Chapter 2
MRU Cache Analysis for WCET Estimation

Most previous work on cache analysis for WCET estimation assumes a particular
replacement policy LRU. In contrast, much less work has been done for non-LRU
policies, since they are generally considered to be very unpredictable. However,
most commercial processors are actually equipped with these non-LRU policies,
since they are more efficient in terms of hardware cost, power consumption, and
thermal output, while still maintaining almost as good average-case performance as
LRU.

In this chapter, we study the analysis of MRU, a non-LRU replacement policy
employed in mainstream processor architectures like Intel Nehalem. Our work
shows that the predictability of MRU has been significantly under-estimated
before, mainly because the existing cache analysis techniques and metrics do not
match MRU well. As our main technical contribution, we propose a new cache
hit/miss classification, k-Miss, to better capture the MRU behavior, and develop
formal conditions and efficient techniques to decide k-Miss memory accesses. A
remarkable feature of our analysis is that the k-Miss classifications under MRU
are derived by the analysis result of the same program under LRU. Therefore,
our approach inherits the advantages in efficiency and precision of the state-of-
the-art LRU analysis techniques based on abstract interpretation. Experiments with
instruction caches show that our proposed MRU analysis has both good precision
and high efficiency, and the obtained estimated WCET is rather close to (typically
1-8 % more than) that obtained by the state-of-the-art LRU analysis, which indicates
that MRU is also a good candidate for cache replacement policies in real-time
systems.
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2.1 Introduction

For hard real-time systems one must ensure that all timing constraints are satisfied.
To provide such guarantees, a key problem is to bound the worst-case execution time
(WCET) of programs [4]. To derive safe and tight WCET bounds, the analysis must
take into account the timing effects of various micro-architecture features of the
target hardware platform. Cache is one of the most important hardware components
affecting the timing behavior of programs: the timing delay of a cache miss could be
several orders of magnitude greater than that of a cache hit. Therefore, analyzing the
cache access behavior is a key problem in WCET estimation. However, the cache
analysis problem of statically determining whether each memory access is a hit or a
miss is challenging.

Much work has been done on cache analysis for WCET estimation in the last
two decades. Most of the published works assume a particular cache replacement
policy, called LRU (Least-Recently-Used), for which researchers have developed
successful analysis techniques to precisely and efficiently predict cache hits/misses
[4]. In contrast, much less attention has been paid to other replacement policies
like MRU (Most-Recently-Used)' [97], FIFO (First-In-First-Out) [21], and PLRU
(Pseudo-LRU) [96]. In general, research in the field of real-time systems assumes
LRU as the default cache replacement policy. Non-LRU policies in general, in fact,
are considered to be much less predictable than LRU, and it would be very difficult
to develop precise and efficient analyses for them. It is recommended to only use
LRU caches when timing predictability is a major concern in the system design [27].

However, most commercial processors actually do not employ the LRU cache
replacement policy. The reason is that the hardware implementation logic of LRU
is rather expensive [81], which results in higher hardware cost, power consumption,
and thermal output. On the other hand, non-LRU replacement policies like MRU,
FIFO, and PLRU enjoy simpler implementation logic, but still have almost as good
average-case performance as LRU [82]. Therefore, hardware manufacturers tend
to choose these non-LRU replacement policies in processor design, especially for
embedded systems subject to strict cost, power, and thermal constraints.

In this chapter, we study one of the most widely used cache replacement policies
MRU. MRU uses a mechanism similar to the clock replacement algorithm in
virtual memory mapping [98]. It only uses one bit for each cache line to maintain
age information, which is very efficient in hardware implementation. MRU has
been employed in mainstream processor architectures like Intel Nehalem (the
architecture codename of processors like Intel Xeon, Core 15, and i7) [99] and
UltraSPARC T2 [100]. A previous work comparing the average-case performance

The name of the MRU replacement policy is inconsistent in the literature. Sometimes, this policy
is called Pseudo-LRU because it can be seen as a kind of approximation of LRU. However, we
use the name MRU to keep consistency with previous works in WCET research [26, 95], and
to distinguish it from another Pseudo-LRU policy PLRU [96] which uses tree structures to store
access history information.
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of cache replacement policies with the SPEC CPU2000 benchmark showed that
MRU has almost as good average-case performance as LRU [82]. To the best of our
knowledge, there has been no previous work dedicated to the analysis of MRU in
the context of WCET estimation. The only relevant work was performed by Reineke
et al. [26] and Reineke and Grund [101], which studies general timing predictability
properties of different cache replacement policies. The cited work argues that MRU
is a very unpredictable policy.

However, this chapter shows that the predictability of MRU actually has been
significantly under-estimated. The state-of-the-art cache analysis techniques are
based on qualitative classifications, to determine whether the memory accesses
related to a particular point in the program are always hits or not (except the first
access that may be a cold miss). This approach is highly effective for LRU since
most memory accesses indeed exhibit such a “black or white” behavior under LRU.
In this work we show that the memory accesses may have more nuanced behavior
under MRU: a small number of the accesses are misses while all the other accesses
are hits. By the existing analysis framework based on qualitative classifications,
such a behavior has to be treated as if all the accesses are misses, which inherently
leads to very pessimistic analysis results.

In this chapter, we introduce a new cache hit/miss classification k-Miss (at
most k accesses are misses while all the others are hits). In contrast to qualitative
classifications, k-Miss can quantitatively bound the number of misses incurred at
certain program points, hence it can more precisely capture the nuanced behavior
in MRU. As our main technical contribution, we establish formal conditions to
determine k-Miss memory accesses, and develop techniques to efficiently check
these conditions. Notably, our technique uses the cache analysis results of the same
program under LRU to derive k-Miss classification under MRU. Therefore, our
technique inherits the advantages in both efficiency and precision from the state-
of-the-art LRU analysis based on abstract interpretation (Al) [19].

We conduct experiments with benchmark programs with instruction caches to
evaluate the quality of our proposed analysis, which show that our MRU analysis
has both good precision and efficiency: the estimated WCET obtained by our MRU
analysis is on average 2—10 % more than that obtained by simulations, and the
analysis of each benchmark program terminates within 0.1 s on average. Moreover,
the estimated WCET by our MRU analysis is close to (typically 1-8 % more
than) that obtained by the state-of-the-art LRU analysis. This suggests that MRU
is also a good candidate for instruction cache replacement policies in real-time
systems, especially considering MRU’s other advantages in hardware cost, power
consumption, and thermal output.

Although the experimental evaluation in this chapter only considers instruction
caches, the properties of MRU disclosed in this chapter also hold for data caches
and our analysis techniques can be directly applied to systems with data caches.
We didn’t include experiments with data caches because predicting data cache
behaviors heavily relies on value analysis [4], which is another important topic in
WCET estimation but orthogonal to the cache analysis issue studied in this chapter.
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Since our prototype does not yet support high-quality value analysis functionalities,
we currently cannot provide a meaningful evaluation with data caches. The evalua-
tion of the proposed MRU analysis with data caches is left as our future work.

2.2 Related Work

Most previous work on cache analysis for static WCET estimation assumes the
LRU replacement policy. Li and Malik [18] and Li et al. [102] use integer
linear programming (ILP)-only approaches where the cache behavior prediction is
formulated as part of the overall ILP problem. These approaches suffer from serious
scalability problems due to the exponential complexity of ILP, and thus cannot
handle realistic programs on modern processors. Arnold et al. [103] and Mueller
[104, 105] proposed a technique called static cache simulation, which iteratively
calculates the instructions that may be in the cache at the entry and exit of each
basic block until the collective cache state reaches a fixed point, and then uses this
information to categorize the caching behavior of each instruction.

