
Probabilistic Planning in AgentSpeak
Using the POMDP Framework

Kim Bauters, Kevin McAreavey, Jun Hong, Yingke Chen, Weiru Liu,
Lluís Godo and Carles Sierra

Abstract AgentSpeak is a logic-based programming language, based on the Belief-
Desire-Intention paradigm, suitable for building complex agent-based systems. To
limit the computational complexity, agents in AgentSpeak rely on a plan library
to reduce the planning problem to the much simpler problem of plan selection.
However, such a plan library is often inadequate when an agent is situated in an
uncertain environment. In this work, we propose the AgentSpeak+framework, which
extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of
an AgentSpeak+ agent are represented using epistemic states to allow an agent to
reason about its uncertain observations and the uncertain effects of its actions. Each
epistemic state consists of a POMDP, used to encode the agent’s knowledge of the
environment, and its associated probability distribution (or belief state). In addition,
the POMDP is used to select the optimal actions for achieving a given goal, even
when faced with uncertainty.

1 Introduction

Using the Belief-Desire-Intention (BDI) agent architecture [20], we can develop
complex systems by treating the various system components as autonomous and
interactive agents [12]. The beliefs determine the desires that are achievable, the
desires are the goals an agent wants to achieve and the intentions are those desires the
agent is acting upon. A number of successful agent-oriented programming languages
have been developed based on this architecture, such as AgentSpeak [19] and Can
[21]. Notable BDI implementations include, for example, JASON [5] and JADEX
[6]. The benefits of theBDImodel in scalability, autonomy and intelligence have been
illustrated in various application domains such as power engineering [15] and control

K. Bauters (B) · K. McAreavey · J. Hong · Y. Chen · W. Liu · L. Godo · C. Sierra
Queen’s University Belfast (QUB), Belfast, UK
e-mail: k.bauters@qub.ac.uk

L. Godo · C. Sierra
IIIA, CSIC, Bellaterra, Spain

© Springer International Publishing Switzerland 2016
I. Hatzilygeroudis et al. (eds.), Combinations of Intelligent Methods
and Applications, Smart Innovation, Systems and Technologies 46,
DOI 10.1007/978-3-319-26860-6_2

19

20 K. Bauters et al.

Fig. 1 The material collection scenario

systems [12]. Key to the efficiency of BDI agents is the use of a set of pre-defined
plans, which simplify the planning problem to an easier plan selection problem.
However, obtaining a plan library that can cope with every possible situation requires
adequate domain knowledge. This knowledge is not always available, particularly
when dealing with uncertain situations. As such, when faced with uncertainty, an
autonomous and intelligent agent should resort to other forms of planning to make
rational decisions.

To illustrate the problem, consider the example shown in Fig. 1. A truck needs
to collect materials from three different factories, each producing a distinct type
of material that may or may not be available (i.e. the environment is stochastic).
The truck needs to collect all materials by visiting each factory while limiting costs
(e.g. fuel). The truck agent is uncertain as to whether the material in a factory is ready
to collect, but it can use previous experience to estimate a degree of belief. To further
complicate the situation, the truck agent can only infer its location by observing
nearby signposts (e.g. the agent is near a supermarket or a petrol station). Travelling
between factories may also fail (i.e. non-deterministic actions).

The large number of possibilities make a pre-defined plan library infeasible, even
in this small example. We address these issues by combining AgentSpeak with Par-
tially ObservableMarkovDecision Processes (POMDPs). POMDPs are a framework
for probabilistic planning [13], and are often used as a decision theory model for
agent decision making. Other frameworks, such as probabilistic graphplan [4], only
consider the uncertain effects of actions. Similarly, the partial observability of the
stochastic environment is not addressed by approaches such as probabilistic Hierar-
chical Task Networks (HTN) [17] and Markov Decision Processes (MDPs) [3]. As
such, POMDPs seem to offer an elegant solution to deal with examples such as the
one discussed above. In particular, when optimal solutions are required (e.g. the truck
wants to collect as many materials as possible subject to the fuel limit), POMDPs
can be used to compute these solutions. However, even though efficient algorithms
to compute the optimal policy exist (e.g. [11]), POMDPs are still computationally
expensive.

Probabilistic Planning in AgentSpeak Using the POMDP Framework 21

By integrating POMDPs into a BDI architecture, we retain the scalability of
the BDI architecture, while adding to it the ability to model uncertainty as well as
on-demand access to optimal actions (provided by the POMDP component). The
framework we propose is called AgentSpeak+. In this framework we introduce the
concept of epistemic states [14] to the BDI paradigm. These epistemic states are used
to model the beliefs of an agent about uncertain information, along with information
on how these beliefs evolve over time. To achieve this, POMDPs are embedded into
the agent’s epistemic states and are used to represent some aspects of the agent’s
domain knowledge. The optimal actions generated by these POMDPs can be fed
into the agent’s plan execution. Therefore, alongside the traditional trigger-response
mechanism based on pre-defined plans in BDI, an AgentSpeak+ agent also has the
ability to take optimal actions when dealing with uncertain and partially observable
environments.

The main contributions of this work are as follows. First, we extend the belief
base of a BDI agent with epistemic states consisting of POMDPs to allow an agent
to reason about both the partially observable stochastic environment and the uncer-
tain effects of its actions. Second, we present how the agent can delegate POMDPs
to find optimal action(s) when the agent is dynamically generating its plans under
uncertainty for achieving its goals. Finally, we demonstrate through a scenario dis-
cussion how the proposed framework can be used to design agents that are aware of
the uncertainty in the environment and are able to react accordingly.

The remainder of our work is organised as follows. Preliminary notions on
AgentSpeak and POMDPs are mentioned in Sect. 2. In Sect. 3 we propose the
AgentSpeak+ architecture which integrates POMDPs into AgentSpeak. A scenario
is discussed in Sect. 4. Related work is discussed in Sect. 5 and in Sect. 6 we conclude
our work.

