
Chapter 2
Basics of Single-File Diffusion

The simple hard-core interaction does not affect collective properties of the system
of point particles. These properties are described by quantities that are symmetric
with respect to any permutation of the particles. However, in one dimension, the
interaction has a prominent effect on the diffusion of a single marked particle—a
tagged particle or a tracer. The present chapter studies basic dynamical features of
the tracer dynamics under different conditions.

The chapter is organized as follows. Section2.1 is introductory, it comprises def-
initions of basic concepts and the clarification of relation between the positions
of interacting particles and order statistics of positions of noninteracting ones. The
physical consequences of the interparticle interactions are reviewed is Sects. 2.2, 2.3,
and 2.4. Namely, Sect. 2.2 is devoted to the subdiffusion of the tracer in an infinite
homogeneous system. Section2.3 contrasts the findings of Sect. 2.2 with the case of
finite number of diffusing particles. The second topic treated in Sect. 2.3 concerns
different dynamical regimes distinguished by different time-dependence of tracer’s
mean squared displacement. In Sect. 2.4we recall asymptotic properties of the single-
file diffusion front. The chapter is concluded by Sect. 2.5, where a few alternative
approaches to SFD are pointed out.

2.1 Brownian Motion with Hard-Core Interaction

2.1.1 “Collisions” of Two Particles

From the point of view of the classical mechanics an elastic collision of two parti-
cles is an encounter at which the total energy of the particles as well as their total
momentum are conserved. A result of such an impact in the case of two identical
(same masses) particles moving in one dimension is that after the encounter the
particles just interchange their velocities as compared to their states before the colli-
sion. Let us now discuss how one can define the elastic collision for identical particles
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performing an overdamped Brownian motion, i.e., for the particles that possess no
well defined velocities. We offer two (equivalent) solutions to this at a first glance
ill-posed problem. The first one, and we can call it “the probabilistic approach”
(sometimes referred to as “a heuristic approach” [1]), is due to Harris [2]. It is based
on the equivalence of the positions of interacting particles and order statistics build
on the positions of noninteracting ones. The second one, which we can call “the ana-
lytical approach”, stems from the definition of the reflecting boundary conditions for
the diffusion equation. As we shall see throughout the thesis, the first approach pro-
vides us a quick and intuitiveway to themost important quantities—exact probability
density functions for individual particles, while the second yields a straightforward
way to answer the frequently asked question: “Are you sure that your probabilistic
reasoning is correct?”1

Probabilistic Approach

Consider two identical (samemobilities) Brownian particles diffusing on a line. Their
positions at time t are given by X1:2(t) (the left one) and X2:2(t) (the right one). We
assume that except at the instants of their collisions the two particles are mutually
independent. We suppose that due to the mutual interaction the particles cannot pass
each other, thus the initial ordering, X1:2(0) < X2:2(0), is preserved for all times. As
long as the two particles are identical we can follow Harris [2] and relate the motion
of interacting particles to order statistics of positions of independent noninteracting
ones. To this end, let X1(t) and X2(t) be positions of the two identical noninteracting
Brownian particles, then we can set

X1:2(t) = min {X1(t), X2(t)} ,

X2:2(t) = max {X1(t), X2(t)} . (2.1)

The two equations embodies nothing but the very basic fact that, except for the
particle labeling, the space-time trajectories of two identical hard-core interacting
particles are equivalent to the space-time trajectories of the noninteracting ones, cf.
Fig. 2.1. In other words, any collision event can be equivalently described as follows.
We can imagine that instead of the mutual reflection the two approaching particles
pass freely through each other and, just after they pass each other, we exchange
their labels. Thus we can generate the dynamics of interacting particles simply by
exchanging the labels of noninteracting ones. Notice that this picture is in agreement
with the classical description of one-dimensional elastic collisions and, at the same
time, it makes no reference to the particle velocities which presently do not exist.

1Actually, the original approach of the present author to the single-file diffusion was the analytical
one, cf. Refs. [3, 4]. It was only after completing analytical derivations that the full power and
beauty of the probabilistic interpretation has been recognized [5, 6]. In chapters of the present
thesis devoted to SFD mainly the probabilistic reasoning is used. The alternative analytical route to
the results is always outlined but not strictly followed.
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Fig. 2.1 Schematic illustration of space-time trajectories of two particles. The left panel Noninter-
acting particles pass freely through each other, their labels remain attached to individual trajectories.
The right panel Interacting particles collide when they encounter hence the ordering of the labels
is preserved. Except for the particle labeling, the two sets of trajectories are statistically equivalent

The correspondence between the interacting and the noninteracting pictures is
behind the fact that the single-file model is exactly solvable and that many impor-
tant quantities (PDFs of individual particles, their mean squared displacements, and
others), could be derived by analytical methods.

Analytical Approach

Let us now formulate the SFD problem as the initial-boundary value problem for
the two-particle Smoluchowski equation. For the two identical particles the equation
reads [7]

∂

∂t
p(x1, x2, t) =

2∑

i=1

[
D

∂2

∂x2
i

− ∂

∂xi
F(xi , t)

]
p(x1, x2, t), (2.2)

where D stands for the diffusion coefficient of each of the particles and F(x, t) is
the external force acting on the particles. The above diffusion equation contains no
evidence of interaction yet. In order to incorporate the hard-core interaction, it is
convenient to map the two-particle diffusion in one dimension onto the diffusion
of a single “representative particle” in two dimensions. In the latter picture, the
coordinates of individual particles x1, x2 correspond to the vector components of
the position of the representative particle. The hard-core interaction of two diffusing
particles means that the representative particle is not allowed to cross the line x1 = x2
where the collisions occur. Thus the hard-core interaction can be incorporated as the
reflecting boundary condition imposed along the line x1 = x2.