A milestone in the research of static WCET estimation is establishing the
framework combining micro-architecture analysis by abstract interpretation (Al)
and path analysis by implicit path enumeration technique (IPET) [19]. The Al-
based cache analysis statically categorizes the caching behavior of each instruction
by sound Must, May, and Persistence analyses, which have both high efficiency
and good precision for LRU caches. The IPET-based path analysis uses the cache
behavior classification to derive a delay invariant for each instruction and encodes
the WCET calculation problem into ILP formulation. Such a framework forms the
common foundation for later research in cache analysis for WCET estimation. For
example, it has been refined and extended to deal with nested loops [106, 107],
data caches [108—110], multi-level caches [111, 112], shared caches [113, 114], and
cache-related preemption delay [115, 116].

In contrast, much less work has been done for non-LRU caches. Although some
important progress has been made in the analysis of policies like FIFO [21, 28] and
PLRU [23], in general these analyses are much less precise than for LRU. To the
best of our knowledge, there has been no work dedicated to the analysis of MRU in
the context of WCET estimation.

Reineke et al. [26], Reineke and Grund [101, 117] and Reineke [95] have
conducted a series of fundamental studies on predictability properties of different
cache replacement policies. Reineke et al. [26] defines several predictability metrics,
regarding the minimal number of different memory blocks that are needed to (a)
completely clear the original cache content (evict), (b) reach a completely known
cache state (fill), (c) evict a block that has just been accessed (mls). Reineke and
Grund [117] studies the sensitivity of different cache replacement policies, which
expresses to what extent the initial state of the cache may influence the number of
cache hits and misses during program execution. According to all the above metrics,
LRU appears significantly more predictable than other policies like MRU, FIFO,
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and PLRU. Reineke and Grund [101] studies the relative competitiveness between
different policies by providing upper (lower) bounds of the ratio on the number of
misses (hits) between two different replacement policies during the whole program
execution. By such information, one can use the cache analysis result under one
replacement policy to predict the number of cache misses (hits) of the program
under another policy. This approach is different in many ways from our proposed
analysis based on k-Miss classification. Firstly, while the relative competitiveness
approach provides bounds on the number of misses of the whole program,® the
k-Miss classification bounds the number of misses at individual program points.
Secondly, while the bounds on the number of misses provided by the relative
competitiveness analysis are linear with respect to the total number of accesses,
our k-Miss analysis provides constant bounds. Thirdly, the k-Miss classification for
MRU does not necessarily rely on the analysis result of LRU, and one can identify
k-Miss by other means, e.g., directly computing the maximal stack distance as
defined in Sect.2.4. Overall, our proposed analysis based on k-Miss can better
capture MRU cache behavior and support a much more precise WCET estimation
than the relative competitiveness approach.

Finally, we refer to [4, 118] for comprehensive surveys on WCET analysis
techniques and tools, which cover many relevant references that are not listed here.

2.3 Basic Concepts

We assume an abstract processor architecture model: The processor has a perfect
pipeline and instructions are fetched sequentially. The processor has a cache
between the processing core and the main memory. The execution delay of each
instruction only depends on whether the corresponding memory content is in the
cache or not, and the time to deliver data from the main memory to the cache is
constant. Other factors affecting the execution delay are not considered.

We assume that the cache is set-associative or fully-associative. In set-associative
caches, the accesses to memory references mapped to different cache sets do not
affect each other, and each cache set can be treated as a fully-associative cache and
analyzed independently. We present the cache analysis techniques in the context of
a fully-associative cache for simplicity of presentation, and the experiments are all
conducted with set-associative caches. Let the cache have L ways, i.e., the cache
consists of L cache lines. The memory content that fits into one cache line is called
a memory block.

We consider the common class of programs represented by control-flow graphs
(CFG). Programs that are difficult to be modeled by CFGs, e.g., self-modified

’The relative competitiveness can also be used as Must/May analysis to predict the cache access
behavior at individual program points. However, this relies on the analysis under other policies
with typically a much smaller cache sizes (to get 1-competitiveness), which generally yields very
pessimistic results.
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programs, are usually not suitable for safe-critical systems and out of our scope.
A CFG can be defined on the basis of individual nodes as follows:

Definition 2.1 (CFG on the Basis of Nodes). A CFGisatuple G = (N, E, ng):

e N = {ny,ny,---} is the set of nodes in the CFG,;
e E ={ej, ey, -} is the set of directed edges in the CFG;
* ng € N is the unique starting node of the CFG.

A CFG can also be represented as a digraph of basic blocks [119]:

Definition 2.2 (CFG on the Basis of Basic Blocks). A CFG is a tuple G =
(B» Ea bd‘f):

e B ={by,by,---} is the set of basic blocks in the CFG;

o E = {e),ey,---} is the set of directed edges connecting the basic blocks in the
CFG;

* by € Bis the unique starting basic block of the CFG.

Figure 2.1 shows a CFG example on the basis of individual nodes and basic blocks
respectively. Letter a, b, --- inside each node denotes the memory block accessed
by the node. When we mention the CFG in the rest of this chapter, it is by default
on the basis of nodes unless otherwise specified.

At run-time, when (a node of) the program accesses a memory block, the
processor first checks whether the memory block is in the cache. If yes, it is a hit,
and the program directly accesses this memory block from the cache. Otherwise, it
is a miss, and this memory block is first installed in the cache before the program
accesses it.

A memory block only occupies one cache line regardless of how many times it
is accessed. So the number of unique accesses to memory blocks, i.e., the number
of pairwise different memory blocks in an access sequence is important to the cache
behavior. We use the following concept to reflect this:

Fig. 2.1 A control-flow-graph example. (a) On the basis of nodes, (b) on the basis of basic blocks
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Definition 2.3 (Stack Length). The Stack Length of a memory access sequence
corresponding to a path p in the CFG, denoted by 7 (p), is the number of pairwise
different memory blocks accessed along p.

For example, the stack length of the access sequence
a—>b—->c—a—->d—->a—>b—d

is 4, since only 4 memory blocks a, b, c, and d are accessed in this sequence.

The number of memory blocks accessed by a program is typically far greater than
the number of cache lines, so a replacement policy must decide which block to be
replaced upon a miss. In the following we describe the LRU and MRU replacement
policy, respectively.

2.3.1 LRU Replacement

The LRU replacement policy always stores the most recently accessed memory
block in the first cache line. When the program accesses a memory block s, if s is
not in the cache (miss), then all the memory blocks in the cache will be shifted one
position to the next cache line (the memory block in the last cache line is removed
from the cache), and s is installed to the first cache line. If s is in the cache already
(hit), then s is moved to the first cache line and all memory blocks that were stored
before s’s old position will be shifted one position to the next cache line. Figure 2.2
illustrates the update upon an access to memory block s in an LRU cache of 4 lines.
In the figure, the uppermost block represents the first (lowest-index) cache line and
the lowermost block is the last (highest-index) one. All figures in this chapter follow
this convention.

A metric defined in [26] to evaluate the predictability of a replacement policy
is the minimal-life-span (mls), the minimal number of pairwise different memory
blocks required to evict a just visited memory block out of the cache (not counting
the access that brought the just visited memory block into the cache). It is known
that [26]:

Lemma 2.1. The mls of LRU is L.

Recall that L is the number of lines in the cache. The mls metric can be directly used
to determine cache hits/misses for a memory access sequence: if the stack length of

f;ghezfp ;;gsgiﬁ(}? if L‘RU cache line 1 | @ |1 4 [ a | !
where the left part is a miss :=Sb E i ;=Sb E j

and the right part is a hit
cacheline4 | d |4 4 4 4
miss hit
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the sequence between two successive accesses to the same memory block is smaller
than mls, then the later access must be a hit. For example, for a memory access
sequence

a—b—>c—c—>d—>a—>e—>b

on a 4-way LRU cache, we can easily conclude that the second access to memory
block a is a hit since the sequence between two accesses toaisb — ¢ — ¢ — d,
which has stack length 3. The second access to b is a miss since the stack length of
the sequence ¢ — ¢ — d — a — e is 4. Clearly, replacement policies with larger
mls are preferable, and the upper bound of mls is L.

