Chapter 2
Acoustic Features and Modelling

This chapter gives an overview of the methods for speech and music analysis. The
methods described, include all the relevant processing steps from an audio signal to a
classification result (Fig.2.1). These steps include pre-processing and segmentation
of the input, feature extraction (i.e., computation of acoustic Low-level Descriptors
(LLDs) and summarisation of these descriptors in high level segments), and mod-
elling (e.g., classification).

A particular focus is put in this thesis on real-time processing and the capabilities
of the methods to work in systems which require incremental on-line processing of
the audio input. An in-depth discussion of real-time, incremental processing is given
in Chap. 4.

In this chapter, first, the basic concepts of digital audio signal processing and
analysis are described in Sect.2.1 and common terms are defined. Moreover, the
most important pre-processing steps, which are commonly used, are presented. The
acoustic LLDs that have been implemented for, and investigated in this thesis are
covered in Sect. 2.2. Methods for summarising LLDs over a longer time segment are
discussed in Sect. 2.4, and static and dynamic modelling methods are described in
Sect.2.5.

2.1 Basics of Signal Processing

The following provides a brief introduction to signal representation theories and
defines some important terms of the area of digital signal processing, which will be
used throughout the remainder of this thesis. This introduction is kept very brief on
purpose, as the focus of this thesis is neither digital signal processing nor signal repre-
sentation. It shall only serve the purpose of introducing the most important concepts
which are required for understanding the following chapters. For an excellent, deeper
discussion of signal representation theories the reader is referred to Oppenheim and
Schafer (1975) and Oppenheim et al. (1999).
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Fig. 2.1 Overview of steps of processing (simplified) for general speech and music analysis
methods

2.1.1 Signal Representation

In the following a continuous signal a at time ¢ is defined to have an amplitude of
a(t). Such a signal a might be represented by an electrical current in the physical
world—e.g., an analogue audio signal, such as the current induced by the vibration of
a microphone membrane over a coil. In order to process a signal a in a digital system,
the signal must be discretised both in terms of amplitude and time, since processors
can represent values only with a finite precision and can only store a finite amount
of values.

The discretisation in time is referred to as Nyquist-Shannon sampling
(Oppenheim et al. 1996). Thereby the time continuous signal a(¢) is represented
by a fixed amount of N values a(n) (samples) per unit of time. The sampling rate or
sampling frequency f; is the frequency at which the values a(n) are sampled from
the time continuous signal a(z). The relation between the discrete time index 7 and
the continuous time ¢ is given by the sampling period T

1
T, = — 2.1
7 2.1
as:
t=n-T,. (2.2)

In order to be able to reconstruct the continuous analogue signal from the finite set of
N samples, the following condition for the sampling frequency—called the sampling
theorem—has to be met (cf. Oppenheim et al. 1996):

fs = 2f, (2.3)

where f}, is the highest frequency present in the original signal a(¢), also referred to
as the Nyquist frequency. If this condition is met, the original time continuous signal
can be reconstructed from the sampled signal by low-pass filtering, and the signal
a(n) contains all the information from a(#). To ensure the sampling theorem for any
type of input, in practice an analogue low-pass filter is applied to a(f) before the
signal a(n) is sampled from a(t).

Next, each sample a(n) must be representable by a finite set of values, i.e., using a
finite precision. This conversion of a continuous amplitude a(n) to a discrete ampli-
tude x(n) is referred to as quantisation (Gregg 1977). A fixed set of discrete values
is defined for the expected range of the signal and each continuous amplitude a(n) is
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mapped to the nearest discrete value of the defined set, yielding x(n). The difference
between the actual value a(n) and the resulting discretised value x(n) introduces a
small error, referred to as quantisation error. This error is irreversible and—in con-
trast to the time discretisation—cannot be eliminated when reconstructing the time
and value continuous signal a(#). The quantisation error can be seen as additive noise
on top of the original signal a(¢) and is thus often referred to as quantisation noise.

On typical digital signal processing platforms a precision of b = 16 or b = 24
bits is used. The number of possible sample values is given by 2°, and is 65,536 for
16-bit precision and 16,777,216 for 24-bit precision. The samples can be stored as
integer values, or as floating point numbers.

For the analysis of speech and music signals it is important for all values to have a
common range of values. Thus, it was decided to represent all sample values as 32-bit
floating point values in the ongoing and to scale the values to the range [—1; +1].
This ensures a common representation regardless of the precision of the input. The
scaling of a sample x;, with b-bits precision to the scaled sample x is performed
according to:

Xb
Note, that this assumes x; to be represented by a signed integer type, e.g., a range of
—32768 — 432767 for 16-bit integers.

2.1.2 Frequency Domain

The signal a(f) can also be represented in the frequency domain by a superposition
of sinusoidal base functions. According to Fourier (1822) (cf. also Lejeune-Dirichlet
1829) any band-limited, finite time signal can be represented by finite superposi-
tion of sines and cosines with different frequencies (f), magnitudes (A), and phases
(¢) (=Fourier Series). L.e., a(¢) is represented by A(f) and ¢(f) with a finite set of
frequencies f. The process of estimating the magnitudes and phases of the base func-
tions is called Fourier Transformation (FT). As the following deals with signals x(r)
which are both discrete in time and value, only the Discrete Fourier Transformation
(DFT) will be introduced briefly at this point. For more details and a discussion of the
Fourier Transformation the interested reader is referred to Oppenheim et al. (1999)
and Lizorkin (2002).

The DFT of areal valued signal x(r) with discrete time index n = T% is defined for

the integer discrete frequency (bin index) m = j{—; andm € [0; M] (M = %’ + 1) as:

—j2mmn

N-1
X(m) = x(me . (2.5)
n=0
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For more general considerations in the remainder of this thesis, the bin index m shall
be converted to a linear frequency f via a function F(m) by Eq. (2.6):

f=F@m) (2.6)
andm = F1(f). (2.7)

In the linear case of the DFT, the above is:

Flin 1z (m) = mfy (2.8)
Filu(f) = ]JC—; (2.9)

The result X (m) is a complex value (j indicates imaginary parts in Eq.(2.5)) which
gives both the magnitude and the phase of the corresponding mth base function. The

DFT base functions e 7" are orthogonal if m is chosen as an integer value, i.e., the
DFT is computed only for multiples of a base frequency fy. For the DFT fj is given

in terms of the sampling frequency 7 and the frame size N as follows:

1

=5

(2.10)

The number of discrete frequency bins M is then given as M = %V For m = 0 the
direct current (DC) component of x(n) is returned, while for m = M the magnitude
of the Nyquist frequency is returned. The computation of a DFT has an asymptotic
complexity of @(N?). In practice, an optimised algorithm is implemented: the Fast
Fourier Transformation (FFT) (Cooley et al. 1969). The algorithm uses the principle
of Divide and Conquer and splits the DFT in two sub-problems of half the size of the
original problem. The FFT achieves an asymptotic complexity of O(N log(N)) but
requires the frame size N to be a power of two. If a frame with a size which is not a
power of two needs to be transformed, the typical procedure is to apply zero-padding
to the frame, i.e., the frame size is increased to the next higher power of two and the
additional samples are filled with zeros.!

For the human ear only the magnitudes of the components X (m) are relevant, and
not the phase. The phase is only necessary in very special analysis applications which
require instantaneous frequency estimates, for example, or for a proper reconstruction
of x(n) from X (m). For analysis, each component X (m) is therefore converted to the
magnitude X, (m):

Xy (m) = |X(m)| = VIm(X(m))? + Re(X(m))>. (2.11)

'In openSMILE the FFT with complex valued output (and also the inverse FFT) is imple-
mented by the cTransformFFT component. Magnitude and Phase can be computed with the
cFFTmagphase component.
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The phase X;(m) in radians is given as:

(2.12)

Xy(m) = arctan (M) .

Re(X (m))

The signal x(n) can also be resynthesised from the spectral magnitudes and phases.
Even though this is not required for analysis of speech and music directly, it might
be required indirectly, e.g., if a filter is to be implemented in the spectral domain and
time domain descriptors are to be computed from the resulting signal. Also, in this
way, various audio features (cf. Sect.2.2) can be transformed into an audio signal,
i.e., feature trajectories can be made audible.

X (m) is obtained from a magnitude/phase representation as:

Xn(m) = Xar (m)e™*™ = Xy (m) (cos(Xy(m)) + j sin(Xy(m))) . (2.13)

The time domain signal x(n) is obtained with the inverse real-valued DFT:

2 U 2
xm) = — > X(me (2.14)

m=—M

2.1.3 Short-Time Analysis

For audio analysis tasks the spectrum contains important information, including very
obvious attributes such as information about pitches of musical instruments, or the
pitch of a speaker. The time domain signal contains information about amplitude, etc.
However, all these attributes change over time and we need to find a way to estimate
these attributes periodically, in (quasi-)stationary segments, instead of performing a
single global analysis over the whole signal x(n) or the spectrum X (m) computed
from the whole signal x(n).

The Concept of Windowing

To solve this problem, commonly the method of short-time analysis (also referred to
as framing or windowing) is considered.? Thereby a signal x(n) with n e [0, N[ is
divided into K short, overlapping frames x;(i7) (k € [0...K — 1]) of Ny samples or
Ly = Ny - T, seconds length. The discrete time index 7 within each frame is measured
relative to the start of the frame, i.e., 1 € [0... Ny — 1]. The start index 74 & in the
signal x(n) which corresponds to the start of the kth frame is given as:

Nstart,k = k- ]Vf(T)9 (2.15)

2In openSMILE windowing of audio samples (i.e., short-time analysis) can be performed with the
cFramer component.
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where N, 0 = ’ is the frame period measured in samples and 75 is the frame period
measured in seconds i.e., the time between the start of two consecutive frames. The
names frame step, frame shift, frame period, and frame increment all refer to this
same quantity, measured either in seconds or samples.

Typically Ty is smaller than Ly because overlapping frames are used. The percent-
age of overlap Oy between adjacent frames is defined as:

Ly — Ty

O = —. (2.16)

Ly

The end index 7,4 ; of the frame is given as:
Menaie = k- N + Ny (2.17)

For the start and end times of the kth frame relative to the signal x(¢) holds:

Istart,k = Nstart k * Ty =k- Tf.s Ty =k- Tf (2.18)
end .k = Nend k Ts = (k ' Tf,s +]Vf,.v) Ty = k- Tf + Nf (219)

In addition to the theoretical framework of short-time analysis laid out above, in
practice border conditions have to be addressed. That is in particular, how to deal
with N, excess samples at the end of the signal x(n) for which N, < N;. Basically
three strategies exist:

1. Ignoring these N, samples,
2. Dealing with a smaller frame at the end, which contains the last N, samples.
3. Appending Ny — N, samples to the end of the signal x(n).