The perfectly reflecting boundary condition requires [7] that the component of
the probability current which is perpendicular to the boundary vanishes at the bound-
ary. In the present case, the components of the probability current parallel with the
coordinate axes are given by
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Ji (x1, x2, t) =
[
−D

∂

∂xi
+ F(xi , t)

]
p(x1, x2, t), i = 1, 2. (2.3)

Then the boundary condition that represents the hard-core interaction, the non-
crossing boundary condition, reads

(J1(x1, x2, t) − J2(x1, x2, t))|x1=x2 = 0, (2.4)

see Fig. 2.2 for more details. Explicitly, the above requirement reads

D

(
∂

∂x2
− ∂

∂x1

)
p(x1, x2, t)

∣∣∣∣
x1=x2

= 0. (2.5)

Thus the hard-core interaction splits the two-dimensional state space in two half-
planes. Within which of the two half-planes (x1 < x2, or x1 > x2) the representative
particle moves is dictated by the initial condition. For instance if we set

p(x1, x2, 0) = δ(x1 − y1)δ(x2 − y2), y1 < y2, (2.6)

then the particle ordering at any time t is in agreement with that in Eq. (2.1).
Notice that also this second approach to SFDmaps themany particle problemwith

interaction onto the single-particle one. As we discuss below, for identical particles
(same D and F for all particles) the two approaches are equivalent. In contrast to
the probabilistic approach, the analytical formulation can be easily extended to the
case of nonidentical particles (unique Di , and/or Fi for each particle). However,
this advantage is rather formal since for a general N , N > 2, little is known about
the exact solution of the Smoluchowski equation when the interacting particles are

Fig. 2.2 The two-particle
SFD is equivalent to the
single-particle diffusion in
2d plane with the reflecting
line x1 = x2. The
(unnormalized) projection of
the current vector
�J = (J1, J2) onto the
direction perpendicular to
the reflecting boundary,
�J · �n = J1 − J2, vanishes at
the reflecting boundary
which yields the
non-crossing boundary
condition (2.4)



2.1 Brownian Motion with Hard-Core Interaction 11

different (see Sect. 2.5 for the review of the progress in this direction, and Refs.
[8–11] for a discussion of some particular two-particle cases).

2.1.2 Propagator for General N

Having prepared the two approaches to the two-particle SFD, let us now formulate,
solve and interpret the general N -particle problem. We assume that N interacting
particles which are acted upon by the same external force F are diffusing in one
dimension, each with the diffusion coefficient D. The evolution of the joint PDF of
particles positions is governed by the Smoluchowski equation

∂

∂t
p(�x, t |�y, t0) =

N∑

i=1

[
D

∂2

∂x2
i

− ∂

∂xi
F(xi , t)

]
p(�x, t |�y, t0), t > t0. (2.7)

Initially, at time t0, the particles are located at positions specifiedby the components of
the vector �y, �y = (y1, y2, . . . , yN ). Hence the initial condition to the above equation
is given by

p(�x, t0|�y, t0) = δ(x1 − y1)δ(x2 − y2) . . . δ(xN − yN ), (2.8)

Due to the hard-core interaction, the initial ordering of the particles:

y1 < y2 < · · · < yN , (2.9)

is conserved for all times. This is ensured by (N − 1) non-crossing boundary condi-
tions (cf. Eq. (2.4))

D

(
∂

∂xi+1
− ∂

∂xi

)
p(�x, t |�y, t0)

∣∣∣∣
xi =xi+1

= [F(xi+1, t) − F(xi , t)
]

p(�x, t |�y, t0)

∣∣∣∣∣
xi =xi+1

,

(2.10)

i = 1, 2, . . . , N − 1.
Let us assume that f (x, t |y, t0) is the propagator (the Green function) for the

corresponding problemwith N = 1. That is, f (x, t |y, t0) satisfies the single-particle
Smoluchowski equation

∂

∂t
f (x, t |y, t0) =

[
D

∂2

∂x2
− ∂

∂x
F(x, t)

]
f (x, t |y, t0), (2.11)
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subject to the initial condition

f (x, t0|y, t0) = δ(x − y). (2.12)

Then, as it has been demonstrated in Ref. [3], the propagator for the N -particle SFD
problem, has a structure of the permanent [12] (which is similar to the determinant
but not containing the minus signs). It reads

p(�x, t |�y, t0) =
∑

σ∈SN

N∏

j=1

f (xσ( j), t |y j , t0) (2.13)

if components of the vector �x = (x1, x2, . . . , xN ) satisfy

x1 < x2 < · · · < xN , (2.14)

and it vanishes, if at least one of the above inequalities is violated. In Eq. (2.13)
the summation is taken over all N ! permutations σ of particle labels at time t (of
course, equivalently, we can sum over all permutations of the initial positions).
Notice that the normalization of the propagator p(�x, t |�y, t0) follows from the nor-
malization of the PDF f (x, t |y, t0). Since f (x, t |y, t0) is normalized to one in the
one-dimensional space, any summand in Eq. (2.13) is normalized to one in the unre-
stricted N -dimensional space. There are N ! such summands in Eq. (2.13), at the same
time, the hard-core interaction, as expressed through the non-crossing boundary con-
ditions, reduces the total volume of the N -particle state-space by the factor 1/N !,
which implies the required normalization of p(�x, t |�y, t0) and causes that p(�x, t |�y, t0)
is different from zero only when �x lies in the N -dimensional wedge determined by
inequalities (2.14) (the so calledWeyl chamber of the symmetric group SN [13, 14]).

