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Abstract Fuzzy-valued inference is discussed. For that purpose, a theory of fuzzy-

valued associative Kleene algebra is introduced. As an example, it is shown that

fuzzy-valued Kleene algebras give a mathematical model for some fuzzy screening

systems.

Keywords Fuzzy-Valued Inference ⋅ Fuzzy-Valued Kleene-Algebra ⋅ Screening

Systems

1 Introduction

In fuzzy decision making, there are a lot of cases where scales of linguistic scores

are used. For example, in fuzzy control linguistic expressions are generally used as

control values in control processes. In fuzzy logic truth values are usually linguistic

terms, like, for example, ‘true’, ‘almost true’, ‘not true and not false’, ‘almost false’,

‘false’. In fuzzy screening systems linguistic values are used, too, like for example

‘outstanding’, ‘very high’, ‘high’, ‘medium’, ‘low’, ‘very low’, ‘none’.

To be a scale, the scale values must have a reasonable order. For example, the

truth values mentioned above are already listed in the reasonable order. Based on

intuition, we ordered them using the relationship between a truth value and how

near to the truth it is. The biggest difference is between truth and falsity. Similarly,

the above mentioned scores for a screening system are ordered from the highest value

to the lowest one. Hence, we may say that these kinds of scales are totally ordered,

because the scales are finite and the ordering in any scale can be defined to be unique.

However, these kinds of orderings are actually not mathematical, because they are

based on intuition. Also, the use of these linguistic scores in calculations is based on

intuition, even though the calculation rules can be given based on the order of the

linguistic scores.
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If we want to have a formal theory for a system of this kind, we need a mathe-

matical counterpart to the system. Very often in many-valued logics, the truth values

are given as numbers. In fuzzy systems the scores can be given as fuzzy sets. These

kind of things serve the link between intuitive and formal systems. There are a lot

of research about algebras for numerical truth values of many-valued logics. This

research creates mathematical models for many-valued logics involved in fuzzy sys-

tems. Also, we may investigate some suitable sets of fuzzy numbers or fuzzy intervals

in order to find some algebraic models for systems with fuzzy scores. So, we have

the following basic questions:

Does there exist some mathematical models for inference systems using scales with linguistic

scores?

What are the logical and mathematical bases of this kind of systems?

We give an answer to these questions in the following sections.

2 A Mathematical Background

In this presentation we introduce an algebraic approach to cases where score values

are fuzzy numbers or fuzzy intervals.

We recall some earlier results for manipulating fuzzy numbers. The main things

are ways of representing, ordering, and defining meets and joins of a given set of

fuzzy numbers.

The representation theorem for considering fuzzy sets by means of 𝛼-cuts has

been given, for example, by V. Novák [9], p. 44. A. Kaufmann and M.M. Gupta [2]

(cf. pp. 19–35) consider interval arithmetics applied to triangular and trapezoidal

fuzzy numbers (or fuzzy intervals) presented by means of 𝛼-cuts. They also intro-

duced some criteria for ordering of fuzzy numbers.

Besides Kaufmaan and Gupta, also R. Fullér [1] (cf. pp. 35–36) has considered

ordering of fuzzy numbers by defining fuzzy max and fuzzy min operations by means

of 𝛼-cuts, and V. Novák [9] (cf. pp. 98–100) by defining join ‘⊔’ and meet ‘⊓’ by

means of Zadeh’s extension principle, as follows.

Let A, B be fuzzy numbers and x, y ∈ ℝ. Join A ⊔B is the fuzzy number

(A ⊔B)(z) =
⋁

z=x∨y
(A(x) ∧B(y)). (1)

Meet A ⊓B is the fuzzy number

(A ⊓B)(z) =
⋁

z=x∧y
(A(x) ∧B(y)). (2)

These operations appear to be the same as Fullér’s fuzzy max and fuzzy min.

Novák also present the following theorem.
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Theorem 1 (Novák) The fuzzy numbers form a distributive lattice with respect to
the operations ‘⊓’ and ‘⊔’. It means that

A ⊔A = A A ⊓A = A

A ⊔B = B ⊔A A ⊓B = B ⊓A

(A ⊔B) ⊔ C = A ⊔ (B ⊔ C) (A ⊓B) ⊓ C = A ⊓ (B ⊓ C)
A ⊔ (B ⊓ C) = (A ⊔B) ⊓ (A ⊔ C) A ⊓ (B ⊔ C) = (A ⊓B) ⊔ (A ⊓ C)

Then he defines the ordering relation ⊑ for fuzzy numbers A, B in the familiar

way:

A ⊑ B iff A ⊓B = A (A ⊔B = B respectively). (3)

In general, fuzzy numbers do not form a linearly ordered set, except in some special

cases. We will exploit some of these special cases in the following considerations.