2 Preliminaries

We start with some preliminaries onAgentSpeak (see Sect. 2.1) and Partially Observ-
able Markov Decision Processes (POMDP) (see Sect. 2.2).

2.1 AgentSpeak

We first define how an agent program can be written. We use S to denote a finite set
of symbols for predicates, actions, and constants, and V to denote a set of variables.
Following convention in logic programming, elements from S are written using
lowercase letters and elements from V using uppercase letters. We use the standard

22 K. Bauters et al.

first-order logic definition of a term1 andwe use t as a compact notation for t1, . . . , tn ,
i.e. a vector of terms. We have [19]:

Definition 1 If b is a predicate symbol, and t are terms, then b(t) is a belief atom.
If b(t) and c(s) are belief atoms, then b(t), ¬b(t), and b(t) ∧ c(s) are beliefs.

Definition 2 If g(t) is a belief atom, then !g(t) and ?g(t) are goals with !g(t) an
achievement goal and ?g(t) a test goal.

Definition 3 If p(t) is a belief atom or goal, then +p(t) and −p(t) are triggering
events with+ and− denoting the addition and deletion of a belief/goal, respectively.

Definition 4 If a is an action symbol and t are terms, then a(t) is an action.

Definition 5 If e is a triggering event, h1, . . . , hm are beliefs and q1, . . . , qn are goals
or actions, then e : h1 ∧ . . . ∧ hm ← q1, . . . , qn is a plan. We refer to h1 ∧ . . . ∧ hm

as the context of the plan and to q1, . . . , qn as the plan body.

Following these definitions, we can now specify an agent by its belief base BB,
its plan library PLib and the action set Act. The belief base of an agent, BB, which
is treated as a set of belief atoms, contains the information that the agent has about
the environment. The plan library contains those plans that describe how the agent
can react to the environment, where plans are triggered by events. Finally, the action
set simply describes the primitive actions to which the agent has access.

On the semantic level, the state of an AgentSpeak agent A can be described by
a tuple 〈BB, PLib, E, Act, I〉, with E the event set, I the intention set and BB, Plib
and Act as before [19]. The event set and intention set are mainly relevant during
the execution of an agent. Intuitively, the event set contains those events that the
agent still has to deal with. When an agent reacts to one of these new events e, it
selects those plans that have e as the triggering event, i.e. the relevant plans. We say
that a plan is applicable when the context of the plan evaluates to true according
to the belief base of the agent. For a given event e there may be many applicable
plans, one of which is selected and added to an intention. The intention set is a set of
intentions that are currently being executed concurrently, i.e. those desires that the
agent has chosen to pursue. Each intention is a stack of partially executed plans and
is itself executed by performing the actions in the body of each plan in the stack. The
execution of an intention may change the environment and/or the agent’s beliefs.
Also, if the execution of an intention results in the generation of new internal events
(or subgoals), then additional plans may be added to the stack.

1A variable is a term, a constant is a term, and from every n terms t1, t2, . . . , tn and every n-ary
predicate p a new term p(t1, t2, . . . , tn) can be created.

Probabilistic Planning in AgentSpeak Using the POMDP Framework 23

2.2 POMDP

Partially Observable Markov Decision Processes (POMDPs) have gained popularity
as a computational model for solving probabilistic planning problems in a partially
observable and stochastic environment (see e.g. [13]). They are defined as follows:

Definition 6 A POMDP M is a tuple M = 〈S, A,Ω, R, T, O〉 where S, A, and
Ω are sets of states, actions, and observations, respectively. Furthermore, R : S ×
A → R is the reward function, T : S × A → Δ(S) is the transition function and O :
S × A → Δ(Ω) is the observation function. Here, Δ(·) is the space of probability
distributions.

Instead of knowing the current state exactly, there is a probability distribution over
the state space S, called the belief state2 b(S), with b(s) the probability that the
current state is s. When S is clear from the context, we simply write b instead of
b(S). In Definition 6, we have that the Markovian assumption is encoded in the
transition function since the new state depends only on the previous state. Given the
belief state bt at time t , after performing action a and receiving observation o, the
new belief state bt+1 is obtained using the Bayesian rule:

bt+1(s) = P(s | bt , a, o)

= O(o | s, a) · ∑
s ′∈S T (s | s ′, a) · bt (s ′)

P(o | bt , a)
(1)

where P(o | bt , a) is a normalisation factor obtained by marginalising s out as
follows:

P(o | bt , a) =
∑

s∈S

O(o | s, a) ·
∑

s ′∈S

T (s | s ′, a) · bt (s
′).

The decision a at horizon t takes into account both the instant reward as well as
all possible rewards in future decision horizons (of the POMDP execution). Given
a POMDP M, its policy π : B → A is a function from the space of belief states
(denoted asB) to the set of actions. The policy provides the optimal action to perform
for a given belief state at each decision horizon, i.e. it is the action that should be
performed in the current belief state to maximise the expected reward.

Definition 7 (Optimal Policy) Given a POMDP M with the initial belief state b1,
π∗ is an optimal policy over the next H decision horizons if it yields the highest
cumulated expected reward value V ∗:

V ∗(b1) =
H∑

t=1

γt−1 · R(s,π∗(bt)) · bt (s)

2Not to be confused with the belief base of an agent, which we see later.

24 K. Bauters et al.

where bt (s) is updated according to Eq. (1) and γ ∈ (0, 1] is a discounting factor to
ensure that future rewards are lower. Here π∗(bt) is the action determined by policy
π∗ and the belief state bt .

A probabilistic planning problem is then defined as the problemof finding the optimal
actions for a given POMDPM and an initial belief state b (where the optimal actions
in a POMDP setting are described using a policy π).