Formula (2.13) expresses the exact solution of the many-particle problemwith the
hard-core interaction through a simpler object,which is the single-particle probability
density. The special case of the above propagator for the unbiased (F = 0) SFD
model has been found by Rödenbeck et al. [15] employing the reflection principle,
and by Lizana and Ambjörnsson [16, 17] using the Bethe Ansatz.

The permanent-like expression (2.13) possesses an interpretation in terms of non-
interacting particleswhich is perfectly consistentwith the probabilistic picture behind
Eq. (2.1). Let Xi (t) be the position of the i th noninteracting particle distributed with
the PDF f (xi , t |yi , t0), i = 1, 2. Hence Xi (t0) = yi , y1 < y2, and for a moment we
consider again that N = 2. Then the propagator

p(x1, x2, t |y1, y2, t0) = f (x1, t |y1, t0) f (x2, t |y2, t0)+ f (x2, t |y1, t0) f (x1, t |y2, t0),
(2.15)

which is different from zero only for x1 < x2, is nothing but the simultaneous
PDF of random positions X1:2(t), X2:2(t) of two interacting particles (as defined by
Eq. (2.1)) conditionedon the initial state:X1:2(t0) = y1,X2:2(t0) = y2. In otherwords,
the propagator p(x1, x2, t |y1, y2, t0) accounts for all 2! possibilities, how the two
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noninteracting particles can be ordered: either {X1:2(t), X2:2(t)} = {X1(t), X2(t)}
if X1(t) < X2(t) (the first term on the right-hand side), or {X1:2(t), X2:2(t)} =
{X2(t), X1(t)} when X1(t) > X2(t) (the second term with permuted x1, x2), cf. Fig.
2.1.

The correspondence between the interacting particles and the noninteracting ones
based on definitions (2.1), can be extended to a general N [2]. To this end, at specified
time t , we identify the position of the nth interacting particle, say Xn:N (t), with the
position of the nth leftmost particle among the noninteracting ones. In statistics, the
thus defined random variable Xn:N (t) is known as the n th order statistic [18] (it is
the nth smallest one of independent random variables X1(t), . . . , XN (t)). Thus e.g.
the first order statistic X1:N (t) is the position of the leftmost interacting particle and
it is identified with the position of the leftmost noninteracting one:

X1:N (t) = min{X1(t), . . . , XN (t)}, (2.16)

and similarly for any n. Then, similarly as in N = 2 case, the simultaneous PDF
of positions of all N interacting particles (the simultaneous PDF of values of all N
order statistics) conditioned on the initial positions is given exactly by the N -particle
propagator (2.13).

2.1.3 PDF of a Tagged Particle

The noninteracting particles which has been used to construct the positions of the
interacting ones are assumed to be identical as for their physical properties (same D
and F). This assumption is necessary for the permanent (2.13) to be the exact prop-
agator for the interacting particles. A rather complicated structure of the propagator
(sum of products) can be reduced to a simple product-like expression if we add a
further assumption regarding the initial conditions.

Let us assume that the initial position of any noninteracting particle, Xi (t0), i =
1, . . . , N , is drawn from the PDF f (y, t0). This choice of the initial condition implies
that all noninteracting particles are identical as for all their statistical properties. That
is, not only each particle diffuses with the same D and it is acted upon by the same
force F , but also the initial condition is, in a statistical sense, the same for all
particles (in contrast to the previous case described by PDFs f (x, t |yi , t0) which
differ by initial deterministic positions). A remarkable simplification follows from
this assumption in the corresponding interacting case. We get the result in two steps.
First, the PDF for the position of any noninteracting particle at time t is the same
and it is given by f (x, t), which follows from f (x, t0) via the integration:

f (x, t) =
∫

dy f (x, t |y, t0) f (y, t0). (2.17)
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Second, the PDFs f (xi , t) replace the conditioned PDFs f (xi , t |y j , t0) in Eq. (2.13).
Consequently, the sum on the right-hand side of Eq. (2.13) contains N ! identical sum-
mands and the simultaneous PDF for positions X1:N (t), . . . , XN :N (t), of interacting
particles reads

p(�x, t) = N !
N∏

j=1

f (x j , t), (2.18)

when the vector �x lies in the wedge (2.14) and it vanishes otherwise. In particular,
for t = t0 we obtain the initial simultaneous PDF in the factorized form

p(�x, t0) = N !
N∏

j=1

f (x j , t0). (2.19)

Such initial condition can be thought to describe e.g. the Gibbs equilibrium state as
it will be discussed in Chap.3, cf. Eq. (3.36). In particular, the factorized form of
Eq. (2.18) may evoke an impression that the positions of interacting particles are not
correlated. This is not the case, the interparticle correlations appear due to the fact
that �x is restricted to the wedge (2.14).

Of course, one can follow a different line of reasoning, assuming first that the
initial condition is given by Eq. (2.19), and, second, evolving the initial condition by
the propagator (2.13). The result will be again given by Eq. (2.18). That is, for this
specific initial condition the simultaneous PDF factorizes for all times t , t ≥ t0 [4].

