A Note on Fuzzy-Valued Inference

Jorma K. Mattila

Abstract Fuzzy-valued inference is discussed. For that purpose, a theory of fuzzy-
valued associative Kleene algebra is introduced. As an example, it is shown that
fuzzy-valued Kleene algebras give a mathematical model for some fuzzy screening
systems.
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1 Introduction

In fuzzy decision making, there are a lot of cases where scales of linguistic scores
are used. For example, in fuzzy control linguistic expressions are generally used as
control values in control processes. In fuzzy logic truth values are usually linguistic
terms, like, for example, ‘true’, ‘almost true’, ‘not true and not false’, ‘almost false’,
“false’. In fuzzy screening systems linguistic values are used, too, like for example
‘outstanding’, ‘very high’, ‘high’, ‘medium’, ‘low’, ‘very low’, ‘none’.

To be a scale, the scale values must have a reasonable order. For example, the
truth values mentioned above are already listed in the reasonable order. Based on
intuition, we ordered them using the relationship between a truth value and how
near to the truth it is. The biggest difference is between truth and falsity. Similarly,
the above mentioned scores for a screening system are ordered from the highest value
to the lowest one. Hence, we may say that these kinds of scales are totally ordered,
because the scales are finite and the ordering in any scale can be defined to be unique.
However, these kinds of orderings are actually not mathematical, because they are
based on intuition. Also, the use of these linguistic scores in calculations is based on
intuition, even though the calculation rules can be given based on the order of the
linguistic scores.
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If we want to have a formal theory for a system of this kind, we need a mathe-
matical counterpart to the system. Very often in many-valued logics, the truth values
are given as numbers. In fuzzy systems the scores can be given as fuzzy sets. These
kind of things serve the link between intuitive and formal systems. There are a lot
of research about algebras for numerical truth values of many-valued logics. This
research creates mathematical models for many-valued logics involved in fuzzy sys-
tems. Also, we may investigate some suitable sets of fuzzy numbers or fuzzy intervals
in order to find some algebraic models for systems with fuzzy scores. So, we have
the following basic questions:

Does there exist some mathematical models for inference systems using scales with linguistic
scores?

What are the logical and mathematical bases of this kind of systems?

We give an answer to these questions in the following sections.

2 A Mathematical Background

In this presentation we introduce an algebraic approach to cases where score values
are fuzzy numbers or fuzzy intervals.

We recall some earlier results for manipulating fuzzy numbers. The main things
are ways of representing, ordering, and defining meets and joins of a given set of
fuzzy numbers.

The representation theorem for considering fuzzy sets by means of a-cuts has
been given, for example, by V. Novék [9], p. 44. A. Kaufmann and M.M. Gupta [2]
(cf. pp. 19-35) consider interval arithmetics applied to triangular and trapezoidal
fuzzy numbers (or fuzzy intervals) presented by means of a-cuts. They also intro-
duced some criteria for ordering of fuzzy numbers.

Besides Kaufmaan and Gupta, also R. Fullér [1] (cf. pp. 35-36) has considered
ordering of fuzzy numbers by defining fuzzy max and fuzzy min operations by means
of a-cuts, and V. Novék [9] (cf. pp. 98-100) by defining join ‘LI’ and meet ‘T’ by
means of Zadeh’s extension principle, as follows.

Let A, B be fuzzy numbers and x,y € R. Join A U B is the fuzzy number

(AUB)2) = \/ (A®) ABO)). 6]

z=xVy

Meet AN B is the fuzzy number

ANB)@) = \/ (AX) A BY)). ©)

Z=XAY

These operations appear to be the same as Fullér’s fuzzy max and fuzzy min.
Novik also present the following theorem.
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Theorem 1 (Novék) The fuzzy numbers form a distributive lattice with respect to
the operations ‘T’ and ‘L’. It means that

AUA=A AnA=A
AUuB=BuA ANnB=BnA
AUBUC=ALUBUC) ANBNC=ANBMNCE)
AUBn®)=AuUB)NNAULC) AN@Bul)=AnNBUUANEC)

Then he defines the ordering relation C for fuzzy numbers A, B in the familiar
way:
ACB iff AnB=A (AUB=B respectively). 3)

In general, fuzzy numbers do not form a linearly ordered set, except in some special
cases. We will exploit some of these special cases in the following considerations.
Consider a finite set of fuzzy sets