2.3.2 MRU Replacement

For each cache line, the MRU replacement policy stores an extra MRU-bit, to
approximately represent whether this cache line was recently visited. An MRU-bit
at 1 indicates that this line was recently visited, while at 0 indicates the opposite.
Whenever a cache line is visited, its MRU-bit will be set to 1. Eventually there will
be only one MRU-bit at 0 in the cache. When the cache line with the last MRU-bit
at 0 is visited, this MRU-bit is set to 1 and all the other MRU-bits change back from
1 to 0, which is called a global-flip.

More precisely, when the program accesses a memory block s, MRU replacement
first checks whether s is already in the cache. If yes, then s will still be stored in the
same cache line and its MRU-bit is set to 1 regardless of its original state. If s is
not in the cache, MRU replacement will find the first cache line whose MRU-bit is
0, then replace the originally stored memory block in it by s and set its MRU-bit to
1. After the above operations, if there still exists some MRU-bit at 0, the remaining
cache lines’ states are kept unchanged. Otherwise, all the remaining cache lines’
MRU-bits are changed from 1 to 0, which is a global-flip. Note that the global-flip
operation guarantees that at any time there is at least one MRU-bit in the cache
being 0.

In the following we present the MRU replacement policy formally. Let M be the
set of all the memory blocks accessed by the program plus an element representing
emptiness. The MRU cache state can be represented by a function C : {1,--- ,L} —
M x {0, 1}. We use C(i) to denote the state of the i"* cache line. For example, C(i) =
(s, 0) represents that cache line i currently stores memory block s and its MRU-bit
is 0. Further, we use C(i).w and C(i).S to denote the resident memory block and the
MRU-bit of cache line i. The update rule of MRU replacement can be described by
the following steps, where C and C’ represent the cache state before and after the
update upon an access to memory block s, respectively, and § denotes the cache line
where s should be stored after the access:
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Fig. 2.3 An example illustrating MRU and its mls

1. If there exists i s.t. C(h).w = s, thenlet § < h, otherwiselet§ = hs.t. C(h).f =
0 and C(j). = 1 forallj < h.

2. C'(§) < (s, 1)

3. If C(h).p = 1 for all h # 8, then let C'(j) < (C(j).w, 0) for all j # § (i.e.,
global-flip), otherwise C'(j) <— C(j) for all j # §.

Figure 2.3 illustrates MRU replacement with a 4-way cache. First the program
accesses memory block s, which is already in the cache. So s still stays in the
same cache line, and the corresponding MRU-bit is changed to 1. Then the program
accesses e, which is not in the cache yet. Since only the 4" cache line’s MRU-bit
is 0, e is installed in that line and triggers the global-flip, after which the 4" cache
line’s MRU-bit is 1 and all the other MRU-bits are changed to 0. Then the program
accesses f and s in order, which are both not in the cache, so they will be installed
to the first and second cache line with MRU-bits at 0 and change these bits to 1.

In MRU caches, an MRU-bit can roughly represent how old the corresponding
memory block is, and the replacement always tries to evict a memory block that is
relatively old. So MRU can be seen as an approximation of LRU. However, such an
approximation results in a very different mls [26]:

Lemma 2.2. The mls of MRU is 2.

The example in Fig. 2.3 illustrates this lemma, where only two memory blocks e and
f are enough to evict a just-visited memory block s. It is easy to extend this example
to arbitrarily many cache lines, where we still only need two memory blocks to evict
s. Partly due to this property, MRU has been believed to be a very unpredictable
replacement policy, and to the best of our knowledge it has never been seriously
considered as a good candidate for timing-predictable architectures.

2.4 A Review of the Analysis for LRU

As we mentioned in Sect.2.1, the MRU analysis proposed in this chapter uses
directly the results of the LRU analysis for the same program. Thus, before
presenting our new analysis technique, we first provide a brief review of the state-
of-the-art analysis technique for LRU.

Exact cache analysis suffers from a serious state-space explosion problem.
Hence, researchers resort to approximation techniques separating path analysis and
cache analysis for good scalability [19]. Path analysis requires an upper bound on
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the timing delay of a node whenever it is executed. Therefore, the main purpose of
the LRU cache analysis is to decide the cache hit/miss classification (CHMC) for
each node [19, 103]:

e AH (always hit): The node’s memory access is always hit whenever it is executed.

e FM (first miss): The node’s memory access is miss for the first execution, but
always hit afterwards. This classification is useful to handle “cold miss” in loops.

¢ AM (always miss): The node’s memory access is always miss whenever it is
executed.

¢ NC (non-classified): Cannot be classified into any of the above categories. This
category has to be treated as AM in the path analysis.

Among the above CHMC, we call AH and FM positive classification since they
ensure that (the major portion of) the memory accesses of a node to be hits, and call
AM and NC negative classification.

Recall that the mls of LRU is L, and one can directly use this property to decide
the hit/miss of a node with linear access sequences. However, a CFG is generally a
digraph, and there may be multiple paths between two nodes.

The following concept captures the maximal number of pairwise different
memory blocks between two nodes accessing the same memory block in the CFG.

Definition 2.4 (Maximal Stack Distance). Let n; and n; be two nodes accessing
the same memory block s. The Maximal Stack Distance from »; to n;, denoted by
dist(n;, n;), is defined as:

e~ ymax{m(p) [ p € P(n;,n;))} if P(ni,n;) # 0
dist(ni. nj) = 0 it P(ni.ny) = 0

where P(n;, n)) is the set of paths satisfying

* n; and n; is the first and last node of the path, respectively;
* None of the nodes in the path, except the first and last, accesses s.

Note that the maximal stack distance between two nodes is direction sensitive, i.e.,
dist(n;, n;) may not be equal to dist(n;, n;). The example in Fig. 2.4 illustrates the
maximal stack distance using a CFG with three nodes n;, n3, and n; accessing the
same memory block s. We have dist(n;,n7) = 5 since P(n;, n7) contains a path

ny — Nng —> N5 —> Ng —> Ny —> Ng —> Ng —> N4 — N7y

in which s, a, ¢, d, and e are accessed. We have dist(n;, n3) = 2 since ny — n, — n3
is the only path in P(ny, n3) (any other path from n; to n3 does not satisfy the second
condition for P). We have dist(n3,n7) = 0 since any path from n3 to n; has to go
through n; which also accesses s.

Now one can use the maximal stack distance to judge whether the CHMC
of a node n; is positive: n; falls into the positive classification (AH or FM), if
dist(n;, nj) < L holds for any node 7; that accesses the same memory block s as n;.
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Fig. 2.4 Tllustration of Maximal Stack Distance

This is because there are not enough pairwise different memory blocks to evict s
along any path to n; since the last access to s.

However, computing the exact maximal stack distance is in general very
expensive. Therefore, the LRU analysis resorts to over-approximation by abstract
interpretation. The main idea is to define an abstract cache state and iteratively
traverse the program until the abstract state converges to a fixed point, and use the
abstract state of this fixed point to determine the CHMC. There are mainly three
fixed-point analyses:

e Must analysis to determine AH nodes.
* May analysis to determine AM nodes.
» Persistence analysis to determine FM nodes.

A node is an NC if it cannot be classified by any of the above analyses. We refer to
[24, 110] for details of these fixed-point analyses.