3 Integration of AgentSpeak and POMDPs

We now discuss howAgentSpeak and POMDP can be integrated into a single frame-
work. The resulting framework, called AgentSpeak+, allows us to define agents that
can perform on-demand planning based on the POMDP to provide optimal decisions
in an uncertain environment. We start by introducing the concept of epistemic states
to model the uncertain beliefs of an agent. We define an epistemic state in Sect. 3.1
as containing both a POMDP M and a belief state b, where the former encodes the
agent’s domain knowledge about the partially observable environment and the latter
represents the current uncertain information about the states modelled in M. The
basic concepts needed for probabilistic planning are introduced in Sect. 3.2, where
we show how a new construct behaving as an action in AgentSpeak allows for the
desired on-demand planning. Our new framework, AgentSpeak+ in then introduced
in Sect. 3.3, where it combines both aforementioned ideaswith classical AgentSpeak.

3.1 Epistemic States

Normally, a belief base only contains belief atoms with Boolean values. Such an
approach is insufficient to reason over the uncertain beliefs of the agent. To overcome
this, we extend the the idea of a belief base into the concept of an epistemic state.

Definition 8 (Epistemic states) Let M be a POMDP which models the situated
partially observable stochastic environment. By definition,M includes a set of states
S. The epistemic state Φ over the state space S is defined as Φ = 〈b,M〉, where
b : S → [0, 1] is a probability distribution over S.

The POMDPM defined in the epistemic state Φ represents the knowledge about
the uncertain environment. The observationsΩ and state space S inM are subject to
the agentA’s belief base. The action set A of the POMDP can contain both primitive
actions in agent A’s action set Act and compound actions which correspond to goals
achievable by executing existing plans. Compound actions, which are plans in BDI,
can have various outcomes. However, they can be transformed into primitive actions
over which POMDP can reason using a translation such as the one proposed in

Probabilistic Planning in AgentSpeak Using the POMDP Framework 25

Fig. 2 Graphical representation of the POMDP M. We have that S = {LocA, LocB}, Ω =
{(s)uper(m)arket, (p)etrol (s)tation} and A = {move, stop}. The transition, observation and
reward functions are shown as tables

[9]. Indeed, the work in [9] suggests an approach to summarise sceptical results of
compound actions as primitive actions. The belief state b quantitatively denotes the
degree of certainty about the partial state space as the initial condition for M.

Example 1 LetΦ = 〈b,M〉 be an epistemic state. The state space S inM is {LocA,
LocB}, i.e. two possible locations, where we want to be in LocB (as indicated by the
reward function). The current belief state is given by b(LocA) = 0.6 and b(LocB) =
0.4, which will change based on the actions performed by the agent (e.g. probably in
LocB if you move from LocA) and its observations (e.g. probably in LocA when you
see a supermarket). The POMDPM encoding the relevant knowledge is graphically
illustrated in Fig. 2.

Each epistemic state contains all knowledge needed to plan over and reason about
a well-defined subset of the environment. Given that each epistemic state has an
optimal policy, this optimal policy intuitively encodes a subplan for this subset of
the environment. Throughout this work, we assume that a corresponding symbol Φ
is available on the syntactic level as well, i.e. on the level of an AgentSpeak agent
we are able to refer to a specific epistemic state. An executed action and a newly
obtained observation are together taken as new input to revise the epistemic state
using the belief updating process in Eq. (1), where revision is defined as:

Definition 9 (Epistemic state revision) Let Φ = 〈b,M〉 be an epistemic state and
I = 〈a, o〉 an input with a ∈ A an action and o ∈ Ω an observation. The revision of
Φ by I , denoted as Φ ◦ I , is defined as:

Φ ◦ I = 〈b′,M〉

with ◦ a revision operator. Particularly, ◦ is given by Eq. (1). The result of revision is
a new epistemic state, where the new belief state b′ is determined based on the old
belief state b and the input I .

26 K. Bauters et al.

Example 2 (Example 1 continued) Let Φ = 〈b,M〉 be the epistemic state from
Example 1 with the belief state b. After performing action move, and receiving a
new observation ps, the revised probability distribution over possible locations is
b′(LocA) = 0.16 and b′(LocB) = 0.84.

It is important to note that revision will only revise the belief state, while keep-
ing the corresponding POMDP unchanged (i.e. revision does not alter the domain
knowledge of the agent in this case).When there is a sequence of inputs I1, . . . , In the
epistemic state is simply revised iteratively. Furthermore, we assume that an agent
can have multiple epistemic states, each dealing with a localised and isolated part
of the beliefs of the agent. For example, the availability of material at each factory
is independent of the colour of the traffic light. Localised epistemic states allow an
agent to revise a corresponding epistemic state given a new input without affecting
other epistemic states.3 This reflects, to some extent, the notion of minimal change
principle in belief revision.

We will also allow the belief state (i.e. the beliefs maintained by a POMDP)
to be extracted from the agent’s belief base (i.e. the component of an AgentS-
peak agent where beliefs are stored). This is useful for designing an AgentSpeak+
agent, as it allows the automatic extraction of the belief state of the POMDP from
the AgentSpeak+ program. To simplify the explanation, we will explicitly add the
POMDP as a parameter to the belief atoms to make explicit to which POMDP the
belief atom is associated.

Definition 10 (Correlated belief atoms) Two belief atoms h(x, m,M) and
h(x ′, m ′,M) are said to be correlated if x and x ′ are two states of variable X j

(which is one of the variables in the joint state space S) defined in the POMDP M,
where m and m ′ are their corresponding probability values.

Definition 11 (Extraction) Let {h(xi , mi ,M) | i ∈ 1, . . . , k} be a set of exhaus-
tively correlated belief atoms for variable X j . The belief state b(xi) = mi can be
directly derived from this set iff

∑k
i=1 mi = 1 and X j = {x1, . . . , xk}.