T,={A, A, ..., A,} 4

of the interval [0, p], p € R, p > 0. The fuzzy sets A; (i = 1, ... ,n) of T, satisfy the
following properties:

(1°) A, is either a fuzzy number or a fuzzy interval for all 1 <i < n;

(2°) T, is ordered, such that A; C Aj foralll1 <i<j<m

(3°) for every A; € T, there exists a unique fuzzy set =A; € T, such that the fol-
lowing condition holds:

A=A, if 1<i<n o)
where foralli=1,...,n
Aj(x) = ~A(p —x), if x€[0,p] (6)

The operation symbol ‘=’ is a complementarity operation, and we use the name
negation for it.

The set T, is linearly ordered, by the property (2°).

The definition of negation, i.e., the formulas (5) and (6) gives some presupposi-
tions for the fuzzy sets in T,,. From the Eq. (6), it follows that the supports of A; and
-A,; satisfy the equivalency

suppA; = [a,b] < supp-A;=[p—b,p—ad] (7)

There exist two special cases, namely @ = 0 and @ = 1. These conditions give the
closures of the support and core of a given fuzzy set A. Now, because
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[Al-]0 = cl(supp A;) and [Jli]1 = cl(core A;) then the closures of the supports and
the cores of A; and —A, satisfy the equivalencies

clsupp A,) = lay, byl < cl(supp-A;) = [p — by, p — ayl ®)
clicore A;) =[a;,b;] << clcore-A)=[p—b,,p—al ©)]

The lengths of the intervals [A;]* and [-A,]* are the same for any a, because
if [A,]* = [a,. b,] then its length is b, — a,, and the length of [-A,]* is p —a, —
(p->b,) =b, —a,,too.

By means of these considerations above, it is easy to see that the fuzzy sets A; and
-A; are symmetric with respect to the vertical line x = %’. The value ’% is the centre
of the interval [0, p].

Our next purpose is to show that the set 7, (see (4)) forms a Kleene algebra of
fuzzy numbers belonging to the set 7. First, we have to show that the set 7, forms
a DeMorgan algebra. About DeMorgan algebras, see Rasiowa [10]. (Rasiowa uses
the name quasi-Boolean algebra for DeMorgan algebra.) To do this, we prove the
following Lemmas.

Lemma 1 The system T, = (T,,U,N) is a distributive and complete lattice.

Proof T, is a distributive lattice by means of Theorem 1. It is also complete because
for any two elements A;, A; € T, (1 <i,j < n) the expressions A; LI A; and A; M A,
are defined and 7, is closed under the operations Ul and M, i.e., A; U Aj equals to
either A; or A;, and A; M A; equals to either A; or A, respectively. O

Lemma 2 The law of double negation
Sy— (10)

forany A; € T, holds in the lattice 7T,
Proof The result follows from the formula (5) by an easy calculation. O
Lemma 3 De Morgan Laws hold on T,

Proof Let A;, A; €T, be any two elements, such that A; C A;. Hence, i <j, by
the property (2°). Further, =A; = A,_;,; and = A; = A,_,,, by (5). Comparing
the subindices n—i+ 1 and n—j+ 1 we see that n—j+ 1 <n—i+ 1 because
i <J, by assumption. Hence, A,_;,; T A,_,,, i.e., 7A; E =A,. So, the implication
A; EA; = —A; E ~A, holds. It is easy to see that this implication holds to the
other direction, too. Hence, the equivalency

A,CA < A LA (11)
holds for any Ai,Aj € T,. Further, —uﬂj U -A; = -A,;, by (3), and hence,



A Note on Fuzzy-Valued Inference 37
by assumption and by (10). Hence, one of De Morgan Laws,
‘A'i M ‘Aj = ﬂ(ﬂAj LI —|_Ai) (12)

holds. The other De Morgan law, A; U A; = =(=A; M =A,)), follows from (12) by
replacing A; and A; with =A; and ~A,, respectively, and applying the law of double
negation. O

From the Lemmas 1, 2 and 3 it follows that the system 7, = (T,,U,M,,A,) is
De Morgan algebra, because T, is a non-empty set, 7, = (T,, LI, M) is a distributive
lattice with top element A, - is a unary operation on T, and 7, satisfies the law of
double negation and De Morgan laws.