In this thesis, strategy (1) is implemented, as the analysed segments are assumed to
be much longer than a single frame. It thus can be safely assumed that these discarded
samples at the end will not contribute much to the final result. If we choose the frame
length Ly to be sufficiently small, we can assume the signal’s properties (such as
pitch of a voice or an instrument) to vary only minimally or remain constant within
a single frame k, i.e., the signal is assumed to be quasi stationary. Typical frame
lengths in speech and music analysis range from 20 milliseconds (ms) to 60 ms. The
most commonly chosen frame period is 10 ms, which originates from the domain of
Automatic Speech Recognition (ASR) (Rabiner 1989; Young et al. 2006). In some
applications where a higher temporal accuracy is required, also 5ms frame period
is considered; also 20ms frame periods are used and are feasible in some analysis
tasks.

The concept of framing laid out above is not limited to short-time analysis of
audio samples. Any time-value series can be segmented into ‘short’ time segments.
For instance, parameters extracted from short audio frames, such as signal energy
(see Sect.2.2.2), can also be viewed as a time-value series with a sampling period of
e.g., 10ms. In the ongoing, the terms ‘frame’ and ‘window’ refer to a frame of audio
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samples, if not explicitly specified otherwise. The term ‘segment’ refers to a higher
level segment, e.g., one second of signal energy values, or the whole signal. An in
depth discussion of such higher level segment features is contained in Sect.2.4 and
a discussion of the choice of the segment length is found in Sect.4.1.

Note: To simplify the equations in the ongoing and foster generalisation, it will
not be discriminated between frames x® (72) and a signal x(n) on the symbolic level,
unless explicitly necessary. The symbol x(n) will be used for a general signal of
length N in the equations. An optional discrete time index k as superscript x*(n)
will denote that this signal represents or is derived from a frame at a discrete frame
index k. The text will further clarify on whether frames, higher level segments, or
the whole signal is considered.

Window Functions

The framing described in the previous section corresponds to a multiplication of the
signal x(n) with a rectangular window function w, (n) for the kth frame x; as follows:

(@) = x(k - N{T 4 A) - w, (). (2.20)
The rectangular window function is defined as:
w,(m) =1forn=0...Nf 2.21)

In the spectral domain (cf. Sect.2.1.2) such a multiplication corresponds to a con-
volution. Therefore, the ideal windowing function—i.e., one which does not distort
the spectrum—has a dirac impulse shaped spectrum. In the time domain this corre-
sponds to a constant function of infinite duration. Since the window always has a
finite duration, a certain amount of spectral distortion due to the framing can never be
avoided, regardless of the choice of the windowing function. In fact, a compromise
between time and frequency domain properties of the windowing function must be
found. In the time domain a finite duration with steep edges is preferred (rectangle
like), while in the frequency domain a very narrow main maximum (dirac like) is
preferred with near zero side maxima.

In the following a discussion of the most common windowing functions (as they
are implemented in openSMILE?) and their properties is contained:

Rectangular window The Rectangular Window is defined as a constant function for
n € [0, N — 1]: wgec(n) = 1.1t corresponds to a sinc-function in the spectral domain

W(m):
sin(m)

Wgee(m) = = sinc(m) (2.22)

3http://opensmile.audeering.com.
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The Rectangular Window is best suited for analysis in the time domain such as for
Zero-Crossing Rate or Amplitude descriptors. It is very efficient to compute, as no
multiplications are required. Due to the high side maxima of the sinc function it is
not recommended for frequency domain analysis.

Hann(ing) window The Hanning window—also known as Hann-window or the
raised cosine window—is named after the Austrian meteorologist Julius von Hann
by Blackman and Tukey (1959). It is defined for n € [0, N — 1] as:

—05(1 2mn 223
wHan(n)— . ( _COS(N—l)) ( )

The side lobes in the spectrum roll off by approximately 18dB per octave, which
makes this window suitable for spectral analysis. Moreover, the symmetry in the time
domain and the fact that the amplitude reaches zero at both sides of the window makes
this window perfectly suitable for applications in which x(#) has to be reconstructed
from spectra with the overlap-add method when the overlap of the frames is 50 %
(Oppenheim and Schafer 1975).

Hamming window A modification of the Hanning window is the Hamming window.
It reduces the amplitude of the first sidelobe in the spectrum significantly (by about
one fith), at the cost of higher amplitudes for the higher order sidelobes (Enochson
and Otnes 1968). In contrast to the Hanning window, it does not reach zero amplitude
at the sides. It is the most commonly used window for analysis in the spectral domain,
especially in speech recognition and speech analysis. There, according to Young et al.
(2006), it is defined as follows for n € [0, N — 1]:

27n
WHam(n) = a — B cos (N — 1) . (2.24)
with a = 0.54 and 3 = 0.46. A more in depth discussion, as well as a more precisie
definition of the coefficients is found in (Harris 1978). According to Harris, the
theoretical optimal values for the coefficients are o = % and 0 = %. Later, Nuttal
(1981) proposed the following values as optimal with respect to minimizing the
sidelobes in the spectrum: o = 0.53836 and 3 = 0.46164. In the automatic speech
recognition community, however, the definition of Young et al. (2006) is widely used.
Therefore, only this definition is used in this thesis.

Gaussian window The Gaussian window uses a Gaussian function as windowing
function (n € [0, N — 1]):

1/n—WN—-1)/2\°
_§< oc(N=1)/2 )

Weau(n) =e (2.25)
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The Gaussian function has the special property of being an eigenfunction of the
Fourier Transform, i.e., when—transformed to the spectral domain—it remains
Gaussian shaped (Oppenheim et al. 1999). It therefore has no sidelobes; the band-
width (defined by the standard deviation of the Gaussian in the spectral domain) is
inversely proportional to standard deviation of the Gaussian in the time domain. In
the time domain it does not touch zero at the ends of the window due to the infinite
length of the Gaussian function. In some applications it might be necessary to have
zeroes at the ends of the window. This can be achieved by multiplying the Gaussian
window with another window, e.g., a Hanning window.

Sine/Cosine window In contrast to a raised cosine (Hanning) window, the sine
window consists of the first sine half-wave (n € [0, N — 1]) (Oppenheim et al. 1999):

Wg;y (n) = sin ( ) (2.26)

™
N-—-1
Due to its steepness at the window ends it has large side maxima in the spectrum and
thus is less preferred.

Triangular window For some applications where overlapping windows need to be
resynthesised in the time domain, triangular windows might be considered due to
their symmetry. However, they have less favorable spectral properties than, e.g., a
Hann window. A general Triangular window with non zero-valued end points is
defined as (for n € [0, N — 1]) (Oppenheim et al. 1999):

204D gy o N
wryi(n) = {2(1{/\,") . 1%/ . (2.27)
5 iftnz3

Bartlett window If the window must have zeroes at the endpoints, a Bartlett window
can be used. The Bartlett window is a Triangular window with zero-valued end points
defined as (for n € [0, N — 1]) (Oppenheim et al. 1999):

2n

Wpar(n) = Ilgv(ﬁlnl)
N—1

ifn <

(2.28)

ifn >

NI

A triangular window with zero valued endpoints can be expressed by the convolution
of two rectangular windows in the time domain. Thus, the resulting spectral shape

) 2
is that of a squared sinc(m) function: sinc?(m) = (#) function.

Lanczos window For the completeness of this overview on windowing functions,
the following contains a list of further functions without discussion. These functions
are used for specific digital signal processing applications, but are only of minor
importance for analysis of speech and music signals.
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The Lanczos window represents a sinc function in the time domain, trimmed to a
finite length n € [0, N — 1], which includes only the main maximum:

sin (wszl — 1)
=
N-1

Wrac(n) = (2.29)

It was introduced for the purpose of Lanczos resampling (Turkowski and Gabriel
1990).

Blackmann window A Blackmann window is defined for n € [0, N — 1] as:

l—a 1 2mn « 47tn
wpg(n) = >~ ECOS N1 + ECOS N1 (2.30)

The suggested default for the o parameter is 0.16. It is based on the Blackman
Function (Blackman and Tukey 1959).

2.1.4 Pre-processing

Before audio features (see Sect.2.2) are extracted from speech or music signals,
several pre-processing steps can be applied to the signal. In general, pre-processing
refers to everything done to the signal (in time or frequency domain) before LL.Ds
are extracted. The typical pre-processing for speech and music analysis, however, is
limited to the time domain and concerns the following steps:

Down-mixing, i.e.,conversion of multi-channel signals to a single channel (mono).
Instead of extracting near redundant features for both channels individually, most
often a stereophonic signal is converted to a monophonic signal prior to feature
extraction. The most simple procedure is linear down-mixing, where the samples
of all C channels are linearly averaged to a single channel xy:

1 C
xo(n) = = Zxc(n). (2.31)
c=1

Down-mixing is not performed when multi-channel features are to be extracted,
such as spatial features, or when reconstructing a single source signal from a
multi-channel recording (source separation). Both aspects are, however, not in
the scope of this thesis, thus monophonic down-mixing is always applied here.

Re-sampling, i.e., change of the sampling frequency to a common value for inputs
with different sampling frequencies, or reduction of the sampling frequency in
order to speed up the analysis. In speech, the relevant frequency range is from
~50Hz to ~6kHz, and in music from ~50Hz to ~8 kHz. A sampling frequency
of 16kHz is thus sufficient for analysis of most speech and music signals.
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Pre-emphasis,* i.e., filtering of the signal to attenuate frequency bands which
carry important information. For speech analysis typically a 1st order high-pass
filter is applied to a signal x(n) in order to emphasise information on formants
(Young et al. 2006), yielding the pre-emphasised signal x,(n):

x,(n) = x(n) — kx(n — 1), (2.32)

where k € [0; 1] is the pre-emphasis coefficient, which controls the strength of
the pre-emphasis (1 is most, 0 is least). Typical values for speech processing
range from 0.9 to 0.97 Young et al. (2006). In music processing a band pass
filter could be used to emphasise certain octaves, or reduce sub-bass effects, for
example. Also, the above 1st order high-pass pre-emphasis filter can be inverted
to a low-pass “de-emphasis” filter as follows:

xg(n) = x(n) + kgx(n — 1). (2.33)

Other pre-processing steps include noise-reduction and echo cancellation. Some
of these methods operate in the spectral domain. As the focus of this thesis is on
large scale feature extraction and not on signal enhancement and pre-processing,
the reader is referred to (Schuller 2013) for further reading on these topics. All
acoustic descriptors described in this thesis can be extracted from enhanced and
filtered signals, too.

