KNN++: An Enhanced K-Nearest
Neighbor Approach for Classifying Data
with Heterogeneous Views

Ying Xie

Abstract In this paper, we proposed an enhanced KNN approach, which is
denoted as KNN++, for classifying complex data with heterogeneous views. Any
type of view can be utilized when applying the KNN++ method, as long as a
distance function can be defined on that view. The KNN++ includes an integral
learning component that learns the weight of each view. Furthermore, the KNN++
method factors in not only the training data, but also the unknown instance itself
when assessing the importance of different views in classifying the unknown
instance. Experimental results on predicting SPY daily open price demonstrates the
effectiveness of this method in classification. The time complexity of the KNN++
method is linear to the size of the training dataset.

1 Introduction

Most of the methods of machine learning were developed based on the assumption
that each data instance can be represented by a unified view, such as a vector, a
sequence, a matrix, or a graph. However, in reality, many complex data may have
multiple heterogeneous views, each of which reflects one aspect of the data. For
instance, imaging our task is to develop a machine learning algorithm to predict the
price of a stock for tomorrow. For this prediction, we may factor in multiple hetero-
geneous views of historical stock data, including statistics of daily price movement
(may be represented as a vector of daily open, daily high, daily low, and daily close),
stock movement over the past week or a longer time frame (may be represented as a
time series), investors’ sentiment (may be represented as a bag of words), and business
earning reports (may be represented as a matrix). Another example is the data-driven
detection of Alzheimer’s disease based on patient data. Different types of patient data
are worth examining for this purpose, such as brain images (including structural and
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functional images), patients genetic risk profiling, trajectories of multiple biomarkers
over the time course, and patient symptoms and records [1].

Given complex data with multiple heterogeneous views, it is very challenging, if
not impossible, to train a single model over those heterogeneous views of the given
data [2]. In order to cover all those important views, a multiple-classifier system [3]
can be employed. With a multiple-classifier system, different models are trained by
using different machine learning techniques on different views of the data. Then the
final prediction of an unknown instance is reduced from those predications gen-
erated by different models. The reducing process can be a selection process, such as
using cross-validation to pick the best model [4]; or a voting process that aggregates
predications generated by different models; or a stacking process that uses another
layer of learning to optimally combine the underneath predications [5].

It is observed that, by a multiple-classifier system, the process of selecting or
stacking multiple models trained on different views of the training data are com-
pletely independent from the unknown instance that the final predication will be
made for. In other words, no matter how distant two unknown instances are, the
model or underneath view selecting or stacking process are completely the same.
However, the author argues that there are situations where unknown instances
themselves, for which predications are made for, should be factored in when
selecting or stacking underneath views in prediction. In the example of data-driven
detection of Alzheimer’s disease, functional images may be the most important
view in detecting the disease for a patient; whereas trajectories of certain
biomarkers may be the most import view in detecting for another patient.

Therefore, the primary goal of this research is to design a new machine learning
strategy such that, (1) it can utilize different heterogeneous views of a given data in
classification; (2) not only the training data, but also the unknown instance itself are
factored in when assessing the importance of different views in classifying the
unknown instance. When designing such a strategy, we considered enhancing the
K-Nearest Neighbor (KNN) approach [6, 7] towards the above two design goals,
because of the following reasons. First, KNN can be applied to any type of data, as
long as a distance function is defined between any two given instances. This
characteristic allows us to apply KNN separately to different heterogeneous views
for a given data. Second, KNN is essentially an instance-based learning strategy,
where the class label of an unknown instance is derived from the class labels of its
nearest neighbors. We were thinking that this characteristic might be expanded such
that the unknown instance is able to influence the assessment of different views of
the given data through its nearest neighbors.