The top and bottom elements exist in 7, because 7, is finite totally ordered
set. Now we also know that the complementarity — is quasi-complementation. (See
closer considerations, for example, in Rasiowa [10], p. 44—-45.) The top element A,
is the neutral element of the operation M. In 7,, there exists a bottom element, too,
namely A, which is the neutral element of the operation LI. Especially, by the defin-
ition of negation, the conditions ~A, = A, and =A, = A, hold in 7,,. It is a general
case that any De Morgan algebra has top element and bottom element being the
negations of each other.

If a De Morgan algebra satisfies so-called Kleene condition, itis a Kleene algebra.
So, the last thing before getting a fuzzy-valued Kleene algebra is to check whether
the Kleene condition

AM~ACAU-AL if 1<ij<n (K)

holds in our De Morgan algebra 7, = (7,,,M,, A, ). Here the condition (K) is
constructed for lattices where the elements are fuzzy numbers or fuzzy intervals.

Theorem 2 The algebra T, = (T,,U,M, =, A,) is a Kleene algebra.

Proof The algebra 7, is De Morgan algebra, as we have noticed above. So, we have
to show that the algebra 7, satisfies the Kleene condition (K).

Let .Al-,Aj € T, be arbitrarily chosen, hence —A,, ﬂ.Aj e T,, too, because T, is
closed under negation. Suppose A; E A; whenever i < j, forall A, A; € T,.

If the number of fuzzy sets in 7,, is n = 2k + 1 (i.e., n is odd) then the middle
element of 7, is A, ., and hence =A;_ | = A, by the definition of negation.

If n = 2k (i.e., nis even) then = A, = A, and = A, ., = A,, by the definition of
negation.

We denote

A= S A i =2k
GIT YA, if n=2%
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Hence, for any A;, if A; E A[g] then A[g] C -A,;, and vice versa. Hence, for any i,
2 2
A; 1 -A; € Az and for any j, Az C A; 1 —A;. This completes the proof. O
2 2

Especially, 7, = (T, U, M, —, A,) is an associative Kleene algebra, by Theorem 1.

3 Construction of Applicable Kleene Algebras

Examples about easily manipulable fuzzy sets in applications based on Kleene
algebras of fuzzy sets are triangular fuzzy numbers, Gaussian fuzzy numbers, other
bell-shaped fuzzy numbers and fuzzy intervals.

As an example, consider a trapezoidal fuzzy interval

-

0 ifx<a

X—a .
—L ifa, <x<a,
=4

Ax) =41 ifa, <x<ay (13)
L= ifay;<x<a
a,—a;
0 ifx>ay,

\

on a closed real interval [0,p] (0 < p, p € R) and x,a,,a,,a3,a, € [0,p] and 0 <
a, < a, < az <ay. Ifa, = a; then A is a triangular fuzzy number. The support and
the core of A(x) are the intervals [a,, a,] and [a,, a;], respectively. The increasing
part on the left and the decreasing part on the right side of A have the membership
functions

0 ifx<aj,a, <x L= ifay;<x<a

A (x) = {ﬂ fa < ,  Apx) = {“4‘“3 ) (14)
aa, Td1SX¥<dy 0 ifx<aza, <x

If the supports supp(A;) = [a,, a,] and supp(Ay) = [a3, a,] have the same size then
the membership function of the fuzzy interval A is symmetric with respect to the
vertical line x = £X%

Applying, for example, some considerations, due to Novak [9] and Kaufmann
and Gupta [2], A can be considered as an ordered 4-tuple A = (a,, a,, a;, a,) where
A(x) is increasing if x € [a;, a,], A(x) = 1 if x € [a,, as], and A(x) is decreasing if
X € [a;, a,]. Further, the negation for A on the interval [0, p] can be given as the
ordered 4-tuple

_|‘A=(p_a4ap_a37p_a29p_a1) (15)
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which is a fuzzy interval on [0, p] of x-axis. This fuzzy interval can be given in the
form, similar to A in (13), as

