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Abstract This paper discusses the opportunities big data offers decision makers
from a statistical perspective. It calls for a multidisciplinary approach by computer
scientists, statisticians and domain experts to providing useful big data solutions.
Big data calls for us to think in new ways and communicate effectively within such
teams.Wemake a plea for linking data-driven and model-driven analytics, and stress
the role of cause-effect models for knowledge enhancement in big data analytics.
We remember Kant’s statement that theory without data is blind, but facts without
theories aremeaningless. A case ismade for each discipline to define the contribution
they offer to big data solutions so that effective teams can be formed to improve
inductions. Although new approaches are needed much of the past learning related to
small data are valuable in providing big data solutions.Herewe have inmind the long-
term academic training and field experience of statisticians concerning reduction of
dataset volumes, sampling in a more general setting, data depreciation and quality,
model design and validation, visualisation, etc.We expect that combining the present
approaches will give incentives for increasing the chances for “real big solutions”.

1 Introduction

Generally Big Data involves routinely collected data that is integrated from different
sources and joined together. The theory is that the combined data hold more infor-
mation in it than analysing the separate datasets independently. Combined datasets
do not always have all the variables of interest but generally hold more variables of
interest than the separate datasets. This suggests that Big Data has the potential to
solve many problems we could not by analysing these datasets separately. Generally
observation studies need to be carefully planned for them make causal inferences
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and unless this happens with Big Data it is not going to solve many of the problems
we are interested in as statisticians. More effort is needed in designing Big Data col-
lection processes for specific analytical purposes before its value can be broadened
in making reliable inferential judgments.

The quality of the information in Big Data collection processes is an issue. There
is the issue of gross recording errors that need to be addressed and the quality of the
information used to join datasets from different sources need to be considered in the
analytical approach. If joined datasets are used and there are selection bias issues
with each dataset used in the join, then the combined BigData will have compounded
selection bias issues if the join is carried out using the intersection principle. If the
join includes all the data as well as all information that is missing using the union
principle in joining the datasets, thenwe could be dealingwith amassivemissing data
problem, but the selection bias issue will generally be reduced. There are significant
challenges when dealing with such situations. For example if a probabilistic join is
used then the join has some uncertainty, and this requires a change to the analytical
methods to deal with this uncertainty [7]. This adds to the challenge. All of this fits
into the section of the paper that looks at the issue of whether the Big Data are fit for
purpose.

Section3 will discuss some general tools that may be useful in reducing the size
of the analytical effort in analysing big datasets. These are often useful in taking
the original dataset that may be in peta scale or tera scale say down to the more
manageable giga scale. This section is by no means complete but it documents what
we have found to be useful.

Section4 of the paper looks at the issue of analysing massive datasets when it
is impossible to include all the data in the routines for their analysis. This will
use the divide and rule principle, that is, the big dataset will be divided up into
manageable pockets in away that helps improve the analytical purpose, e.g., inference
or predictions (or forecasts). How to divide the datasets up is an open research
question which will not be answered in this paper, but some general principles will
be discussed in Sect. 3.

Section5 has another look at ways of reducing the volume of data in certain
instances. Section6 finishes with comments about the tension between data mining
and statisticians and a call for a collaborative approach to building knowledge that
will help us better manage the future. Section7 examines the question of whether
theory is essential. Section8 briefly examines intellectual property issues. Section9
finishes with a discussion of the issues and summarises

2 Is Big Data Fit for Purpose?

2.1 Do We Need Big Data?

It is fashionable to talk about the opportunities that Big Data offer decision makers.
Big Data is attracting the interests of industry and resulting in their preparedness to
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invest money and resources in achieving the related business gains. Business gains
can be achieved using both Big Data and small data. Therefore industry should
think carefully about what they would like to achieve, and then establish whether the
appropriate data are available for achieving their objectives ormaking their decisions.
That is, they should think about investing better not investing more. Often we require
the appropriate data to achieve unbiased solutions. Before the Big Data focus showed
up, statisticians addressed their problems by carefully thinking whether the available
data are adequate for the purpose or whether new data needed to be collected by an
efficient experimental design.