2.5 The New Analysis of MRU

In this section we present our new analysis for MRU. First we show that the existing
CHMC in the LRU analysis as introduced in last section is actually not suitable to
capture the cache behavior under MRU, and thus we introduce a new classification
k-Miss (Sect.2.5.1). After that we introduce the conditions for nodes to be k-Miss
(Sect. 2.5.2), and show how to efficiently check these conditions (Sect. 2.5.3). Then
the k-Miss classification is generalized to more precisely analyze nested-loops
(Sect. 2.5.4). Finally we present how to apply the cache analysis results in the path
analysis to obtain the WCET estimation (Sect. 2.5.5).

2.5.1 New Classification: k-Miss

First we consider the example in Fig.2.5a. We can see that dist(n;,n;) = 4, i.e.,
4 pairwise different memory blocks appear in each iteration of the loop no matter
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Fig. 2.5 An example motivating the k-Miss classification. (a) A CFG example, (b) cache update
when the two branches are taken alternatively

which branch is taken. Since dist(ni,n;) is larger than 2 (the mls of MRU), n;
cannot be decided as a positive classification using mls.

Now we have a closer look into this example, considering a particular execution
sequence in which the two branches are taken alternatively, as shown in Fig. 2.5b.
Assume that the memory blocks initially stored in the cache (denoted by “?”) are all
different from the ones that appear in Fig. 2.5a, and initial MRU-bits are shown in
the first cache state of Fig. 2.5b.

We can see that the first three executions of s are all misses. The first miss is
a cold miss which is unavoidable anyway under our initial cache state assumption.
However, the second and third accesses are both misses because s is evicted by other
memory blocks. Indeed, node n; cannot be determined as AH or FM, and one has to
put it into the negative classification and treat it as being always miss whenever it is
executed.

However, if the sequence continues, we can see that when n; is visited for the
fourth time, s is actually in the cache, and most importantly, the access of n; will
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always be a hit afterwards (we do not show a complete picture of this sequence, but
this can be easily seen by simulating the update for a long enough sequence until a
cycle appears).

The existing positive classification AH and FM is inadequate to capture the
behavior of nodes like n; in the above example, which only encounters a smaller
number of misses, but will eventually go into a stable state of being always hits. Such
behavior is actually quite common under MRU. Therefore, the analysis of MRU will
be inherently very pessimistic if one only relies on the AH and FM classification to
claim cache hits.

The above phenomenon shows the need for a more precise classification to
capture the MRU cache behavior. As we show in Sect. 2.5.2, the number of misses
under MRU may be bound not only for individual nodes, but also for a set of nodes
that access the same memory block. This leads us to the definition of the k-Miss
classification as follows:

Definition 2.5 (k-Miss). A set of nodes S = {ny,---,n;} is k-Miss iff at most k
accesses by nodes in S are misses while all the other accesses are hits.

The traditional classification FM can be viewed as a special case of k-Miss with
a singleton node set and k = 1. Note that although the k-Miss classification can
bound the number of misses for a set of nodes, it does not say anything about when
do these k times of misses actually occur. The misses do not necessarily occur at the
first k accesses of these nodes. It allows the misses and hits to appear alternatively,
as long as the total number of misses does not exceed k.

2.5.2 Conditions for k-Miss

In this section we establish the conditions for a set of nodes to be k-Miss. We start
with an important property of MRU:

Lemma 2.3. At least k pairwise different memory blocks are needed to evict a
memory block in cache line k with MRU-bit at 1.

Proof. Only the memory block in a cache line with MRU-bit at 0 can be evicted, so
before the eviction of s there must be a global-flip to change the MRU-bit of cache
line k& from 1 to 0. Right after the global flip, the number of 0-MRU-bits among
cache lines {1,--- ,k} is at least k — 1, so k — 1 pairwise different memory blocks
(which are also different from the one triggering the global-flip) are needed to fill
up these 0-MRU-bit cache lines. In total, the number of pairwise different memory
blocks required is at least k.

Lemma 2.3 indicates that the minimal-life-span of memory blocks installed to
different cache lines are asymmetric: a cache line with a greater index provides
a larger minimal-life-span guarantee (while the mls metric does not distinguish
different positions but simply captures the worst case). To provide a better analysis
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than the mls approach, one needs information about where a memory block is
installed. However, under MRU a memory block may be installed to any cache
line without restricting the cache state beforehand. Since the initial cache state is
unknown, and the precise cache state information is lost quickly during the abstract
analysis, it is difficult to precisely predict the position of a memory block in the
cache.

However, Lemma 2.3 indeed gives us opportunities to do a better analysis. When
a memory block is installed to a cache line with a larger index, it becomes more
difficult to be evicted. So the main idea of our analysis is to verify whether a memory
block will eventually be installed to a “safe position” (a cache line with large enough
index) and stay there afterwards (as long as it executes in the scope of the program
under analysis). The k times of misses in k-Miss happens before the memory block
is installed to the “safe position,” and after that all the accesses will be hits. In the
following we show the condition for a memory block to have such behavior. We first
introduce an auxiliary lemma:

Lemma 2.4. On an L-way MRU cache, L pairwise different memory blocks are
accessed between two successive global-flips (including the ones triggering these
two global-flips).

Proof. Right after a global-flip, there are L — 1 cache lines whose MRU-bits are 0.
In order to have the next flip, all these cache lines of which the MRU-bits are 0 need
to be accessed, i.e., it needs L — 1 pairwise different memory blocks that are also
different from the one causing the first global-flip. So in total L pairwise different
memory blocks are involved in the access sequence between two successive global-
flips.

Lemma 2.4 is illustrated by the example in Fig.2.6 with L = 4. The access
to memory block a triggers the first global-flip, after which 3 MRU-bits are 0. To
trigger the next global-flip, these three MRU-bits have to be changed to 1, which
needs 3 pairwise different memory blocks. So in total 4 pairwise different memory
blocks are involved in the access sequence between these two global-flips. With this
auxiliary lemma, we are able to prove the following key property:

global-flip global-flip

cache line 1

cache line 4

Fig. 2.6 Illustration of Lemma 2.4
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b

cache line 1

cache line 4

Fig. 2.7 Illustration of Lemma 2.5. (a) A path from n, to n,, (b) s is moved to a larger index when
it is loaded back

Lemma 2.5. Suppose that under MRU at some point a memory block s is accessed
by node n, at cache line i (either hit or miss), and the next access to s is a miss
caused by n, upon which s is installed to cache line j. We have j > i if the following
condition holds:

dist(n,, ny) < L. 2.1

Figure 2.7 illustrates Lemma 2.5, where 7, and n, are two nodes accessing the same
memory block s and satisfying Condition (2.1). We focus on a particular path as
shown in Fig.2.7a. Figure 2.7b shows the cache update along this path: first n,
accesses s in the second cache line. After s is evicted out of the cache and is loaded
back again, it is installed to the third cache line, which is one position below the
previous one. In the following we give a formal proof of the lemma.

Proof. Let event ev, be the access to s at cache line i by n, as stated in the lemma,
and event ev, the installation of s to cache line j by n,. We prove the lemma by
contradiction, assuming j < i.

The first step is to prove that there are at least two global-flips in the event
sequence {evyii, -+, evy_1} (evyy denotes the event right after ev, and ev,_; the
event right before ev,).

Before evy, s has to be first evicted out of the cache. Let event ev, denote such an
eviction of s, which occurs at cache line i. By the MRU replacement rule, a memory
block can be evicted from the cache only if the MRU-bit of its resident cache line is
0. So we know C(i).8 = 0 right before ev,.