0 ifx<p-—a
rptas e, -
p— ifp-—a;<x<p-a,
“Alx) =11 ifp—a;<x<p-a, (16)
[ -
p— ifp—a,<x<p-a
0 ifx>p—aq
Consider a set of fuzzy trapezoidal intervals 7, = {A,, A,, ..., A, } of the interval
[0, p] where the divisional points of [0, p] on x-axis, determined by the fuzzy intervals
A; (i=0,...,n)are ay,a,...,a; where k = 2n — 1. The fuzzy intervals
1 if0<x<aq 0 ifx<a,_,
a,—Xx . X—=a,._ .
Al(x): azzTal lfal staz s ‘An(‘x): ﬁ lfak_z §x<ak_1 (17)
0 ifx > a, 1 ifa,_; <x<a

are the first and the last fuzzy interval, respectively, which can be given by means of
the 4-tuples

‘Al = (O, O, al,az) and .An = (ak_z, ak_l,ak, Clk).

Here we agree that A (x) = 1 if x € [0,a,] and A, (x) = 1 ifx € [a;_,, a;]. The other
fuzzy intervals between A, and A, can be given in the form

Ay =(ay, ay,a3,a4), Ay = (a3, 04,05, 0ag), -, Ay = (Ag_ys Qy_3, Qy_p, A_y)-

Note that the first divisional point on the interval [0, p] is origo, and the last one
isa;, = p. Hence, A,(0) =1 and A, (q;) = A,(p) = 1.

Especially, on x-axis, the divisional points for the intervals being parts of the
supports of the fuzzy sets in 7, are as follows. The number of fuzzy sets in T, is
n and the number of the divisional points is 2n. So, we have the divisional points
agy,dy,dsy, ... ,a;, where k =2n — 1. And the first divisional point is a; = 0 and the
last one a;, = a,,_; = p.

The supports of all the fuzzy numbers form a cover to the interval [0, p], such that
the union of the covers of A, A, ..., A, is exactly the same as the interval itself,
ie.,

[0,p1 = | supp 4. (18)
i=1
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Example I Consider a collection of fuzzy intervals on [0, p] where the fuzzy inter-
vals are of the form (16) and (17) where n = 7. Hence, the set T, consists of the fuzzy
intervals

‘A‘l = (05 05 a]s a2)9 ‘AZ = (als aZs Cl3, a4)9 ‘A‘3 = (a3’ a4s aSy a6)’
Ay = (as, a6, a7, ag), As = (a7, a5, a9, ay0), Ag = (ag, ay9, ayy 1),

and A; = (a1, 45,43, a13)

i.e.,
T7 = {Al»\Az,A3sA4,A5,A63A7}

The divisional points are
ay = 0,ay,ay, a3, a4, as, ag, as, ag, dg, dyg, Ay, Ay, 13 = P-

The algebra 7; = (T5,U, M, —, A;) satisfies all the properties considered in Sect. 2.

4 An Application Example: Fuzzy Screening Systems

As a motivating example, we consider a case of a fuzzy screening system, a technique

suggested by R. Yager (for example, see Yager [11]). These systems contain fuzzy

data. The source material for this description about fuzzy screening systems in this

section is taken from Robert Fullér’s book [1] Introduction to Neuro-Fuzzy Systems.
A fuzzy screening system is a two stage process as follows:

« In the first stage, experts are asked to provide an evaluation of the alternatives.
This evaluation consists of a rating for each alternative on each of the criteria.

« In the second stage, the methodology is used to aggregate the individual experts
evaluations to obtain an overall linguistic value for each object.

The problem consists of three components.
(1) The first component is a collection
X=1{X,....X,}
of alternative solutions from amongst which we desire to select some subset to
be investigated further.
(2) The second component is a group

A={A,,....A}

of experts whose opinion solicited in screening the alternatives.
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Table 1 Scale of scores

Score name Label Score symbol
Outstanding ou S;
Very high VH S
High H Ss
Medium M M
Low L S3
Very low VL S,
None N S,

(3) The third component is a collection

c={(C,,....C,)

4 m

of criteria which are considered relevant in the choice of the objects to be further
considered.

For each alternative, each expert is required to provide his/her opinion. In par-
ticular, for each alternative an expert is asked to evaluate how well that alternative
satisfies each of the criteria in the set C. These evaluations of alternative satisfaction
to criteria will be given in terms of elements from the scale S in Table 1.

