Chapter 2
Phase Formation Rules

Yong Zhang, Sheng Guo, C.T. Liu, and Xiao Yang

Abstract This chapter gives an overview of existing active phase formation rules
for high-entropy alloys (HEAs). A parametric approach using physiochemical
parameters including enthalpy of mixing, entropy of mixing, melting points, atomic
size difference, and valence electron concentration is used to delineate phase
formation rules for HEAs, with a reference to other multicomponent alloys like
bulk metallic glasses (BMGs). Specifically, rules on forming solid solutions,
intermetallic compounds, and the amorphous phase are described in detail; forma-
tion rules of solid solutions with the face-centered cubic (fcc) or body-centered
cubic (bce) structure are also discussed. Some remaining issues and future pros-
pects on phase formation rules for HEAs are also addressed at the end.
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2.1 Introduction

The definition of HEAs has been quite controversial. Initially, HEAs were simply
defined by their compositional complexity (i.e., composing of at least five major
metallic elements, each with a concentration between 5 and 35 at.%) [1]. Recently,
this notion has been challenged and the argument is that the microstructural
complexity needs to also be considered when classifying HEAs. Particularly, this
more strict definition of HEAs requires that the structure of HEAs has to be the
single-phased disordered solid solution [2]. Indeed, the much narrower definition of
HEAs is more physically justified. From the entropic point of view, the configura-
tional entropies of the multi-principal-element alloys could be low (not really high
entropy), if ordered solid solution or intermetallic compounds form. However, new
problems also arise with this narrower definition of HEAs. The difficulties include
but are not limited to the following situations: in cases where two solid solutions
form and also no intermetallic compounds form, which are commonly seen in
multi-principal-element alloys [3], can those alloys be classified as HEAs? What
is the acceptable threshold configurational entropy (how high is high?) for alloys to
be classified as HEAs? If the amorphous phase with a high configurational entropy
is formed [4], can those alloys be called HEAs? Practically, it is more convenient to
adopt the initial definition of HEAs (i.e., defined from the compositional complex-
ity). [For more information on the history and development of HEAs, please refer to
Chap. 1 for details.]

The configurational entropies of compositionally complex alloys are high in the
liquid or fully random solid solution state. To avoid further confusions, a sort of
arbitrary threshold of configurational entropy larger than /.5R (where R is the gas
constant) was suggested as an operational definition for HEAs [5]. Then one needs
to be aware that different phase constitutions can occur to HEAs, including solid
solutions, intermetallic compounds, or even the amorphous phase, depending on the
alloy compositions and sometimes the cooling rate if they are prepared by the
solidification route [6]. It is within this context that the phase selection among solid
solutions, intermetallic compounds, and the amorphous phase in HEAs will be
discussed. This will be done using a parametric approach, which utilizes parameters
including the atomic size mismatch, mixing enthalpy, the mixing entropy, and
melting points [7—10]. These physiochemical parameters [as will be introduced in
Sect. 2.2] can reasonably be used to predict the formation of these different phases
from the given compositions, although, notably, the occurrence of intermetallic
compounds is still difficult to be predicted and controlled. Furthermore, considering
the significance of solid solution type on the mechanical properties of HEAs, the
phase selection between fcc- and bee-type solid solutions is discussed in Sect. 2.3,
where the electron concentration plays a critical role. Some outstanding issues and
future prospects relevant to the phase formation rules for HEAs are addressed in
Sect. 2.4, before a summary is given in Sect. 2.5.
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2.2 Thermodynamics and Geometry Effect

If kinetic factors are not involved, phase formation is thermodynamically controlled
by the Gibbs free energy, G, which is related to the enthalpy, H, and the entropy, S,
via the following equation, in the case of forming alloys from mixing elemental
components:

AGnix = AHpix — TASnix (21)