Statistics has long been the avenue for answering important research questions.
However the computer has increased our ability to dealwith larger and larger datasets,
and in some sense answeringmore complexquestions.However ensuring that the data
is fit for purpose is even more important in the Big Data context. Before computers
were available, inverting a 4 × 4 matrix of reals took a considerable amount of
time, while now this is trivial. Therefore statistics has evolved with the advent of
computers. The growth in computational statistics research has allowed statisticians
to fit more complex models than previously was possible by using MCMCmethods,
and improving inference using bootstrap and cross-validation methods.

Our view is that Big Data increases opportunities, but much that has been learned
in the past is also relevant in the Big Data space, and in fact we argue that it is even
more important. Our view is that answering the right question is more important
than the appropriate data, but a close second is having the appropriate data to answer
these questions. Big Data is sold as the means of solving all questions but we feel this
perception is misguided. Savage’s book [10], links the development of statistics in
the late twentieth century to the British-American school and its view of probability
as objectivistic theory of knowledge. According to this view, the mathematical con-
cept (model) by which we understand our problems must be obtained by observing
repetition of events, and from no other source whatsoever. This is quite enlightening
in the Big Data settings. The first point made, is that the modern statistics (as defined
by [10]) referred to as statistical inference, is the daughter of the probability theory.
Accurate inference lies in the construction of a model to understand the data. We will
explore that point further in Sect. 7. The second point is that any information other
than the repetition of the event remains clueless in regard to the application of statis-
tical techniques. Big Data implies more data, but it may not imply more information.
Big Data may not build on our current knowledge or answer our important questions.
An excess of non-relevant information is likely to be misleading or may create con-
fusion with what is important or add to our spurious/false ‘discoveries’. However
Big Data that is built on a theoretical framework of knowledge discovery (see [3],
p. 106) is likely to improve our understanding and build on our current knowledge.
The view that Big Data offers all the answer to our quests for knowledge, and all we
need to do is discover where it is embedded in the Big Data is dangerous.
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2.2 What About Big Data Do We Need?

Big Data is unlikely to solve all problems of interest to the data custodians unless
it has been designed to achieve this aim. Most routine datasets collect the measures
that are easy to accumulate mostly because they are necessary administrative data
such as revenues and expenditures, because they are easy to measure and collect or
simply “open data” ready for downloading free of any fees. A typical example is
data from social networks. But the question arises whether what we got is what we
need or is “N = ALL” perhaps a seductive illusion, Harford [6]?
The first step before using any dataset is to decide whether the dataset is fit for
purpose. We break the fit for purpose evaluation down into the answering following
questions:

1. Are all the appropriate variables available?
2. Are these variables measured accurately enough to answer these question? Are

there potential recording errors?
3. Does the data represent the population we wish to make inferences about or wish

to predict? What selection biases are there?
4. Does the data cover the appropriate time frames for the purpose? Is the time

between measures and the duration of collection appropriate?
5. Are there any redundancies in the dataset that are worth removing?
6. Are all measures well defined and consistently measured over time?
7. Has measurement accuracy improved over time and therefore what historical

data are useful for the purpose?
8. Is there anymissingdata and if there is, thenwhat is the nature of themissingness?
9. Do any of the measurement suffer detection limits? For example, is the mea-

surement process incapable of measuring values either below or above a certain
limit?

10. Is the spatial information adequate for the purpose?

Some of these fit well with the five V’s raised by Megahed and Jones-Farmer [8]
as volume, variety, velocity, veracity and value. Veracity refers to the trustworthiness
of the data in terms of creating knowledge relating to the purpose. This calls for
data management processes for maintaining the veracity of the data. For example in
large scale sensor networks, where many measures are collected every 5min over
long periods of time, requires real-time checks on the spatio-temporal consistency
of measures as well as checking whether the measures are consistent with related
measures collected at the same site (e.g., see [11]). Therefore Big Data increases the
need for the appropriate level of datamanagement. Improved accuracy can sometimes
be forced by a certain level of aggregation either over space/geography or by temporal
aggregation. For example considering the average measurement per 5min when the
data are recorded every minute or averaging measurements made within a spatial
grid. This certainly has advantages when 1min measures are highly autocorrelated
and neighbouring measures are almost measuring the same entity. On the other hand,
this can result in a loss of either spatial or temporal resolution when aggregating over
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too large space or too large time periods, respectively. It is therefore better to build
in the appropriate level of accuracy into measures by using the appropriate data
management techniques and controls on the measurement process.