2.2 Acoustic Low-Level Descriptors

In this section all acoustic LLDs which have been implemented for and evaluated in
the course of this thesis are described in detail.

An acoustic LLD is defined as a parameter computed from a short time frame
X (n) (Iength Ny) from an audio signal at time ¢ = k - Ty. The length of the frame
should be chosen in a way to a) ensure quasi stationarity of the signal within the frame
with respect to the LLD of interest, and b) ensure that the frame contains enough
data to compute the LLD (cf. Sect. 2.1.3 on details of the framing). For some LLDs a
window function is applied to the frame prior to computing the LLD (cf. Sect.2.1.3
for a discussion of windowing functions). Typical frame lengths are 25-32ms for
most LLDs.

“In openSMILE pre-emphasis can be implemented with the cPreemphasis component on a
continuous signal, or with the cVectorPreemphasis component on a frame base (Hidden
Markov Toolkit (Young et al. 2006) (HTK) compatible behaviour).
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2.2.1 Time Domain Descriptors

Time domain descriptors are computed directly from the time domain signal x(n).
Commonly these include, the number of zero-crossings (Sect.2.2.1.1), amplitude
statistics (Sect.2.2.1.2), and a DC offset. Strictly speaking, other descriptors such as
the signal energy (Sect.2.2.2), or linear predictive coding coefficients (Sect.2.2.7.1)
are also extracted from the time domain signal. However, they can also be extracted
from frequency domain representations of the signal and moreover are more related
to spectral characteristics of the signal. Thus, they are not considered in this section.

2.2.1.1 Zero- and Mean-Crossing Rate

The Zero-Crossing Rate (ZCR) describes the number of sign changes ¢ of x(n) per
unit of time (usually one second) (Chen 1988):

ZCR= ——. (2.34)
1.0s
A sign change is defined to occur when:
x(n—1x(n) <0 (2.35)
or
x(n—1Dx(n+1) <0 and x(n) =0. (2.36)

In analogy to the ZCR, one can define the Mean-Crossing Rate (MCR) as the rate
of changes from below to above the mean i, of x(n) (or vice versa). To compute the
MCR i, is subtracted from x(n) resulting in the mean normalised signal x,,:

x(n) = x(n) — piy. (2.37)

with

1 N—1
= ZO‘,xm) (2.38)

The MCR is then computed from X (n) using the same algortihm as for ZCR.

A high ZCR or MCR indicates a signal with much high frequency content. Typi-
cally harmonic signals have a low zero crossing rate, which is related to the funda-
mental frequency of the signal. E.g., a single pure sine will have a zero crossing rate
of twice its frequency. White Gaussian noise on the other hand will have a rather
high zero crossing rate, due to the broadband high-frequency content. ZCR is used
to distinguish voiced speech from unvoiced speech (Bachu et al. 2010) as well as
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percussive from harmonic parts in music (Gouyon et al. 2000). It is, however, also
strongly affected by additive noise, especially at low SNRs. Better metrics have thus
been proposed for the voiced/unvoiced decision, as will be shown in the ongoing.

2.2.1.2 Amplitude

Other time domain signal descriptors are the maximum and minimum signal ampli-
tudes, or the maximum absolute value of the amplitudes.

Usually the amplitudes of audio signals are symmetric around 0 amplitude, i.e.,
the range of the amplitude is from —a to +a, and the amplitude is O if there is no
signal at the input. Sometimes, however, an offset is present, due to various effects,
such as a electrical DC offset due to faulty or cheap recording equipment, o—when
framing—the influence of extremely low frequencies (which have a period larger than
the frame length). In these cases the DC offset of the signal can provide information
of intereset. The DC offset of x(n) is equivalent to the mean u, of x(n) (cf. Eq. (2.38)).

2.2.2 Energy

One of the most basic, yet powerful audio descriptors is the signal energy’ (Oppen-
heim et al. 1999). If we assume an audio signal to have no DC offset, i.e., a mean
value of zero, the signal energy E for a signal x(n) with n € [0; N — 1], is defined as
the sum of squared amplitudes of the signal x:

N—1
E= sz(n). (2.39)
n=0

Often the normalised signal energy is used in order to eliminate the influence of the
frame length on the descriptor:

1 N—1
_ 2
Ey= Z;x (). (2.40)

In speech and music processing two variations of the signal energy are commonly
employed. The first is the Root Mean Square (RMS) energy (Kenney and Keeping
1962):

(2.41)

SRMS and logarithmic energy can be computed in openSMILE with the cEnergy component.
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The second is the logarithmic (log) energy (Young et al. 2006):

N-1

Eiog = Epias + Eo - log D x*(n), (2.42)
n=0

where log represents the natural logarithm. Ej is a scaling factor which is used to
scale the logarithmic energy to different unit scales. If Ey = 1, then E},, is measured
in ‘neper’, a unit similar to Decibel (dB), only that the natural logarithm is used
as a basis. If £y = 10;% A2 4.343, then E),, is measured in dB. For the logarithmic
energy it is common to define a ‘floor’ value, i.e., a minimum value, to avoid very
high negative values with high variation due to noise in low energy and silent frames.®

The above definitions of the signal energy do not consider any properties of the
human hearing and/or human perception of loudness. According to Zwicker and Fastl
(1999) it is important to consider human perception for many tasks. An example for
identification of stressed syllables in speech is shown where signal amplitude is
compared to a loudness measure obtained from a psychoacoustic model. Computing
perceptual loudness from a psychoacoustic model is computationally demanding.
An approximation Ej 4, for the loudness’ E; for a narrow-band signal has been
used by (KieBling 1997, pp. 156-157):

7\%3

El,approx = (_) , (243)
Iy

where [ is the signal intensity defined as the signal energy E of x(n) where x(n)

has been weighted with a Hamming window function (cf. Sect.2.1.3) and I, is the

reference intensity. For a maximum absolute signal amplitude |x(n)| = 1.0 and a

reference signal at 60 dB Sound Pressure Level (SPL), Iy = 10~ is defined (KieBling

1997, pp. 156-157).

The exact measurement of loudness according to a simplified psychoacoustic
model is discussed in Sect.2.2.9.3.

2.2.3 Spectrum

This section introduces various types of magnitude spectra, which can be used as
LLDs directly and/or serve as the basis for other descriptors which are computed from
the spectra, such as spectral statistics (Sect. 2.2.4) or Cepstral features (Sect.2.2.10).

SopenSMILE defines 8.674676 x 10~!° as a floor value for the argument of the log, for samples
scaled to the range of —1-+1. In case of sample value range from —32767 to 432767 (HTK
compatible mode), the floor value for the argument of the log is 1.

7The loudness approximation and the signal intensity as defined here can be extracted in openSMILE
with the cIntensity component.
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2.2.3.1 Linear Magnitude Spectrum

The spectrum magnitudes Xy, (m), as introduced in Sect.2.1.2 and computed from
a short-time frame, can be used as LLDs directly. This spectrum is both linear in
frequency m and magnitude X.

In order to make this LLD independent of the analysis frame size Ny (e.g., if inputs
with varying sampling rates are analysed), the magnitudes Xj;(m) can be normalised
by Ny:

Xm (m)

XM,norm (m) == N . (244)
f

The resulting measure Xy o (1) is the spectral magnitude density. Note: in practice,
a scaling by the relative energy of the windowing function must be performed when
calibrated magnitude/power measurements are required. As this scaling is a constant,
however, it can be neglected for feature extraction or speech/music analysis purposes.

The bins Xj,(m) represent a vector of basic acoustic descriptors, which contains
almost all relevant information from the original signal and—if suitable phase infor-
mation was available—would allow for reconstruction of the original signal in the
time domain. However, raw spectra are not ideal as LLDs because they contain high
amounts of redundancy, i.e., individual descriptors (bins, bands, etc.) are highly cor-
related with each other but are seldom highly correlated to analysis tasks’ targets.
Therefore, descriptors derived from the raw spectra are preferred, such as spectral
statistics (Sect.2.2.4).

2.2.3.2 Non-linear Magnitude Scales

The linear values Xy (m) or Xjs_,0rm (m) correspond to the physical unit of voltage, as
they are computed from signal amplitude values. However, human auditory percep-
tionis highly non-linear (Zwicker and Fastl 1999) and thus a non-linear representation
of the magnitudes might be better suited.

The first step towards human perception is to use power spectra Xp(m):

Xp(m) = Xy (m)* (2.45)

which—despite the name power spectra—represent the quadratic energy in each bin,
or power spectral densities, accordingly:

X norm 2
Xp norm (M) = X, m)] s (2.46)
Ny

which in fact represent the power in each bin, because of the normalisation with the
window length.
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The next step is the application of a non-linearity. Commonly, a logarithm is
applied as non-linearity, or an exponent of ~0.3 is used as non-linearity (e.g., as for the
approximation of loudness in Sect.2.2.2 or for the auditory spectra in Sect.2.2.9.3).

The spectral magnitudes are converted to a logarithmic spectral power density
representation X p,sq¢(m) in dB by the following equation8 (cf. Spanias et al. 2007):

Xappsa(m) = Xy +20 102, (IXnt norm (m)1) (2.47)

Thereby X;%;S 4 18 a normalisation factor for the logarithmic scale and suggested as
90.302 dB by the psychoacoustic model layer I, defined in the MPEG-1 standard.

2.2.3.3 Non-linear Frequency Scales

The magnitudes X),(m) are equidistant (factor f;) on a linear (Hz) frequency scale.
Human hearing is also non-linear in terms of frequency perception and a non-linear
frequency scale has to be preferred (Zwicker and Fastl 1999). This fact has been suc-
cessfully exploited in the fields of Automatic Speech Recognition, Speaker Recogni-
tion, and Music Information Retrieval for a long time by use of Mel-Frequency Cep-
stral Coefficient (MFCC) features (Rabiner and Juang 1993). Thereby the spectrum
is transferred to a so called Mel-Frequency scale (cf. below) before further process-
ing. More details on MFCC are given in Sect.2.2.10.1 and Young et al. (2006) as
well as in Rabiner and Juang (1993).

