4).
Note that generally any electronic device deals with simultaneous processing of
analog/digital signals. Thus, it is parallel by definition. However, circuit level of
parallelism does not give answers to many questions appearing at the algorithmic
level of specification. For example, how can different branches of algorithms be
executed in parallel, how can pipelining technique be applied, etc. In [5] all necessary
answers to such questions are given.

The most interesting approach is a combination of parallel and hierarchical capa-
bilities within the same FSM, which becomes a PHFSM.

Reconfiguration of HFSMs/CFSMs can be done with the aid of the methods
[6] which permit HFSM/CFSM circuits to be built from reloadable memories that
determine the desired functionality. The memories (that are embedded or distrib-
uted PL blocks) can be updated at execution time and thus the operations of the
HFSMs/CFSMs can be changed in accordance with the requirements that might
depend on some factors [3, 4].

Since HFSMs/CFSMs are composed of modules that may be replaced if required,
different control algorithms specified by the modules can be selected during execution
time in order to adjust parameters of the controlled devices. Thus, we can apply the
strategy “try, test and replace if required”. Besides, any module can be updated
with an improved version without modification of surrounding modules [3]. For
example, the PS evaluates the functionality of the controlled devices and verifies if
the established requirements are satisfied. If based on the result of evaluation the
PS makes a conclusion that some modes or algorithms applied to the controlled
devices may be improved then the set of active modules implemented in the PL can
be updated and some of such modules may be reconfigured using the methods [6].

Hierarchy and parallelism can be described using various methods such as [3,
10-12]. We will use parallel hierarchical graph-schemes (PHGSs) [5]. An example
of a PHGS which describes functionality of a self-controlled transport section from
[13] is given in Fig.5. The algorithm is composed of 7 modules Zy, . .., Zg. Some



Synthesis and Implementation of Parallel Logic Controllers ... 21

Z, a% Z,
a®, — ]
a? a2
’ move left H (Z3) take ‘ ’MZOVERIGHT‘ (ZS)UNLOAD‘
0
:
! aly lO a% a% |0
End |a% ’ move right ‘ WAIT
L]
a%,

Z,| Begin |a% Z6

These three modules are incomplete

Fig. 5 An example of parallel hierarchical algorithms for a logic controller from [13]

of the modules, namely Z;, ..., Zg, are activated hierarchically and some of them,
namely Z;, Z, are called in parallel. Labels like a? and a represent states [5].
Rhomboidal nodes contain logical conditions that are formed by sensors of the logic
controller and enable the sequence of execution of the algorithm to be properly
selected. For example, if OFF = 0 in the node ag’ of the module Z; the execution
of the rectangular node ag is repeated. If OFF = 1 in the node ag’ the module Z
is terminated. Microoperations (like y;, y,, move left, etc.) affect actuators of the
controlled device forcing the required operations to be executed.
The modules can be activated from each other in such a way that:

a) the calling module is suspended;

b) the called module is executed;

¢) as soon as the called module is terminated, the control has to be returned back to
the calling module, i.e. the calling module continues its execution starting from
a node following the node with the terminated called module. For example, the
node ag of the calling module Z, activates the called module Z¢. After Zg is
terminated, the control has to be returned back to Zq and the node ag has to be
activated.

If two or more modules are activated in the same rectangular node they have to
be executed in parallel. For example, the modules Z, and Z, have to be activated in
parallel from the module Z. If two or more modules (the called modules) are called



22 V. Sklyarov et al.

in parallel from the calling module, the calling module is allowed to continue its
execution if and only if all the called parallel modules have been completed. In other
words if any of the called parallel modules is still functioning, the calling module
has to be suspended. PHFSMs can formally be synthesized from PHGSs using the
methods [3, 5, 13].

PHFSMs/HFSMs/FSMs may be connected in a network in such a way that they
communicate with each other [5]. The communications we consider here are managed
by software modules (see Fig.2) in such a way that:

e Any FSM module can be activated/reset/configured/tested by software modules
through GPPs and HPPs (see Fig.2). Thus, many communication mechanisms in
CFSMs [5] are provided by software.

e For such FSM states where some operations have to be immediately executed
special interrupts from hardware to software are generated.

e Software modules check states of FSM modules and the interrupts from the FSM
modules and make conclusion about subsequent operations.