On the other hand, we also know that C(i).8 = 1 right after event ev,. And since
only a global-flip can change an MRU-bit from 1 to 0, we know that there must exist

at least one global-flip among the events {ev, 41, , evy_1}.
Then we focus on the event sequence {ev,,---,ev,_;}. We distinguish two
cases:

e i = j. Right after the eviction of s at cache line i (event ev,), the MRU-bit of
cache line i is 1. On the other hand, just before the installation of s to cache line
J (event evy), the MRU-bit of cache line j must be 0. Since i = j, there must be at
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least one global-flip among the events {ev,41,--- ,ev,_;}, in order to change the
MRU-bit of cache line i = j from 1 to 0.

* i > j. By the MRU replacement rule, we know that just before s is evicted in
event ev,, it must be true that VA < i : C(h).f = 1, and hence C(j).8 = 1.
On the other hand, just before the installation of s in event ev,, the MRU-bit of
cache line j must be 0. Therefore, there must be at least one global-flip among
the events {ev,,--- , ev,_;}, in order to change the MRU-bit of cache line j from
1to 0.

In summary, there is at least one global-flip among {ev,, -, evy_i}.

Therefore, we can conclude that there are at least two global-flips among the
events {ev,41,- -+ ,ev,_1}. By Lemma 2.4 we know that at least L pairwise different
memory blocks are accessed in {evy1, --- ,ev,_;}. Since evy is the first access to
memory block s after ev,, there is no access to s in {ev,4,--- ,evy_l}, so at least
L + 1 pairwise different memory blocks are accessed in {ev,, - - - , evy}.

On the other hand, let p be the path that leads to the sequence {ev,,--- ,ev_v}.
Clearly, p starts with n, and ends with n,. We also know that no other node along
p, apart from n, and n,, accesses s, since ev, is the first event accessing s after
evy. So p is a path in P(n,, n,) (Definition 2.4), and we know dist(n,, n,) > 7(p).
Combining this with Condition (2.1) we have 7 (p) < L, which contradicts with that
atleast L+ 1 pairwise different memory blocks are accessed in {ev,, -+ , evy} as we
concluded above.

To see the usefulness of Lemma 2.5, we consider a special case where only
one node n in the CFG accesses memory block s and dist(n,n) < L as shown in
Fig.2.8a. In this case, by Lemma 2.5 we know that each time s is accessed (except
the first time), there are only two possibilities:

¢ the access to s is a hit, or
e the access to s is a miss and s is installed to a cache line with a strictly larger
index than before.

So we can conclude that the access to s can only be miss for at most L times since
the position of s can only “move downwards” for a limited number of times which
is bounded by the number of cache lines. Moreover, we can combine Lemma 2.3
and Lemma 2.5 to have a stronger claim: if condition dist(n, n) < k holds for some
k < L, then the access to s can only be miss for at most k times, since the number of
pairwise different memory blocks along the path from n back to n is not enough to
evict s as soon as it is installed to cache line k.

However, in general there could be more than one node in the CFG accessing
the same memory block, where Lemma 2.5 cannot be directly applied to determine
the k-Miss classification. Consider the example in Fig.2.8b, where two nodes n;
and n, both access the same memory block s, and we have dist(n;,n,) < L
and dist(ny,n;) > L. In this case, we cannot classify ny as a k-Miss, although
Lemma 2.5 still applies to the path from n; to n,. This is because Lemma 2.5 only
guarantees the position of s will move to larger indices each time n, encounters a
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Fig. 2.8 An example a b
illustrating the usage of

Lemma 2.5. (a) Only one -~ ny \
node n accesses s and
dist(n, n) < L. (b) Two nodes ;

. <=
n; and n, both accesses s with ~~ N _>©_ /
diSt(l’ll, nz) < L and ny

diSt(nz,nl) >L

miss, but the position of s may move to smaller indices upon misses of n; (since
dist(n,,n;) > L), which breaks down the memory block’s movement monotonicity.

In order to use Lemma 2.5 to determine the k-Miss classification in the general
case, we need to guarantee a global movement monotonicity of a memory block
among all the related nodes. This can be done by examining the condition of
Lemma 2.5 for all node pairs in a strongly connected component (maximal strongly
connected subgraph) together, as described in the following theorem:

Theorem 2.1. Let SCC be a strongly connected component in the CFG, let S be the
set of nodes in SCC accessing the same memory block s. The total number of misses
incurred by all the nodes in S is at most k if the following condition holds:

Vg, ny € S : dist(n,, ny) <k (2.2)

where k is bounded by the number of cache lines L.

Proof. Let evy and ev; be the first and last events triggered during program
execution. Since S is a subset of the strongly connected component SCC, any event
accessing s in the event sequence {evy,--- ,ev;} has to be also triggered by some
node in S (otherwise there will be a cycle including nodes both inside and outside
SCC, which contradicts with that SCC is a strongly connected component).

By k < L, Condition (2.2) and Lemma 2.5, we know that among the events
{evy, .-+, ev;} whenever the access to s is a miss, s will be installed to a cache line
with a strictly larger index than before. Since every time after s is accessed in the
cache (either hit or miss), the corresponding MRU-bit is 1, so by Condition (2.2)
and Lemma 2.3 we further know that among the events {evy, - - , ev;}, as soon as s
is installed to a cache line with index equal to or larger than %, it will not be evicted.
In summary, there are at most k misses of s among events {evy,--- ,ev;}, i.e., the
nodes in S have at most k£ misses in total.

2.5.3 Efficient k-Miss Determination

Theorem 2.1 gives us the condition to identify k-Miss node sets. The major
task of checking this condition is to calculate the maximal stack distance dist().
As mentioned in Sect. 2.4, the exact calculation of dist() is very expensive, which is
the reason why the analysis of LRU relies on Al to obtain an over-approximate clas-
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sification. For the same reason, we also resort to over-approximation to efficiently
check the conditions of k-Miss. The main idea is to use the analysis result for the
same program under LRU to infer the desired k-Miss classification under MRU.

Lemma 2.6. Let n, be a node that accesses memory block s and is classified as
AH/FM by Must/Persistence analysis with a k-way LRU cache. For any node n,
that also accesses s, if there exists a cycle in the CFG including ny and ny, then the
following must hold:

dist(ny, ny) < k.

Proof. We prove the lemma by contradiction. Let n, be a node that also accesses
s and there exists a cycle in the CFG including n, and n,. We assume that
dist(n,,n,) > k. Then by the definition of dist(n,,n,) we know that there must
exist a path p from n, to n, satisfying (i) w(p) > k and, (ii) no other node accesses
s apart from the first and last node along this path (otherwise dist(n,,n,) = 0).
This implies that under LRU, whenever n, is reached via path p, s is not in the
cache. Furthermore, n, can be reached via path p repeatedly since there exists a
cycle including n, and ny. This contradicts with that n, is classified as AH/FM by
the Must/Persistence analysis with a k-way LRU cache (Must/Persistence yields
safe classification, so in the real execution an AH node will never be miss and an
FM node can be miss for at most once).

Theorem 2.2. Let SCC be a strongly connected component in the CFG, and S the
set of nodes in SCC that access the same memory block s. If all the nodes in S are
classified as AH by Must analysis or FM by Persistence analysis with a k-way
LRU cache, then the node set S is k-Miss with an L-way MRU cache for k < L.

Proof. Let ny, n, be two arbitrary nodes in S, so both of them access memory block
s and are classified as AH/FM by the Must/Persistence analysis with a k-way LRU
cache. Since S is a subset of a strongly connected component, we also know n,
and n, are included in a cycle in the CFG. Therefore, by Lemma 2.6 we know
dist(n,,n,) < k. Since n,, n, are arbitrarily chosen, the above conclusion holds
for any pair of nodes in S. Therefore, S can be classified as k-Miss according to
Theorem 2.1.