Here AG,,;y is the Gibbs free energy of mixing, AH ;. is the enthalpy of mixing,
ASpix 18 the entropy of mixing, and T is the temperature at which different elements
are mixed. Note that the term AS,,;x includes all entropy sources such as configura-
tional, vibrational, electronic, and magnetic contributions. [Please refer to Chaps. 8,
10, and 12 for quantification of the entropy sources in example HEA systems of
Co-Cr-Fe-Mn-Ni, Al-Co-Cr-Fe-Ni, and Mo-Nb-Ta-Ti-V-W.] Naturally, it is the
competition between AH,;, and TAS,,x that determines the phase selection in
HEAs. This constitutes the thermodynamic consideration of phase formation rules.
Another important effect when considering the phase formation is the geometry
effect or, more specifically, the atomic size effect. The atomic size effect is clearly
articulated both in the classic Hume-Rothery rules for forming binary solid solutions
[11] and the famous Inoue’s three empirical rules for the easy formation of BMGs
[12]. When establishing phase formation rules for HEAs is addressed using the
parametric approach, the descriptors [13] naturally are picked from parameters that
are related to the thermodynamics and geometry considerations. Not surprisingly,
effective phase formation rules normally comprise both these two considerations.

Figure 2.1 shows a phase selection diagram for multicomponent alloys, includ-
ing HEAs and BMGs, based on the enthalpy of mixing, AH ,,;x, and the atomic size
difference, Delta (6). Here, 6 is defined as [9]

5= \/Zfi1 X; (1 - d,-/zjil xjdj)z (2.2)

where N is the number of elements, x; or x; is the composition of the ith or jth
element, and d; or d; is the atomic diameter of the ith or jth component. The
enthalpy of mixing, AH,,;, for the multicomponent alloys can be estimated by [9]

N i
AHumi =) | 4AH 0, (2.3)

where AHTX s the enthalpy of mixing for the binary equiatomic AB alloys.

The calculated AH,,,;x and 6 for HEAs and BMGs used in Fig. 2.1 are listed in
Table 2.1. It is noted here that the listed phases in Table 2.1 are basically detectable
from the X-ray diffraction and they do not necessarily comprise all phases existing
in the listed alloys. Seen from Fig. 2.1, in the zone marked S, only disordered solid
solution will form. In this zone, as the component atomic size difference is


http://dx.doi.org/10.1007/978-3-319-27013-5_8
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Fig. 2.1 Phase selection diagram of HEAs and BMGs based on the enthalpy of mixing, AH ;y,
and the atomic size difference, Delta (5) [9]

relatively small, the component atoms easily substitute for each other and have the
similar probability to occupy the lattice sites to form solid solutions. At the same
time, AH ,;x is not negative enough for alloys to form a compound. In the zone
marked S’, HEAs still have solid solution as the main phase, but a small amount of
the ordered solid solution precipitates in some HEAs. Compared with zone S,
6 increases which deepens the extent of ordering in HEAs. AH,;, also becomes
more negative to promote the precipitation of ordered phases in certain HEAs in
zone S'. BMGs are located in two zones marked B1 and B2. The zone B2 contains
Mg- and Cu-based bulk metallic glasses, while the zone BI contains other kinds of
BMGs, such as Zr-based bulk metallic glasses. Clearly, compared with HEAs,
BMGs have larger 6 and more negative AH,,;x. Another zone in Fig. 2.1 is marked
C, in which many intermediate phases will form.

According to Eq. 2.1, at elevated temperatures the high AS,,;x can significantly
lower the free energy and thus lower the tendency to order and segregate during the
solidification process, which consequently makes solid solution more easily form and
more stable than intermetallics or other ordered phases. Therefore, for some HEAs, due
to the effect of high AS,,;x, solid solution phases form prior to intermetallics, and the
total number of phases is well below the maximum equilibrium number allowed by the
Gibbs phase rule. To compare the effect of AS,x, Fig. 2.1 is replotted in three
dimensions by adding one axis of AS,,;x, as shown in Fig. 2.2. It is apparent that all
HEAs have a higher level of AS,,;x than that of BMGs (marked by V). The HEAs
forming solid solution phases (marked by W) have AS,;, in the range of 12-17.5 J/
(mol - K) and with smaller values of 6. Intermetallic phases (marked by A) form at a
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Fig. 2.2 Phase selection diagram of HEAs and BMGs based on AH,,;x, Delta (6), and AS,,ix [9]

larger value of 9, but with the AS,,;x in the range of 11-16.5 J/(mol - K). There is a
transition zone (marked by O) between the solid solution phase zone and the interme-
tallic compound zone, which contains ordered solid solution phases. It is noted that al/
configuration entropies mentioned here are calculated for HEAs assuming they are in
the liquid or fully random solid solution state (i.e., using the Boltzmann equation):