The basic advantage of the factorized simultaneous PDF is that it yields an analyt-
ically tractable expression for the marginal PDF pn:N (x, t) for the position Xn:N (t)
of the nth interacting particle:

pn:N (x, t) = N !
(n − 1)!(N − n)! f (x, t)

[∫ x

−∞
dx ′ f (x ′, t)

]n−1 [
1 −

∫ x

−∞
dx ′ f (x ′, t)

]N−n
.

(2.20)

The interpretation of the right-hand side in terms of N statistically identical nonin-
teracting particles, whose positions are distributed with the PDF f (x, t), is rather
straightforward. The expression pn:N (x, t)dx equals the probability that there is a
single particle in (x, x +dx) ( f (x, t)dx) and, simultaneously, there are (n −1) non-
interacting particles to the left of x (with the probability

[∫ x
−∞ dx ′ f (x ′, t)

]n−1
),

and the remaining (N − n) particles are to the right of x (with the probability[
1 − ∫ x

−∞ dx ′ f (x ′, t)
]N−n

). The combinatorial prefactor accounts for all possible
permutations of labels.

In Chaps. 3 and 4 we will derive the generalization of the above marginal PDF
for the SFD model with one (Eq.3.39) and two (Eq.4.13) absorbing boundaries.

http://dx.doi.org/10.1007/978-3-319-27188-0_3
http://dx.doi.org/10.1007/978-3-319-27188-0_3
http://dx.doi.org/10.1007/978-3-319-27188-0_4
http://dx.doi.org/10.1007/978-3-319-27188-0_3
http://dx.doi.org/10.1007/978-3-319-27188-0_4
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2.2 SFD in Homogeneous System with Constant Density

Let us now turn to the key feature of the single-file dynamics—the subdiffusive
behavior of the tagged particle. Consider an infinite line occupied by particles with
constant densityρ. Particles are distributed randomly. Thismeans that empty intervals
between adjacent particles are exponentially distributed random variables with mean
value 1/ρ. At the initial time we choose a single particle (a tracer) and we follow
its motion (alternatively, we can insert a single particle into the system). Clearly, the
space available for the tracer diffusion is effectively reduced by the presence of other
particles. This hindrance results in a slowdown of diffusive spreading of tracer PDF,
as compared to the free diffusion. In the long-time limit, we observe a subdiffusive
motion. Despite this anomalous behavior, the tracer PDF is still given by a Gaussian
density but now the mean squared displacement (MSD) grows as t1/2:

pT(x, t) ∼ 1√
2π〈X2

T(t)〉
e− x2

/
2〈X2

T(t)〉, 〈X2
T(t)〉 = 2

ρ

√
Dt

π
, as t → ∞. (2.21)

This is one of the most highlighting results of the theory of the single-file diffusion
which has already been confirmed in various experiments, e.g. in NMR studies of
diffusion in zeolites [19–23], and in experiments on colloids confined in narrow
channels [24–30].

From a general perspective, the SFD model belongs to the class of interacting
models like phantom polymer chains [31, 32] or certain fluctuating interfaces [33].
The characteristic feature of all these models is that a tagged particle (or a tagged
segment) undergoes a non-Markovian diffusion described by Gaussian PDF with
associated mean squared displacement proportional to t1/2. Such stochastic process
is usually said to be of a fractional Brownian motion type [17, 34–36] rather than
that of a continuous-time random walk type. Since for the latter the corresponding
PDF is not Gaussian but it typically exhibits a sharp cusp around the initial position,
see Ref. [37] for a numerical comparison. An approximative mapping (so called
harmonization) between the long-time dynamics of SFD system and that of the
Rouse polymer chain can be found in Refs. [38–40]. Further, in Ref. [35] a general
phenomenological description for all these processes has been developed leading to
a fractional Langevin equation. Let us now build some intuition with the way how
the subdiffusion arises in the SFD system.

2.2.1 Heuristic Arguments

The time-dependence of the tracer displacement can be intuitively understood as
follows [41, 42]. Consider a one-dimensional lattice. Each lattice site is either occu-
pied by a particle or vacant, multiple occupation of sites is forbidden. On a nearly
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full lattice, any particle is almost always surrounded by occupied sites and therefore
it rarely moves. On the other hand, the concentration of vacancies on such a lat-
tice is vanishingly small. Hence the vacancies rarely meet and we can approximate
their dynamics by independent randomwalks. The crucial observation is that we can
draw a certain conclusions about the tracer dynamics by considering the dynamics
of almost freely diffusing vacancies. Indeed, a tracer will hop to the neighboring site
only if that site contains a vacancy. Hence the displacement of the tracer is given by

XT(t) = NR→L(t) − NL→R(t), (2.22)

where NR→L(t) is the number of vacancies that were initially to the right of the
tracer and are now on the left, and vice versa for NL→R(t). Since the densities of
the vacancies to the right and to the left of the tracer are equal, we expect that
〈NR→L(t)〉 = 〈NL→R(t)〉. Thus the average tracer displacement, 〈XT(t)〉, is zero.
From the diffusivemotion of the vacancies it follows that 〈NR→L(t)〉 = 〈NL→R(t)〉 ∼
t1/2. Hence the difference on the right-hand side of Eq. (2.22) scales as

√
t1/2 and the

mean squared displacement of the tracer position grows as t1/2. We recall that for
the classical symmetric random walk both the number of left steps, NL(t), and the
number of right steps, NR(t), behave as 〈NL(t)〉 = 〈NR(t)〉 ∼ t . Then the particle
position determined by the difference X(t) = NR(t)−NL(t) scales as t1/2 and hence
the mean squared displacement of the particle increases as t .