Theorem 2.2 tells that we can identify k-Miss node sets with a particular k by
doing Must/Persistence analysis with a LRU cache of the corresponding number
of ways. Actually, we only need to do the Must and Persistence analysis once
with an L-way LRU cache, to identify k-Miss node sets with all different k (< L).
This is because the Must and Persistence analysis for LRU cache maintains the
information about the maximal age of a memory block at certain point in the CFG,
which can be directly transferred to the analysis result with any cache size smaller
than L. For example, suppose by the Must analysis with an L-way LRU cache,
a memory block s has maximal age of k before the access of a node n, then by
the Must analysis with a k-way LRU cache this node n will be classified as AH.
We will not recite the details of Must and Persistence analysis for LRU cache
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or explain how the age information is maintained in these analysis procedures, but
refer interested readers to the references [19, 110].

Moreover, the maximal age information in the Must and Persistence analysis
with an 2-way LRU cache can also be used to infer traditional AH and FM clas-
sification under MRU according to the relative competitiveness property between
MRU and LRU [95]: an L-way MRU cache is 1-competitive relative to a 2-way
LRU cache, so a Must (Persistence) analysis with a 2-way LRU cache can be used
as a sound Must (Persistence) analysis with an L-way MRU cache. Therefore, if
the maximal age of a node in a Must (Persistence) analysis with an L-way LRU
cache is bounded by 2 (L > 2), then this node can be classified as AH (FM) with
an L-way MRU cache. Adding this competitiveness analysis optimization helps us
to easily identify AH nodes when several nodes in a row access the same memory
block. For example, if a memory block (i.e., a cache line) contains two instructions,
then in most cases the second instruction is accessed right after the first one, so
we can conclude that the second node is AH with a 2-way LRU cache, and thus
is also AH with an L-way MRU. Besides dealing with the above easy case, the
competitiveness analysis optimization sometimes can do more for set-associative
caches with a relatively large number of cache sets. For example, consider a path
accessing 16 pairwise different memory blocks, and a set-associative cache of 8
sets. On average only 2 memory blocks on this path are mapped to each set, so
competitiveness analysis may have a good chance to successfully identify some AH
and FM nodes.

2.5.4 Generalizing k-Miss for Nested Loops

Precisely predicting the cache behavior of loops is very important for obtaining
tight WCET estimations. In this chapter, we simply define a loop £, as a strongly
connected subgraph in the CFG.? (Note the difference between a strongly connected
subgraph and a strongly connected component.)

The ordinary CHMC may lead to over-pessimistic analysis when loops are
nested. For example, Fig.2.9 shows a program containing two-level nested loops
and its (simplified) CFG. Suppose the program executes with a 4-way LRU cache.
Since dist(ng,n,) = 6 > 4 (sees - f —>d - e - g — b — d — ), the
memory block s can be evicted out of the cache repeatedly, and thus we have to put
ny into the negative classification according to the ordinary CHMC, and treat it as
being always miss whenever it is accessed. However, by the program semantics we
know that every time the program enters the inner loop it will iterate for 100 times,

3Tn realistic programs, loop structures are usually subject to certain restrictions (e.g., a natural loop
has exactly one header node which is executed every time the loop iterates, and there is a path back
to the header node [120]). However, the properties presented in this section are not specific to any
particular structure, so we define a loop in a more generic way.
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) ) outer loop: LP4
void main() {

C e inner loop: LP,
inti, j, X;

for(i=0;i++;i<5)
for (j = 0; j++;j <100 )
X++:

) ;

Fig. 2.9 A program with nested loop and its (simplified) CFG

during which s will not be evicted out of the cache since the inner loop can be fit into
the cache entirely. So node n; has only 5 misses out of the total 500 cache accesses
during the whole program execution. Putting n; into the negative classification and
treating it as being always miss is obviously over-pessimistic.

To solve this problem, [24, 106] reloaded the FM classification by relating it to
certain loop scopes:

Definition 2.6 (FM Regarding a Loop). A node is FM regarding a loop £, iff it
has at most one miss (at the first access) and otherwise will be always hit when the
program executes inside £y.

In the above example node n, is FM regarding the inner loop £,.

The same problem also arises for MRU. Suppose the program in Fig.2.9 runs
with a 4-way MRU cache. For the same reason as under LRU, node n; has to be put
into the negative classification category. However, we have dist(n,, ny) = 3 if only
looking at the inner loop, which indicates that n; can be miss for at most 3 times
every time it executes inside the inner loop. As with FM, we can reload the k-Miss
classification to capture this locality:

Definition 2.7 (k-Miss Regarding a Loop). A node is k-Miss regarding a loop £,
of the CFG iff it has at most k misses and all the other accesses are hits when the
program executes inside £y.

The sought k-Miss classification under MRU for a loop can be inferred from
applying the FM classification under LRU to the same loop:

Theorem 2.3. Let £ be a loop in the CFG, and S the set of nodes in the loop that
access the same memory block s. If all the nodes in S are classified as FM regarding
£ with a k-way LRU cache (k < L), then the node set S is k-Miss regarding £,
with an L-way MRU cache.

Proof. Similar to the proof of Theorems 2.1 and 2.2.
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A node may be included in more than one k-Miss node sets regarding different
loops. This typically happens across different levels in nested loops. For example,
if the program in Fig. 2.9 executes with an 8-way MRU cache, then by Theorem 2.3
{ns} is classified as 3-Miss regarding the inner loop and 6-Miss regarding the outer
loop. The miss number constraints implied by k-Miss with different k£ and different
loops are generally incomparable. For example, with the loop bound setting in
Fig.2.9, 3-Miss regarding the inner loop allows at most 3 x 5 = 15 misses during
the whole execution, which is “looser” than the outer loop 6-Miss which allows at
most 6 misses. However, if we change the outer loop bound to 1, then the inner loop
3-Miss actually poses a “tighter” constraint as it only allows 3 misses while the
outer loop 6-Miss still allows 6 misses. Although it is possible to explore program
structure information to remove redundant k-Miss, we simply keep all the k-Miss
classifications in our implementation since the ILP solver for path analysis can
automatically and efficiently exclude such redundancy, as we illustrate in the next
section.

2.5.5 WCET Computation by IPET

By now we have obtained the cache analysis results for MRU:

e k-Miss node sets that are identified by Theorems 2.2 and 2.3.

e AH and FM nodes that are identified using the relative competitiveness property
between MRU and LRU as stated at the end of Sect. 2.5.3.

¢ All the nodes not included in the above two categories are NC.

Note that a node classified as AH by the relative competitiveness property may
also be included in some k-Miss node set. In this case, we can safely exclude this
node from the k-Miss node set, since AH provides a strong guarantee and the total
number of misses incurred by other nodes in that k-Miss set is still bounded by k.

In the following we present how to apply these results in the path analysis
by IPET to obtain the WCET estimation. The path analysis adopts a similar ILP
formulation framework to the standard, but it is extended to handle k-Miss node
sets. All the variables in the following ILP formulation are non-negative, which will
not be explicitly specified for simplicity of presentation.