4 Hardware/Software Interactions

Hardware/software interactions are supported by two hardware components that
have been developed in the Vivado 2014.2 design suite for Zynq microchips. The
first component GP_control provides support for interactions through GPPs and the
second one, HP_control, enables dynamic reconfiguration to be done. Three Xilinx
libraries proc_common, axi_lite_ipif, and axi_master_burst were used.

Data exchange through GPPs is provided through the PL registers mapped to
an address range defined by the constant of Xilinx type SLV64_ARRAY_TYPE
[14]. Interaction is organized through Xilinx modules in packages axi_lite_ipif and
proc_common. From the side of hardware the constants C_ARD_ADDR_RANGE_
ARRAY of Xilinx type SLV64_ARRAY_TYPE and C_ARD_NUM_CE_ARRAY
of type INTEGER_ARRAY_TYPE have been properly customized selecting the
required chip select and chip enable signals (many examples are given in [15]).
The minimum allowed size of a memory segment is 1000;¢ (it is defined by the
Xilinx constant C_S_AXI_MIN_SIZE) and it is almost always sufficient for all
modules interacting with software in a way shown in Fig. 2. In rare cases when larger
number of signals for GPPs is needed this constant can easily be increased (see
details in [14]). Signals between the PS and the PL are transferred through registers
in the PL addressed by the values in the constants and managed by the PS (the PS
is the master and the PL is the slave). Hardware and software can be developed
independently of each other using the defined transfer area to communicate. All
projects for experiments were implemented as standalone. Other types of projects
(such as running under Linux) can be prepared using the methods described in [15].



Synthesis and Implementation of Parallel Logic Controllers ... 23

Reconfiguration of different FSM modules is done through HPPs and this requires
the following customization:

1. The used memory (on-chip memory—OCM, or cache for our projects) was
enabled and the size of transferred data (32 or 64 bits) was indicated.

2. The initial memory address needs to be chosen identically in software and in
hardware. Software modules were developed in C language.

As soon as a request for configuration is set from software, the configuration
controller in the PL copies data (allowing the chosen FSM module to be customized
[6]) to the necessary memory blocks that are either embedded to the PL or distributed
elements built from the PL look-up tables. It is done similarly to [16].

Reconfiguration data are kept in either OCM or cache filled in from a host PC.
Copying data from the host PC to on-chip memories is done with the aid of projects
from [15]. The memories are always considered to be slaves and the PS that copies
data from the PC to the memories and the configuration controller in the PL that
reads data and customizes the chosen FSM module are masters operating in different
time slots. Configuration data are transferred from the PS to the PL in a burst mode
as shown in Fig. 6.

The top module instantiates several components, two of which are GP_control
and Configuration module. The remaining components are Xilinx intellectual prop-
erty (IP) cores. The component Burst reader executes burst read (supported by the
Xilinx component axi_master_burst [17]) and generates the signal finished as soon
as reading is completed. After that HFSM/FSM memory blocks are loaded much
like it is done in [16].

Configuration module in the PL

U iy

Reading
configuration Loading FSM
data memories

Begin Configuration
configuring Q @ is completed
init 3 loa done

Xilinx
axi_master_burst
component

sy
e (8
A

Reading is
completed

Customization
is completed

Loading HFSM/
FSM RAMs

Burst reader

Fig. 6 Component diagram for configuration of FSM modules in burst mode



24 V. Sklyarov et al.

The sequence of operations init, read, load, and done is formed by a dedicated
(not reconfigurable) HFSM module with the relevant states, two of which (read and
done) involve hierarchical operations. The first operation is implemented in the burst
reader and it is given in [15]. The second operation enables to load HFSM/FSM
memory blocks that permit the desired customization of HFSM/FSM modules to be
done.

Interrupts can be generated in any FSM module if immediate reaction is needed
from the software modules. Interrupts are initiated by dedicated signals in some
chosen HFSM/FSM states and processed in software by the interrupt handler. Many
examples that demonstrate how interrupts can be processed in Zynq microchips are
given in [15]. A similar technique is used in logic controllers that are considered
here.