ASmix = _RZilil Xi In Xi (24)

A new parameter, £2, combining effects of AS,,;x and AH,;x on the stability
of multicomponent solid solution, was recently proposed by Yang and Zhang
[10, 14, 15]. The parameter £2 is defined by

TinAS;
Q= ﬁ (2.5)

N
T = Zizl xi(Tm); (2.6)
where T, is the average melting temperature of the N-element alloy and (7,); is the
melting point of the ith component of the alloy. By analyzing the phase formation
using the parameters £2 and 6 of various reported multicomponent alloys (shown in
Fig. 2.3), new criteria for forming solid solution phases in HEAs were suggested:
02> 1.1and 6 <6.6 %. In contrast, intermetallic compounds and BMGs have larger
values of § and smaller values of 2, and the value of 2 for BMGs is smaller than
that of intermetallic compounds. Figure 2.4 replaces 6 in Fig. 2.3 by the number of
elements, N. It can be seen that solid solution forming HEAs appear at higher £2 and
larger N, while BMGs appear at lower £2 and smaller N.
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Fig. 2.3 Phase selection diagram of HEAs and BMGs based on £2 and 6 [16]
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Fig. 2.4 Phase selection diagram of HEAs and BMGs based on (2 and the number of elements,

N [16]

2.3 Electron Concentration

HEAs with solid solution structures are generally desired, since most, if not all,
advantageous features like high hardness [1], sluggish diffusion kinetics [35], and
high-temperature softening resistance [36] are related to the multi-principal-
element solid solution structures. The formation of solid solutions in HEAs, as
discussed previously, can be reasonably predicted using parametric approaches
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based on physiochemical properties of constituent alloying elements, like atomic
radii, mixing enthalpies between any two elements, and melting points [7-10].
However, these parametric approaches do not tell much information about the
crystal structure of the achieved solid solutions. Since it has been widely known
that, based on existing experimental evidences [37], the crystal structure signifi-
cantly affects the mechanical behavior of HEAs, having the capability to design
them with desirable crystal structure is crucial. [The energies of HEAs in fcc, bec,
and hcp structures are presented in Chaps. 7, 8, 9, 10, and 11 using predictive
computational methods based on first-principles density functional theory (DFT)
and in Chap. 12 using CALPHAD modeling. The AH,,;x-6 relation is reevaluated
based on DFT calculations as presented in Chap. 11.]

The solid solutions formed in HEAs are normally of fcc, bee, and hep or a
mixture of these structures [37]. fcc-structured HEAs are known to possess good
ductility, but with relatively low strength [38]. bce-structured HEAs can have
much higher strength [39], but almost always at the cost of much decreased
ductility, particularly in tension. Is it possible to control the formation of fcc- or
bee-structured solid solutions in HEAs? The 6-AH,;x plot shown in Fig. 2.5
indicates that the fcc-type solid solutions form at sufficiently small 6, and bcc
solid solutions form at larger ¢ [16], assuming AH,,;, still satisfies the conditions
to form solid solutions. However, the fcc-type solid solution forming 6 range
largely overlaps with that of the bcc solid solutions, which practically means § has
limited use in terms of controlling the formation of fcc- or bee-structured HEAs.
As such, new criteria or new parameters need to be established for this important

purpose.

sf = 1 a r
| % 4 : n fee
0L ' -: e fee/bee
B ' : bee
e e Comy g } v_Intermetallics
s 7T ) :
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Fig. 2.5 Dependence of crystal structures on the enthalpy of mixing, AH,,;x, and the atomic size
mismatch, &, in various HEAs [16]


http://dx.doi.org/10.1007/978-3-319-27013-5_7
http://dx.doi.org/10.1007/978-3-319-27013-5_8
http://dx.doi.org/10.1007/978-3-319-27013-5_9
http://dx.doi.org/10.1007/978-3-319-27013-5_10
http://dx.doi.org/10.1007/978-3-319-27013-5_11
http://dx.doi.org/10.1007/978-3-319-27013-5_12
http://dx.doi.org/10.1007/978-3-319-27013-5_11