Consider a finite set of fuzzy sets

Tn = {A1,A2,… ,An} (4)

of the interval [0, p], p ∈ ℝ, p > 0. The fuzzy sets Ai (i = 1,… , n) of Tn satisfy the

following properties:

(1◦) Ai is either a fuzzy number or a fuzzy interval for all 1 ≤ i ≤ n;

(2◦) Tn is ordered, such that Ai ⊑ Aj for all 1 ≤ i ≤ j ≤ n;

(3◦) for every Ai ∈ Tn there exists a unique fuzzy set ¬Ai ∈ Tn, such that the fol-

lowing condition holds:

¬Ai = An−i+1, if 1 ≤ i ≤ n. (5)

where for all i = 1,… , n

Ai(x) = ¬Ai(p − x), if x ∈ [0, p] (6)

The operation symbol ‘¬’ is a complementarity operation, and we use the name

negation for it.

The set Tn is linearly ordered, by the property (2◦).
The definition of negation, i.e., the formulas (5) and (6) gives some presupposi-

tions for the fuzzy sets in Tn. From the Eq. (6), it follows that the supports of Ai and

¬Ai satisfy the equivalency

suppAi = [a, b] ⟺ supp¬Ai = [p − b, p − a] (7)

There exist two special cases, namely 𝛼 = 0 and 𝛼 = 1. These conditions give the

closures of the support and core of a given fuzzy set A. Now, because
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[Ai]0 = cl(suppAi) and [Ai]1 = cl(coreAi) then the closures of the supports and

the cores of Ai and ¬Ai satisfy the equivalencies

cl(suppAi) = [a0, b0] ⟺ cl(supp ¬Ai) = [p − b0, p − a0] (8)

cl(coreAi) = [a1, b1] ⟺ cl(core ¬Ai) = [p − b1, p − a1] (9)

The lengths of the intervals [Ai]𝛼 and [¬Ai]𝛼 are the same for any 𝛼, because

if [Ai]𝛼 = [a
𝛼
, b

𝛼
] then its length is b

𝛼
− a

𝛼
, and the length of [¬Ai]𝛼 is p − a

𝛼
−

(p − b
𝛼
) = b

𝛼
− a

𝛼
, too.

By means of these considerations above, it is easy to see that the fuzzy sets Ai and

¬Ai are symmetric with respect to the vertical line x = p
2
. The value

p
2

is the centre

of the interval [0, p].
Our next purpose is to show that the set Tn (see (4)) forms a Kleene algebra of

fuzzy numbers belonging to the set Tn. First, we have to show that the set Tn forms

a DeMorgan algebra. About DeMorgan algebras, see Rasiowa [10]. (Rasiowa uses

the name quasi-Boolean algebra for DeMorgan algebra.) To do this, we prove the

following Lemmas.

Lemma 1 The system Tn = ⟨Tn, ⊔, ⊓⟩ is a distributive and complete lattice.

Proof Tn is a distributive lattice by means of Theorem 1. It is also complete because

for any two elements Ai,Aj ∈ Tn (1 ≤ i, j ≤ n) the expressions Ai ⊔Aj and Ai ⊓Aj
are defined and Tn is closed under the operations ⊔ and ⊓, i.e., Ai ⊔Aj equals to

either Ai or Aj, and Ai ⊓Aj equals to either Aj or Ai respectively. □

Lemma 2 The law of double negation

¬¬Ai = Ai (10)

for any Ai ∈ Tn holds in the lattice Tn.

Proof The result follows from the formula (5) by an easy calculation. □

Lemma 3 De Morgan Laws hold on Tn.