Here, a set of exhaustively correlated belief atoms implies that no other belief atoms
in the agent belief base are correlated to any of the belief atoms in this set.

When the state space S of a POMDP M has a set of variables {X1, . . . , Xn},
then the belief state b(S) is the joint probability distribution obtained from b(X j).
When the belief state cannot be extracted from an agent’s initial beliefs we assume a
default probability distribution, i.e. a uniform distribution, for the belief state. Finally,
whenever an epistemic state is initiated or revised the belief base of the agent will be
updated accordingly using the corresponding triggering events −h(xi , mi ,M) and
+h(xi , m ′

i ,M) in AgentSpeak.

3For simplicity, we restrict ourselves in this work to the case where each input is relevant to only
one epistemic state.

Probabilistic Planning in AgentSpeak Using the POMDP Framework 27

We can also derive ordinary beliefs from the belief state:

Definition 12 (Derivation) Let Φ = 〈b,M〉 be an epistemic state containing a
probability distribution over S. The belief atomofΦ, denoted as Bel(Φ), is derived as

Bel(Φ) =
{

si , when P(S = si) ≥ δ
T, otherwise

Here δ is a pre-defined threshold for accepting that si represents the real world
concerning S. Notation T is a special constant representing an agent’s ignorance,
i.e. an agent is not certain about the state of variable S.

Example 3 (Example 2 continued) The belief state b can be modelled as the belief
atoms location(LocA, 0.6,M) and location(LocB, 0.4,M). The revised belief
state b′ is represented as location(LocA, 0.16,M) and location(LocB, 0.84,M).

3.2 Probabilistic Planning

Now that we have defined an epistemic state (which can deal with uncertainty)
and how to revise it, we look at how probabilistic planning can be integrated into
AgentSpeak. The POMDPs we use in the epistemic state allow us to decide the
optimal action at eachdecisionhorizonby taking into account the immediate expected
reward and the future rewards. However, simply computing the optimal plan at each
step would severely hamper the reactiveness of the AgentSpeak agent due to the
computational cost. Instead, we introduce a new action to AgentSpeak, ProbPlan,
which can be used in AgentSpeak plans to explicitly compute the optimal action to
achieve a goal for a given epistemic stateM. This enables the agent to react optimally
when needed, e.g. for when performing the wrong action likely carries a high penalty.
When optimality is not required or when reactiveness is of primary importance, the
agent can instead rely on the abstractness and high performance of the normal BDI
plan selection strategy.

Definition 13 (Probabilistic planning action) LetProbPlanbe anordinaryAgentS-
peak action symbol and Φ = 〈b,M〉 an epistemic state. We say that ProbPlan(Φ,
H) is a probabilistic planning action, with H the number of steps and correspond-
ing rewards we should consider (i.e. H is the horizon). The effect of executing
ProbPlan(Φ, H) is that the probabilistic planning problem defined by a POMDP
M with initial belief state b and horizon H is solved, after which the optimal action
ai ∈ A is executed.

Importantly, the action set A defined in a POMDP can contain both primitive
actions and compound actions (i.e. subgoals), each representing different levels of
planning granularity. In the latter case, a pre-defined plan in AgentSpeak will be
triggered to pursue the goal corresponding to the optimal action ai . This allows the

28 K. Bauters et al.

optimal plan to be as specific as possible (to reach the goal without taking excess
steps)while being as abstract as possible (to fully take effect of the domain knowledge
encoded in the set of pre-defined plans). The effects of these compound actions can
be computed either sceptically (i.e. only considering effects shared by all relevant
plans) or credulously, which allows us to balance optimality and reactiveness for the
given problem. In the first case, we guarantee the outcome of those effects that we
want to bring about, but we leave it up to the AgentSpeak reasoning system to select
the best plan at time of execution (i.e.we are not interested in the side-effects). In the
latter case, we apply a “best effort” strategy, where we lose some optimality but gain
reactiveness. In addition, it should be noted that while the result of ProbPlan(Φ, H)
is an optimal action at the time of computation, there is no guarantee that this action
will still be optimal during execution. Indeed, the optimal action/subgoal is not (by
default) immediately executed and may be intertwined with the execution of other
subgoals which alter the environment. The benefit of not enforcing this optimality
but rather trying to be optimal is that we retain the reactiveness of BDI and are able
to fully use the knowledge already encoded by the system developer in the subgoals.

For the running example, we consider a POMDP with the state space defined as
{O, A, B, C}, i.e. the origin location O and three factories A, B and C . In addition,
there is an action set consisting of 9 subgoals: 3 subgoals to go from the origin to a
factory; and 6 subgoals to go from one factory to another. In all cases, the subgoals
consist of both going to the location as well as collecting the corresponding material.
For example, wewill use goOBcollect to denote the subgoal to move from the origin
to factory B in order to collect material B.

Definition 14 (Probabilistic planning plan) A plan pl is called a probabilistic plan-
ning plan if it contains at least one probabilistic planning action ProbPlan in the
plan body.

Similar to Definition 13, a probabilistic planning plan is still a normal AgentSpeak
plan. Due to the fact that each probabilistic planning problem defined onM always
has a (not necessarily unique) optimal action, a probabilistic planning plan does not
introduce infinite recursion. Furthermore, an optimisation canbe applied to reduce the
computational cost. Indeed, whenever the first optimal action is decided, a complete
optimal policy over H decision horizons has already been constructed as part of
the probabilistic planning problem. Before deliberating over the next action, the
epistemic state will be revised with the current action and the new observation as
defined in Definition 9. Given the revised epistemic state, the next optimal action
can then be decided instantly based on the optimal policy that is already constructed
without requiring extra computation.