2 Phase Formation Rules 37

Inspirations to address this issue came from the equivalency of alloying elements
in stabilizing fcc- or bee-type solid solutions. It has been widely confirmed by
experiments that elements like Al and Cr are bce phase stabilizers and Ni and Co are
fcc phase stabilizers [40]. It was clearly shown that in the AL .Co,Cr.Cu, sFe,Ni,,
alloy system, 1.11 portions of Co was equivalent to 1 portion of Ni as the fcc phase
stabilizer, and 2.23 portions of Cr was equivalent to 1 portion of Al as the
bee stabilizer. When the equivalent Co % was greater than 45 at.%, the alloys
had an fcc structure; when the equivalent Cr % was greater than 55 at.%, the
alloys had a bcc structure [41]. Naturally, this equivalency of alloying elements
in stabilizing a particular crystal structure reminds the well-known effect of elec-
tron concentration on the crystal structure in conventional alloys [42]. Before the
effect of electron concentration on the crystal structure of solid solutions forming
HEAs is discussed, two different notions of electron concentrations, valence elec-
tron concentration (VEC) and electrons per atom ratio (e/a), will be introduced first,
as there exist subtle differences in their definitions and resulting applications.

2.3.1 VEC and e/a

Electron concentration has been known to play a critical role in controlling the
phase stability and even physical properties of alloys [42]. It is pointed out that two
different notions of electron concentration exist, one is the average number of
itinerant electrons per atom ratio (e/a), and the other is the number of total electrons
(VEC) (including d electrons involved in the valence band). For example, e¢/a and
VEC for pure Cu ([Ar] 3d'%s") is 1 and 11, respectively. Basically, e/a is in
connection with the Hume-Rothery electron concentration rule, and VEC is a key
parameter in first-principles band calculations and is obtained by integrating the
density of states (DOS) of the valence band from the bottom up to a given energy.
Mizutani discussed different applications of e/a and VEC in depth in his monograph
Hume-Rothery Rules for Structurally Complex Alloy Phases [42]. [Interested
readers are suggested to refer to this book for more detailed information on the
difference between e/a and VEC.] Some applications of e/a and VEC in terms of the
crystal structure and phase stability are exemplified here, to facilitate the discus-
sions that are followed.

The effect of e/a on the phase stability is articulated in the Hume-Rothery rules,
where Hume-Rothery noted that similar structures occur at characteristic e/a [42].
As a classical example, Fig. 2.6 shows the e/a dependence of the phase stability in
alloys based on noble metals (Cu-, Ag-, and Au-based alloys) [42]. Seen from
Fig. 2.6, the a-, -, Y-, €-, and n-phases successively appear at particular e/a ranges,
regardless of the solute element added to noble metals. The fcc a-phase exists at
e/la<1.4. Near e/a=1.5, the bcc B-phase exists at high temperatures, which is
replaced either by its ordered CsCl-type (B2) B-phase or by the hcp {-phase at low
temperatures. Also around e/a=1.5, the p-phase containing 20 atoms in its
B-Mn-type cubic unit cell occurs in certain alloy systems. The complex cubic
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Fig. 2.6 Schematic phase diagram showing the Hume-Rothery electron concentration (e/a) rule in
noble metal alloys [42]

y-phase is stabilized at about e/a=1.6 and the hcp e-phase in the range
1.7 < ela < 1.9. The hcp n-phase appears as a primary solid solution of Zn and Cd
and is centered at e/a =2.0. This is the Hume-Rothery electron concentration rule.
Because of their locations at particular electron concentrations, these alloys are
called electron compounds or Hume-Rothery electron phases. Judging from its
strong e/a dependence, it has been naturally thought that the interaction of the
Fermi surface with the Brillouin zone must play a critical role in stabilizing these
electron phases.