The challenges with sensor networks is whether consistency of measures check-
ing be done at the location of each sensor before sending the information back to
the root node in the network (thus not checking for spatial consistency) or send the
information to the root node first and then do the multivariate-spatio-temporal con-
sistency checking. Such decisionmay not depend onwhich approach delivers greater
accuracy but in wireless solar operation sensors this may be based on power con-
siderations. Nevertheless accuracy of measurement will impact on what analytical
approach will be used to analyse the data.

3 Basic Toolbox for Analysing Big Data

Datasets are increasing in size and purchasing memory space in this digital age is
becoming cheaper. Therefore the size and complexity of datasets is growing nearly
exponentially. Having the appropriate tools for dealing with such complexity is
important with both n (sample size) and p (number of variables) being large in the n
by p data matrix. The following methods are useful in managing the computational
complexity:

1. Aggregation and Grouping: There aremany common examples of aggregations
that are common place to-day:

• The billions ofmarket transactions per second in theworld involving over 1000
TB per annum (PB/a) is aggregated into GDP per year (USD/a) published in
the UNO Yearbook by the National Accounts Group of UNO, New York
(8Bytes/a).

• Instead of singletons like screws, nails etc. these are combined into one cate-
gory/class called hardware as a larger.

• It is fairly common to bin peoples ages into groups, e.g. age intervals [0, 18],
[18, 65], [65, 120], and to study behaviour within cohorts.

2. Blocking: Semantic keys are built so that users can find certain information
very fast. As an example the Administrative Record Census 2011, Germany,
used attribute ‘address’ for household generation as a main blocking variable.
Privacy concerns often result in the lowest level of geography that is released
on individuals is postal code, and in many analyses this is used as a blocking
variable. This is at times used to define people who are similar in some way, e.g.,
with similar social disadvantage index.

3. Compression and Sparsity exploitation: An example is the sparse matrix stor-
age of images such as that used by ‘jpeg’. Dimension reduction techniques
of data compression are fairly common. Examples are multi-dimensional scal-
ing (MDS), Projection Pursuit, PCA, non linear PCA, radial basis functions or
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wavelets. Examples of application are image reconstruction using wavelets or
PCA.

4. Sufficient statistics: Another very common data compression approach is to
only store the sufficient statistics for later analysis, such as is commonly used
in Meta Analysis. This reduces the full data by only storing and using statisti-
cal functions of the data, e.g., the sample mean and sample standard deviation
for Gaussian data. In modern control theory this principle is applied by signal
filtering techniques like the Kalman Filter.

5. Fragmentation and Divisibility (divide et impera): We fragment a feature
in such a way that it preserves its essential features for analysis. For example,
a company made up of different stores at different location around a country.
Keeping the total sales at each store allows us to calculate the total sales for
the company. The maximum or minimum sales at each store still allows us to
calculate in minimum or maximum sale for the company. The top ten sales at
each store allows us to calculate the top ten sales for the company. Where this
fails is with the median sales at each store; this does not allow us to estimate the
median sale for the company.
Agood example of divisibility is that a jointmultivariate density can be preserved
by factorization of densities say usingMarkovfields orMarkov chains/processes,
e.g., example if X → Y → Z is a Markov chain, then f (x, y, z) = fx (x) fy|
x(y|x) fz|y(z|y) where f (x, y, z) is the joint density of x , y and z, fx (x) is the
marginal density of x , fy|x (y|x) is the conditional density of y given the value
of x , and fz|y(z|y) is the conditional density of z given the value of y.

6. Recursive versus global Estimation (parameter learning) procedures/
algorithms: This could involve Generalised Least Squares (GLS) or Ordinary
Least Squares (OLS) estimation versus Kalman Filtering or recursive GLS/OLS.
For example: the recursive arithmetic mean estimator is given by

x̄n = (1 − λn)x̄n−1 + λn xn

where λn = 1/n, while the Kalman filter includes a signal to noise (variance)
ratio, υ, leading to λn = 1/(1/υ + n).