Based upon the above thinking, we proposed a enhanced KNN approach that is
called KNN++ for classifying data with heterogeneous views. As we will show in
the following sections, the KNN++ satisfies the two design goals that we mentioned
above and is able to effectively and efficiently predicting stock price movement for
the next time period. The rest of the paper will be organized as follows. In Sect. 2,
we will describe the proposed KNN++ in details. In Sect. 3, we will model the task
of predicting stock price movement for the next time period as a classification
problem and show that the unknown instance for prediction should play a role in



KNN++: An Enhanced K-Nearest Neighbor Approach ... 15

assessing the importance of different views of the given data. In Sect. 4, preliminary
experimental results on stock price movement prediction will be presented. Finally,
Sect. 5 contains some further discussion of this proposed method as well as some
possible future improvement on it.

2 KNN++: An Enhanced KNN Approach
for Classification

Given a set of data instances U with N elements {uy,uy, ..., uy} and a set of class
labels C with M elements {ci,c3, . ..,cu}, U is divided into M + 1 disjoint regions
{FeisTeys s Teys Tey., }» such that if a data instance u; € r.; (where 1 < j < M),
then the class label ¢; is assigned to x;; if u; € r,,,,, u; is viewed as an unknown
instance. Now, the classification problem that is addressed here is that, for each
u; € re,,,,» we need to assign a class label ¢; € M to it. We further assume that a set
of distinct distance functions D = {d,d, .. .,d.} can be defined on U, such that for
any d, € D and any w;, uj, and w, € U, we have d,(u;, u;) + dy (wj, u) > di(uz, uy).

The classical KNN approach assumes that |D| = 1; in other words, only one
distance function is used in the classification process. However, a complex data set
may have multiple heterogeneous views. It is often challenging, if not possible, to
define one single comprehensive distance function that is able to take into con-
sideration of multiple heterogeneous views. Therefore, the proposed KNN++
method utilizes multiple distance functions, each of which is defined on one
heterogeneous view of the data. Let’s take as an example the data-driven detection
of Alzheimer’s disease based on patient data. One distance function on patient cases
may be defined on brain images; one distance function may be defined on patients’
genetic risk profiles; another distance function may be defined on trajectories of
certain biomarker; and so on. In this case, it is obviously difficult to define one
single distance function based on all of these heterogeneous views. However,
different distance functions may be defined on different views of the given data,
such that one distance function represents the view upon which the function is
defined. Therefore, in order to take advantages of multiple views, the proposed
KNN++ method utilizes multiple distance functions.

We also need to consider that not every view of the data has equal significance
towards the classification of a given instance. Therefore, an important component of
this proposed KNN-++ method is to learn the weight of each distance function that is
defined on each view. Furthermore, the weights of distance functions should not
remain unchanged for different unknown instances. For instance, given certain
patient case, brain image may be more important than others in detecting the
disease; while for another case, a biomarker may serve as a better indicator. Hence,
the learning process of the proposed KNN++ method is instance based. In other
words, different unknown instances may favor different views.

Informally, the KNN++ method can be described in the following way. Given an
unknown instance, the method first learns the weight of each distance function that
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is defined on each view of the data. The weight of a distance function is determined
by the labelled representatives of the unknown instance with respect to this distance
function. More specifically, the K nearest neighbors of the unknown instance,
which are found using this distance function, serve as the labelled representatives of
the unknown instance corresponding to this distance function. For each of the
labelled representatives, the KNN++ method finds the K nearest neighbors of this
labelled representative by using the same distance function; then counts how many
instances within the K nearest neighbors of this labelled representative actually
have the same class label as this representative. The weight of this distance function
is then determined by summing up all those numbers across all the labelled rep-
resentatives. After the weights of all those distance functions are calculated, the set
of the K nearest neighbors found by each of the distance functions for the unknown
instance is weighted by the weight of that distance function. That means, the class
label of each instance in those sets of K nearest neighbors is weighted by the weight
of the set that this instance belongs to. Then, the final class label that is assigned to
the unknown instance by this KNN++ method is the one with the highest weighted
sum across all the sets of K nearest neighbors of this unknown instance.