VEC has been proved to be quite effective in controlling the ordered crystal
structures of CosV alloyed with Fe and Ni [43]. Ni, Co, and Fe have similar atomic
sizes and electronegativities, but differ in VEC: 10, 9, and 8, respectively [37].
The stoichiometric CoszV has a six-layer hexagonal ordered structure with the
stacking sequence ABCACB. The stacking character of CosV is hechee, with a
33.3 % hexagonality. VEC of Co3V can be increased by partial replacement of Co
by Ni: (Ni, Co)3V. With increasing VEC, the hexagonality can increase from 33.3
to 100 % at a VEC of 8.54. Further increasing VEC to 8.75, when Ni completely
replaces Co, results in a change in the basic layer structure from triangular
(T) type to rectangular (R) type, and stacking of the R layers gives a tetragonal
ordered structure similar to DO,,-type Ni; V. VEC of Co;V can also be reduced by
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(Ni,Fe)sV
(Ni,Co,Fe)3V
(Co,Ni)sV  (Co,Ni)gV (Co,Fe)sV
Alloy NigV * CozV FegV
VEC 8.75 8.54 8.43 8.00 <7.89 7.25
Ordered R T T T T
layer
Stacking
sequence AB ABCBCACAB ABCACB ABC
Stackin
Sharactor hh hchhchhch  hechee  ccc
Hexago -
nality (%) 100 66.7 33.3 O
Ordered Ordered Ordered Ordered
structure tetragonal hexagonal cubic

Fig. 2.7 Effect of the electron concentration (VEC) on the stability of ordered crystal structures in
NizV-Co3V-Fe;V alloys [43]

partial replacement of Co by Fe: (Co, Fe);V. With VEC below 7.89, the L1,
ordered cubic structure having the stacking sequence ABC (ccc) is stabilized.
Controlling the hexagonality of Co3V alloys by the adjustment of VEC is very
important to the room temperature ductility, as ordered hexagonal alloys are
brittle due to the limited number of slip systems, while the deformation behavior
of ordered cubic alloys is similar to that of ductile fcc alloys. Indeed, ordered
cubic alloys of the compositions of (Fe, Co)3V, (Fe, Co, Ni);V, and (Fe, Ni);V are
all ductile, and ordered hexagonal alloys of the compositions of Co;V and (Ni,
Co);V are brittle. The VEC dependence of the phase stability in CosV alloys is
shown in Fig. 2.7. Similarly, the VEC rule has been successfully applied to tune
the phase stability (cubic C15 and hexagonal C14 and C36) in NbCr,-based Laves
phase alloys [44].

2.3.2 VEC or e/a?

As shown above, both e/a and VEC have been proved to be correlated to the phase
stability and physical properties of alloys. One needs to be cautious in selecting e/a
or VEC as an electron concentration parameter though, depending on the situation
that is involved. Mizutani [42] showed that physical properties, including the
saturation magnetization and the electronic specific heat coefficient in 3d transition
metals, the superconducting transition temperature of TM (transition metal) alloys,
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and the thermoelectric power in the Heusler (L2,)-type Fe, VAl alloys, all exhibit a
universal behavior with respect to VEC. Mizutani noted that all these properties are
clearly related to the total DOS at the Fermi level. Meanwhile, physical properties
like the axial ratio, c/a, the magnetic susceptibility corrected for ionic contributions,
and the electronic specific heat coefficient in noble metal alloys are all correlated to
e/a, and not to VEC. These properties are known to be dominated by the FsBz
(Fermi surface-Brillouin zone) interactions and therefore are unsurprisingly scaled
in terms of e/a, which is introduced through the Fermi diameter 2k in the matching
condition. When discussing the role of two electron concentration parameters VEC
and e/a in designing new CMAs (complex metallic alloys), which are characterized
by a pseudogap across the Fermi level, Mizutani concluded that VEC can be used as
long as a rigid-band model holds, assuming that the electronic density of states of an
alloy can be inferred from that of the host, whereas e/a or e/uc (electrons per unit
cell) is also useful, only if sound e/a values for the TM elements are used. e/a values
for transition metals have been quite controversial for a long time and no satisfied
solutions have yet emerged. This difficulty has challenged the interpretations of the
Hume-Rothery electron concentration rule for alloys containing TM elements.
Mizutani evaluated different proposals for e/a, mainly analyzing those postulated
by Raynor and by Haworth and Hume-Rothery [42], and then deduced a new set of
e/a values for TM elements based on the Hume-Rothery plot, which is quite
different to the previous proposals [42]. The work from Mizutani will not end the
discussion on e/a values for TM elements though, since not all e/a have been
determined, and e/a for each element even varies depending on the atomic envi-
ronment. It should be noted that the e/a rule has also been used to design quasi-
crystalline alloys [45, 46] and even amorphous alloys [47, 48], with some success.
Nevertheless, the choice of e/a for TM elements was also ambiguous.