7. Algorithms: One Pass Algorithm (like Greedy Algorithm) versus Multi Pass
Algorithms (cf. backtracking, Iteration)

8. Type of Optimum: Local optimum/Pareto optimum/global optimum. Heuristic
optimisation often delivers a “practical useful” local optimum with strongly
bounded computational efforts, the proof of its optimality may be very CPU-
time consuming.

9. Solution types of combinatorial problems: Limited enumeration, branch and
bound methods or full enumeration. Example: Traversing or exploring game
trees or social/technical networks.

10. Sequencing of operations (for additive or coupled algebraic operations) or
parallelisationExamples: Linking of stand-alone programs for solving one (sep-
arable) problem in 1- memory-1 CPUmachine. Dividing the task up into parallel
streams that can be run in parallel to each other.
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11. Invariant Embedding: Instead of sampling with a given frequency (time win-
dow) we record the time stamp, event and value. An example is the measuring
of electricity consumption of private households either using a fixed sampling
frequency or recording the triple (time stamp, load (kw), type of electric appli-
ance).

Many of the methods mentioned in this section are used to divide the analytical
task into more manageable chunks.

4 Dividing the Analytical Task Up into Manageable Chunks

This sectionwill focus on two applications both involving forecasting. The first appli-
cation deals with forecasting or inferential generalised linear models with a unique
defined response variable. The second deals with forecasting counts in complex tab-
ular settings. As the sample size increases generally the proportion of the error due
to the systematic error reduces but the proportion of model error starts to increase.
Therefore much more attention needs to be devoted to establishing the appropriate
model for Big Data applications.

4.1 Generalised Linear Models Example

When datasets get too large to include all observations in the analysis phase, then sub-
dividing the data is important inmanaging the analytical task. This has computational
advantages and information advantages as well (see the results later). Even in smaller
datasets it makes statistical sense to divide the data into a test (learning) sample and
a validation sample, cf. cross-validation. This is particularly true of model building
which is the main focus of this section. The test sample is used to formulate a
useful model for prediction/forecasting or inference where selecting: the model, the
explanatory variables, and transformations of the response or explanatory variables
(e.g., see projection pursuit by [4]). Furthermore, the splitting helps avoiding over-
fitting and biased estimates of goodness of fit criteria. In addition the test data are
used to validate whether any assumptions may hold approximately. After we have
settled on a useful operating model with the test data, then we validate the selected
model using the new validation dataset. Here we recheck assumptions and assess the
goodness-of-fit for the selected model. In other words, the validation dataset is used
to assess the usefulness of the selected model. If there are two comparable models
selected at the test phase, then the validation dataset can be used to differentiate
them and select the better one, or decide to use both and apply ensemble forecasts
or inferences.

Different tasks would involve different ways of dividing up the work and so this
section is not going to do justice in providing advice for all different tasks. We will
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consider the forecasting task as one option and we start by looking at forecasting a
continuous variable. The model formulation stage would use test dataset (generally
about two thirds to half the data). However since this test datamay still be excessively
large we split this test data into say 100 datasets that are selected randomly without
replacement of roughly equal size (n). This process divides the test data into 100
subsets that are non-overlapping but exhaustive of the test dataset. Assume that the
i th test sample subset has response variable observations given by vector yi with
related predictor variables that include the same number of observations as in yi

(some of these explanatory variables could be lag response variables). This matrix of
predictor variables is denoted by Xi . Consider the generalised linear model structure
as an example where

g(E(yi )) = Xiβi , i = 1, 2, . . . , 100

where g is the link function and βi is the coefficient for the i th test sample and E is
the expectation operator. We expect that if the model was appropriate then βi = β

for all i . We may want to compare either several g link function options or several
distribution options for the response yi . Assume that the fitted models for the i th test
dataset resulting in an estimated model formed by substituting βi by its estimate ̂βi

in the equation above. Then since βi = β the ensemble estimate for the component
β j is β̄ j = ∑100

i=1
̂βi j/100 where β̄ j is the generalised linear model estimate of the

regression coefficient derived from the partitioned test dataset. The model fitting
algorithms produce estimates of model standard errors for each ̂βi which are denoted
sw and interpreted as the within sample uncertainty in the estimate of the coefficient.
However the sample estimated standard errors (s j ) for the between test data subsets
estimates of the j th regression parameter in the model is given by

s2j =
100
∑

i=1

(̂βi j − β̄ j )
2/100

which assesses how much the individual estimate differs on average from the
ensemble estimate. In addition, the distribution of estimated parameters ̂βi j for all
i = 1, 2, . . . , 100 would be useful in determining the consistency in the j th regres-
sion parameters across the various test subset samples. The s2j value is a reflection of
the stability of the model across different random samples and measures the robust-
ness of the model parameter estimates. With highly collinear explanatory variables
the regression parameter estimates can be unstable, but prediction is usually stable
in such cases. We therefore can compare the variation in model prediction errors by
calculating