Example 4 Consider the truck agent At from the running example where Φ is the
relevant epistemic state. We have:

P1: +!collectMaterial : true ← ProbPlan(Φ, 3);
ProbPlan(Φ, 2);
ProbPlan(Φ, 1).

P2: +!goOAcollect : true ← moveOtoS1; !waitS1toA; moveS1toA;
senseLocation; !load(a).

Probabilistic Planning in AgentSpeak Using the POMDP Framework 29

The first plan describes how the truck agent can collect all the materials, i.e. how
it can achieve its goal !collectMaterial. Due to some hard constraint (e.g.we only
have limited fuel) we rely on the POMDP planning to plan ahead and figure out
the best course of action. Since the abstract level considered by the POMDP in
the epistemic state Φ can move from one factory to another in a single step, we
consider a decision horizon of 3. The result of ProbPlan(Φ, 3) can for example be
the subgoal goOAcollect, i.e. given all the information available to POMDP at the
moment, the optimal action is to first visit factory A. During the execution of this
subgoal new observations will be collected (e.g. through senseLocation) and will
be taken into account when deliberating over ProbPlan(Φ, 2) by (implicitly) using
the revised epistemic state to find the optimal action/subgoal to collect the remaining
two materials.

3.3 AgentSpeak+

We are now ready to define our AgentSpeak+ framework:

Definition 15 (AgentSpeak+ agent) An AgentSpeak+agentA+ is defined as a tuple
〈BB+

, EpS, PLib+
, E, Act, I〉, where the belief baseBB+ now contains belief atoms

with an associated probability value, EpS is a set of epistemic states, the plan library
PLib+ contains an additional set of probabilistic planning plans, and E, Act and I
are as before.

Normally, in AgentSpeak, the context of a plan consists of classical belief atoms.
However, in AgentSpeak+ the belief base contains uncertain belief atoms, i.e.we
need a way to determine if a given context is sufficiently plausible.

Definition 16 (Belief entailment) Let {h(xi , mi ,M) | i ∈ 1, . . . , k} be a set of
exhaustively correlated belief atoms in an agent belief base. The belief atom h′(xi) is
entailed by the agent’s belief base BB iff there exists h(xi , mi ,M) ∈ BB such that
mi ≥ δ with 0 < δ ≤ 1. The value δ is context-dependent, and reflects the degree of
uncertainty we are willing to tolerate.

Example 5 (Example 3 continued) The revised belief base contains the belief atoms
location(LocA, 0.16,M) and location(LocB, 0.84,M). Given a threshold δloc =
0.8, only the belief atom location(LocB) is entailed.

Notice that we can straightforwardly represent classical belief atoms by associat-
ing a probability of 1 with them. Verifying if a context is entailed, i.e. a conjunction
of belief literals, is done classically based on the entailed belief atoms. As such, we
recover classical AgentSpeak entailment of contexts if we enforce that belief entail-
ment is only possible when δ = 1. The revised reasoning cycle of AgentSpeak+agent
is shown in Fig. 3. The agent now contains a set of epistemic states, each of which
includes a POMDP. A new input can either revise the belief state of a POMDP or
be inserted into the agent’s belief base BB (i.e. this happens when the input is not

30 K. Bauters et al.

Fig. 3 The revised reasoning cycle for an AgentSpeak+ agent

related to any of the agent’s epistemic states). As needed, during plan execution, the
agent can furthermore rely on the POMDP to compute the optimal next step through
the use of a probabilistic planning action. Whenever the selected plan (i.e. the one
that has been committed as an intention) contains a probabilistic planning action,
the corresponding POMDP will be called instead of (directly) relying on the plan
library.

Proposition 1 (Proper extension) An AgentSpeak+ agent A+ is a proper extension
of a classical AgentSpeak agent A.

Proof An AgentSpeak+ agent A+ extends a classical AgentSpeak agent A in three
aspects. Firstly, an AgentSpeak+ belief base BB+ extends an AgentSpeak belief
base BB by associating a probability value with each belief atom. Secondly, an
AgentSpeak+ agent includes a set of epistemic states EpS. Finally, an AgentSpeak+
plan libraryPLib+ extends anAgentSpeakplan libraryPLib by allowingprobabilistic
planning plans. If all belief atoms in BB+ have a probability value of 1, if EpS is
empty and if PLib+ has no probabilistic planning plans, then the AgentSpeak+agent
A

+ reduces to a classical AgentSpeak agent. �

Proposition 2 (Termination) Let PLib+ be a non-recursive AgentSpeak+ plan
library and e an event. If there is a relevant plan for e in PLib+ then either all
steps in the plan body will be executed or the plan will fail in a finite number of steps.

Proof If no applicable plan for e exists inPLib+, then the execution fails immediately.
Otherwise, an applicable plan is selected to deal with e and its plan body is executed.
If the applicable plan for e inPLib+ is a classical AgentSpeak plan then the plan body
is a finite sequence of (non-recursive) actions/goals. When an action is encountered

Probabilistic Planning in AgentSpeak Using the POMDP Framework 31

it is executed immediately. If a goal is encountered, it is either a test goal, which
can be executed immediately by querying the belief base of the agent, or it is an
achievement goal. If it is an achievement goal, the same line of reasoning we used so
far applies for classical AgentSpeak plans. In addition, because we have that PLib+

is a non-recursive plan library, we know that after a finite number of subgoals (since
the plan library is finite) we will have a subgoal for which the plan only contains
actions and/or test goals.