Formally, given an unknown instance u € r,,, ,, the proposed KNN++ method
can be described as follows.

for each class label ¢ €C
initialize count., to be 0;
for each d; €D
set the weight of d; as wy; and initialize wy tc
be 0;
find the K nearest neighbours of u in the set of
(U-r1y,,) by using d, , and store them in a set
NNy (w);
for each u; € NNy (u)
find the K nearest neighbours of u in the
set of (U-1,,,) by using d; , and store then
in a set NNy w):
for each u; € NNy (u;)
if u; and u; has the same class label
Wdl++ 7
for each u; € NNy (u)
let u; s class label to be c;
Countc’u += Wqis
initialize final_ label to be "unknown'";
initialize final_label_count to be 0;
for each class label ¢ €C
if (count, > final_label_count)
final_label_count = count;,, ;
final_label = c;;
output final_label;
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As one can see that, the proposed KNN++ method is able to utilize any view of
the data, as long as a proper distance function can be defined on that view. The
KNN++ method also automatically learns weights for each view with respect to a
given unknown instance through the distance function defined on that view.
Furthermore, just as the classic KNN approach, the KNN++ only takes one
parameter, which is the K value.

3 Categorize Predicting Stock Price Movement
as Classifying Data with Heterogeneous Views

As being well known, stock price prediction is a broad yet very challenging
research area, given that many different factors may influence stock price move-
ment. A variety of machine learning techniques have been used in predicting stock
price movement, such as SVM [8], decision tree [9], and artificial neural network
[10]. However, these methods only take features that can be expressed in certain
homogeneous format, such as vectors. What if we want to utilize multiple
heterogeneous types of information in our predictions? For example, some infor-
mation is expressed in value vectors, some in time series, some in bags of words,
and some in matrix. In this section, we will categorize one particular stock price
prediction task as a classification problem on data with heterogeneous information
views.

The prediction task that we will categorize can be described as follows. Given
the historical price movement of a stock or index, such as SPY, in a particular time
frame (which can be weekly, daily, hourly, 5 min, and so on), that task is to predict
the price movement for the next time unit (next week, next day, next hour, or next
5 min). If we visualize the price movement at a historical time unit using a bar as
shown in Fig. 1, the task is to predict what will be the upcoming bar. To categorize
this task as a classification problem, we first annotate each historical bar by using
the bar that immediately follows it. For instance, barl in Fig. 1 can be annotated as
“Open Down”, given that its following bar has a lower open price compared to its
own close price; bar2 can be annotated as “Open Up”, given that it’s following bar
has a higher open price compared to its own close price. Therefore, we identify a set
of 2 class labels {“Open Up”, “Open Down’}. Now, the task is to assign a class
label to the current bar that is the last bar shown in Fig. 1, given that the class label
assigned to the current bar is actually the predication of the price movement for the
upcoming time unit. Please note that we use the prediction of open price movement
for the next time unit as an illustration; nevertheless, without loss of generality, we
may also predict the close price (green or red), the highest price (higher or lower),
and the lowest price (higher or lower) for the next time unit in the same way.

In order to predict the class label for the current bar, we need to identify features
that can be used to describe each bar. This is where complexity comes into the
picture, given that each historical bar could be associated with numerous factors
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Fig. 1 A sample chart of stock price movement (chart was copied from www.barchart.com)

that may indicate or correlate with the stock price movement at next time unit.
Moreover, those factors may be heterogeneous in nature, formats, and scales; and
some features are complex data by themselves. For instance, just consider the price
chart as shown in Fig. 1 alone, each individual bar (an instance) may be described as
a vector of 4 prices (open, close, high, and low); or a more detailed time series of
intraday price movement, assuming each bar represents a daily price (intraday details
for bar 1 and the current bar are shown in Fig. 1); or a time series for price
movement within a bigger time frame that ends with this bar. Therefore, it is very
challenging for any classic machine learning algorithm to utilize all these features
together. However, by using our proposed KNN++ method, each of those features or
a combination of a group of features can serve as a view for a given bar, and all
views together deliver comprehensive information for that bar. A view can be certain
technique analysis (TA) features as described above, or certain sentimental features,
or fundamental analysis (FA) features. As long as a proper distance function can be
defined on a view, that view can be unitized by the proposed KNN++ method.
Therefore, the KNN++ method provides a framework for factoring in heterogeneous
information in supervised learning.
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4 Experimental Study of KNN++ on Predicting SPY Daily
Open Price Movement