2.3.3 The Effect of VEC on the Phase Stability of HEAs

As said previously, the equivalency of alloying elements in stabilizing fcc- or
bee-type solid solutions in HEAs naturally leads one to correlate this equivalency
to the electron concentration effect. Since currently developed HEAs comprise
mainly TM elements, considering the difficulty of defining the e/a values for
them, VEC seems to be a more straightforward electron concentration parameter.
Meanwhile, it has been shown that in the Al,Co,Cr,Cu, sFe,Ni,, alloy system, 1.11
portions of Co was equivalent to 1 portion of Ni as the fcc phase stabilizer [41]. This
further indicates that VEC has an effect on the phase stability in HEAs: a VEC of
9 for Co and 10 for Ni. To verify this, Guo et al. designed a series of Al,CrCuFeNi,
alloys [37], fully replacing Co with Ni in the widely studied Al ,CoCrCuFeNi
alloys. It was experimentally proved that the new Al,CrCuFeNi, alloy system
showed a very similar trend of phase stability to that of Al,CoCrCuFeNi alloys,
with the increasing Al concentration. In addition, there seemed to exist threshold
VEC values for forming different types of solid solutions at VEC > 8.0, where sole
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Fig. 2.8 Relationship between VEC and the phase stability for fcc and bee solid solutions in
various HEAs. Note on the legends: fully closed symbols for sole fcc phases, fully open symbols
for sole bee phases, and top-half closed symbols for mixed fcc and bee phases [37]

fcc solid solution phases formed. Guo et al. then moved to scrutinize the VEC effect
on the phase stability in various solid solution forming HEAs (where no interme-
tallic compounds or amorphous phase is formed), comprising different alloying
elements. The result of this statistical analysis is shown in Fig. 2.8 [37], from which
two important conclusions can be drawn. Firstly and qualitatively, in solid solution
forming HEAs, bce phases are stabilized at a lower VEC, while fcc phases are
stabilized at a higher VEC. In the intermediate VEC, both fcc and bce phases exist.
Secondly and almost quantitatively, fcc phases occur at VEC > 8.0, bee phases at
VEC < 6.87, and a mixture of fcc and bce phases at 6.87 < VEC < 8. Some excep-
tions do exist, particularly for Mn-containing HEAs. The VEC rule provides a
convenient way to design fcc- or bee-structured HEAs containing mainly TM
elements, from the electron concentration perspective, and its validity has been
verified widely by subsequent experiments following its publication.

A few notes need to be added in terms of utilizing the VEC rule. First, the VEC
rule was proposed based on the experimental results from cast alloys. Its validity to
HEAs prepared by other routes (e.g., the powder metallurgy method) has not been
evaluated. Second, the VEC rule only works on the premise that the solid solutions
are the only alloying products (i.e., no intermetallic compounds or amorphous
phase is formed). Third, when discussing the separation of fcc and bce solid
solutions, no distinction was made between disordered and ordered solid solutions.
For example, B2-type ordered bcc phases and disordered bcc phases were both
classified as bcc solid solutions. Fourth, forming the fcc or bee solid solutions does
not necessarily indicate the formation of one fcc or bee phase. For example, this can
mean the formation of two disordered fcc phases or one disordered fcc plus one
ordered fcc phase. Fifth, the threshold VEC values of 6.87 and 8.0 are mainly for
reference. They can vary in different alloy systems [37] and even vary for the same
compositions that were cast with different cooling rates [6] or after subsequent heat
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treatments at various temperatures [49]. The latter variations are understandable,
considering that solid solution phases appearing in cast HEAs are actually frozen
stable solid-state phases at elevated temperatures [50] and therefore affected by
factors like kinetics and also the entropic contribution to the Gibbs free energy.
However, so far there are no exceptions against the trend that a higher VEC favors
the fcc phase and a lower VEC favors the bce phase, in solid solution forming
HEAs. From the published experimental results, the threshold VEC values of 6.87
and 8.0 still seem to be a reasonable guidance to design fcc- or bee-structured
HEAs, prepared from the direct casting. Again, it has to be emphasized that, so far
this statement has mostly been verified for HEAs containing mainly TM elements.