Proof Let Ai,Aj ∈ Tn be any two elements, such that Ai ⊑ Aj. Hence, i ≤ j, by

the property (2◦). Further, ¬Ai = An−i+1 and ¬Aj = An−j+1, by (5). Comparing

the subindices n − i + 1 and n − j + 1 we see that n − j + 1 ≤ n − i + 1 because

i ≤ j, by assumption. Hence, An−j+1 ⊑ An−i+1, i.e., ¬Aj ⊑ ¬Ai. So, the implication

Ai ⊑ Aj ⟹ ¬Aj ⊑ ¬Ai holds. It is easy to see that this implication holds to the

other direction, too. Hence, the equivalency

Ai ⊑ Aj ⟺ ¬Aj ⊑ ¬Ai (11)

holds for any Ai,Aj ∈ Tn. Further, ¬Aj ⊔ ¬Ai = ¬Ai, by (3), and hence,

¬(¬Aj ⊔ ¬Ai) = ¬¬Ai = Ai = Ai ⊓Aj
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by assumption and by (10). Hence, one of De Morgan Laws,

Ai ⊓Aj = ¬(¬Aj ⊔ ¬Ai) (12)

holds. The other De Morgan law, Ai ⊔Aj = ¬(¬Aj ⊓ ¬Ai), follows from (12) by

replacing Ai and Aj with ¬Ai and ¬Aj, respectively, and applying the law of double

negation. □

From the Lemmas 1, 2 and 3 it follows that the system Tn = ⟨Tn, ⊔, ⊓,¬,An⟩ is

De Morgan algebra, because Tn is a non-empty set, Tn = ⟨Tn, ⊔, ⊓⟩ is a distributive

lattice with top element An, ¬ is a unary operation on Tn, and Tn satisfies the law of

double negation and De Morgan laws.

The top and bottom elements exist in Tn because Tn is finite totally ordered

set. Now we also know that the complementarity ¬ is quasi-complementation. (See

closer considerations, for example, in Rasiowa [10], p. 44–45.) The top element An
is the neutral element of the operation ⊓. In Tn, there exists a bottom element, too,

namely A1, which is the neutral element of the operation ⊔. Especially, by the defin-

ition of negation, the conditions ¬A1 = An and ¬An = A1 hold in Tn. It is a general

case that any De Morgan algebra has top element and bottom element being the

negations of each other.

If a De Morgan algebra satisfies so-calledKleene condition, it is aKleene algebra.

So, the last thing before getting a fuzzy-valued Kleene algebra is to check whether

the Kleene condition

Ai ⊓ ¬Ai ⊑ Aj ⊔ ¬Aj , if 1 ≤ i, j ≤ n (K)

holds in our De Morgan algebra Tn = ⟨Tn, ⊔, ⊓,¬,An⟩. Here the condition (K) is

constructed for lattices where the elements are fuzzy numbers or fuzzy intervals.

Theorem 2 The algebra Tn = ⟨Tn, ⊔, ⊓,¬,An⟩ is a Kleene algebra.

Proof The algebra Tn is De Morgan algebra, as we have noticed above. So, we have

to show that the algebra Tn satisfies the Kleene condition (K).

Let Ai,Aj ∈ Tn be arbitrarily chosen, hence ¬Ai,¬Aj ∈ Tn, too, because Tn is

closed under negation. Suppose Ai ⊑ Aj whenever i ≤ j, for all Ai,Aj ∈ Tn.

If the number of fuzzy sets in Tn is n = 2k + 1 (i.e., n is odd) then the middle

element of Tn is Ak+1, and hence ¬Ak+1 = Ak+1, by the definition of negation.

If n = 2k (i.e., n is even) then ¬Ak = Ak+1 and ¬Ak+1 = Ak, by the definition of

negation.

We denote

A[ n2 ]
=

{
Ak+1 if n = 2k + 1
Ak if n = 2k
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Hence, for any Ai, if Ai ⊑ A[ n2 ]
then A[ n2 ]

⊑ ¬Ai, and vice versa. Hence, for any i,
Ai ⊓ ¬Ai ⊑ A[ n2 ]

and for any j, A[ n2 ]
⊑ Aj ⊓ ¬Aj. This completes the proof. □

Especially, Tn = ⟨Tk, ⊔, ⊓,¬,An⟩ is an associative Kleene algebra, by Theorem 1.

3 Construction of Applicable Kleene Algebras

Examples about easily manipulable fuzzy sets in applications based on Kleene

algebras of fuzzy sets are triangular fuzzy numbers, Gaussian fuzzy numbers, other

bell-shaped fuzzy numbers and fuzzy intervals.