This section introduces various non-linear frequency scales and discusses methods
for transformation of a linear frequency scale spectrum to a non-linear frequency
scale by interpolation.’ Each frequency scale is defined by a forward transformation
function O, (f) of the linear frequency %" (in Hz) to the non-linear frequency
f (scale) i ynits of the respective scale (e.g., Mel or Bark (critical band rate, cf. below)):

f(scale) — ®.vcale(f(lin)) (2.48)

For some scales also a backward transformation function ©_!

eale 18 given analytically:

f(lin) — ®Sz‘1a[g(f(scale))' (249)

A discrete magnitude spectrum given for scale is denoted by the symbol X,(lj"ale)
(mGe®) where m(¥® is the integer bin index on the non-linear frequency

scale which is mapped to fU°“® by a general function (cf. Sect.2.1.2)
m(xcale) — F—l‘“""” (f(scale))‘

8In openSMILE the option dBpsd must be enabled in the cFftMagphase component in order
to compute logarithmic power spectral densities.

In openSMILE these spectral scale transformations and spline interpolation can be applied with
the cSpecScale component.
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For the transformation of the M linear frequency bins m to M“““®) non-linear
frequency bins m*<@®) € ... MG first the M“““®) frequencies £ for all the
m®®) bins need to be defined. It is common and convenient to use an equidis-
tant spacing (on the non-linear target scale) between a minimum and a maxi-
mum frequency f,,;, and f;,,. and usually M “© < M. In most cases fnﬁl[’:) =0 and
fn(f;z) = 1/ (2Ty) (converted to the target scale) is chosen to match the range of the
linear scale spectrum. Some scales, such as the semitone scale or some versions of

the Bark scale, however, require f, (i) to be greater than zero because ® .4, (0) is not

min
defined. With
i = Ol 250
and frfjlc;lle) = Ycale n(ui? (251)
1 It
an df(sw e) M(v(ale) (f(écule) f;ffl;a e)> (252)

the frequencies f¢@€) = Fscale) (j(scale)y of the non-linear bins (equidistant on the
target scale) are now given as:

F(scule) ( (swle)) _ m(scale)f(ﬁcale) _+_fr£;;al€) (253)
These frequencies f ¥/’ can be converted to a linear frequency scale with the inverse
transformation function:

f(lin) (m(scale)) @—

e (F(scale) (m(scale))) (254)
Now the magnitudes X5 (m©) can be interpolated from the M linear scale
magnitude bins X, (m) using various interpolation methods such as linear, cubic, or
spline interpolation (Steffensen 2012).

Bark-Frequency scale The Bark frequency scale has been developed to numerically
describe the loudness perception of human hearing. It was introduced by Zwicker
(1961) and named after Heinrich Barkhausen, for his early achievements on subjec-
tive loudness measurements. The fundamental assumption in the definition is that a
tone which is perceived as having twice the pitch than a reference tone also has twice
the critical band rate (measured in Bark) of the reference tone. The original scale is
defined from 0.2 Bark to 25 Bark. According to Zwicker (1961), below 500 Hz a tone
with twice the frequency is perceived as having twice the pitch, while above 500 Hz
a logarithmic rule applies for pitch perception versus frequency. This fact makes it
hard to find a single exact analytic expression for the Bark frequency scale.

However, multiple analytical approximations of this scale exist. The most common
one is the scale proposed by Traunmueller (1990). The critical band rate f *“® (often
called z in the literature) is computed via this core transformation:

26.81
Z(f) = m —0.53, (2.55)

f
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followed by corrections for very low and very high frequencies:

0.857/(f) + 0.3 if7(f) <2
O = @i (F) = 12(F) if2<7(f) <20.1. (2.56)
1.227(f) — 0.22-20.1 ifZ/(f) > 20.1

The inverse transform is derived by inverting the above equations:

I “’“g;gos if flbark) < 2
7 = flab if2 < fab < 20.1 . (2.57)
[ETA0222010 i pbark) . 9.
and 1960
f= T (2.58)
7/40.53

The Speex audio codec!® uses a different version of the Bark scale given as:

f 1.85 _
Opark speex(f) = 13.1 arctan (0'74W) + 2.24 arctan (sz) +107%, (2.59)

which is supposedly based on the original analytic approximation by Zwicker and
Terhardt (1980):

2
Opark.zwicker (f) = 13 arctan (0'761({W) + 3.5 arctan((%m) ) (2.60)

It is not trivial to invert the Speex approximation, and it is computationally more
demanding to compute. For these reasons it is not considered any further in this
thesis.!!

Another approximation of the Bark frequency scale was suggested by Schroeder
1977):

Obpark,schroed (f) = 610g L + L 2 +1 (261)
600 600
S
=6sinh™' (=), 2.62
sin (600) ( )

Ohttp://www.speex.org/.

''The SPEEX version of the Bark transformation is implemented in openSMILE as forward trans-
formation only. Not all components will work, as most components require a backward scale
transformation.


http://www.speex.org/
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which has an inverse of:

f(bark)
f = ®;a1rk,schroed (f(bark>)) = 600sinh ( 6 ) : (263)
Thereby the hyperbolic sine (sinh (x)) and the inverse (sinh~! (x)) are defined as:

sinh(x) = % (ex — efx) , (2.64)

sinh~'(x) = arsinh (x) = log (x +Vx2+ 1) . (2.65)

Mel-Frequency scale Another analytical approximation of the critical band rate is
the Mel-Frequency scale (Beranek 1949). According to Beranek (1949) and Young
et al. (20006) it is defined as:

f = Opa(f) = 1127 -log (1 i fﬁ) ' o0

In theory, one Bark corresponds to 100 Mel, although the scale approximations are
different, and thus the scales cannot be converted directly one to the other.

The inverse transformation of the frequency f " to a linear frequency f in Hz is
given as:

(el)
f=0LFmDy =700 (e’ - 1) . (2.67)

Semitone-Frequency (Octave) scale For music analysis a frequency scale aligned
with music notes is required for some descriptors. A semitone frequency scale for
Western/European music is defined for 12 semitones per octave and the tones in the
next octave have double the frequency of the tones in the previous octave. With this,
the frequency f of each semitone £ is given by:

f (oct)

f=fo-27, (2.68)

where f,o is the frequency (in Hz) of the first note in the first octave, i.e., the fre-
quency of £ = 0. Typically values of f,0 = 27.5Hz or f,o = 55Hz are chosen,
corresponding to an A or A note of modern pitch, where A, is standardised at 440 Hz
(IS016:1975 1975).

From Eq. (2.68) the forward frequency transformation from the linear frequency
f in Hz to a real valued semitone number f©“) can be derived:

FOD = @pu(f) = 1210g, (fi) . (2.69)

00
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2.2.3.4 Band Spectra

Human hearing is redundant in a sense that masking takes place in both time and
frequency (Zwicker and Fastl 1999). This means that of two sounds which have
similar frequency the loudner one can (depending on the type of sound and levels)
mask out the other one, rendering it inaudible. This suggests a reduction of the
number of frequency bins M to a reduced number of bands B by combining bins
within a defined band.'? This is motivated by loudness perception.

This band division can be done linearly, i.e., each band having a constant width
in Hertz, or non-linearly, where the bandwidth increases with the centre frequency
of the band. Typically these non-linear bands are preferred because they are closer
to non-linear frequency perception of the human hearing system. The methods for
reducing M by combining bins into B bands, which will be described in the following,
are general methods, which can work with any input frequency scale (linear or non-
linear).

The general method for modelling masking and reducing the number of bands/bins
at the same time is to define the power spectra of B band filters and then discretely
convolve the M bin spectrum with each of the B band filters (cf. e.g., Hermansky
1990).'3 Assuming a general filter with a power spectrum @, () which approximates
the masking effects around the centre frequency of band b, the discrete convolution
can be expressed as:

M
Xp(b) = D Xp(m) Py (m). (2.70)

m=1

Next, a general function g(x) defines the shape of the filter function on a general scale
x. This scale can be any scale such as Bark scale, Mel scale, or linear frequency scale
(Hertz (Hz)). In the ongoing, a linear Hz frequency scale is assumed, i.e., x = fj,.
Conversions to and from other scales can be implemented via Egs. (2.48) and (2.49)
from Sect.2.2.3.3, respectively:

g(scale) (fscale) = g(lin) (®:c}zle (f;cale)) s (27 l)

and )
9" (fin) = 9" O seate (fin))- 2.72)

The mapping of a continuous frequency value f.,. on scale scale to a real-valued
bin index my.q. is given by Eq. (2.6) and the inverse by Eq. (2.7) (Sect.2.1.2).

For linearly mapping a general filter shape ®(m) defined for real-valued bin
indices m’: g(m’) = g(F~'(f)) to a discretised bin spectrum @ () with integer bin

12For an implementation, see the cMelspec component in openSMILE and scale transformation
functions in the smileUtil library.

13Band spectra can be computed in openSMILE with the cMelspec component, which—despite
the name Melspec—can compute general band spectra for all supported frequency scales from a
linear magnitude or power spectrum.
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indices m, Eq.(2.73) can be applied:

0 form < my
m+0.5
dm)=1 [ gx)dx form>m andm <m, . (2.73)
m—0.5
0 form > m,

Equation (2.73) assumes the bins to have a rectangular shape which is centred at the
bin frequency F(m).