5 Implementations and Examples

Figure 7 shows the organization of the experiments. We used a multi-level computing
system [18]. Configuration data are prepared in software of the host PC and saved
in files that are copied to APSoC memories using projects from [15]. Modules of
parallel logic controllers are created in the PL and managed from software of the
PS. The latter and software of the host PC may also be responsible for verifying
functionality of different HFSM/FSM modules. Standalone applications have been
created and uploaded to the PS from Xilinx Software Development Kit (SDK) using
methods described in [15]. Interaction is done through the SDK console window.
All experiments were done in two Zyng-based prototyping systems: ZyBo [19] and
ZedBoard [20]. Two examples are discussed in the subsequent sections.

Interaction with

Generating data for configuring m%%%ﬁ%ﬂghe @ C°22§{Jr2ﬂ§rthe
HFSM/FSM memories
7 @ N e Zyng APSoC
P Outputfiles o > \. 4]

Processing in conﬁgura%on Software, E Controller,
software of || Host PC datafromthe PC] | jeveloped [] &[] developed
the host PC i outiles < @ insDK [ |£)] inVivado

nputfiles €
P May be used for | \_ PS PL
verifications

Fig. 7 Experimental setup



Synthesis and Implementation of Parallel Logic Controllers ... 25

5.1 An Example of PHFSM-Based Hardware Accelerator

Let us consider a project demonstrating the use of PHFSM to accelerate computation
of the greatest common divisor for N unsigned integers, where N is chosen to be 8.
The intended functionality is demonstrated on an example of the following C function
gcd with 8 arguments:

unsigned int gcd (unsigned int A, unsigned int B,
unsigned int C, unsigned int D, unsigned int E,
unsigned int F, unsigned int G, unsigned int H)

return gcd(ged(ged(A,B), ged(C,D)), ged(ged(E,F), ged
(GH)));

This function permits the greatest common divisor of 8 operands A, B, C, D, E,
F, G, and H to be found and calls another function gcd with two operands:

unsigned int gcd (unsigned int A, unsigned int B)

{

unsigned int tmp;
while (B > 0)

{
if B>A)
{
tmp = A;
A =B;
B = tmp;
}
else
{
tmp = B;
B = A %B;
A = tmp;
}
}
return A;

Clearly, four functions gcd(A, B), gcd(C, D), gcd(E, F), gcd(G, H) can be executed
in parallel at the first step giving the results Result_A_B, Result_C_D, Result_E_F,
and Result_G_H. At the second step, these results will be used as arguments for
the functions: gcd(Result_A_B, Result_C_D), and gcd(Result_E_F, Result_G_H),
which can also be executed in parallel giving the results Result_A_B_C_D, and
Result_E_F_G_H. Atthe next (last) step the function gcd(Result_A_B_C_D, Result_
E_F_G_H) computes the final greatest common divisor of 8 unsigned integers A, B,
C, D, E, F, G, and H. All the above functions will be implemented in the PHFSM



26 V. Sklyarov et al.

init —_] <>

zero yes

arguments
z,(Result_A_B,Result_C_D)

Prepare > z,(Result_E_F,Result_G_H)
arguments _ run d
2,(A,B), Result=0 Ng ) d ~,
acol | L] | E <
Zl(EIF) 8} E
A 24(G,H) *ég yes
L &3 z3(Result_A_B_C_D,
< Result_E_F_G_H)
Execution of 4 "
parallel modules final state —, i

End

Fig. 8 Parallel hierarchical graph-scheme that permits the greatest common divisor of N = 8
non-negative integers to be found

Fig.9 Interaction with the Greatest Common Divisor - ZyBo

circuit that computes the .
greatest common divisor of Insert _ Numb_e\r 8 numbers:

eight unsigned integers 1 -> o
2 -> 5 4
3 -> 48_,? w
4 -> €
5 -> ¢
6 -> 2 s
| )
7 -> =
38 ->

—

waiting...

GD = 19« The computed greatest

common divisor

described by PHGS in Fig. 8. Possible results of interaction from the SDK console
are demonstrated in Fig. 9.