S2
i =

n
∑

k=1

(yik − g−1(Xi ̂βik))
2/n
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Density Plot by Estimated Parameters
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Fig. 1 Comparison of competing models: distribution of estimated parameters and validation stan-
dard errors

across all validation samples and test samples. The variation in S2
i values provide

evidence for the robust performance of the model predictions. These between sample
variations could be useful in comparing the robustness of competing models, and
therefore help make a decision on the appropriate approximating model (denoted the
operating model).

A simulated example is presented in Fig. 1. The data contains 20million
observations generated using the following Poisson regression model μ = exp
(0.15 × x1 + 0.02 × x3 − 0.01 × x4) × as. f actor(x2) × (exp(0.06), exp(0.12),
exp(0.2))where x1 ∼ N (4, 4), as. f actor(x2) is a ordinal factor having three levels,
x3 ∼ U (0, 25) and x4 ∼ U (0, 100) i.e., uniformly distributed. The response vari-
ableswere simulated as Poissonwithmeanμ. The data is split into two 100 validation
samples of n = 100,000 observations and the same as training data. The model is
fitted using each 100,000 observations in test samples and then the prediction are val-
idated using 100,000 validation dataset. This cycled through each of the 100 training
and validation sets. The distributions of the estimated parameters of the model and
the prediction standard errors are reported in Fig. 1. Two models were fitted based
on no knowledge of the true Poisson regression model used to simulate the data. The
Poisson regression model for the counts with expected value:

μ = exp(β0 + x1β1 + as. f actor(x2)level 2β2 + as. f actor(x2)level 3β3 + x3β4 + x4β5)
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The linear model that is fitted is log(y + 1) = α0 + x1α1 + x2α2 + x3α3 +
x4α4 + x2 × x4α5 + error . These models are compared in Fig. 1. The regression
coefficients in Fig. 1 are in number order (β for the Poisson regression model and α

otherwise). Looking at the distribution of the estimated regression parameters and the
validation standard errors for the fitted models; the Poisson regression is the better
model, and therefore this model is preferred. The estimated regression coefficients
generally vary less in the Poisson regression model and the standard errors are on
average smaller. The evidence is more clear if the density plot of the differences
between the two model matched validation standard errors are plotted, which indi-
cated that the Poisson regression always had a smaller validation standard error. In
this way competing models can be compared when faced with large data sets.

A similar approach to the above can be used for fitting Bayesian Hierarchical
models (for example). Here we have established credible intervals for model para-
meters (and forecasts if that is the purpose) for each sample i . These credible intervals
could be plotted for all i = 1, 2, . . . , 100 as a way of assessing the validity of the
model and the consistency of these intervals. Combining of the Bayesian parameter
estimates as mentioned before could provide ensemble estimates for parameters, and
the variation of these from the ensemble estimate could be a way of validating the
robustness of the model. In addition such empirical evidence can be used to compare
different Bayesian hierarchical models and select the model which show the better
properties. We believe that in the case of Big Data a validation sample is still neces-
sary because model decisions are still made based on it. This same approach could
also be used to compare different burn-in and iteration estimation strategies.

With forecasts, using very large datasets, we wish to avoid refitting the model
using all the data each time a new data value is observed. In linear models this can
largely be avoided by using some recursive estimation procedure such as the Kalman
filter and some state space models [13]. Bolt and Sparks adopted a simpler approach
of using a moving window of the same size and exponential weights to give the
most recent observation a greater weight, but their approach is only reasonable for
one-step-ahead forecasts.