In the second note that is given above, it is emphasized that the VEC rule for the
formation of fcc- or bee-type solid solutions only works when no intermetallic
compounds form. In cases when entropic contribution in lowering the Gibbs free
energy is not sufficient to surpass the very negative enthalpy among alloying
elements, intermetallic compounds form [7]. Interestingly, Tsai et al. showed that
VEC can also be used to predict the formation of o-phase in cast Cr- and
V-containing HEAs, and furthermore the VEC range of the formation of c-phase
was 6.88 < VEC < 7.84 (Fig. 2.9). It is interesting to point out that this range almost
overlaps with that for forming the mixture of fcc and bec solid solutions proposed
by Guo et al.: 6.87 <VEC < 8 [51]. No o-phase was found to form outside this
range. Based on these results, it seems probable that the internal energy difference
between the mixed fcc and bec solid solutions and the 6-phase is small. The general
applicability of the VEC rule to the formation of 6-phase in other alloy systems and
to other type of intermetallic compounds is uncertain and still awaits further
experimental evidences.
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bee stable | bee + fee ] fee stable

c-free | c-prone. o-free
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Fig. 2.9 Relationship between VEC and the presence of the 6-phase after aging for various HEAs [51]
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2.4 Remaining Issues and Future Prospects

2.4.1 Phase Formation Rules for HEAs Containing Mainly
Non-TM Elements

The phase formation rules proposed in Sect. 2.2 are basically based on HEAs
containing mainly 3d and/or 4d TM elements. For low-density multicomponent
HEA s containing high concentrations of Al, Mg, Li, Zn, Cu, and/or Sn, it was found
that most previous phase formation rules fail to work effectively [15]. The config-
urational entropy seems not to be a dominant factor controlling the phase selection
in low-density multicomponent alloys containing significant amounts of Al, Mg,
and Li. Compared with HEAs containing mainly TM elements, low-density
multicomponent alloys do not readily form solid solution phases with a simple
crystal structure. As seen in Fig. 2.10, the threshold values of parametric criteria
that are given in Sect. 2.2 need to be modified to be applicable for low-density
HEAs containing mainly non-TM elements. Namely, solid solutions form at
smaller value of § (<4.5 %), larger value of AH,;x (~ —1 kJ/mol < AH,jx <
5 kJ/mol), and larger value of 2 (> ~10).

2.4.2 Justification of the VEC Rule

The validity of the VEC rule in controlling the fcc- or bee-type solid solution
phases in HEAs has been proved by a large amount of experiments. This indicates
that the phase stability in HEAs is probably determined by the total DOS at the
Fermi level, which can be predicted by first-principles calculations. Widom
et al. used first-principles calculations to study the ordering issue in Mo-Nb-Ta-
W refractory HEAs [53, 54]. Tian et al. studied the structural stability in
CoCrFeNiAl, HEAs and they found that at 300 K the fcc phase in these alloys is
stable at VEC >7.57 and the bcc phase is stable at VEC <7.04 [55]. These
threshold VEC values are not too far away from those proposed by Guo
et al. [37]. Firstly, as discussed before, the threshold VEC values proposed by
Guo et al. are mainly for reference only and variations among different alloy
systems are expected. Secondly, in Tian et al.’s calculation, the relative stability
of fcc and bcc phases was compared at 300 K. This would also cause some
concerns, as these solid solution phases are not equilibrium phases at room
temperature [50]. In order to physically justify the VEC rule, more work
from the theoretical side needs to be carried out. For example, temperature may
impact the chemical and structural ordering of HEAs to a large degree and
consequently their electronic and thermodynamic properties. Furthermore, addi-
tional work is required to verify the VEC rule for HEAs not containing mainly TM
elements.
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2.4.3 Beyond fcc and bee Solid Solutions