2.2.2 Derivation of Tracer PDF

Themost elegant derivation of the basic result (2.21) is due to Levitt [43, 44] (but see
also Refs. [45–47]). The main ideas behind Levitt’s construction of the tracer PDF
pT(x, t) are (A) the trajectories of interacting particles are statistically equivalent
to the trajectories of noninteracting ones; (B) the PDF pT(x, t) is proportional to
the probability A0(x, t) that, for the reference system of noninteracting particles,
the number of particles to the left of the tracer (and hence to the right of it) has not
changed as compared to the initial configuration.

Let us assume that initially the tracer is located at the origin of coordinates x = 0.
We follow its dynamics up to time t and we ask for the probability that at this time the
tracer is located in (x, x+dx). An important quantity that will be used in construction
of the tracer PDF is the mean number of noninteracting particles that initially were
to the left of the tracer (i.e., to the left of x = 0) and, at time t are located to the right
of x . It is given by the double integral

νL→R(x, t) = ρ

∫ ∞

x
dx ′

∫ 0

−∞
dy

1√
4πDt

e−(x ′−y)2/4Dt . (2.23)

And vice versa, the mean number of particles that initially were to the right of the
tracer and, at time t are to the left of x reads
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νR→L(x, t) = ρ

∫ x

−∞
dx ′

∫ ∞

0
dy

1√
4πDt

e−(x ′−y)2/4Dt . (2.24)

The above two quantities are merely mean values. Amore complete description is
provided by the corresponding probabilities. Since the reference particles are inde-
pendent, the probability distribution for the overall number of crossings from left to
right is the Poisson distribution with the mean value νL→R(x, t) (and similarly for
νR→L(x, t)). From the two Poisson distributions we can infer the probability that
there were equal number of crossings from left to right as from right to left. The
latter probability is given by the sum over all possible events which are compatible
with the required condition:

A0(x, t) =
∞∑

k=0

[νL→RνR→L]k

k! k! e−(νL→R+νR→L), (2.25)

or, expressed using the modified Bessel function:

A0(x, t) = I0
(
2
√

νL→RνR→L
)
e−(νL→R+νR→L). (2.26)

In the long-time limit, the tracer PDF pT(x, t) can be recovered from the non-
interacting picture as follows. The probability that, at time t , the tracer is located
in infinitesimal interval (x, x + dx) is given by the product of the probability that
there is a noninteracting particle in (x, x + dx) which is (ρdx), and the probability
A0(x, t) that there were equal number of trajectory crossings. Therefore, we have
[43]

pT(x, t) ∼ ρA0(x, t). (2.27)

Let us now turn to the long-time behavior of the right-hand side of Eq. (2.27). All
integrals in Eqs. (2.23), (2.24), can be evaluated analytically. This yields

νL→R(x, t) = ρ

[√
Dt

π
e−x2/4Dt − x

2

(
1 − erf

(
x√
4Dt

))]
, (2.28)

νR→L(x, t) = ρ

[√
Dt

π
e−x2/4Dt + x

2

(
1 + erf

(
x√
4Dt

))]
. (2.29)

The both above expression increase with time. Therefore, in the long-time limit, x �√
4Dt , we can use the asymptotic representation of the Bessel function, I0(2z) ∼

e2z/
√
4πz, for z → ∞, to get

pT(x, t) ∼ ρ(4π)−1/2(νL→RνR→L)
−1/4e−(

√
νL→R−√

νR→L)
2

, t → ∞. (2.30)

Further, we approximate the error functions in Eqs. (2.28), (2.29) by their small-
argument asymptotic behavior erf(z) ∼ 2z/

√
π and, after some algebra, we obtain
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(√
νL→R − √

νR→L
)2 ∼ x2 ρ

4

√
π

Dt
, (2.31)

(νL→RνR→L)
−1/2 ∼ 1

ρ

√
π

Dt
. (2.32)

Returning to Eq. (2.27), the asymptotic tracer PDF is Gaussian:

pT(x, t) ∼ 1√
4πD1/2

√
t
e−x2

/
4D1/2

√
t , t → ∞, (2.33)

where we have defined the generalized diffusion coefficient

D1/2 = 1

ρ

√
D

π
, (2.34)

which enters the subdiffusive law for the mean squared displacement

〈X2
T(t)〉 ∼ 2D1/2

√
t . (2.35)

Notice that themain ideas behind the above derivation of theGaussian PDF (2.33),
are essentially the same as those behind heuristic arguments based on Eq. (2.22).
The only difference is that in the heuristic approach the freely diffusing entities are
vacancies, whereas now the freely diffusing entities are noninteracting particles.

2.3 Comparison with SFD of N Particles

Harris’s classical result concerning t1/2 MSD growth and the Gaussian PDF (2.21)
are derived under following conditions: the system is homogeneous with a constant
density of particles, and, increasing time, the subdiffusive regime is the last one
which occurs in the overall dynamical description. We now wish to comment on
further details of the SFD model including finite-time behavior and the dynamics of
the system with finite number of particles.