4.2 Forecasting Counts in Complex Tabular Settings

If we are trying to forecast the daily social service needs within a country, then the
challenge is a little different. We could still follow the approach designed above, but
it is our view that this would not be as efficient as defining cohorts of the population
with similar needs and temporal trends. For example, all university students apply for
similar support for their university education at the same time of the year. Dividing
the population into m different cohorts which have very similar temporal trends and
seasonal variation for their demands on the country’s social services or geographical
regions whose population has homogeneous services needs across time and with
the same longitudinal influences seems sensible. The divide of the population into
non-overlapping and exhaustive population cohorts is likely to improve the forecasts
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of needs within cohorts and thus improve the forecasts of the national needs by
aggregating up from these cohorts. This approach is not only likely to help make the
task more manageable but it will also help improve forecasts.

On the other hand if our interests were in forecasting particular cohort needs and
we notice that many cohorts have similar temporal trends, then it may be helpful to
decide which cohort counts would be better predicted by forecasting the total counts
from the cohorts with similar trends and then proportionally allocate these forecast
counts to the respective cohorts. This simplifies the task by aggregating counts to a
more manageable level and at times delivers more robust predictions if the cohorts
aggregated over all have the same trends.

5 Reducing the Size of the Data that Needs to Be Modeled

The very basic way of reducing the size of the data in space-time applications is by
either temporal aggregation thus reducing the number of measures within a unit of
time, or spatial aggregation reducing the spatial resolution of the data. An example
is the sea surface temperature measured at a fine grid all around Australia with
these measures having high spatio-temporal correlations. Assume we were trying to
predict the insured costs of floods at 20 locations around Australia given the sea’s
surface temperatures as explanatory variables. There are several ways of tackling
this problem. One is to use technology which exploits Lasso type technology [5, 12]
exploiting sparsity, boosting and use ensemble methods. The other approach which
we prefer is to create latent variables from sea surface temperature that have physical
meaning to the climatologists and are good predictors of flood insured costs at each
of the locations of interest. This latent variable (or latent variables) takes the place
of these many temperature measurements and therefore reduces the size of the data
needed for forecasts.

When we are trying to forecast multi-way tabular counts, e.g., a large array of
counts, then at times a drastic reduction in number of cell counts that require forecasts
is needed. In such cases itmay beworthmodelling aggregated cell counts over several
dimensions and then proportionally allocate counts to cells that were aggregated over
in a way that preserves all interactions. This could be achieved by establishing the
cells with the same temporal trends and model the aggregations over these cells
counts and then proportionally allocate these forecast totals to the individual cells
used to get these total to derive cell forecasts. An example of this is presented in
Bolt and Sparks [1]. The only issue with this is if any covariate interacts with time
then this model is unlikely to be adequate. Such local errors can quite easily be fixed
using temporal smoothing adjustments. Bolt and Sparks [1] approach to forecasting
large volumes of counts suited their monitoring applications where early detections
of interactions with time were important. Hence this modelling approach will not
generally be useful for forecasting applications involving a large number of cells.
Another way of reducing the size of the problem is by conditioning, for example,
if we condition on age group j and modeled only those in age group j, and repeat
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this for all other age groups. This could be made more complex by conditioning on
age and ethnicity, or by conditioning on three variables. Once the aggregated counts
for the conditioned space is found this can be modeled and forecasts established.
Forecasts for the whole space is achieved by aggregating over the entire conditional
space that makes up the ‘whole’. All of these examples lend themselves very well to
parallel processing.

6 The Tension Between Data Mining and Statistics

Deming ([3], p. 106) said that “Knowledge comes from theory. Without theory, there
is no way to use the information that comes to us on the instant”. The Deming quote
relating to knowledge may not sit that well with many data mining approaches that
search for something interesting in the data. Theory we think is formulated by past
observations generating beliefs that are tested by well planned studies, and only then
integrated into knowledge when the belief has been “proven” to be true. Data is
certainly not information—it has to be turning into information. Many data mining
methods are rather short on theory but they still aim to turn data into information. We
believe that datamining plays an important role in generating beliefs that needed to be
integrated into a theoretical frame which we will call knowledge. When modelling
data statisticians sometimes find these theoretical frameworks are too restrictive.
At times statisticians make assumptions that have theoretical foundations which
are practically unrealistic. This is generally used to make progress towards solving
a problem and it is a step in the right direction, but not the appropriate solution.
Eventually over time someone builds on this idea and the problem can then be solved
without unrealistic assumptions. This is how the theoretical framework is extended to
solving the more difficult problems. Non-statistically trained data-miners we believe
too often drop the theoretical considerations. Some data-miners attempt to transform
data into information using common sense and make judgments about knowledge
called learning from the data—sometimes they may get it wrong but often they may
be right. Have we statisticians got too hung-up about theory?We do not think so. We
may assume too much at first in trying to solve a problem but our foundations are the
theory. The current Big Data initiatives are mostly based on the assumption that Big
Data is going to drive knowledge (without a theoretical framework).We disagreewith
this assertion and believe the solution is for data-miners and statistician to collaborate
in the process of generating knowledge within a sound theoretical framework. We
believe that statisticians should stop making assumptions that remain unchecked and
data-miners should work with statisticians in helping discover knowledge that will
help manage the future. It is knowledge that helps us improve the management of
the future and this should be our focus.