As an example, consider a trapezoidal fuzzy interval

A(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 if x < a1
x−a1
a2−a1

if a1 ≤ x < a2
1 if a2 ≤ x < a3
a4−x
a4−a3

if a3 ≤ x ≤ a4
0 if x > a4

(13)

on a closed real interval [0, p] (0 < p, p ∈ ℝ) and x, a1, a2, a3, a4 ∈ [0, p] and 0 ≤

a1 < a2 < a3 < a4. If a2 = a3 then A is a triangular fuzzy number. The support and

the core of A(x) are the intervals [a1, a4] and [a2, a3], respectively. The increasing

part on the left and the decreasing part on the right side of A have the membership

functions

AL(x) =

{
0 if x < a1, a2 < x
x−a1
a2−a1

if a1 ≤ x < a2
, AR(x) =

{ a4−x
a4−a3

if a3 ≤ x ≤ a4
0 if x < a3, a4 < x

(14)

If the supports supp(AL) = [a1, a2] and supp(AR) = [a3, a4] have the same size then

the membership function of the fuzzy interval A is symmetric with respect to the

vertical line x = a3+a2
2

.

Applying, for example, some considerations, due to Novák [9] and Kaufmann

and Gupta [2], A can be considered as an ordered 4-tuple A = (a1, a2, a3, a4) where

A(x) is increasing if x ∈ [a1, a2], A(x) = 1 if x ∈ [a2, a3], and A(x) is decreasing if

x ∈ [a3, a4]. Further, the negation for A on the interval [0, p] can be given as the

ordered 4-tuple

¬A = (p − a4, p − a3, p − a2, p − a1) (15)



A Note on Fuzzy-Valued Inference 39

which is a fuzzy interval on [0, p] of x-axis. This fuzzy interval can be given in the

form, similar to A in (13), as

¬A(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 if x < p − a1
x−p+a3
a3−a2

if p − a3 ≤ x < p − a2
1 if p − a3 ≤ x < p − a2
p−a1−x
a2−a1

if p − a2 ≤ x ≤ p − a1
0 if x > p − a1

(16)

Consider a set of fuzzy trapezoidal intervals Tn = {A1,A2, . . . ,An} of the interval

[0, p]where the divisional points of [0, p] on x-axis, determined by the fuzzy intervals

Ai (i = 0,… , n) are a0, a1,… , ak, where k = 2n − 1. The fuzzy intervals

A1(x) =
⎧
⎪
⎨
⎪⎩

1 if 0 ≤ x < a1
a2−x
a2−a1

if a1 ≤ x ≤ a2
0 if x > a2

, An(x) =
⎧
⎪
⎨
⎪⎩

0 if x < ak−2
x−ak−2

ak−1−ak−2
if ak−2 ≤ x < ak−1

1 if ak−1 ≤ x < ak

(17)

are the first and the last fuzzy interval, respectively, which can be given by means of

the 4-tuples

A1 = (0, 0, a1, a2) and An = (ak−2, ak−1, ak, ak).

Here we agree that A1(x) = 1 if x ∈ [0, a1] and An(x) = 1 if x ∈ [ak−1, ak]. The other

fuzzy intervals between A1 and Ak can be given in the form

A2 = (a1, a2, a3, a4), A3 = (a3, a4, a5, a6), … , An−1 = (ak−4, ak−3, ak−2, ak−1).

Note that the first divisional point on the interval [0, p] is origo, and the last one

is ak = p. Hence, A1(0) = 1 and An(ak) = An(p) = 1.

Especially, on x-axis, the divisional points for the intervals being parts of the

supports of the fuzzy sets in Tn are as follows. The number of fuzzy sets in Tn is

n and the number of the divisional points is 2n. So, we have the divisional points

a0, a1, a2,… , ak, where k = 2n − 1. And the first divisional point is a0 = 0 and the

last one ak = a2n−1 = p.