If the applicable plan, or any plans of its subgoals is a probabilistic planning plan
then the plan body may also include probabilistic planning actions. By definition,
a POMDP used by any probabilistic planning action will always return an optimal
policy representing a single action/goal to execute. As before, the resulting action or
goal will either succeed or fail in a finite number of steps. �

4 Scenario Discussion

We now show how the scenario from the introduction can be expressed using the
AgentSpeak+ framework. Since the material collection scenario relies heavily on
optimal planning, the scenario serves as a good example to illustrate the benefits
offered byAgentSpeak+over classicalAgentSpeak.We stress though that the purpose
of this discussion is not to present an actual implementation, but rather to motivate
the merits of the proposed framework to warrant future work on a fully implemented
system. As a basis for this future work, we briefly discuss a prototype system at the
end of this section which we designed to verify the feasibility of our approach.

4.1 Case Study

We recall that the goal of our truck agent At is to collect materials from factories
A, B and C. Then, as discussed in Sect. 3.2, we consider a single epistemic state Φ

where its POMDP M has an action set with 9 subgoals. Each state in the POMDP
M contains information about whether a factory has available materials (denoted as
FA, FB and FC), whether our agent has already collected materials from a factory
(denoted as MA, MB and MC) as well as the current location of the agent (denoted as
LocA, LocB and LocC). For example, the state s = {MA, LocA, FA, FB} indicates
that the agent has collected material from factory A, is currently at factory A and
that material is still available from factories A and B. We define M in a graphical
way to further decompose the state space (i.e.whether material is available at one
factory is independent from whether material is available at another). A Dynamic
Influence Diagram [1] D is obtained for efficient computation (shown in Fig. 4). In
particular, we decompose the entire state space into a set of chance nodes representing
FA, FB, FC, MA, MB and MC while LocA, LocB and LocC are represented by a
single chance node Loc. Correspondingly, belief atoms in our agent At describe

32 K. Bauters et al.

Loc

MB
MC

FA
FB

FC
MA

Horizont Horizont+1

state
space

Loc

MB
MC

FA
FB

FC
MA

state
space

Transition
function

Observation
function

Reward
function

Fig. 4 Graphical representation of POMDP Mg . Here, the entire state space is decomposed into
a set of chance nodes. Some causality links for the transition function are omitted for simplicity

the availability of materials (denoted has(X)), where materials have been loaded
from previously (denoted loaded(X)) and the current location of the agent (denoted
at(X)) for factories X ∈ {a, b, c}. As discussed at the end of Sect. 3.1, a revision of
the epistemic state is triggered when a belief atom is added/removed and possible
additions/deletions of belief atoms are triggered when the epistemic state is revised.
The plan library for our AgentSpeak+ agent At contains many plans, including:

(P3) +!start : true ← !callFactories, !collectMaterial.
(P4) +!callFactories : true ← !check(a), !check(b),

!check(c).
(P5a) +check(X) : not loaded(X) ← call(X).
(P5b) +check(X) : loaded(X).
(P6a) +!waitS1toB : not s1green ← senseSignal; !waitS1toB.
(P6b) +!waitS1toB : s1green.
(P7) +!load(X) : at(X) ← pay(X); getMaterial(X),

!callFactories.

We can describe this agent in more detail. When the agent is initialised, the start
event is generated. The plan (P3) reacts to this event using plan (P4), along with
plan (P5a) or (P5b), by calling each factory to check if material is available (i.e. it
only calls those factories from which material has not been previously loaded). The
agent then proceeds with plan (P3) by attempting to collect the available materials.
Thematerial collection procedure itself was previously described by the probabilistic
planning plan (P1) from Example 4, which involves a probabilistic planning action
using a POMDP to find the optimal plan to execute. A predefined executable plan
for moving from the origin location to factory A was described by plan (P2) from
the same example. With an equivalent plan for moving to factory B, the plan body
would consist of moving the agent to the signal, generating a subgoal relevant to
plans (P6a) and (P6b) (i.e. to determine when it is safe to pass the signal), and

Probabilistic Planning in AgentSpeak Using the POMDP Framework 33

then proceeding to factory B. Once the agent has completed this action it will check
whether it has successfully reached factory B. When the location is sensed, and
the agent is at the desired factory, it proceeds by executing plan (P7) to load the
required material. First the factory is paid, then the material is loaded and, finally,
plan (P4) is again executed to call the remaining factories from which material has
not been collected. Importantly, the effect of these subgoals (such as moving, loading
and calling factories) modify the agent’s beliefs and thus also modify the relevant
epistemic state. These new beliefs (and uncertainties) are then taken into account
by plan (P1) in order to determine the optimal subgoal for collecting the remaining
materials.

In addition to a POMDP Mg , the initial belief state b1 associated with Mg is
also part of an epistemic state. In the preparation stage (relevant to plan (P4)), At

defines correlated belief atoms for each variable in the POMDP’s state space, such
as FA and FB, and these correlated belief atoms are added to the agent’s belief
base BB. For each variable, such as FA, the corresponding belief state b(FA) can be
defined. When this is completed for all variables, a joint belief state b(S) is derived.
For example, the action query(FA) estimates the material availability at factory A
and belief atoms, such as available(FA, 0.8) and available(FA, 0.2), express our
certainty that the material is available at factory A. The beliefs about other factories,
the initially loaded material and the starting location of the agent can be obtained in
a similar manner. The belief state b1 itself can be extracted from the relevant belief
atoms according to Definition 11.

This example highlights a number of key benefits offered by the AgentSpeak+
framework. Compared to classical AgentSpeak, we are able to deal with uncer-
tain information. Furthermore, our AgentSpeak+ agent is not fully specified in the
design phase; it resorts to probabilistic planning to deal with crucial parts of its
execution (e.g. determining the order in which to visit the factories). Compared to
a pure POMDP implementation, the AgentSpeak+ framework considerably reduces
the overall complexity by relying on domain knowledge encoded on the level of a
BDI agent. As such, irrelevant actions such as determining which factories to call
and how long to wait at a signal, are omitted from the POMDP dealing with the avail-
ability of materials. Furthermore, since planning only happens on-demand, the agent
can rely on the simpler plan selection process to ensure maximum reactiveness for
most of the subgoals (e.g.when agents also need to achieve goals where uncertainty
is absent and/or optimality is not required).