2.3.1 Entropic Repulsive Forces

First, let us consider the long-time dynamics of the systemwith zero density, namely,
an infinite line containing N interacting particles. The dynamics of such a system
has been studied in a great detail by Aslangul [8, 48].
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In Ref. [8] the two-particle problem on a lattice has been solved exactly. In the
continuum limit, the two particles undergo a Brownianmotionwith a hard-core inter-
action and the problem can be solved by a transition to the center of mass coordinate
system. Then the difference coordinate behaves like a Brownian particle and the
original hard-core interaction manifests itself as a perfectly reflecting wall for this
particle at the origin. Under these conditions, theBrownian particle exhibits an anom-
alous drift away from the boundary, its average position increases as t1/2, whereas the
second moment has a normal diffusive spreading. Thus for two interacting particles
the following overall picture emerges. The interaction induces a repulsive drift of
entropic origin. The drift is anomalouswith a vanishing velocity, the average distance
between the particles grows at large times as t1/2, whereas the second moment of the
position of each particle grows linearly with time. Let X1:2(t),X2:2(t) be respectively
the position of the left and of the right particle, then we have [8]

− 〈X1:2(t)〉 = 〈X2:2(t)〉 ∼
√
2Dt

π
, 〈X2

1:2(t)〉 = 〈X2
2:2(t)〉 ∼ 2Dt. (2.36)

In Ref. [48] similar issues have been clarified for N interacting particles. Aslangul
has assumed that, at the initial time the particles form a compact point-like cluster
located at the origin. In t → ∞ limit, the mean position of the nth particle (n =
1, . . . , N ), and its second moment evolve with time according to

〈Xn:N (t)〉 ∼ Vn:N
√

t, 〈X2
n:N (t)〉 ∼ 2Dn:N t. (2.37)

Hence the dynamical exponents are exactly the same as for two particles (2.36). Both
the particle order and the total number of particles enters the result through the order-
dependent transport coefficients Vn:N , Dn,N . The task of deriving exact expressions
forVn:N , Dn,N is elusive [48], yet, for two special cases the asymptotic behavior canbe
given. For the particles located at the edges of the dispersing cluster the asymptotic
behavior of the transport coefficients is given by −V1:N = VN :N ∝ [

log(N )
]1/2

,

D1:N = DN :N ∝ [
log(N )

]−1/2
. For the central particle, we have Dc:N ∝ 1/N ,

c = (N + 1)/2.
Thus, when the total number of particles is finite, the mutual interactions induce

an anomalous entropic drift but the diffusion is not anomalous in the long-time limit.
On the other hand, notice that in the limit of N → ∞, both DN :N and Dc:N vanishes.
This indicates a possible lowering of the dynamical exponent and the onset of a
subdiffusive regime observed in the finite density situation. The middle particle is
surrounded by infinitely many others and its diffusion constant vanishes as 1/N . For
the two edge particles, the logarithmic decrease of DN :N comes from the fact that
these particles still face a free semi-infinite space to wander in (see Ref. [48] for a
further discussion).
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2.3.2 Three Dynamical Regimes

Let us consider a finite interval of the length L with N diffusing particles, and we
put ρ = N/L . A thorough analysis of tracer dynamics in a finite interval with
reflecting boundary conditions has been given by Lizana and Ambjörnsson in Refs.
[16, 17]. Authors used Bethe Ansatz to derive the exact tracer PDF. In the present
section we will paraphrase their results concerning different dynamical regimes for
the dynamics of the middle particle. Recently, the results have been reproduced by
the scaling method in Ref. [49].

The precise setting is the following.At the initial time t = 0 there are N interacting
particles of the diameter � randomly distributed in the interval of the length L . We
will follow the diffusion of the central particle located initially approximately near
the center of the interval (the tracer). The dynamics of the tracer is rather complex.
The exact analysis based on Bethe Ansatz has revealed three dynamical regimes:
(A) short times, (B) intermediate times, and (C) long times.

(A) Short times. For time t much smaller than the collision time tcoll,

tcoll = 1

ρ2D
, (2.38)

the tracer “does not feel” other particles and, consequently, it undergoes a free dif-
fusion. In this regime, the tracer PDF is Gaussian with the MSD given by

〈[XT(t) − XT(0)]
2〉 = 2Dt, t � tcoll. (2.39)

(B) Intermediate times. For times t much larger than the collision time tcoll but
still smaller than the equilibrium time teq,

teq = L2

D
, (2.40)

the tracer diffusion is anomalous, the tracer PDF is given by a Gaussian function
with the mean squared displacement

〈[XT(t) − XT(0)]
2〉 = 1 − ρ�

ρ

√
4Dt

π
, tcoll � t � teq. (2.41)

The generalized diffusion coefficient predicted by Eq. (2.41) is in conformity with
that obtained for infinite systems with point particles (� = 0, cf. Eqs. (2.33–2.35))
and also with that for the SFD on a lattice [50, 51]. The latter correspondence is
obtained when both the particle diameter � and the lattice spacing equals to one.

(C) Long times. In the long-time limit, t � teq, the tracer PDF approaches an
equilibrium probability density function and its MSD saturates on a constant value.
We have
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〈[XT(t) − XT(0)]
2〉 ∝ L2

N
, t � teq. (2.42)

Only regimes (A) and (B) are found in the infinite system with constant particle
density (discussed in Sect. 2.2), where teq diverges. Notably, in the setting discussed
by Aslangul (cf. Sect. 2.3) the regime (C) is replaced by the normal diffusion and the
regime (A) should be absent since the particles initially form a compact point-like
cluster. In a finite interval with periodic boundary conditions the regime (C) is also
different. For a periodic system at long times, all particles become highly correlated
– they behave as a single effective particle and undergo a normal diffusion with the
renormalized diffusion coefficient D/N [52]. A different (even superdiffusive)MSD
behavior in regime (B) is reported in Ref. [53] where effects induced by the choice
of initial conditions are discussed by means of Monte Carlo simulations.