In risk assessment statisticians are generally good at estimating the likelihood,
they are trained to evaluate beliefs or hunches and they are trained to building effi-
cient empirical models, but generally they are not adequate trained in the efficient
manipulations of massive datasets. Data-miners and computer scientists have the
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advantage in mining very large volumes of data and extracting features of inter-
est. However there are many issues that data-miners may ignore, e.g., defining the
population under study with respect to time, region and subject, defining problem
adequate variables, utilising background information (“meta data”), paying attention
to selection biases when collecting data, the efficient design of observational studies
caring about randomness and test/control groups etc.

7 Does the New Big Data Initiative Need No Theory?

The view of Savage on modern statistics raises the question of whether Big Data
offers us more information. An interesting question is: does the Big Data current
thrust lie outside the modern statistics theory and practice. Alternatively should we
define post-modern statistics with Big Data as the main driver. The introduction of
this paper questions the current Big Data focus. The ensemble approach of aggre-
gating over the predictions of different models to achieve better predictions may
deliver more accurate predictions, but it may not lead to a better understanding than
one model. This highlights the importance in selecting the appropriate analytical
approach relating to the aim or purpose. However an important question is whether
a well thought out model or theory are needed at all?

Statisticians use empirical models to approximate the “real data model” and inte-
grate this with mathematical theory to understand processes and build knowledge.
The focus is to understand the sources of variation, and then make conclusions that
are supported by the data. Statistical modelling alignwith Popper [9] view, “the belief
that we can start with pure observations alone, without anything in the nature of a the-
ory, is absurd; as may be illustrated by the story of the man who dedicated his life to
natural science, wrote down everything he could observe, and bequeathed his price-
less collection of observations to the Royal Society to be used as inductive evidence.
This story should show us that though beetles may profitably be collected, observa-
tions may not”. This was true for most of the data we have access to. The model
shapes the data in trying to best fit it, and the data shapes the model in that it helps
us use models with the appropriate assumptions. The less data we have, the more the
appropriatemodel will help in drawing unbiased-low variance estimators/predictions
for our problem. However is the assertion that Big Data reduces the need for develop-
ing an operating model? Alternatively can every problem be solved by constructing
an appropriate empirical model? Like Breiman [2] we believe statisticians need to be
more pragmatic. Breiman [2] notes the existence of two parallel cultures in statistical
modelling. The first one assumes the data are generated by a given stochastic data
model. The second culture uses algorithmic models and treats the data mechanism
as unknown. Breiman [2] accuses the statistical community of having focused too
much on appropriate empirical models, leading to the development of “irrelevant
theory and questionable scientific conclusions”. Luckily, since 2001, the discipline
evolved through this, and made better use of the available computational resources
available. Techniques like Gaussian Processes, Bayesian Non-parametric statistic
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and machine learning deliver successful outcomes (see [14]). It is probably safe to
say that modern statisticians have nowadays a toolbox full of machine learning tricks
and data-miners similarly have modern statistical tools in their toolbox. However,
as a mathematical discipline, it is unlikely that statisticians will move too far away
from their theory-driven techniques to full black-box algorithms.