In this thesis, rectangular and triangular filter shapes g(f) are investigated, for
which discrete versions are derived in the following. A rectangular filter function

1 form' > mjandm < mj

g(rect) (m/) — [ ’ (2.74)

0 otherwise

with a lower cut-off frequency f; and a corresponding real-valued bin number m; =
F~(f;) as well as a upper cut-off frequency f, with m/, = F~'(f;) is considered.
Discrete lower and upper bound bin indices are obtained by rounding off the real-
valued bin numbers: n; = |m; + 0.5 and m, = [m,!’ + 0.5]. Now, Eq.(2.73) is
applied and the rectangular filter can be expressed as:

0 form < my
m; —m;+0.5 form=my

q’},r;:l) (m)=11 form > m;andm < m, . (2.75)
m), —my, +0.5 form =m,

0 form > m,

For the triangular filter, a real-valued centre (peak of the triangle) bin number m, =
F~!(f.) is required in addition to the real-valued bin number bounds m; and m;,. A
general triangle ¢ (m’) as function of the real valued bin number ' is then given as:

0 form’ < m,

form > myand m’ < my,

; m. —m
gy =15 : (2.76)
—— form > m_andm' <m,
m, —m
u c
| 0 form’ > m,,

A triangular filter function @JEI’;? 7, (m) for integer bin indices is then given by

integrating the function g (m’) over each bin according to Eq.(2.73). Using
m, = |m + 0.5], the discrete version of the triangular filter’s power spectrum can
be expressed as:
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[0 form < my
g™ (m 4+ 0.5) form = my
g (m+0.5) + g™ (m—0.5) form > m; and m < m,

g (me — 0.5) + g“ (m)
1/ (m,, —m. +0.5)
g (m, +0.5) + ¢ (m.)
1/ (me +0.5 —m)
g " (m+0.5) + ¢ (m—0.5) form > m.and m < m,
g% (m, — 0.5) form = m,

- 1
(tri) _
g (M =3

form = m,

0 form > m,

(2.77)

To account for the non-linear frequency resolution of the hearing system, filters with
asymmetric slopes and a frequency dependent bandwidth proportional to the critical
band rate are suggested by Zwicker and Fastl (1999). According to Zwicker (1970)
such filters can be approximated by linear, triangular shaped filters on a non-linear
frequency scale (e.g., Bark scale). The filters should be spaced equidistantly on the
non-linear scale, which results in a non-linear spacing on the linear scale where the
spacing of the filters increases with frequency. The bandwidth of the filters on the
non-linear scale is constant. To apply such filters designed on a non-linear scale to
a linear scale magnitude spectrum, the spectrum must first be scaled to a non-linear
scale before the linear shape filters can be applied. This step has to be performed for
every spectrum, i.e., for every audio frame. To save computation time, alternatively,
the linear filters can be transformed from the non-linear (Bark or Mel, for example)
scale to a linear Hertz scale:

The general filter shape g©““) (m<)) on the non-linear frequency scale with
mbcale) = p=1 (fGeale)) = F=1 (@44 (f™)) can be converted to the filter shape on
a linear scale:

g(lin) (mn'y = g(sca]e) (F—H“‘"’f’ (®mle (F(Iin) (m(lin)’)))> ) (2.78)

Equation (2.73) and derived versions thereof can now be used to estimate the shape
of the filter on the linear frequency scale if g/ (m*™") is substituted for g(m') and
the boundaries m;, m., and m,, are replaced by the respective bin indices on a linear
frequency scale:

m(lin)’ = F(”n) (®g_¢(lzle (Fil(ml?) (m;cale))) (279)
i — Lm(linY +0.5] (2.80)

It is important to note that the integer bin indices m" for the bounds my, m,, and

m,, must be generated by converting the real-valued bin numbers m,(_xffﬁe)/ (not the
rounded bin indices g/ (m*™")) and rounding them according to Eq. (2.80).
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The generalised filter equations derived here differ from the ones commonly
implemented for Mel-frequency filter banks (Young et al. 2006) or Bark filter banks
(Hermansky 1990), which are approximations optimised for improved computation
time decades ago and have not been changed for compatibility reasons.

For compatibility with Young et al. (2006), the following triangular filterbank
is used in this thesis for all non-linear frequency scales.'* A filterbank of B filters
with centres evenly spaced between f,,;, and f,,,, is created as follows: A constant
bandwidth § for the filters on the target scale scale is assumed:

5= o (o — i) (2.81)

The centre frequencies £°““) (b) on the target scale for B filters b = 1...B and the
lower and upper bounds (b = 0 and b = B + 1) are computed via:

fc(scale) (b) f(scale) ﬁ (282)

min

The power spectrum shape of each filter is then given by:

0 for fcale) () < £ ( _ 1)
f(vmle) (m) f(.rcale) (b )

- -(scale) _ (scale) ~(scale)
smle) (b) f (scale) ) fOI‘fC ® < f o m) < fc (b)

Py (m) = 1" (scate) scale
SO D PRI ) g o < 60 )
S b+ 1) — 5 )
0 for fscale) () > £ (4 1)
(2.83)
with
O (m) = Ogeqie (FU™ (m)) . (2.84)

Figure2.2 shows plots of the power spectrum @ (m) of two triangular filters with
different centre frequencies which were designed as linear triangles on the Mel scale
and converted to a discretised linear frequency scale (Egs. (2.83) and (2.77)). A very
low resolution for the DFT is assumed to highlight differences between the two
implementations. 24 linear scale bins from m = 1...24 are shown in the plot, each
bin 32.5 Hz wide. The x-axis labelling indicates the corresponding Mel frequency.
It can be seen that both implementations produce nearly similar results, except for a
small deviation at the centre frequency and at the left and right borders of the filter.
It will be left to future work to empirically find out which implementation of the
filters is better. Due to the minor differences, which are even less for a higher DFT
resolution, it is fully justified that for the experiments in this thesis the simplified

14In openSMILE the cMelspec component implements these filterbanks for various frequency
scales (not only Mel).
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Triangular filters, bandwidth 200 Mel, centres at 200 and 600 Mel.
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Fig. 2.2 Spectral shapes of two triangular filters designed with a centre frequency of 200 and
600Mel and a symmetric (on the Mel scale) bandwidth of 200 Mel; Dashed (blue) line with (x)
showing Eq. (2.83) and black solid line shows the version from Eq.(2.77) as derived in this thesis
based on integration (Eq. (2.73))
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Fig. 2.3 Mel-band power spectrogram plot of a sample sentence from the AVIC database
(Sect. 6.1.3); female speaker, words: “change another color”

implementation of Eq. (2.83) is used, which has also been used in other related work
(e.g., Young et al. 2006). An example plot of a Mel-spectrogram obtained with this
triangular filterbank is shown in Fig.2.3.


http://dx.doi.org/10.1007/978-3-319-27299-3_6
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2.2.3.5 Filterbank Spectra

An alternative to DFT based band spectra—as described in the previous sections—
are time domain filterbank spectra. These are obtained by passing the unwindowed
signal x(n) through a bandpass filterbank with M filters and then computing the
envelope of each of the filterbank outputs. To compute the envelope, windowing
with size N;m) is performed on each of the filterbank outputs with a rate Tf(m) and
the energy (Sect.2.2.2) is computed for each window. The result is the spectral
magnitude X, (m) for each band m at a rate of Tf(m). Thereby, for each band m a

different envelope sampling rate Tf(m) as well as a different window size Nf(m) can be

chosen. In practice, however, the sampling rate Tf(m) is a constant T} for each band,
with Ty = 10ms or 7y = 20 ms in most cases.

Depending on the type, order, and number of bandpass filters, computation of
such spectra can be slow when compared to FFT based spectra. Advantages, on the
other side, are the improved frequency selectivity of time domain band-pass filters
as well as the possibility of using a frequency dependent time resolution Tf(m).

For this thesis specifically Gabor filterbanks and gammatone filterbanks were
implemented to approximate a critical band filterbank.'> For practical implementa-
tion reasons, all filters were implemented as Finite Impulse Response (FIR) filters
with discrete convolution. Thereby an impulse response i(n) of finite length N}, is
convolved with the input signal x(n) to obtain the time domain output signal y(n)
(cf. Damelin and Miller 2011, p. 232):

Ny

y(n) = x(n) x h(n) = Z x(n —m) - h(m). (2.85)

Ny
m=-==

To optimise the computational complexity, especially with long impulse response
lengths N}, the convolution can be carried out as a multiplication in the frequency
domain. This approach is more efficient than the time domain implementation of
the convolution because applying twice a FFT for long frames is more efficient than
computing the full length convolution for every sample.

The one dimensional Gabor-filter impulse response /figgpor(n)  (for
N = -5 ... 5 — 1) is given by (cf. Feichtinger and Strohmer 1998):

hyapor(n) = €Y7 cos (2mf.Tyn), (2.86)

with bandwidth 3 (in Hz), centre frequency f, (in Hz), and sampling period T5.
The gammatone filter impulse response A gammarone (1) (for N = —%’ o %’ —1)is
given by (cf. Slaney 1993):

15Tn openSMILE the FIR filterbanks with Gabor, gammatone, high- and low-pass filters can be
applied with the cFirFilterbank component.



34 2 Acoustic Features and Modelling
hyammatone(n) = aT;n©~ Ve > cosQnfnTy), (2.87)

wheren = 0...N;, — 1,f, isthe centre frequency of the filter in Hz, (3 is the bandwidth
of the filter in Hz, a is a linear gain factor which most often defaults to 1, and 7 is
the sampling period.

The impulse responses for the gammatone and Gabor filters are infinite in time.
In order to implement them with a FIR filter, a windowing must be performed, which
introduces artefacts. This windowing is also referred to spectral shaping (Oppenheim
et al. 1999). A windowing in the time domain corresponds to a convolution of the
filter’s frequency response with the spectrum of the windowing function. A good
frequency response without side maxima can be achieved by multiplying the filter
with a zero-endpoint Gaussian window wyas0(n) (i.€., a Gaussian window scaled
to have zero valued endpoints):

Woausso (W) = T 8,0,5( ) -T (2.88)

with I" being the minimum value of the unscaled Gaussian at the endpoints:

N\
0.5( 2+ )
SN
=e 2 (2.89)

An approximation of an ideal high or low-pass filter can be implemented via a win-
dowed sinc function. The frequency response of the unwindowed, infinite duration
sinc function is a perfect rectangle in the frequency domain, which corresponds to a
low-pass filter. The steepness of the filter depends on the length of the window, i.e.,
the number of taps of the impulse response. The cut-off frequency f, is determined by
the sinc function, which leads to the following equation for the sinc impulse response

Niowp (for N = —%’ e %V — 1) of a low-pass filter:
sin 2nf.Tsn)
hiow =2f——. 2.90
1 p(n) f 27chTsn ( )

The high-pass filter can be constructed from the low-pass filter in the spectral domain

by subtracting the low-pass filter spectrum from a flat spectrum which is the constant

1. In the time domain (for N = —% ... & — 1) this corresponds to:

—hiowp (M) forn # 0

291
—hiowp(n) + 1 forn=0

hhighp(n) = {
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2.2.4 Spectral Descriptors

Now, a general spectrum X (/) is defined, which can be a magnitude spectrum Xy, (m),
a power spectrum Xp(m), power spectral densities in dB, or a band or filterbank
spectrum. With such a general spectrum X (m) and a relation f = F(m) (and m =
F~1(f) between the linear frequency f in Hz and the bin index m (cf. Sect.2.1.2),
spectral statistics LLDs are defined in this section.'® Most spectral descriptors can
be computed from an arbirtrary sub-band range defined by the lower and upper
bin indices m; and m,,. The full range of the spectrum is covered when m; = 1 and
m,, = M. For the case of a constrained sub-band frequency range with respective
lower and upper border frequencies of f; and f,, the respective integer valued bin
indices are m; = | F~'(fy) + 0.5] and m,, = [F~'(f,) + 0.5].