2.4 Single-File Diffusion Front

In the finite-N case studied by Aslangul the particle near the boundary of the cluster
is repelled by a finite number of its neighbors. This repulsion induces an anomalous
drift proportional to t1/2. An important question is in order. What if the edge particle
has infinite number of others to its left (say)? How strong is the entropic repulsion
in this case? To obtain the answer let us turn to the study of statistical properties of
the single-file diffusion front. Namely, in the present section we consider SFD on an
infinite line. Initially the negative half-line is occupied by (infinitely many) particles
distributed with the mean density ρ. There are no particles on the positive half-line.
We are interested in the motion of the right-most particle.

The evolution of the density of particles ρ(x, t) is governed by the diffusion
equation with the step initial condition: ρ(x, 0) = ρ for x < 0 and ρ(x, 0) = 0
otherwise. The density profile at time t is given by the complementary error function:

ρ(x, t) = ρ

2
erfc

(
x√
4Dt

)
, (2.43)

from which we obtain the mean number of particles located to the right of x :

ν(x, t) =
∫ ∞

x
dx ′ρ(x ′, t). (2.44)

Let us number the particles from right to left. Hence the rightmost particle is
labeled by n = 1. How can we construct the PDF pn(x, t) of the nth interacting
particle?Againwe provide an answer by a proper construction based on the reference
noninteracting picture. The sought probability that the nth interacting particle is
in (x, x + dx) equals to the probability that there is a noninteracting particle in
(x, x +dx), i.e., ρ(x, t)dx , times the probability that there are (n −1) particles to the
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right of x . Since the reference noninteracting particles are statistically independent,
the latter probability is given by the Poisson distribution with the mean value ν(x, t).
Altogether, we get

pn(x, t) = ρ(x, t)
[ν(x, t)]n−1

(n − 1)! e−ν(x,t). (2.45)

Let us now focus on statistical properties of the right-most particle (sometimes
called as the single-file diffusion front, or just a diffusion front). Its cumulative
distribution function, F1(x, t) = ∫ x

−∞ dx ′ p1(x ′, t), equals

F1(x, t) = exp[−ν(x, t)] . (2.46)

In the long-time limit F1(x, t) converges to Gumbel distribution:

F1(x, t) ∼ exp

[
− exp

(
− x

b(t)
+ a(t)

)]
, t → ∞, (2.47)

with parameters

b(t) =
√

2Dt

log(2Dt)
, a(t) = log

(
2ρDt√

2π log(2Dt)

)
. (2.48)

For the proof of the convergence we refer to the proof of Theorem 3 in Ref. [54]
(Arratia in Ref. [54] has used λ instead of our ρ and has worked with a standard
Brownian motion for which D = 1/2).

Gumbel distribution (2.47) gives us asymptotic behavior of all moments of the
front position. The asymptotic mean position assumes the form

〈X1(t)〉 ∼
√

2Dt

log(2Dt)

[
γ + log

(
2ρDt√

2π log(2Dt)

)]
, t → ∞. (2.49)

where γ stands for Euler’s constant, γ ≈ 0.5772156649. For the variance we obtain

〈[X1(t) − 〈X1(t)〉]2〉 ∼ π2

6

2Dt

log(2Dt)
, t → ∞. (2.50)

Thus an anomalous entropic drift produced by infinite number of particles scales
with time faster than t1/2-law observed in Aslangul’s finite-N setting. Interestingly
enough, an effective one-sided restriction of particle’s motion results in a slowdown
of its diffusion. The asymptotic variance (2.50) grows with time slower than that in
the case of the normal diffusion (i.e., slower than t) but still faster than in the case
of t1/2 subdiffusion.



2.4 Single-File Diffusion Front 23

Finally, a few remarks are in order. First, Gumbel distribution exp(− exp(−x)) is
one of the three possible limiting distributions for extreme order statistics. The three
distributions with brief comments on the related theory are presented in App. A.
Second, there exists a recent work [55] concerning diffusion front.2 Third, in Refs.
[56, 57] fluctuations of the current through the origin has been studied for the simple
symmetric exclusion process with a similar initial condition as that of the present
section. For the asymmetric simple exclusion process the similar initial conditions
have been discussed in Refs. [58–66], in particular in connection to random matrix
theory.

2.5 Further Reading

Let us nowmention a few selected directions of research which has not been covered
in the preceding text.

(1) Recently SFD of nonidentical particles (different diffusion constants) has
attracted a considerable attention. In this case the correspondence between the inter-
acting particles and the noninteracting ones breaks down and the model is no-longer
integrable. Various approximative [67] and numerical methods have been developed
including scaling arguments [68] and the harmonization technique [10, 39] which
approximates the SFD system by the particles interconnected by harmonic springs
(the Rouse model). With the aid of this mapping, in Ref. [40] a force-response rela-
tion for tracer has been studied. Rigorously, a convergence to a fractional Brownian
motion, a law of large numbers and a central limit theorem has been proven in Ref.
[69].