The supports of all the fuzzy numbers form a cover to the interval [0, p], such that

the union of the covers of A1, A2 . . . , An is exactly the same as the interval itself,

i.e.,

[0, p] =
n⋃

i=1
suppAi. (18)
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Example 1 Consider a collection of fuzzy intervals on [0, p] where the fuzzy inter-

vals are of the form (16) and (17) where n = 7. Hence, the set T7 consists of the fuzzy

intervals

A1 = (0, 0, a1, a2), A2 = (a1, a2, a3, a4), A3 = (a3, a4, a5, a6),
A4 = (a5, a6, a7, a8), A5 = (a7, a8, a9, a10), A6 = (a9, a10, a11, a12),

and A7 = (a11, a12, a13, a13)

i.e.,

T7 = {A1,A2,A3,A4,A5,A6,A7}

The divisional points are

a0 = 0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13 = p.

The algebra T7 = ⟨T7, ⊔, ⊓,¬,A7⟩ satisfies all the properties considered in Sect. 2.

4 An Application Example: Fuzzy Screening Systems

As a motivating example, we consider a case of a fuzzy screening system, a technique

suggested by R. Yager (for example, see Yager [11]). These systems contain fuzzy

data. The source material for this description about fuzzy screening systems in this

section is taken from Robert Fullér’s book [1] Introduction to Neuro-Fuzzy Systems.
A fuzzy screening system is a two stage process as follows:

∙ In the first stage, experts are asked to provide an evaluation of the alternatives.

This evaluation consists of a rating for each alternative on each of the criteria.

∙ In the second stage, the methodology is used to aggregate the individual experts

evaluations to obtain an overall linguistic value for each object.

The problem consists of three components.

(1) The first component is a collection

X = {X1,… ,Xp}

of alternative solutions from amongst which we desire to select some subset to

be investigated further.

(2) The second component is a group

A = {A1,… ,Ar}

of experts whose opinion solicited in screening the alternatives.
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Table 1 Scale of scores
Score name Label Score symbol

Outstanding OU S7
Very high VH S6
High H S5
Medium M S4
Low L S3
Very low VL S2
None N S1

(3) The third component is a collection

C = {C1,… ,Cm}

of criteriawhich are considered relevant in the choice of the objects to be further

considered.

For each alternative, each expert is required to provide his/her opinion. In par-

ticular, for each alternative an expert is asked to evaluate how well that alternative

satisfies each of the criteria in the set C. These evaluations of alternative satisfaction

to criteria will be given in terms of elements from the scale S in Table 1.

Based on intuition, the use of such a scale provides a natural ordering, Si > Sj, if

i > j, and the maximum and minimum of any two scores be defined by

max{Si, Sj} = Si , if Si ≥ Sj (19)

min{Si, Sj} = Sj , if Si ≤ Sj. (20)

where max and min are fuzzy max and min defined in [1], i.e., these operations are

the same as ⊔ and ⊓, respectively. Using our notation above, these conditions can be

expressed in the form

Si ⊔ Sj = Sj , if Si ⊑ Sj (21)

Si ⊓ Sj = Si , if Si ⊑ Sj. (22)

Thus for an alternative an expert provides a collection of n values

{P1,… ,Pn},

where Pj is the rating of the alternative on the jth criterion by the expert. Each Pj is

an element in the set of allowable scores S,

S = {S7, S6, S5, S4, S3, S2, S1}.
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Assuming n = 6, an example of a typical scoring for an alternative from one expert

would be

{S4, S3, S7, S6, S7, S1}

or, using the labels of the scores,

{M,L,OU,VH,OU,N}.

Independent of this evaluation of alternative satisfaction to criteria, each expert must

assign a measure of importance to each of the criteria. An expert uses the same scale,

S, to provide the importance associated with the criteria.

The next step in the process is to find the overall evaluation for an alternative by

a given expert. For this we use a methodology suggested by Yager [11]. A crucial

aspect of this approach is the taking of the negation of the importances as

Neg(Si) = Sq−i+1 (q is the number the scores in S).

For the scale S the negation operation provides the following:

Neg(OU) = N,Neg(VH) = VL,Neg(H) = L,Neg(M) = M,

Neg(L) = H,Neg(VL) = VH,Neg(N) = OU.

Then the unit score of each alternative by each expert, denoted by U, is calculated

as follows:

U = min
j
{Neg(Ij) ∨ Pj}, (23)

where Ij denotes the importance of the jth criterion.