In almost all available experimental results, if solid solutions are formed in HEAs,
these solid solutions are fcc structured, bee structured, or a mixture of these struc-
tures. However, some other types of solid solutions were also found. Recently,
Lilensten reported an orthorhombic structure in the TizsZry7 sHf>7 sTasNbs alloy
[56], although whether an alloy of such a composition can be classified as HEAs is
debatable. However, hcp-type solid solutions have been experimentally observed
or theoretically predicted in high-entropy alloy systems like DyGdHoTbY,
DyGdLuTbY, DyGbLuTbTm, CoFeMnTi,V,Zr,, CrFeNiTiVZr, CoFeNiTi, and
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CoOsReRu [57-62]. These alloys pose challenges to the VEC rule that was initially
established to control the formation of fcc- and bee-type solid solutions in HEAs. The
phase stability dependence on the electron concentration needs to be further under-
stood along with the discovery of new HEAs containing different phase constitutions.

2.4.4 Onela

The difference between VEC and e/a, in terms of both definitions and applications, has
been discussed (more details in Ref. [42]). Due to the difficulty in defining the e/a
values for TM elements, the use of VEC is more convenient for predicting the phase
selection in HEAs. However, based on the historical contribution of e/a to understand
the phase stability in alloys, efforts to study the effect of e/a on the phase stability in
HEAs are still necessary. Poletti and Battezzati recently evaluated the phase stability of
HEAs using both e/a and VEC [63]. They claimed that fcc phases are stabilized
at VEC>7.5 and 1.6 <e/a< 1.8 and bce phases are stabilized at VEC < 7.5 and
1.8 < ela < 2.3. If such a correlation between e/a and the phase stability does exist,
then it provides a new perspective to design HEAs. However, it needs to be noted that
when calculating e/a, they counted the electrons on the s and p orbital for all elements,
even for TM elements, such as an e/a of 1 for Cr ([Ar] 3d54sl) and 2 for Fe ([Ar] 3d6452)
and Ni ([Ar] 3d8452). The choice of e/a, and hence the soundness of this e/a
dependence of the phase stability, needs more justifications. Nevertheless, it is
expected that future work along this line of thinking will help to gain a deeper
understanding into the effect of electron concentration on the phase stability of HEAs.

2.5 Summary

The phase formation rules in HEAs have been formulated using a parametric
approach, utilizing parameters based on two considerations, i.e., thermodynamics
and geometry effect. A couple of criteria are proposed to predict and control
the phase selection, among solid solutions, intermetallic compounds, and the
amorphous phase, in HEAs containing mainly transition metals. These criteria
include the enthalpy of mixing, AH,;,; the atomic size difference, J; and the 2
parameter. Particularly, 2> 1.1 and 6 <6.6 % proved to be quite effective in
predicting the solid solutions in HEAs. The formation of intermetallic compounds
tends to complicate the phase formation rules, and this still constitutes a challenge
to formulate sufficient conditions (i.e., not just necessary conditions) to form solid
solutions in HEAs. The applicability of current phase formation rules to HEAs
containing mainly non-TM elements needs further inspections.

Inspired by the equivalency of stabilizing elements and also the well-established
knowledge on physical metallurgy, the valence electron concentration, VEC, has
been found to be a good criterion to control the fcc and bec solid solutions, the two
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most common types of solid solutions seen in HEAs. The VEC rule enables one to
refine the design of HEAs with desired crystal structures, based on the parametric
approaches to design solid solution forming HEAs. Essentially, elements with a
higher VEC tend to stabilize the fcc phase and elements with a lower VEC tend to
stabilize the bce phase, and the threshold values of 8.0 and 6.87 can be a quite
reasonable guidance. Since the VEC rule was proposed, its effectiveness has been
verified by a large amount of experiments and awaits further inspections. Its
applicability to HEAs prepared by routes other than casting also needs to be
evaluated. Theoretical analyses, mainly based on first-principles calculations, are
required to elevate the electron concentration dependence of the phase stability in
HEAs, from empirical rules to scientific theories. Meanwhile, new developments
are necessary to tackle challenges like the formation of solid solutions other than
fcc and bece structures. Another important electron concentration parameter, elec-
trons per atom ratio, e/a, is worthy of more attention.
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