Synthesis and Implementation of Parallel Logic Controllers ... 27

At the beginning, the operands A, B, C, D, E, F, G, and H are examined and if
there is at least one zero operand then the subsequent steps are not executed and
the result is assigned to 0. If all the operands are not equal to zero then 4 modules
7, with different arguments are activated at the same time. As soon as all of them
terminate, the results of these modules are used as operands for two new invocations
of Z; also running in parallel. The final result is produced in the single module
Z,. In [3] there are two complete synthesizable VHDL specifications that describe
the hardware circuit that implements the algorithm in Fig. 8. The first specification
(entity Parallel_HFSM_iterative)) corresponds to the C function discussed above.
The second specification (entity Parallel_HFSM_recursive) is based on a recursive
C function given in [3]. Thus, there might be recursive calls in all modules Z; running
in parallel. The modules Parallel HFSM_iterative and Parallel HFSM_recursive are
given in [3] (see Sect.5.4 in [3]) and can also be downloaded from http://sweet.ua.
pt/skl/Springer2014.html).

Our example uses four address ranges [15] and respectively four chip select sig-
nals with one chip enable signal for each address pair. Let us look at the following
constants:

constant C ARD ADDR RANGE ARRAY: SIV64 ARRAY TYPE := (
X"0000_0000_0000_0000", — — this pair is used for 8
— — 32-bit operands: A, B, C, D, E, F, G, H
X"'0000_0000_0000_001F",

X"'0000_0000_0000_0020", — — this pair is used for the
— — 32-bit result, i.e. for the greatest common
X"'0000_0000_0000_0023", — — divisor of the operands A,

——B,C, D E F, GH
X"0000_0000_0000_0024", — — 32—bit status (for

— — overflow and ready signals)

X"0000_0000_0000_0027",
X"0000_0000_0000_0028", — — 32—bit control (for enable

— — and reset signals)
X"0000_0000_0000_002B");

constant C ARD NUMCE ARRAY : INTEGER ARRAY_TYPE := (

0=1,
1=1,
2 =1,
3=1);

The complete project that includes hardware and software modules is available at
http://sweet.ua.pt/skl/TUT2014.html. Additional details may also be found in [15].
Verification of the project demonstrates high performance. Similar experiments have
been done with recursive and iterative algorithms that enable traversing binary trees
from [5] to be implemented partially in software and partially in hardware.


http://sweet.ua.pt/skl/Springer2014.html
http://sweet.ua.pt/skl/Springer2014.html
http://sweet.ua.pt/skl/TUT2014.html

28 V. Sklyarov et al.

5.2 An Example of a Parallel Hierarchical Controller

The second example explains how to execute different operations with PHF-
SMs/CFSMs that implement the algorithm depicted in Fig. 5. Parallel module exe-
cutions are organized with the aid of the methods [3]. The main difference between
HFSMs and CFSMs is in connections between the modules that are FSMs without
hierarchical calls. In HFSM all links are organized through common stack memories
[3] and in CFSM they are organized through semaphores [5]. The following steps
have been done:

1. Incomplete in Fig.5 PHGSs Z,4, Zs, and Z¢ have been entirely described.

2. Nodes of the PHGSs have been marked with labels: a?, ag , ... inaccordance with
the rules [5] (see also Fig.5).
3. A combinational circuit for each PHFSM module Zy, . . . , Zg is built from memory

blocks and has the structure shown in Figs.8 and 10 of [6]. The configuration
controller for memory blocks is built in a way [16].

4. The PHFSM has been synthesized and implemented in the PL with the aid of the
methods [3, 6].

5. Initial configuration corresponding to the extended PHGS from Fig.5 is done
statically in the PL. Connections to the controlled devices are provided through
external APSoC pins.

6. Reconfiguration that permits functionality of some modules of the PHFSM to be
changed is done from software running in the PS and verified according to the
methods described in Sect. 2.

We have found that reconfiguration can be done very fast. Thus, for many practical
cases customization of modules may be done even during execution time. The circuit
occupies less than 1 % of the PL resources, which permits many additional hardware
components to be built in the same microchip.

6 Conclusion

The chapter suggests the design method for parallel logic controllers in Zynqg-7000 all
programmable systems-on-chip. It is proposed to model the controller by a parallel
hierarchical finite state machine implemented in hardware (in the programmable
logic) with additional support from software (in the processing system). The machine
is composed of modules communicating with each other and managed by software,
which also allows verifications and changes in the functionality of the modules
applying the technique of dynamic reconfiguration. Finally, the proposed controllers
provide support for modularity, hierarchy (including recursion), parallelism and run-
time reconfiguration.

Acknowledgments This work was supported by National Funds through FCT—Foundation for
Science and Technology, in the context of the project PEst-OE/EEI/UI0127/2014.