In this section, we demonstrate the experimental results of applying KNN++ to
stock price prediction. In our experiments, SPY historical daily prices were used as
our data set. SPY is the ticker for the SPDR S&P 500 ETF Trust that corresponds to
the price and yield performance of the S&P 500 index. The dataset of SPY his-
torical prices was downloaded from http://finance.yahoo.com. Part of the records in
this data set is shown in Fig. 2. Each record of this data set includes the following
price values for a particular day: Open (over price of the day), High (highest price
of the day), Low (lowest price of the day), and Close (close price of the day). Our
task in this experiment is to predict the open price movement for the next day.

Based on the categorization process descripted in Sect. 3, we label each day in
the data set as either “Open Up”, if the open price of the next day is greater than or
equal to this day’s close price; or “Open Down”, if otherwise. The goal is to predict
whether it is “Open Up” or “Open Down” for tomorrow.

In real-life prediction, we may factor in a variety of heterogeneous views;
however, in this experiment, which serves as a proof of concept, we only generate
the following views based on the available information in the data set.

Daily Move: a vector defined as
{Close-Open, High-Low, High-Close}
Daily Move Relative to Yesterday: a vector defined as
{ High-yesterdayHigh, Low-yesterdayLow,
Open-yesterdayOpen, Close-yesterdayClose }
Daily Move Relative to 21MovingAverage: a vector defined as
{ High-21MovingAverage, Close-21MovingAverage,
Low-21MovingAverage, Open-21MovingAverage }
Relative_Close_8: a time series defined as
< Close_at 7 days_ago - Close,
Close_at 6 _day _ago-Close,
Clos_at 1_day _ago-Close >
Relative_Close 21: a time series defined as
< Close_at_20_days_ago - Close,
Close_at_19_day_ago-Close,

Clos_at 1 _day_ago-Close >

Although all these views are derived from daily price information, they are
heterogeneous in the sense that some views are vectors, others are time series. It is
challenging to define one single distance function across all these views. Therefore,
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2015

2015

2015

2015 |
2015 |
2015 |
2015 |

2015 |
2015 |
2015 |
2015 |

2015 |
2015 |
2015 |
2015 |

2015 |
2015
2015

Open |
21142

210.16 |

20048 |
207.79 |
208.00 |
21030 |
21153 |
21093 |
21243 |
21275 |
21229 |
21187 |
21073 |
20072 |
20899 |
20729 |
207.04 |
208.02 |
206.96 |

High |
21145 |
211.02 |
211.04 |
20950 |
208.00 |
21037 |
21165 |
21177 |
21274 |
21318 |
21255 |
21230 |
211.28 |
211.05 |
209.90 |
207.98 |
207.35 |
208.02 |
208.17 |

Low [
21016 |
20942 |
20031 |
20680 |
20626 |
20760 |
20075 |
21089 |
21139 |
21221 |
21180 |
21158 |
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20894 |
20495 |
20477 |
20425 |
20411 |
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21045
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21077 |
20931 |
20674 |

207.94

21014 |
21129 |
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21262 |

21247

21227 |
21063

210.72

20976 |

207.48

20480 |
20453
208.01

Volume

97,697 400

89,368,700 |
102,056,400 |
118,553,000 |
124,398,800 |

109,271,100

87,846,600 |
84,385700 |
75,035,700 |
65,523,100 |

85,410,300

98,172,600 |
93,588,200

78,370,300

103,805,000 |

126,039,800

139,210,600 |
159,250,700
170,938,200

Fig. 2 Sample records from the data set downloaded from Yahoo! Finance
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we follow the KNN++ method by defining a distance function on each of these
views. To test the performance of the KNN++ method on SPY daily open price
prediction, we select the subset of data beginning from March 1, 2015 through July
31, 2015 as the test data. You may notice that there is no obvious trending in this
selected time frame, as shown in Fig. 3. The reason for selecting this subset as the
test data is to avoid the situation where an obvious up-trending (or down-trending)
may include majority of the instances in that trend having an “Open Up” (or an
“Open Down”) class label.