(2) Several studies are devoted to SFD in one dimension with more general inter-
particle interactions than just the hard-core one [70–76]. For instance, typical t1/2

subdiffusive behavior is reported also for inelastically colliding particles [77, 78].
What if the interaction is long-ranged? This important generalization has been stud-
ied in seminal work [70] with the following conclusion: provided that the correlation
length between the particles is finite the tracerMSD grows asymptotically as t1/2 and
the generalized diffusion coefficient is related to the compressibility of the system.
These predictions were tested experimentally for colloidal particles [25, 26] and
for charged millimetric steel balls [73, 74]. Hydrodynamic interactions, yet another
effect, are screened significantly in one dimension; cf. Ref. [27] for both experimental
and theoretical study, and Ref. [76] for extensive numerical analysis.

Above examples may evoke an impression that t1/2 scaling of the MSD must be
observed in any one-dimensional diffusive system regardless the form of interparticle
interaction. Of course this is not the case. A notable counterexample where long-

2Notice that Sabhapandit’s expression for the cumulative distribution function of the front position
(Eq. (7) in Ref. [55]) differs from F1(x, t) in Eq. (2.46) by a nontrivial multiplicative factor. Proba-
bilistic interpretation of Eq. (7) in Ref. [55] remains unclear to the present author (actually, F1(x, t)
corresponds to the right-hand side of Eq. (5) in Ref. [55]).



24 2 Basics of Single-File Diffusion

ranged interactionsmodify the subdiffusive regime is provided byBrownian particles
interacting by the logarithmic potential (Dyson’s Brownian motion). In this case the
tracer MSD grows as log(t) [79]. Other cases are listed in next paragraphs. There,
deviations from typical t1/2 subdiffusion are caused by interactionwith external fields
and/or with confining channel, and even by a certain type of initial conditions.

(3) Single-file dynamics in spaces with dimension greater than one is of consider-
able interest in recent years. In particular, a reduction of the confined two-dimensional
single-file dynamics of discs to the one-dimensional longitudinal motion of rods has
been carried out in Refs. [80–83]. When the diameter of the tube is slightly greater
than the doubled diameter of the disc a crossover from the subdiffusion to a normal
diffusion occurs. An accurate description of this phenomenon is still under active
debate [84–86]. For particles interacting by Yukawa potential, numerical analysis of
Ref. [87] reveals rather different diffusive regimes and transitions depending on the
shape of the channel. The screened Coulomb potential (described through amodified
Bessel function of the second kind K0, as inspired by experiments [73, 74]) leads to
nontrivial properties of fluctuations in the vicinity of transitions between different
equilibrium conformations of the system [88–90].

(4) Effects induced by external fields acting on particles have become the subject
of several studies [3, 38, 40, 91–101]. Strictly speaking, the previous point (3) also
belongs to this category. A particularly hard and still unsolved problem is when the
external field acts on the tagged particle only. Theoretical advances in this direction
can be found in Refs. [38, 40, 98, 99]. The external field acting on all particles can
model, for example, entropic forces stemming from inhomogenities of real channels
[102]. SFD in random potentials have been studied both theoretically [100, 103]
and experimentally [101]. Channels with random walls have been considered in Ref.
[104]. Diffusion of magnetic dipoles in modulated channels is discussed in Refs.
[91–93].

(5) Initial conditions may imply two unexpected effects on the dynamics of the
tracer. First, the power law initial distribution results in tα subdiffusion, where α is
neither 1 nor 1/2 [49, 95, 105]. Second, the initial condition determines the value of
the generalizeddiffusion coefficient [106],which is a long-memory effect unobserved
in the normal diffusion (where the diffusion coefficient is determined by Einstein’s
relation).

(6) In some studies the dynamics of individual particles is not normal Brownian
motion. Instead, the particles may follow e.g. the deterministic dynamics [107–110]
or some kind of an anomalous kinetics [105, 111–113]. An outstanding result valid
for all these systems is the so called Percus diffusion formula [95, 107]. The formula
relatesMSD of the tracer in a systemwith interaction with motion of a single particle
in the absence of interaction: 〈[XT(t) − XT(0)]

2〉 ∼ 〈|X(t) − X(0)|〉/ρ. It is valid
for an infinite homogeneous system with constant density of particles and in Ref.
[95] it has been derived for a rather broad class of anomalous processes including
e.g. the continuous-time random walk and the fractional Brownian motion. Thus
for instance if for a free diffusion 〈[X(t) − X(0)]2〉 ∝ tα then for the tracer motion
〈[XT(t) − XT(0)]

2〉 ∝ tα/2.
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(7) The first-passage time density for a tracer in a homogeneous system has been
discussed in Ref. [36]. An open single-file system (the interval with at least one
absorbing boundary) has been studied numerically for a biased SFD [114], for an
unbiased SFD [15] (briefly discussed as a particular example), and analytically for
an unbiased diffusion in Refs. [4–6]. The latter works form a basis of the following
Chaps. 3 and 4. A closely related problem of orders statistics of first-passage times
for independent random walkers [115–125] will be discussed in a more detail in
Chap. 3.

Last but not least, in the above brief review we have restricted ourselves mainly
to the physically-oriented literature. Rigorous (mathematical) results concerning the
dynamics of the tracer can be found in the following references. Besides the seminal
works of Harris [2] and Spitzer [126], central limit theorems for a tagged particle are
discussed in Refs. [54, 69, 127], and reviewed in Ref. [128].
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