4.2 Implementation Considerations

A prototype implementation of this framework has been developed4 that extends
Jason [5], an open-source implementation of AgentSpeak, with Hugin [1], a propri-
etary tool for constructing and evaluatingBayesian networks. Equivalent open source

4By the author Yingke Chen.

34 K. Bauters et al.

alternatives to Hugin include SMILE [10] and its Java API jSMILE. In addition to
this, the implementation uses the flexibility of the Jason system to develop parts of
the system in Java. The epistemic states, their revision, extraction and derivation
have all been defined on the level of Java. As such, the actual agent description in
Jason can be mostly agnostic as to the underlying complexity; beliefs are automat-
ically revised and converted into Boolean beliefs as needed, and the only exposure
the agent has to the underlying system is through the ProbPlan concept. When-
ever such a ProbPlan action is called, the required POMDP is called through the
HuginAPI by the Jason interpreter and returns the recommended optimal decision(s).
While this prototype proved promising, it suffered from its overall complexity. For
example, keeping the beliefs consistent across all three systems is challenging and
time-consuming to develop. Still, these tools find optimal solutions for POMDP
which can be very time-consuming for even small problems. As a result, the proto-
type was often considerably slower than plain AgentSpeak. The recent emergency of
very capable anytime planning algorithms for POMDP (e.g. [23]) is promising and
would be the tools of choice for future implementations. Indeed, by using anytime
algorithms an agent could further balance between having reactive behaviour, having
quick deliberative behaviour or exhibiting behaviour where the agent can wait if it
need not act quickly until an optimal solution is found. Such an algorithm could also
be integrated in the Java framework, avoiding the need for expensive API calls to
an external tool. Finally, we note that a full evaluation of any implementation would
require a problem setting considerably larger than the material collection scenario.
Indeed, our framework is developed in such a way that planning happens on demand.
In realistic scenarios, however, a large part of the environment can be explored with-
out the need for (near-)optimal actions, i.e.we can rely on simple plan selection
rather than planning based on POMDPs. For these reasons, the development of a full
implementation, as well as its thorough evaluation, is left for future work.

5 Related Work

There have been several approaches tomodelling uncertainty inmulti-agent systems.
In [7] a graded BDI approach is proposed that uses uncertain beliefs (as probabilities)
and graded preferences (as expected utilities) to rank plans. However, the theoretical
nature of this work has so far precluded the development of any practical imple-
mentations. In this work, we instead propose an extension based on a widely used
agent-oriented programming language. Our work is based on epistemic states, sim-
ilar to [8], where the concept of an epistemic state is introduced to model uncertain
perceptions. Similar to their work, Boolean belief atoms (e.g. propositional state-
ments) can be derived from epistemic states to support further reasoning. Still, the
work in [8] only focuses on MDPs, i.e. it cannot be used in the more natural setting
of partially observable environments. A similar approach has been used in [2] where
the authors model different forms of uncertainty as distinct epistemic states. This
allows a single agent to reason about different forms of uncertainty in a uniform

Probabilistic Planning in AgentSpeak Using the POMDP Framework 35

way. However, the work’s main focus is on the representation of the beliefs and their
commensurability and does not provide first-principles planning under uncertainty,
nor do they exploit any of the facets of the decision theoretical model (e.g. rewards
or penalties).

Autonomous agents have to make rational decisions to pursue their goals (i.e.
selecting appropriate plans) in a stochastic environment. Markov Decision Processes
(MDP) andPartiallyObservableMDPs (POMDPs), are popular frameworks tomodel
an agent’s decision making processes in stochastic environments. In [22] a theoret-
ical comparison of POMDPs and the BDI architecture identifies a correspondence
between desires and intentions, and rewards and policies. The performance and scala-
bility of (PO)MDPs and the BDI architecture are compared in [24]; while (PO)MDPs
exhibit better performancewhen the domain size is small, they do not scale well since
the state space grows exponentially. The BDI architecture (which uses a pre-defined
plan library) has better scalability at the cost of optimality, making it applicable to
significantly larger state spaces. Nevertheless, future research showed that BDI and
MDP are closely linked. Indeed, in [25] the relationship between the policies of
MDPs and the intentions in the BDI architecture is discussed. In particular, it shows
that intentions in the BDI architecture can be mapped to policies in MDPs. This in
turn led to some work in the literature on hybrid BDI-POMDP approaches. In [18]
an algorithm was proposed to build AgentSpeak plans from optimal POMDP poli-
cies. However, most characteristics of the original BDI framework are not retained
in such hybrid approaches. In contrast, our approach embeds POMDPs in the tra-
ditional BDI agent framework. Normal BDI execution is used by default, with the
POMDP component allowing an agent to generate new plans on-demand during exe-
cution. Extending the BDI architecture with more elaborate planning techniques has
also been investigated in the literature. In [21], the authors present a formal frame-
work to integrate lookahead planning into BDI, called CanPlan. Similarly, in [16],
the authors integrate classical planning problems into the BDI interpreter to allow
an agent to respond to unforeseen scenarios. However, neither approach considers
issues related to uncertainty.