SPY - SPDR S&P 500 ETF - Daily OHLC Chart
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Fig. 3 Illustration of the test subset (chart was copied from www.barchart.com)
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Table 1 Results of predicting open price for each trading day from March 2, 2015 through July
31, 2015

Tested month # Decidable instances # Correctly Accuracy rate
predicted instances (round to 2 digits) (%)
July, 2015 14 9 64
June, 2015 16 11 69
May, 2015 12 9 75
April, 2015 10 5 50
March, 2015 12 8 67
Total 64 42 66

For each instance in the test subset, we use the dataset ranging from January 3,
2000 through the last instance before the month of the test subset as the training set.
For example, if the test instance is March 5, 2015, the training subset goes from
January 3, 2000 through February 27, 2015; if the test instance is July 31, 2015, the
training subset goes from January 3, 2000 through June 30, 2015. Finally, we use
TNN++ for the open price prediction. In other words, for each test instance, we find
7 nearest neighbors of this instance by using the 7NN++ method. If 5 or more out of
the 7 nearest neighbors are consistent in one class label, we assign that class label to
the test instance; otherwise, we view the test instance as undecidable based on the
given information. The final experimental results are listed in Table 1.

As shown in Table 1, the total accuracy rate for these 5 months is 66 %; 4 out of
5 months have accuracy rate greater than 64 %; the highest monthly accuracy
reaches 75 %; and the only month that has accuracy rate lower than 60 % has
accuracy rate 50 %. Given that only four daily prices (open, close, high, and low)
are used in the experiment, it is reasonable to expect that the performance of the
proposed KNN++ would be further improved if more information is available for
usage.

5 Further Discussion on KNN++

Now, let’s examine the time complexity of the KNN++ method. Assume the size of
the training dataset is N, and the data has M views. For each test instance, we need
to find its K nearest neighbours as its representative on each view. The complexity
of this process is M * K x N; Then on each view, we need to find the K nearest
neighbours for each of the K nearest neighbours of the test instance in order to
calculate the weight of this view. The complexity of this process is M * K? x N.
Since both K and M are just small constant values, the process for finding the
K nearest neighbour by the KNN+ method is linear to the size of the training data
set. Furthermore, the KNN++ method can be easily parallelized over the
M processes; and the process of searching the K nearest neighbors from the training
data set can be easily implemented with the MapReduce or Spark framework.
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If the size of the training set is really large, some other strategies can be applied
to filter out those instances that are obviously not close to the test instance. Taking
the task of predicting stock open price as an example, we can first filter out those
instances with close prices on the opposite side of certain moving average line to
the unknown instance for predicting.

6 Conclusion

In this paper, we proposed an enhanced KNN approach, which is denoted as KNN++,
for classifying complex data with heterogeneous views. Any type of views can be
utilized when applying the KNN++ method, as long as a distance function can be
defined on that view. In other words, a distance function that is defined on a view
serves as the representation of that view for the KNN++ method.

Given an unknown instance, the KNN++ method learns to weight each view by
examining its K nearest neighbors found by the distance function defined on that
view. Each instance of the K nearest neighbors of the unknown instance by that
distance function will search its own K nearest neighbors by using the same dis-
tance function, in order to count how many of its K nearest neighbors actually have
the same class label as this instance. The final weight of the distance function is the
aggregation of such numbers across all K nearest neighbors of the unknown
instance by that distance function. The final K nearest neighbors of the unknown
instance will be selected from all different K nearest neighbors of the unknown
instance found by different distance functions with factoring in the weights that are
learned for those distance functions.

Experimental study show that the proposed KNN++ method can effectively
predict up or down movement for SPY daily open price, based on historical SPY
daily open, close, high, and low price data. As part of the future work, we will try to
further improve the stock prediction performance by incorporating different types of
stock information, such as the sentiment information obtained from stock-oriented
social networks such as stocktwits.com. We will also apply the KNN++ method to
other applications with complex data such as Alzheimer’s early detection.
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