Because in our algebra ¬Ij ⊔ Pj is the same as Neg(Ij) ∨ Pj in Yager’s system then,

using the notation of our algebra, the unit score formula is

U = (¬I1 ⊔ P1) ⊓… ⊓ (¬Im ⊔ Pm) (24)

If we think that the operations of the screening systems are logical connectives, we

note that the unit score formula (23) essentially is an anding of the criteria satisfac-

tions modified by the importance of the criteria. The formula (23) can be seen as a

measure of the degree to which an alternative satisfies the following statement:

All important criteria are satisfied.

The following example is considered the case where the experts A1,… ,Ar evalu-

ates his/her opinion about the importance of each criterion Ci (i = 1,… , 5) by using

the scores from the scale S. Then the experts evaluate how well each alternative Xi
(i = 1… , p) satisfies each criterion. So, for example, an alternative Xi gets the eval-

uation given in Table 2 from an expert Aj.
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Table 2 Evaluations for one alternative by one expert

Criterion C1 C2 C3 C4 C5

Importance VH VH M L VL

Satisfaction

score

M L OU VH OU

Example 2 Consider an alternative Xi with the following scores on five criteria in

the following Table 2. An expert Aj gives his/her scores to the importance of each

criterion and his/her scores to the alternative, how well the alternative meets each

criterion.

Using this evaluation, we apply the truth value evaluation based on the Kleene

algebra K7 = ⟨S, ⊓, ⊔,¬, S7⟩, and the unit evaluation for the alternative Xi from the

expert Aj is

Uij = (VL ⊔ M) ⊓ (VL ⊔ L) ⊓ (M ⊔ OU) ⊓ (H ⊔ VH) ⊓ (VH ⊔ OU)
= M ⊓ L ⊓ OU ⊓ VH ⊓ OU = L. (25)

We note that comparing this result with that in the original example
1

with the same

data we see that the results are identical.

The essential reason for the low performance of this objects is that it performed

low on the second criterion which has a very high importance. Linguistically, Eq. (23)

is saying that If a criterion is important then an alternative should score well on it.
The satisfaction scores Si (i = 1,… , 7) are interpreted by fuzzy numbers or fuzzy

intervals, for example, by the same fuzzy intervals as in Example 1 in Sect. 3, such

that the scale of satisfaction scores

S = {S1, S2, S3, S4, S5, S6, S7} (26)

forms an associative Kleene algebra K7 = ⟨S, ⊔, ⊓,¬, S7⟩. So, the calculation tools

of these inferences are based on this algebra. Hence, fuzzy screening systems serve

as a practical application example about fuzzy-valued Kleene algebras.

As a result of the first stage, we have for each alternative Xi a collection of eval-

uations

{Pi1,… ,Pir}, i = 1,… , p (27)

where Pik ∈ S is the unit evaluation of the ith alternative by the kth expert.

Example 2 shows how to aggregate the individual experts evaluations in order

to get an overall linguistic value for each object after the evaluations made by each

expert.

1
See Robert Fullér [1], Ex. 1.18.1., p. 111–112.
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5 Concluding Remarks

As a conclusion, we can answer in the affirmative to the questions we stated in the

end of Sect. 1.

The construction of the above presented Kleene algebra is a mathematical basis

for applications where fuzzy quantities are used as fuzzy scores in fuzzy inferences,

like fuzzy screening systems. Hence, we found a mathematical model for fuzzy

screening systems.

It must be noted that this kind of mathematical models work only if the linguistic

scores correspond to the fuzzy quantities, i.e., fuzzy numbers or fuzzy intervals,

in corresponding algebras. The linguistic interpretations of the fuzzy quantities are

subjective, i.e., they are based on personal opinions. Hence, we cannot totally get rid

of intuition. However, this thing is a strength in fuzzy systems, if we use it carefully.

Kleene algebras have a central role in fuzzy set theory. The author has shown that

Prof. Zadeh’s theory of standard fuzzy sets he presented in [12] is based on Kleene

algebras. First, in symposium “Fuzziness in Finland”, 2004, and in the paper [4] the

author showed that Zadeh’s theory in [12] forms a De Morgan algebra, and later on,

for example, in [7] it is shown that standard fuzzy set theory forms a Kleene algebra.

The author is calling this algebra by name Zadeh algebra.

Kleene algebras for fuzzy quantities serve an algebraic basis for many-fuzzy-
valued logics. Truth values of this kind of logics are fuzzy numbers. The author has

some ideas and sketches to create some fuzzy-many-valued logical systems. Some

preliminaries are already considered in Mattila [5, 6].
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