6 Conclusions

In this work we proposed the AgentSpeak+ in which we extend the belief base of an
agent by allowing it to be represented by one or more epistemic states. An essen-
tial part of each epistemic state is a POMDP, which allows us to model the domain
knowledge of the partially observable environment and from which we can compute
optimal actions when needed. In addition, this allows us to deal in a straightfor-
ward way with uncertain information in the environment. To keep the computational
complexity low,AgentSpeak+extendsAgentSpeak, an agent-programming language
based on theBDI paradigmwhere planning is reduced to the simple task of plan selec-
tion. By adding actions to perform on-demand planning, the resulting AgentSpeak+
can both offer good responsiveness while at the same time providing the option

36 K. Bauters et al.

for near-optimal planning when needed through the POMDP component. For future
work, we plan a full evaluation of our approach, both compared to classical BDI
implementations and pure POMDP implementations. We furthermore plan an exten-
sion where knowledge from other agents (which are only trusted to some degree) can
be employed to improve the domain knowledge currently encoded in the POMDP
component.

References

1. Andersen, S.K., Olesen, K.G., Jensen, F.V., Jensen, F.: HUGIN: a shell for building bayesian
belief universes for expert systems. In: Proceedings of the 11th International Joint Conference
on Artificial Intelligence (IJCAI’89), pp. 1080–1085 (1989)

2. Bauters, K., Liu, W., Hong, J., Sierra, C., Godo, L.: Can(plan)+: extending the operational
semantics of the BDI architecture to deal with uncertain information. In: Proceedings of the
30th Conference on Uncertainty in Artificial Intelligence (UAI’14), pp. 52–61 (2014)

3. Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6, 679–684 (1957)
4. Blum, A.L., Langford, J.C.: Probabilistic planning in the graphplan framework. In: Recent

Advances in AI Planning, pp. 319–332. Springer, Berlin (2000)
5. Bordini, R.H.,Hübner, J.F.,Wooldridge,M.: ProgrammingMulti-agent Systems inAgentSpeak

using Jason. Wiley-Interscience (2007)
6. Braubach, L., Lamersdorf, W., Pokahr, A.: JADEX: implementing a BDI-infrastructure for

JADE agents. EXP - in search of innovation 3(3), 76–85 (2003)
7. Casali, A., Godo, L., Sierra, C.: A graded BDI agent model to represent and reason about

preferences. Artif. Intell. 175(7–8), 1468–1478 (2011)
8. Chen, Y., Hong, J., Liu,W., Godo, L., Sierra, C., Loughlin, M.: Incorporating PGMs into a BDI

architecture. In: Proceedings of the 16th International Conference on Principles and Practice
of Multi-Agent Systems (PRIMA’13), pp. 54–69 (2013)

9. de Silva, L., Sardiña, S., Padgham, L.: First principles planning in BDI systems. In: Proceedings
of the 8th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’09), pp. 1105–1112 (2009)

10. Druzdzel, M.J.: SMILE: structural modeling, inference, and learning engine and GeNIe: a
development environment for graphical decision-theoretic models. In: Proceedings of the 16th
National Conference on Artificial Intelligence (AAAI’99), pp. 902–903 (1999)

11. Hansen, E.A.: Solving POMDPs by searching in policy space. In: Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence (UAI’98), pp. 211–219 (1998)

12. Jennings, N.R., Bussmann, S.: Agent-based control systems. IEEE Control Syst. Mag. 23,
61–74 (2003)

13. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

14. Ma, J., Liu, W.: A framework for managing uncertain inputs: an axiomization of rewarding.
Int. J. Approx. Reason. (IJAR) 52(7), 917–934 (2011)

15. McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci,
F., Funabashi, T.: Multi-agent systems for power engineering applications - Part I: concepts,
approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)

16. Meneguzzi, F., Luck, M.: Declarative planning in procedural agent architectures. Exp. Syst.
Appl. 40(16), 6508–6520 (2013)

17. Meneguzzi, F., Tang,Y., Sycara,K., Parsons, S.:On representingplanningdomains under uncer-
tainty. In: Proceedings of the 3rd Information Theory and Applications Workshop (ITA’10)
(2010)

Probabilistic Planning in AgentSpeak Using the POMDP Framework 37

18. Pereira, D., Gonçalves, L., Dimuro, G., Costa, A.: Constructing BDI plans from optimal
POMDP policies, with an application to agentspeak programming. In: Proceedings of Confer-
encia Latinoamerica de Informtica (CLI’08), pp. 240–249 (2008)

19. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Pro-
ceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’96), pp. 42–55 (1996)

20. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceedings of
the 3rd International Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pp. 439–449 (1992)

21. Sardina, S., Padgham,L.:ABDI agent programming languagewith failure handling, declarative
goals, and planning. Auton. Agents Multiagent Syst. 23(1), 18–70 (2011)

22. Schut, M., Wooldridge, M., Parsons, S.: On partially observable MDPs and BDI models. In:
Proceedings of the UK Workshop on Foundations and Applications of Multi-Agent Systems
(UKMAS’02), pp. 243–260 (2002)

23. Silver, D., Veness, J.: Monte-carlo planning in large POMDPs. In: Proceedings of the 24th
Annual Conference on Neural Information Processing Systems (NIPS’10), pp. 2164–2172
(2010)

24. Simari, G.I., Parsons, S.D.: On approximating the best decision for an autonomous agent.
In: Proceedings of the 6th Workshop on Game Theoretic and Decision Theoretic Agents
(GTDT’04), pp. 91–100 (2004)

25. Simari, G.I., Parsons, S.: On the relationship between MDPs and the BDI architecture. In:
Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’06), pp. 1041–1048 (2006)

http://www.springer.com/978-3-319-26858-3

	Probabilistic Planning in AgentSpeak Using the POMDP Framework
	1 Introduction
	2 Preliminaries
	2.1 AgentSpeak
	2.2 POMDP

	3 Integration of AgentSpeak and POMDPs
	3.1 Epistemic States
	3.2 Probabilistic Planning
	3.3 AgentSpeak+

	4 Scenario Discussion
	4.1 Case Study
	4.2 Implementation Considerations

	5 Related Work
	6 Conclusions
	References