2.2.4.1 Band Energies

When computed from a high resolution FFT spectrum X (m), this LLD allows to
consider the energy in arbitrary bands. Similar to the concept of band spectra and
triangular filterbanks, described in Sect.2.2.3.4, the band energy is computed by a
rectangular filter here, i.e., by summation of all the magnitudes within the interval
[f1; fu], where f; and f,, are the lower and upper frequency bounds of the band, respec-
tively. Note: This descriptor can be computed from any type of spectrum X (m) in
theory. However, the equations given below rely on a power spectrum Xp () as input.
Other spectral representations must be converted to a power spectrum, in order to be
able to sum up the energies in each band with Eq. (2.92).

At the band borders interpolation is performed to consider partial bins appro-
priately, as derived in Sect.2.2.3.4. With general lower and upper bound frequen-
cies of f; and f,, respectively, according to Eq.(2.75) respective weighting factors
a; =m; —m;+ 0.5 and o, = m), —my, + 0.5 for the lower and upper integer bin
indices m; and m,, are found.

The energy for a band bounded by f; and f;, is then computed as the following sum
over the power spectrum Xp:

m,—1

EJ{, = ayXp(my) + ( Z XP(m)) + ., Xp(my). (2.92)

m=m;+1

2.2.4.2 Spectral Slope

The overall shape of a spectrum X (1) can be expressed by its linear slope. To compute
the slope, a minimum quadratic error approximation of the spectrum X (m) by a line

16In openSMILE these spectral descriptors can be extracted with the cSpectral component.
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$=ax+b (2.93)

is attempted, where a is the slope, and b is the vertical displacement (Tamarit et al.
2008). In order to keep the following equations generic, the spectrum X (m) is rep-
resented as a general function y = f(x) with y = X and x = m. The function f(x) is
defined for a finite set of N points x; withi =0...N — 1.

The minimisation of the quadratic error e? between the linear approximation of
the function and the function itself is expressed as:

=z

-1

() — $(x) Z(y,— i — b)?

i=0

o
[§9)
1
F'M
o

=

—1
(V2 — 2ax,y; — 2by; + 2abx; + a>x? + b))’ =min.  (2.94)

Il
S

i

From this, the following differential equations for a and b for the points x; with
i =0...N are obtained:

5 = \

5—ae2 - ZO: (—2xy; + 2bx; + 2ax?) = 0, (2.95)

5 N—1

5ez =" (=2y; + 2ax; + 2b) = 0. (2.96)
i=0

Rewritten as:
N—1 N-—1 N-—1
> xyi+b D> xitad x=0, 2.97)
i=0 i=0 i=0
N N—1
~ > vi+a> x+Nb =0, (2.98)

yields the solution for a:

NZ, =0 'xlyl_ZI =0 xlz; =0 Yi
2
N—1
N — (25 )

a= (2.99)

For simplification, the following substitutions can be made in Eq. (2.99):

N—1 N—-1

E Xi = Xy, E i = Ey’
i=0 i=0
N-1

inZ = Xp, in)’i = Exya (2.100)

i=0
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and Eq.(2.99) can be rewritten as:

NZ,, — X, %,
a= ——— (2.101)
NZ, — X2
For computational efficiency, when using a linear frequency scale, the following
substitutions can be further made (by applying exponential sum properties from
(Rade et al. 2000, p.189):

T, = %N(N —1) (2.102)
Yo = éN(N— DHE@N - 1). (2.103)

The spectral slope can be computed over the full range of the spectrum, or over a
sub-band. When computing the spectral slope in a sub-band, the border points must
be linearly interpolated from the neighbouring bins, if they do not exactly match a
bin. Let us assume respective lower and upper band border frequencies of f; and f,,
which correspond to real valued bin values m; = F~'(f;) and m, = F~'(f,). Then,
the substitutions in Eq. (2.100) can be rephrased as (replacing x; = x,, = F(m) and
Vi = Ym = X(m)):

Lm,, |
Sc=fi+| D Fm) |+, (2.104)
m=[m;]
£, = X (L)) + (m — L)) (X (1) = X (L) )

Lm, |

+{ D xm

m=[m]]
+X (m]) + (m;, - Lm;J)(X (rm1) — X (Lm;J)), (2.105)
Lm;, |
Se =+ D Fmm) | +f1. (2.106)
m=[m]]

= (X () + (= L) (x 0f1) = x (1) ))

Lm;, ]
+{ D Fmx(m)

m=[m;]]

+fu(x (Lm]) + (m; - Lm;J)(X (rm)1) = X (Lm,]) )) (2.107)
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The spectral slope a computed with Egs.(2.104)—(2.107) and Eq.(2.101) has the
unit magnitude/Hz, if computed from a magnitude spectrum X, (m), energy/Hz if
computed from a power spectrum Xp(m), and dB/Hz if computed from log-power
spectral densities Xp o (1), for example.

Often, the spectral slope is computed from a linear frequency power spectrum
over the full spectrum range (typically 0-8,000Hz), as in, e.g., (Eyben et al. 2010a;
Schuller et al. 2010, 2011, 2012a, 2013b). Alternatively, as suggested by Scherer
etal. (2015), the spectral slope should be computed in three different bands, which are
0-1, 1-5, and 0-5 kHz. Thereby a logarithmic band spectrum is used, with constant
linear bandwidth of 400 Hz.

2.2.4.3 Hammarberg Index

Besides computing the exact spectral slope directly, as was outlined above, features
closely related to the spectral slope can be used. Tamarit et al. (2008) mention the
Hammarberg index in this context. The measure was defined by Hammarberg et al.
(1980) as the ratio of the strongest energy peak in the 0-2kHz region to that of the
strongest peak in the 2—-5kHz region. Hammarberg defined a fixed static pivot point
of 2kHz where the low and high frequency regions are separated. Symbolically the
Hammarberg index 7 is defined here as:

max; 2, X (m)

n= )
max)_ | X(m)

(2.108)

where myy, is the highest spectral bin index where f < 2 kHz is still true.

According to more recent findings (Tamarit et al. 2008) it could be beneficial to
pick the pivot point dynamically based upon the speaker’s fundamental frequency.
This is, however, on purpose not considered in this thesis because it would break
the strictly static nature of all the feature extraction algorithms described. It will
be left an open issue for future work where a multi-level feature extraction could
be investigated, i.e., features are organized in different hirarchies and extraction
algorithms for higher level features change their parameters according to decisions
based on values of lower level features.

2.24.4 Alpha Ratio

Similar to the Hammarberg index, the Alpha Ratio (Patel et al. 2010) is defined as the
ratio between the energy in the low frequency region and the high frequency region.
More specifically, it is the ratio between the summed energy from 50 to 1000 Hz and
1 to 5kHz, expressed as p,:
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mik X
po = M,ﬂ;(m) (2.109)
Zm:m|k+l X(m)

where my; is the highest spectral bin index where f < 1kHz is still true.

In applications of emotion recognition from speech, this parameter most often—
like other spectral slope related paramters—is computed from a logarithmic repre-
sentation of a band Long-Term Average Spectrum (LTAS) (cf. Scherer et al. 2015;
Patel et al. 2010). However, the definition—in my opinion, holds for any sort of
spectrum—and thus also for linear short time magnitude spectra, for example, as
used in this thesis. Which spectral representation is best has to be determined empir-
ically for every use-case.

2.2.4.5 Spectral Flatness

Spectral flatness (Spasmess) 1S computed as the ratio of the geometric mean of the
spectral bins to the arithmetic mean of the spectral bins (Johnston 1988):

(m, 7n1l+l|/1_‘[mu
! m=my X (m)

1 ny, ’
Gy Doy X (1)

Sﬂamess = (21 10)

with lower and upper bound bin indices m; and m,,, respectively. As suggested by
the name this descriptor describes the flatness of a spectrum, i.e., it will have a
higher value for a spectrum with strong peaks (e.g., a harmonic spectrum, but also
a spectrum with non equidistant peaks such as multiple tones or modulated noise).
This descriptor is part of the MPEG-7 audio content description standard (Manjunath
et al. 2002).

2.2.4.6 Spectral Centroid

Spectral centroid (Scenmoiq) 1S computed as the centre of gravity of a spectrum X (m)
(cf. Peeters 2004):
o X FenXom
centroid — Zmu X (m) )

m=m

@2.111)

with lower and upper bound bin indices m; and m,,, respectively. F (m) is the frequency
(in Hz) corresponding to bin m (cf. Sect.2.1.2). It is correlated to the brightness or
sharpness of an audio signal, according to Zwicker and Fastl (1999). Other studies
(e.g., Kendall and Carterette 1996) suggest that the ratio between F and the spec-
tral centroid is better correlated to brightness than the spectral centroid alone. This
descriptor is part of the MPEG-7 audio content description standard (Manjunath et al.
2002), also known as spectrum centroid.
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The sumsin Eq. (2.111) re-appear in equations for the spectral slope (Sect. 2.2.4.2),
thus—in efficient code—spectral slope and spectral centroid should be computed in
the same component in order to share the results and avoid computing these sums
twice.!”

2.24.7 Spectral Moments

Spectral moments include the second, third, and fourth order moments, which are
named spectral variance (also referred to as spectral spread in the MPEG-7 standard
(cf. Peeters 2004 and Manjunath et al. 2002)), the spectral skewness, and the spectral
kurtosis, respectively. In order to compute these statistical moments, the spectrum
X (m) must be converted to a Mass Function (PMF) px (m):

(m) = 2
PR = Sm X6

i=m1

(2.112)

Thereby usually the full spectral range is considered, i.e., m; = 1 and m, = M and
X (m) is chosen to be the power spectrum, i.e., X (m) = Xp(m).
Based on the above PMF, spectral variance Syqiance 18 defined as:

my

Suariance = S(2T = Z (F(m) - Scentroid)sz(m)s (2113)

m=my

with the spectral centroid S.niq as defined in Sect.2.2.4.6. The spectral standard

deviation S, is given as:
So = v/ Svariance- (2.114)

Accordingly, spectral skewness Sgewness 18 defined as:

ny

1
Sskewness = § Z (F(m) - Scentroid)?’p)((m)y (2115)

T m=my

and spectral kurtosis Siyrsis aS:

my

1
Skurtosis = S_4 z (F(m) - Scenlroid)4px(m)- (2116)

T m=m

17In openSMILE, this is implemented in the cSpectral component.
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2.2.4.8 Spectral Entropy

The spectral entropy is similar to the spectral flatness, as it relates to the peakedness
of the spectrum. Again, the spectrum must be converted to a PMF py(m) using
Eq.(2.112). Then, according to Misra et al. (2004), the spectral entropy Seropy 15
defined as:

my

Sentropy = =, px(m) - 1og, px (m). 2.117)

m=m

The definition is based on the original definition of the Shannon Entropy by Shannon
(1948).