8 Who Owns Big Data?

Another question of interest is the current shift in the intellectual property from
the scientific methodology to the data itself. Until recently the major intellectual
property was in building the model/technique/algorithm to extract/infer valuable
information from the data. Protectionwas controlled through patents and publications
and ownership was recognised by law. Now there is a view that the intellectual
property resides in the data. Companies may trust scientists to use their data to
answer research questions, but not without protecting the ownership of their data
with confidentiality agreements. Big Data is by essence collected from everywhere.
The danger is in every corporate entity protecting their data and this lack of data
sharing limits the amount value that integrating data from different sources can
offer us in understanding our world. For example understanding the consequence of
changes in climate requires insurance companies and companies to share their data
on insured costs and losses respectively.

9 Discussion

Big data offers us scientists with numerous challenges, and therefore it demands con-
tributions from computer scientists, data-miners, mathematicians, and statisticians.
The greatest difficulty is deciding on what value our various skills offer in solving
problems and answering questions using Big Data. We feel that collaboration and
co-teaching across each of these disciplines is the best way of deciding on the value
we each offer.

The big advantage is that all these disciplines have added to the tools that are
needed to manipulate and analyse Big Data. As datasets increase in size we statis-
ticians are going to need to lean on the tools developed by computer scientists and
data-miners more and more. In addition, new theoretical frameworks may be needed
to ensure that judgment mistakes are not made. The Big Data challenge is extracting
information in real-time decision making situations where both n and p are large
and there is a real-time dimension to the problem. Often people use simple statistical
methods to analyse such data and limit their inference to answering fairly simple
questions. However, the challenge for both data-miners and statistician working in
this area is to move the questions and analytical methods up to the more complex
questions with a particular emphasis on avoiding giving biased solutions.
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For large data sets, it is well known now that testing for statistical significance
is of limited value and the challenges are more aligned with accurate estimates and
confidence intervals. Clearly Big Data research demands diverse skills recognizing
that the problems are too difficult and large to be “owned” by one discipline area.
Statisticians are lacking in the skills necessary for manipulating these large data
sets efficiently, but statisticians have the skills that avoid biases and help divide the
analytical tasks into manageable chunks without the loss of information.

The general view is that Big Data is the data miners domain and statistics does
not play a key role. However, this view is narrow for the following reasons:

• The data quality challenges for ensuring the data are fit-for-purpose are enormous.
It requires statistical skills involving outlier detection that avoids masking and
swamping. These would involve:

1. The need for prospective robust statistical quality control methods involving the
multivariate spatio-temporal consistency checking of data. The aim being that
the measurement process is accurate and that the data are free from influential
errors.

2. Planning of the dimension reduction process in a way that preserves all the suffi-
cient statistics for future decisions. In other words, design the aggregation process
and data compression process tomaximize the information needed for its purpose.

3. Plan for future studies using the data—stratify the population into homogeneous
groups to help with sample designs for future analyses. Think about how the data
can be used for future longitudinal studies.

4. Propensity score matching should be used to avoid biases in observational studies
and planning for potential future designed trials.

5. The whole aspect of assuring that the data are fit for purpose needs careful sta-
tistical thought and planning.

• Compressing data is not just about selecting a window over which to aggregate
values—it is about compressing the data in a way that retains as much of the
necessary information as possible. It is about preserving the sufficient statistics.

• Inference becomesmore about mathematical significance (the size of the influence
of a variable) and less about statistical significance. Estimation and prediction is
all about avoiding biases—there may be selection bias issues.

The challenges listed above are statistical in nature and by nomeans are complete,
but it is important to decide what part each discipline plays in the future development
of analytical techniques for large data sets, andwhat parts are best done in partnership
with others.

A quick summary of needs are:

1. Fast and efficient exploratory data analysis
2. Intelligent ways of reducing dimensions (both in the task and the data).
3. Intelligent ways of exploiting sparsity.
4. Intelligent ways of breaking up the analytical task (e.g., stratification and the

parallel processing of different strata).



48 R. Sparks et al.

5. Intelligent and efficient visualisation, anomaly detection, feature extraction, pat-
tern recognition.

6. Commitment to unbiased estimation and prediction/forecasting analytics.
7. Effective design—supported by startingwith a thinking aboutwhat data to collect,

how to collect it, and then how to analyse it.
8. Efficient designs for breaking the data into training and validation samples.
9. Real-time challenges—fast processing—estimation, forecasting, feature extrac-

tion, anomaly detection, clustering, etc.
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