To obtain the WCET, the following maximization problem is solved:

Maximize E Ca
Vb,

where ¢, denotes the overall execution cost of basic block b, (on the worst-case
execution path). Since a basic block typically contains multiple nodes with different
CHMOC, the execution cost for each basic block is further refined as follows.
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We assume the execution delay inside the processing unit is constant for all
nodes, and the total execution delay of a node only differs depending on whether
the cache access is a hit or a miss: C" upon a hit and C" upon a miss. Since the
accesses of an AH node are always hits, the overall execution delay of an AH node
n; in b, is simply C" x x, where the variable x, represents the execution count of
b,. Similarly, the overall execution delay of an NC node is C" x x,. The remaining
nodes are the ones included in some k-Miss node sets (regarding some loops). For
each of such nodes n;, we use variables z; (< x,) to denote the execution count of n;
with cache access being miss. So the overall execution delay of a node n; in some
k-Miss node set is C" x z; + C" x (x, — z;). Putting the above discussions together,
we have the total execution cost of a basic block b,:

ca = (man X C" + ming X C™) X x4 + Z (C" x 2+ C" x (x4 — 21))

n;Eb;k

where 7an and mng is the number of AH and NC nodes in b, respectively, and b} is
the set of nodes in b, that are contained in some k-Miss node sets (regarding some
loops). Since at most k misses are incurred by a k-Miss node set regarding a loop
£, every time the program enters and iterates inside the loop, we have the following
constraints to bound z;:

V (S, £) s.t. S is k-Miss regarding £, : Zz,- <kx Z Vi

n€S ej€entry

where entry is the set of edges through which the program can enter £, and we use
variable y; to denote how many times an edge ¢; € entr, is taken during program
execution. Recall that a node may be contained by multiple k-Miss sets (e.g., k-Miss
regarding both the inner and outer loop with different k), so each z; may be involved
in several of the above constraints.

Besides the above constraints, the formulation also contains program structural
constraints which are standard components of the IPET encoding. The WCET of the
program is obtained by solving the above maximization problem, and the execution
count for each basic block along the worst-case path is also returned.

2.6 Experimental Evaluation

The main purpose of the experiments is to evaluate

1. the precision of our proposed MRU analysis, and
2. the predictability comparison between LRU and MRU.

To evaluate (1), we compare the estimated WCET obtained by our MRU analysis
and the measured WCET obtained by simulation with MRU caches. To evaluate
(2), we compare the estimated WCET obtained by our MRU analysis and that by
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the state-of-the-art LRU analysis based on abstract interpretation (Must and May
analysis in [19] and Persistence analysis in [110]). The smaller is the difference
between the estimated WCET by our MRU analysis and by the LRU analysis,
the more confident we are to claim that MRU is also a good candidate for cache
replacement policies in real-time embedded systems, especially taking into account
MRU’s other advantages in hardware cost, power consumption, and thermal output.

2.6.1 Experiment Setup

As presented in Sect. 2.5.5, we assume the execution delay of each node only differs
depending on whether the cache access is a hit or miss. The programs execute
with a 1K bytes set-associative instruction cache. Each instruction is 8 bytes, and
each cache line (memory block) is 16 bytes (i.e., each memory block contains
two instructions). All instructions have a fixed latency of 1 cycle. The memory
access penalty is 1 cycle upon a cache hit, and 10 cycles upon a cache miss. To
conduct experiments with cache of different number of ways, we keep the total
cache size fixed and change the number of cache sets correspondingly. Although
the experiments in this chapter are conducted with instruction caches, the theoretical
results of this work also directly apply to data caches, and we leave the evaluation
for data caches as our future work.

The programs used in the experiments are from the Mélardalen Real-Time
Benchmark suite [121]. Some programs in the benchmark are not included in our
experiments since the CFG construction engine (from Chronos [122]) used in our
prototype does not support programs with particular structures like recursion and
switch-case very well. The loop bounds in the programs that cannot be automatically
inferred by the CFG construction engine are manually set to be 50. The size of these
programs used in our experiments ranges from several tens to about 4000 lines of
C code, or from several tens to about 8000 assembly instructions compiled by a
gcc compiler re-targeted to the SimpleScaler simulator [123] with —O0 option (no
optimization is allowed in the compilation).

Since the benchmark programs have been compiled by a gcc compiler re-targeted
to SimpleScalar, a straightforward way of doing the simulation is to execute the
compiled binary on SimpleScalar (configured and modified to match our hardware
configuration). However, the comparison between the measured execution time
by this approach and the estimated WCET may be meaningless to evaluate the
quality of our MRU analysis since (a) simulations may only cover program paths
that are much “shorter” than the actual worst-case path, and (b) the precision of
the estimated WCET also depends on other factors, e.g., the tightness of the loop
bounds, which is out of the interest of this chapter. In other words, the estimated
WCET can be always significantly larger than the measured execution time obtained
by the above approach, regardless the quality of the cache analysis.
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In order to provide meaningful quality evaluation of our MRU cache analysis,
we built an in-house simulator, which is driven by the worst-case path information
extracted from the solution of the IPET ILP formulation and only simulates the
cache update upon each instruction. This enables us to get closer to the worst-case
path in the simulation and exclude effects of other factors orthogonal to the cache
behavior. Note that the solution of the IPET ILP formulation only restricts how many
times a basic block executes on the worst-case path, which allows the flexibility of
arbitrarily choosing among branches as long as the execution counts of basic blocks
still comply with the ILP solution. In order to obtain execution paths that are as close
to the worst-case path as possible, our simulator always takes different branches
alternatively which leads to more cache misses. The manual and source code of the
simulator are online available [124].

2.6.2 Results and Discussions

Tables 2.1 and 2.2 show the simulation and analysis results with 4-way caches. In
simulation with each cache, for each program we record the measured execution
time (column “sim. WCET”) and the number of hits and misses. In the analysis
with each cache, for each program we record the estimated WCET (column “est.
WCET”) and the number of memory accesses that can and cannot be classified as hit
(column “hit” and “miss”) respectively. We calculate the over-estimation ratio of the
LRU and MRU analysis respectively (column “over est.””). For example, the “sim.
WCET” and “est. WCET” of program bs under LRU is 3911 and 3947, respectively,
then the over-estimation ratio is (3947 — 3911)/3911 = 0.92 %. Finally, we
calculate the excess ratio of MRU analysis over LRU analysis (column “exc. LRU”).
For example, the estimated WCET of program bs under LRU and MRU is 3947 and
4089, respectively, then the excess ratio is (4089 — 3947) /3947 = 3.60 %.

The results show that the WCET estimation with our MRU analysis has very
good precision: the over-estimation comparing with the simulation WCET is on
average 2.06 %. We can also see that the estimated WCETs with MRU and LRU
caches are very close: the difference is 1.17 % on average.

For several benchmark programs, the simulated WCETs are exactly the same
under LRU and MRU. The reason is that MRU is designed to imitate the LRU
policy with a cheaper hardware logic. In some cases, the cache miss/hit behavior
under MRU could be exactly the same as that under LRU, and thereby we may
obtain exactly the same simulated WCET with MRU and LRU for some programs.
Moreover, the total number of memory accesses in the simulation may be different
with two policies for the same program. This is because our simulator simulates the
program execution with each policy according to the “worst-case” path information
obtained from the solution of the corresponding ILP formula for WCET calculation.
Sometimes, the ILP solutions with these two policies may correspond to different
paths in the program, which may lead to different total numbers of memory accesses.
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Then we conduct experiments with 8-way and 16-way caches (with the same
total cache size but different number of cache sets). Note that it is rare to see set-
associative caches with more than 16 ways in embedded systems, since a large
number of ways significantly increase hardware cost and timing delay but brings
little performance benefit [81]. So we did not conduct experiments with caches with
more than 16 ways. Figure 2.10 summarizes the results with 8-way and 16-way
caches, where the WCETSs are normalized as the ratio versus the simulation results
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Fig. 2.10 Experiment results with 8-way and 16-way caches. (a) 8-way caches, (b) 16-way caches
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under LRU. The over-estimation by our MRU analysis is 4.59 and 9.81 % for 8-way
and 16-way caches, respectively, and the difference between the MRU and LRU
analysis is 3.56 and 8.38 %. Overall, our MRU analysis still provides quite good
precision on 8-way and 16-way caches.