2.2.4.9 Spectral Roll-Off Point

The n % spectral Roll-off Point (RoP) S,,,, is defined as the frequency below which
n % of the total energy is concentrated (generalised version of Peeters 2004). Thus,
the spectral RoPs must be computed from the power spectrum Xp(m). The total
energy E (in the band from bin m; to m,,) is computed as:

E = ZMXp(m). (2.118)

The n % RoPs is then estimated by iteratively increasing r in the following equation
until the equation becomes valid:

d n
X > —F. 2.119
Z; pm) > <o (2.119)

The RoPs is then S,y = F(r). Typical values for n are 95, 90, 75, and 50 %.

2.2.4.10 Psychoacoustic Sharpness

According to Zwicker and Fastl (1999), the spectral centroid is better correlated
to the perceived sharpness of a sound, if it is computed on a Bark frequency scale
and a frequency dependent auditory weighting for frequencies greater than 16 Bark
(function g(f ®*®)))is performed on the magnitudes X (). This leads to the following
definition of perceptual sharpness:

St @vark (F(m) X ) (@part (F(m) )
e X(om) ’

tharpness =0.11 (2120)
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with
iff(bark) <16

1
(bark) — o log3/log?2 . (212])
g (F™) (f(blﬁ) +1  otherwise

2.2.4.11 Spectral Differences

The spectral descriptors described so far are static descriptors in a sense that they
can be applied to single spectra, e.g., short time spectra of a single frame. In order to
consider changes in the spectrum over time, Spectral Difference (SD) features can be
used. The general idea is to treat each short-time spectrum X® (m) at discrete time
(frame index) k as a point X in an M-dimensional space and to compute the distance
between two successive spectra. For distance computation the L, norm is considered
in this thesis and the spectral difference SD® at frame index k is defined as:

Sp® = |3 (X m) — XG0 ). (2.122)

m=m;

This descriptor is useful for detecting sudden changes in the overall energy as well
as sudden changes in the spectral shape of the signal without large changes in signal
energy. It is widely used in Music Information Retrieval (MIR) for detection of
instrument onsets (Masri 1996; Duxbury et al. 2002; Eyben et al. 2010b). A variation
of the SD function is common in this field: the positive spectral difference SD?,
where only positive differences are considered in the sum:

(2.123)

my, _ _ 2
spf = | 3 (KL =X + X - X Dl

m=m

This function emphasises areas of fast rising spectral energy, which in music corre-
sponds to onsets of instruments and vocals. Decreasing energy is neglected, which
is also of no importance of an onset detection algorithm, for example.

2.2.4.12 Spectral Flux

The spectral flux Sg,, represents a quadratic, normalised version of the simple spectral
difference (Sect.2.2.4.11). With general normalisation coefficients yy the definition
of spectral flux is as follows:

M (k) x k=1 2
sh=3 ( ) _ (m)) . (2.124)
Hie Hie—1

m=m;
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The normalisation coefficients ;i and jy_; can either be one'® which corresponds
to no normalisation, or chosen in a way that normalises the L; or L, norm of the
spectrum vector to one:

=" X O, (2.125)
m=my

™ (2.126)

In the latter case (L; or L, vector normalisation) we talk about normalised spectral
flux, otherwise, about unnormalised spectral flux.

2.2.4.13 Harmonicity

The Harmonicity descriptor implemented in openSMILE'® describes the amount
and quality of the harmonics in a signal, i.e., it can be used to discriminate harmonic
and non-harmonic signals. It is thus related to the more common Harmonics-to-
Noise ratio (see Sect.2.2.13.3), however, not the same. Harmonicity is computed
directly from a magnitude spectrum by applying a simple peak picking algorithm
based on identification of local minima and maxima by looking at the 2 left and right
neighbours of the current frame. Then, the ratio between the minima and the maxima
in relation to the amplitude of the maxima is computed.

In detail, the maxima and minima of the magnitude spectrum X, (m) are found
according to the following rule:

Xy (m —2) < Xy (m)
Max(my = 1, it § 209 Kw(m =1 < Xy (m) (2.127)
and Xy (m+ 1) < Xy (m)

and Xy (m+2) < Xy (m)

Xy (m —2) > Xy (m)
Minmy = 1, if 1204 Xu@m =1 > Xy (m). (2.128)
and Xy(m+1) > Xy (m)

and Xy (m +2) > Xy (m)

18This is the current default in all openSMILE feature sets up to version 2.0. An option for normal-
isation might appear in later versions.

19In the cSpectral component.
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Now, with an array L(p) of the amplitudes of P alternating maxima and minima
p=1...Pasum ¥p of maxima to minima distances is given as:

P
Ep:Z|L(p)—L(p—l)|. (2.129)

p=2

The harmonicity descriptor HM is computed by normalising with the number of bins

in the spectrum:
Xp
HM = —— (2.130)

my —m;+ 1’
or by the total energy®® of the frame in the sub-band:

HM = p (2.131)
> X (m) '

2.2.5 Autocorrelation

Complementary to a short-time spectrum representation, the short-time Autocorre-
lation function (ACF) has a high resolution for low frequency periodicities within a
frame or segment of interest. The autocorrelation describes the signal’s self similarity
at given discrete time 1ags 7 € [—Tuax - - - Tonax]-

For a discrete signal x(n) of infinite duration, the ACF can be computed in the

time domain as:
o0

ACF.(r) = > x(mx(n+1). (2.132)

n=-—00

This energy based definition yields infinite values for signals of infinite duration.
Thus, in practice the signal length is limited to N (frame length or period of an
infinite duration signal):

N-1
ACF(T) = > x(mx(n+ 7). (2.133)
n=0

Further, the energy ACF can be normalised by the length N in order to obtain a power
ACF:
N-1
ACE(7) = + > x(mx(n+7) (2.134)
> N2 . .

20Enabled by the option normBandEnergies of the cSpectral component of openSMILE.
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The definitions in Eqgs. (2.133) and (2.134) assume that the signal is either periodic
with N or has at least a duration of N + 27,,,,. In the latter case (non-periodic), a
signal of length N can also be zero-padded (i.e., filled with zeros) with 7;,,,, /2 zeroes
at the left and 7,,,,/2 zeroes at the right of the actual N samples.

Instead of computing the ACF via the sums in Eq. (2.133), the discrete FFT can
be used to speed up computations (Wiener—Khintchine Theorem, cf. Wiener 1964
which bases on original publications in Wiener 1930, Khintchine 1934, and Levinson
1947a,b for discrete signals). Due to the fact that the autocorrelation can be seen as
a convolution of x(n) with a reversed version of x(n), the autocorrelation of x(n) can

be expressed as multiplication in the frequency domain®!:

ACF,(x) = FFT~Y(FFT (x) - FFT*(x)), (2.135)

with FFT*(x) denoting the complex conjugate of the discrete FFT of the signal x(r)
and FFT~'(.) representing the inverse discrete FFT. The above produces equivalent
output to Eq. (2.133). This definition implicitly assumes the signal x(n) to be con-
tinued periodically to the left and right. To avoid artefacts when the signal is not
periodic in N, zero-padding to a length of 2N must be performed by placing N/2
zeroes to the left and N /2 zeroes to the right of x(n). The valid range for 7 is from
—N to +N after zero-padding.

Designing the ACF in this way will avoid artefacts, however the magnitude of
the ACF function will linearly decay towards the border because more zeroes will
be part of the sum (Eq.(2.134)) for higher 7. To avoid this, two signals x;(n) and
xp(n) can be defined, where x;(n) = x(n) for all n € [0; N[ and x,(n) = x(n) for
ne [%’; 3TN[. x1 is zero-padded with N /4 zeroes to the left and right, and x; is zero-
padded with N /2 zeroes to the left and right. The autocorrelation is then expressed
as the cross-correlation between x; and x,:

N—-1
ACF.(r) = > xi(mxa(n + 7). (2.136)
n=0

This ensures a constant amplitude of the ACF for 7 from —N /4 to +N /4 and a valid
range of 7 (i.e., non-zero output) from —3N /4 to 3N /4.

In practice, most signals are not periodic with the frame length. Thus, symmetric
zero-padding with —N /2 samples at both ends before applying the ACF is the most
common method. The modification presented in Eq.(2.136) is not commonly used
because it is not an autocorrelation in a strict sense any more and has slightly different
properties. Instead, a 7-adaptive energy normalisation can be applied to obtain a
corrected power ACF:

N-1
ACFy(1) = ﬁ > xmx(n+ 7). (2.137)
n=0

21 ACF according to this equation is implemented in openSMILE in the cAcf component.
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According to the above definitions, the ACF is defined for negative and positive values
of 7. However, by definition the ACF is always symmetric and only the positive half,
i.e., T € [0; Tyax[ is relevant.

The ACF constitutes a basis from which further descriptors can be computed.
These include the Harmonics to Noise Ratio (HNR) (Sect.2.2.13.3), fundamental
frequency (Sect.2.2.11), and ACF peak ratios (not considered here), for example.

2.2.6 Cepstrum

The Cepstrum (CEP) was introduced by Bogert et al. (1963). It is closely related to
the ACF with respect to the way it is computed. Equation (2.135) is extended by a
natural logarithm before the inverse FFT:

CEP, = FFT™{In (FFT (x) - FFT*(x))}, (2.138)
CEP, = FFT™'{In (JFFT (x)|*)}. (2.139)

The effect of the logarithm is the temporal separation of the source and filter parts
of the signal x in the Cepstrum for which the following will give a brief derivation
and detailed explanation.