Based on intuition, the use of such a scale provides a natural ordering, S; > Sj, if
i > j, and the maximum and minimum of any two scores be defined by

max{S,,S;} =8,;, if §; >S5, (19)
min(S,,S;} =S, if S; <S8, (20)

where max and min are fuzzy max and min defined in [1], i.e., these operations are
the same as LI and I, respectively. Using our notation above, these conditions can be
expressed in the form

S;us, =8, if SCS @1)
Sns; =S, if SLCS. (22)

Thus for an alternative an expert provides a collection of n values
{P,....,P,},

where P; is the rating of the alternative on the jth criterion by the expert. Each P; is
an element in the set of allowable scores S,

S = {S7, S6’ S5, S4, S3, S2, Sl }.
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Assuming n = 6, an example of a typical scoring for an alternative from one expert
would be
{84,85,57,86.57,8,}

or, using the labels of the scores,
{M,L,O0U, VH,OU, N}.

Independent of this evaluation of alternative satisfaction to criteria, each expert must
assign a measure of importance to each of the criteria. An expert uses the same scale,
S, to provide the importance associated with the criteria.

The next step in the process is to find the overall evaluation for an alternative by
a given expert. For this we use a methodology suggested by Yager [11]. A crucial
aspect of this approach is the taking of the negation of the importances as

Neg(S,) = S,_it1 (g is the number the scores in S).
For the scale S the negation operation provides the following:

Neg(OU) = N, Neg(VH) = VL, Neg(H) = L, Neg(M) = M,
Neg(L) = H, Neg(VL) = VH, Neg(N) = OU.

Then the unit score of each alternative by each expert, denoted by U, is calculated
as follows:
U= min{Neg(IJ-) Y, Pj}, 23)
J

where /; denotes the importance of the jth criterion.
Because in our algebra —/; U P; is the same as Neg(/;) V P; in Yager’s system then,
using the notation of our algebra, the unit score formula is

U=ELuP)n..n=L,UP,) (24)

If we think that the operations of the screening systems are logical connectives, we
note that the unit score formula (23) essentially is an anding of the criteria satisfac-
tions modified by the importance of the criteria. The formula (23) can be seen as a
measure of the degree to which an alternative satisfies the following statement:

All important criteria are satisfied.

The following example is considered the case where the experts A, ... , A, evalu-
ates his/her opinion about the importance of each criterion C; i =1, ..., 5) by using
the scores from the scale S. Then the experts evaluate how well each alternative X;
(i =1...,p) satisfies each criterion. So, for example, an alternative X; gets the eval-
uation given in Table 2 from an expert A;.
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Table 2 Evaluations for one alternative by one expert

Criterion C, C, C; C, Cs
Importance VH VH M L VL
Satisfaction M L ou VH ou
score

Example 2 Consider an alternative X; with the following scores on five criteria in
the following Table 2. An expert A; gives his/her scores to the importance of each
criterion and his/her scores to the alternative, how well the alternative meets each
criterion.

Using this evaluation, we apply the truth value evaluation based on the Kleene
algebra KC; = (S, M, U, =, S,), and the unit evaluation for the alternative X; from the
expert 4; is

U;=(VLuM)n(VLuL)nMuOU)nHu VH) n(VH U OU)
=MnLnOUNVHNOU =L. (25)

We note that comparing this result with that in the original example' with the same
data we see that the results are identical.

The essential reason for the low performance of this objects is that it performed
low on the second criterion which has a very high importance. Linguistically, Eq. (23)
is saying that If a criterion is important then an alternative should score well on it.

The satisfaction scores S; (i = 1, ..., 7) are interpreted by fuzzy numbers or fuzzy
intervals, for example, by the same fuzzy intervals as in Example 1 in Sect. 3, such
that the scale of satisfaction scores

S=1{5.5,,583,54, 55,56, 57} (26)

forms an associative Kleene algebra KC; = (S, I, M, =, S7). So, the calculation tools
of these inferences are based on this algebra. Hence, fuzzy screening systems serve
as a practical application example about fuzzy-valued Kleene algebras.
As a result of the first stage, we have for each alternative X; a collection of eval-
uations
{Py,....P.}, i=1..,p 27)

where P; € S is the unit evaluation of the ith alternative by the kth expert.

Example 2 shows how to aggregate the individual experts evaluations in order
to get an overall linguistic value for each object after the evaluations made by each
expert.