Synthesis and Implementation of Parallel Logic Controllers ... 29

References

10.
11.
12.
13.

14.

16.

17.

18.

19.

20.

. Sklyarov, V., & Skliarova, 1. (2013). Hardware implementations of software programs based

on HFSM models. Computers and Electrical Engineering, 39(7), 2145-2160.

. Zyng-7000 All Programmable SoC Technical Reference Manual (2014). http://www.xilinx.

com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

. Sklyarov, V., Skliarova, 1., Barkalov, A., & Titarenko, L. (2014). Synthesis and Optimization

of FPGA-based Systems. Heidelberg: Springer.

. Zmaranda, D., Silaghi, H., Gabor, G., & Vancea, C. (2013). Issues on applying knowledge-based

techniques in real-time control systems. International Journal of Computers, Communications
and Control, 8(1), 166-175.

. Sklyarov, V., Skliarova, 1., & Sudnitson, A. (2012). Design of FPGA-based Circuits using

Hierarchical Finite State Machines. Tallinn: TUT Press.

. Sklyarov, V. (2002). Reconfigurable models of finite state machines and their implementation

in FPGAs. Journal of Systems Architecture, 47(14-15), 1043-1064.

. Sklyarov, V. (2002). Hardware/software modeling of FPGA-based systems. Parallel Algorithms

Application, 17(1), 19-39.

. Baranov, S. (1994). Logic Synthesis for Control Automata. Boston: Kluwer Academic Publish-

ers.

. De Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. New York: McGraw-

Hill, Inc.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 231-274.

Uchitel, S., Kramer, J., & Magee, J. (2003). Synthesis of behavorial models from scenarios.
IEEE Transactions on Software Engineering, 29(2), 99-115.

Zakrevskij, A. (1981): Logical Synthesis of Cascade Networks. Science, Moscow (in Russian).
Sklyarov, V., & Skliarova, I. (2008). Design and implementation of parallel hierarchical finite
state machines. In Proceedings of 2nd International Conference on Communications and Elec-
tronics (pp. 33-38). Hoi An, Vietnam.

LogiCORE IP AXI4-Lite IPIF v2.0. Product Guide for Vivado Design Suite (2013). http://
www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pgl155-axi-
lite-ipif.pdf

. Sklyarov, V., Skliarova, L., Silva, J., Rjabov, A., Sudnitson, A., & Cardoso, C. (2014). Hard-

ware/Software Co-design for Programmable Systems-on-Chip. Tallinn: TUT Press.

Sklyarov, V., & Skliarova, 1. (2007). Synthesis of reconfigurable hierarchical finite state
machines. Studies in Computational Intelligence, Autonomous Robots and Agents (pp. 259—
265). Berlin: Springer.

LogiCORE IP AXI Master Burst v2.0. Product Guide for Vivado Design Suite
(2013). http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/
v2_0/pgl62-axi-master-burst.pdf

Sklyarov, V., Skliarova, 1., Silva, J., & Sudnitson, A. (2014). Design space exploration in multi-
level computing systems. In Proceedings 15th International Conference on Computer Systems
and Technologies (pp. 40—47). Bulgaria.

ZyBo Reference Manual (2014). http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_
Vo6.pdf

ZedBoard (ZynqTM Evaluation and Development) Hardware User’s Guide (2014) Version 2.2.
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_ HW_UG_v2_2.pdf


http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pg162-axi-master-burst.pdf
http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pg162-axi-master-burst.pdf
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

2 Springer
http://www.springer.com/978-3-319-26723-4

Design of Reconfigurable Logic Controllers
Karatkevich, A.; Bukowiec, A.; Doligalski, M.; Tkacz, J.
(Eds.)

2016, VIll, 185 p. 76 illus., 13 illus. in color., Hardcover
ISBN: 978-3-319-26723-4



	Synthesis and Implementation of Parallel Logic Controllers in All Programmable Systems-on-Chip
	1 Introduction
	2 The Proposed Software/Hardware Architecture
	3 Design and Implementation of the Parallel Logic Controller
	4 Hardware/Software Interactions
	5 Implementations and Examples
	5.1 An Example of PHFSM-Based Hardware Accelerator
	5.2 An Example of a Parallel Hierarchical Controller

	6 Conclusion
	References