We observe that for most programs the over-estimation ratio of the WCET by our
MRU analysis scales about linearly with respect to the number of ways, the reason
of which can be explained as follows. The k times of misses of k-Miss nodes is
merely a theoretical bound for extreme worst-cases. In the simulation experiments,
we observe that it hardly happens that a k-Miss node really encounters k times
of misses. Most k-Miss nodes actually only incur one miss and exhibit similar
behavior to FM nodes under LRU. For example, suppose a loop that contains k
nodes accessing different memory blocks executes with k-way caches. Under LRU,
the maximal ages of these nodes are all k, so our MRU analysis will be classified
each of these nodes as k-Miss, and k x k = k% misses have to be taken into account
for the WCET estimation. However, in the simulation these k£ nodes can be entirely
fit into the cache, and each of them typically only incurs one miss, so the number of
misses reflected in the simulation WCET is typically &, which is k times smaller than
that claimed by the analysis. So the ratio of over-estimated misses increases linearly
with respect to the number of cache ways, and thus the over-estimation ratio in terms
of WCET also scales about linearly with respect to the number of cache ways.

In the above experiments, while our MRU analysis has a precision close to that of
LRU analysis for most programs, it obtains relatively worse performance for several
programs (bs, edn, ndes, prime, qurt, and sqrt). While various program structures
may lead to pessimism in our MRU analysis, there is a common reason behind that
phenomenon, which can be explained as follows. The precision of our MRU analysis
is sensitive to the ratio between the k value of k-Miss nodes and the number of times
for which the loops containing these nodes iterate. For example, suppose a node is
classified as 6-Miss with respect to a loop under MRU. If this loop iterates for 10
times, then the total execution cost of this node is estimated by 11 x6 +2 x4 = 74,
where 11 is the execution cost upon a miss, 6 is the number of misses of this node,
2 is the execution cost upon a cache hit, and 4 is the number of hits of this node. On
the other hand, this node is an FM with respect to the same loop under LRU, and
the total execution costis 11 x 1 + 2 x 9 = 29. The estimated execution cost under
MRU is about 2.5 times of that under LRU. However, if this loop iterates for 100
times, the total execution cost of this node under MRU is 11 x 6 4+ 2 x 94 = 254,
which is only 1.2 times of that under LRU (11 x 1 4+ 2 x 99 = 209). The high
precision of our MRU analysis relies on the big amount of hits predicted by k-Miss.
If a program contains many k-Miss nodes with comparatively large k values but
iterates for a small number of times, the estimated WCET by our MRU analysis
is less precise. This implies that, from the predictability perspective, MRU caches
are more suitable for programs with relatively “small” loops that iterate for a great
amount of times, e.g., with large loop bounds or nested-loops inside.

Figure 2.11 shows comparisons among the LRU analysis, the state-of-the-art
MRU analysis (competitiveness analysis) and our k-Miss-based MRU analysis with
various combinations of different optimization. Each column in the figure represents
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Fig. 2.11 Comparison of different analyses

the normalized WCET (the ratio versus the simulated WCET under LRU) averaged
over all benchmark programs. With each cache setting, the first two columns are
simulations, the next 4 columns are analyses with nested-loop optimization, and the
last 4 columns are analyses without nested-loop optimization:

e s-LRU: Simulated WCET under LRU.

e s-MRU: Simulated WCET under MRU.

* e-LRU: Estimated WCET under LRU.

* e-MRU: Estimated WCET under MRU by the analysis in this paper.

e e-MRU-nc: Estimated WCET under MRU by the analysis in this chapter, but
excludes the competitiveness analysis optimization.

e e-MRU-comp: Estimated WCET under MRU only by competitiveness analysis,
which is the state-of-the-art MRU analysis before our k-Miss-based analysis.

e e-LRU*: Estimated WCET under LRU but excludes the nested-loop optimiza-
tion.

e e-MRU*: Estimated WCET under MRU by the analysis in this paper but
excludes the nested-loop optimization.

e e-MRU-rtas: Estimated WCET under MRU by the analysis in the previous
conference version of this work [22].

¢ e-MRU-comp*: Estimated WCET under MRU only by competitiveness analysis,
but excludes the nested-loop optimization.

By comparing e-MRU with e-MRU-comp we can see that our new MRU
analysis greatly improves the precision over the state-of-the-art technique for MRU
analysis (competitiveness analysis), and the improvement is more significant as the
number of cache ways increases. Recall that the competitiveness analysis relies on
the analysis results for the same program with a 2-way LRU cache (with the number
of cache sets unchanged, and thus the cache size scaled down to % of the original
L-way cache), so its results are more pessimistic when L is larger.

By the comparison among e-MRU, e-MRU-n¢, e-MRU*, and e-MRU-rtas we
can see that both the competitiveness analysis and nested-loop optimization help to
improve our MRU analysis precision. However, the contribution by the nested-loop
optimization is much more significant.
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By comparing columns 3-6 with columns 7-10 we see that in general adding
nested-loop optimization can significantly improve the analysis precision. The only
exception is e-MRU-comp with more cache ways (thus less cache sets, as we keep
the total cache size unchanged), where even the memory blocks mapped to one
cache set in an inner loop are too many to fit into 2 cache ways.

By comparing e-MRU with e-LRU and comparing e-MRU-rtas with e-LRU*,
we can see that the nested-loop optimization, which greatly affects the precision of
each analysis, does not significantly affect the ratio between the estimated WCET
under LRU and MRU. This is because our MRU analysis directly uses the LRU
analysis results to find k-Miss nodes. With a more precise LRU analysis, our MRU
analysis also becomes correspondingly more precise. This is why do this paper and
its earlier conference version [22] draw similar conclusions about the precipitability
comparison between LRU and MRU, although the analysis results in them are
different.

We also evaluate the efficiency of our analysis. As presented in previous sections,
our MRU analysis only requires to do the LRU cache analysis once to infer all the
cache access classifications, so the MRU cache analysis procedure is as efficient
as the state-of-the-art LRU cache analysis based on abstract interpretation. The
interesting problem is the efficiency of the IPET-based path analysis, where more
variables are used to support the constraints for k-Miss nodes. We solve the ILP
formulation with an open source solver /p_solve [125] on a desktop machine with a
3.4 GHZ Core i7 2600 processor. The ILP formulation can be solved very efficiently:
the calculation for each program takes on average 0.1 s and at most 0.8 s.

In summary, the experiment results show that our MRU analysis has both good
precision and high efficiency. The estimated WCET by our MRU analysis is quite
close to that by LRU analysis under common hardware setting, which indicates that
MRU is a good candidate for cache replacement policies in real-time embedded
systems, especially considering MRU’s other advantages in hardware, power, and
thermal efficiency.

2.7 Conclusions

This chapter studies the problem of WCET analysis with MRU caches. MRU was
considered to be a very unpredictable replacement policy in the past, due to the lack
of effective techniques to predict its hit/miss behavior. In this chapter, we disclose
important properties of MRU, and develop efficient techniques to precisely bound
the number of misses and thereby support high-quality WCET estimations with
MRU caches. Experiments with benchmark programs indicate that the estimated
WCET with MRU caches is rather close to that with LRU. This suggests a great
potential for MRU to be used as the cache replacement policy in real-time embedded
systems, especially considering the MRU’s advantages in better cost, power, and
thermal efficiency.
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The experiments in this chapter only consider instruction caches. The reason is
that our WCET analysis prototype does not support high-quality value analysis, so
currently we cannot provide a meaningful evaluation with data caches. However,
the properties of MRU disclosed in this chapter also hold for data caches, and our
proposed analysis techniques can be directly applied to MRU data caches.
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