I'See Robert Fullér [1], Ex. 1.18.1., p. 111-112.
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5 Concluding Remarks

As a conclusion, we can answer in the affirmative to the questions we stated in the
end of Sect. 1.

The construction of the above presented Kleene algebra is a mathematical basis
for applications where fuzzy quantities are used as fuzzy scores in fuzzy inferences,
like fuzzy screening systems. Hence, we found a mathematical model for fuzzy
screening systems.

It must be noted that this kind of mathematical models work only if the linguistic
scores correspond to the fuzzy quantities, i.e., fuzzy numbers or fuzzy intervals,
in corresponding algebras. The linguistic interpretations of the fuzzy quantities are
subjective, i.e., they are based on personal opinions. Hence, we cannot totally get rid
of intuition. However, this thing is a strength in fuzzy systems, if we use it carefully.

Kleene algebras have a central role in fuzzy set theory. The author has shown that
Prof. Zadeh'’s theory of standard fuzzy sets he presented in [12] is based on Kleene
algebras. First, in symposium “Fuzziness in Finland”, 2004, and in the paper [4] the
author showed that Zadeh’s theory in [12] forms a De Morgan algebra, and later on,
for example, in [7] it is shown that standard fuzzy set theory forms a Kleene algebra.
The author is calling this algebra by name Zadeh algebra.

Kleene algebras for fuzzy quantities serve an algebraic basis for many-fuzzy-
valued logics. Truth values of this kind of logics are fuzzy numbers. The author has
some ideas and sketches to create some fuzzy-many-valued logical systems. Some
preliminaries are already considered in Mattila [5, 6].

References

1. Fullér, R.: Introduction to Neuro-Fuzzy Systems. Advances in Soft Computing. Physica-
Verlag, Heidelberg (2000)

2. Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management
Science. North-Holland, New York (1988)

3. Lowen, R.: Fuzzy Set Theory. Basic Concepts, Techniques and Bibliography. Kluwer Acad-
emic Publishers, Dordrecht (1996)

4. Mattila, J.K.: Zadeh algebras as a syntactical approach to fuzzy sets. In: Baets, D., Caluwe, D.,
Fodor, D.T., Zadrozny, K. (eds.) Current Issues in Data and Knowledge Engineering, Problemy
Wspblczesnej Nauki Teoria [ Zastosowania, Informatyka, Akademicka Oficyna Wydawnicza
EXIT, Warszawa 2004, (Selected papers presented at EUROFUSE’2004, Warszawa, Poland
on September 22-25, 2004), pp. 343-349 (2004)

5. Mattila, J.K.: On fuzzy-valued propositional logic. Walden, P., Fullér, R., Carlsson, J. (eds.)
Expanding the Limits of the Possible, p. 33— 43. ISBN 952-12-1817-7, Abo (2006)

6. Mattila, J.K.: Standard fuzzy sets and some many-valued logics. Dadios, E.P. (ed.) Fuzzy
Logic—Algorithms, Techniques and Implementations. In: Tech. ISBN 979-953-51-0393-6, pp.
75-96 (2012)

7. Mattila, J.K.: Zadeh algebra as a basis of Lukasiewicz logics. In: Proceedings of NAFIPS 2012
Meeting, 1978-1-4673-2338-3/12/31.00 (2012)

8. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis. Birkhduser
(1975)




A Note on Fuzzy-Valued Inference 45

9. Novék, V.: Fuzzy Sets and Their Applications. Adam Hilger, Philadelphia (1989)
10. Rasiowa, H.: An Algebraic Approach to Non-Classical Logics. North-Holland, New York
(1974)
11. Yager, R.R.: Fuzzy screening systems. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State
of the Art, pp. 251-261. Kluwer, Dordrecht (1993)
12. Zadeh, L.A.: Fuzzy sets. Inf. Control 8 (1965)



2 Springer
http://www.springer.com/978-3-319-26984-9

Fuzy Technology

Present Applications and Future Challenges

Collan, M.; Fedrizi, M.; Kacprzyk, ). (Eds.)

2016, XV, 219 p. 72 illus., 48 illus. in color., Hardcover
ISBN: 978-3-319-260984-9



	A Note on Fuzzy-Valued Inference
	1 Introduction
	2 A Mathematical Background
	3 Construction of Applicable Kleene Algebras
	4 An Application Example: Fuzzy Screening Systems
	5 Concluding Remarks
	References