A source signal s is assumed which passes through a Linear Time Invariant (LTI)
system which has an impulse response /. The signal y at the output of the LTI system
is then defined by:

y(n) = {s x h}(n), (2.140)

where * denotes a convolution of the two discrete signals s and i, which is analytically

defined as:
Np—1

y(n) = {s*h}(n) = Z s(n — np)h(ny), (2.141)

np =0

where N, is the length of the impulse response A.
By exploiting properties of the FFT, the convolution in Eq.(2.140) can be
expressed in the frequency domain as:

Y(m) = S(m)H (m), (2.142)

where Y, S, and H are the results of the discrete FFT of the signals y, s, and A,
respectively. If we now apply the power operator we obtain:

1Y (m) > = Y(m)Y*(m) = S(m)S*(m)H (m)H* (m),
= |S(m)Hm)|* = |S(m)|*|H (m)|*. (2.143)
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Applying the natural logarithm to both sides of Eq.(2.143) yields:
In (IY (m)|?) = In (|S(m)|*|H (m)[?) . (2.144)

Now the algebraic property of logarithms that a multiplication of the arguments of the
logarithm function is equivalent to a summation of the logarithms of the individual
arguments can be exploited to transform the multiplicative (in the frequency domain)
or convolutive (in the frequency domain) relation between the signals s and 4 into
an additive relation:

In (|Y(m)|*) = In (1SGn)|*) +In (|Hm)|?) . (2.145)
After inverse FFT the above becomes:
FFT™'{In (IY(m)|*)} = FFT""{In (1S(m)|*)} + FFT~'{In ([H(m)|*)}, (2.146)
where
FFT™{In (|Y(m)|*)} = FFT~'{In |FFT (y)|*)} = CEP.(y). (2.147)

Thus, the Cepstrum of the output of a LTI system is the sum of the Cepstrum of the
source signal and the Cepstrum of the system’s impulse response.

In the case of a human speech signal the vocal tract can be seen—in a very
simplified way—as a LTI system with the glottal excitation signal as the input s(n)
and the vocal tract together with the sound wave propagation from the mouth to
adjacent air and the room as filter with the impulse response /(n) (linear source-filter
model) (Parsons 1987; Rosen and Howell 1991; Fant 1973). An example cepstrogram
(plot) of a real speech signal is shown in Fig.2.4. The impulse response # in this case
(if room reverberation with high delay constants is not considered) is of rather short
duration, thus, the Cepstrum is also short. In contrast, the excitation signal s is of
longer duration, as it is either a periodic signal for voiced sounds (created by opening
and closing of the vocal cords—in the ideal model it is a sequence of Dirac pulses) or
anoise like signal for unvoiced sound (created by airflow through the glottis—white
Gaussian noise in the ideal model). In the case of a periodic excitation this fact allows
to separate the impulse response Cepstrum from the excitation function by taking
the first K samples of the Cepstrum as impulse response and then filling them with
zeroes leaving only the excitation signal. Thereby K must be smaller than the period
length of the excitation signal. The fist two pulses of the excitation signal are clearly
visible in Fig.2.4.
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Fig. 2.4 Cepstrogram plot of a sample sentence from the AVIC database (Sect.6.1.3); female
speaker, words: “change another color”

2.2.7 Linear Prediction

Similar to Sect.2.2.6, Linear Prediction (LP) analysis exploits the properties of the
simple speech production model based on a LTI system. In this case the assumption
is that if voiced speech is produced by a LTI system excited with periodic Dirac like
signal, a sample at discrete time n will have a high correlation with the previous sam-
ple atn — 1, i.e., one sample can be used to predict the following sample. Details on
LP can be found in many other excellent sources, e.g., in areview by Makhoul (1975),
in Ruske (1993), Furui (1996), and Schuller (2013). Therefore, in the following only
the basic equations are summarised, which are required for implementation of LP for
acoustic feature extraction.?? In signal processing the term Linear Predictive Coding
(LPC) is commonly used when talking about LP analysis.

In linear prediction an approximation X (n) of the original signal x(n) is constructed
by a weighted sum of p previous samples (Schuller 2013):

P
) = — Zaix(n —i). (2.148)
i=1

Thereby, p—the number of previous samples considered—is also referred to as the
order of the linear predictor and the weighting coefficients a; are called the linear
predictor coefficients. The inversion in front of the sum is arbitrary, but simplifies
the equations for the computation of the linear predictor coefficients.

Because the order p is finite and in practice much smaller than the length of the
signal, an ideal estimation of an arbitrary signal x(n) with Eq. (2.148) is not possible.
An error term e(n) is therefore included in Eq. (2.148) to capture the part of the signal

221n openSMILE linear predictive coding is supported via the cLpc component.
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that cannot be modelled by the linear predictor (Schuller 2013):

P
x(n) =x(n) +e(n) = — Zaix(n — 1)+ e(n). (2.149)

i=1

The signal x(n) itself can now be included in the summation (starting at i = 0) which
yields the following equation for the prediction error:

P
emy=zyﬂm—n,wmcm=L (2.150)
i=0

For acoustic parameter extraction based on LP analysis, primarily the predictor coef-
ficients a; are of interest. From Eq. (2.150) it can be seen that the predictor with the
coefficients a; can be seen as a linear transversal filter with the finite length (p)
impulse response h;,, = ag, a, ..., a,(ap = 1), which filters the input signal x(n)
and yields the output signal e(n). Because this filter resembles the inverse of the
vocal tract filter (which produces the speech signal x(n) from the excitation signal
e(n)), it is referred to as the inverse filter, hence the subscript inv. Important: 1t is
to note here that the filter %;,, does not model only the vocal tract, it also includes
the effects of the sound wave radiating from the mouth into the air, and the response
of the room. For simplification, however, h;,, will be referred to as the vocal tract
impulse response, and the reader is advised to keep in mind this approximation.

In the source-filter model of human speech production (cf. Sect.2.2.6), the q;
coefficients correspond to the impulse response of the vocal tract and the prediction
error signal e(n) corresponds to the source excitation signal (Schuller 2013). The
vocal tract impulse response depends on the configuration of the vocal tract, which
in turn depends on the current phone that is being spoken. In particular, the impulse
response contains vocal tract resonance frequencies (referred to as formants, cf.
Deller et al. 1993 and Sect.2.2.8).

In order to compute the predictor coefficients a;, the constraint of quadratic min-
imisation of the error signal e(n) is applied to Eq.(2.150). A sum squared error « is
defined as:

N-1
a=> e, (2.151)
n=0

for the analysis interval n = 0...N — 1, which is typically a short-time window
(frame) of 10-20ms. For a predictor of order p, o resembles the energy of the
residual signal, which is related to the mean amplitude of the signal. It is thus also
referred to as the LP gain.

From the quadratic minimisation condition:

o
Za=o, (2.152)
0x
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a system of linear equations is obtained, which can be solved for the p coefficients
a; with various methods (Ruske 1993).

2.2.7.1 LP Coefficients—Autocorrelation Method

The LP coefficients a; are also referred to as the autoregressive (AR) coefficients
because they are coefficients of an AR model. This section deals with the autocor-
relation method for computing these AR coefficients (autoregressive modelling) as
described and derived in more detail by Ruske (1993).

As aresult of the derivation of the autocorrelation method, a recursive algorithm??
for computing the predictor coefficients is found (according to Ruske 1993) as fol-
lows: The algorithm is initialised with a predictor of order j = 0, and with a sum
quadratic prediction error of «y:

oy =r(0), ap =1. (2.153)
Then, a predictor of the next higher order j is iteratively estimated via the following

equations, known as Levinson-Durbin recursion (cf. Levinson 1947b and Durbin
1960):

1
ko= — a1 — ) (2.154)
j aj_y ; J—1 (]
aj = kj (2.155)
ag = 1 (2.156)
aj = aij—1 + kjaj_,-,j_l withi=1.. ] —1 (2157)
aj = a1 (1 — k), (2.158)

where j = 1...p indicates the iteration number, a;; is the ith predictor coefficient
after iteration j, r(d) is the autocorrelation coefficient with associated lag d. The
iteration terminates if a predictor of the requested order p is found, i.e., when j =
p. The temporary variables k; with k € [1; p] are—without further explanation at
this point—named the reflection coefficients or the partial correlation coefficients
(PARCOR) (cf. Ruske 1993).

The autocorrelation coefficients r(d) for lags d are estimated via the autocorrela-
tion function (cf. Sect.2.2.5), assuming a window (frame) of N samples length:

N—1

r(d) =Y x(mx(n —d), (2.159)

n=d

with d € [0; p].

23 As implemented in openSMILE in the cTpc component.
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2.2.7.2 LP Residual

The error signal e(n) is also referred to as the LP residual. In general, it is computed
from the speech signal by applying the inverse filter %;,, which is composed of the
predictor coefficients (see Sect.2.2.7). A preferred implementation of this filter is
via a lattice filter structure. This is briefly outlined in this section.

The reflection coefficients k; introduced in the previous section constitute an
alternative representation of the LP filter and are restricted to the following condition
(Ruske 1993):

|kl > 1. (2.160)

Thus, they can be used to implement stable lattice filters for a forward vocal tract
model filter (producing the speech signal from the excitation/error signal), and an
inverse vocal tract model filter (producing the excitation/error signal from the speech
signal).

For computing the residual e(n) of x(n), the inverse LP filter must be applied, of
which the efficient lattice filter implementation is defined by the following equations
(Ruske 1993):

Initialisation: y,(o) (n) = y,(,o) (n) = x(n) (2.161)
for j=1...p: Y =y"w+k-yW " -1 (2162
Wy =y P-4k w2163

Output = e(n) =y (n), (2.164)

where p is the order of the linear predictor and k; are the reflection coefficients (see
Sect.2.2.7.1).

2.2.7.3 LP Spectrum

The LP coefficients are related to the impulse response of the vocal tract (more
exactly, the whole speech production system which includes, vocal tract, radiation
into the air, and the room—however, for simplification it is referred to as vocal tract
here), as mentioned before. The coefficients a; constitute the impulse response of the
inverse vocal tract filter (4;,,), which produces the excitation signal from the speech
signal. In the source-filter model of speech production, however, the glottal excitation
signal is convolved with the vocal tract system’s impulse response k. Therefore, &
must be obtained from #;,,. The spectrum H of & represents the frequency response
of the vocal tract. In the following it is shown that H can be computed from the LP
coefficients and is thus referred to as LP spectrum. Applying the DFT to h;,, yields
(Schuller 2013):

Hjyy(m) = DFT (hiyy). (2.165)
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The forward vocal tract filter H is defined by a recursive all-pole filter, which is
obtained by inversion of H,,:

H(m) =

s (2.166)

Thus, the LP spectrum is defined as H (m), which is, in words, the inverse of the DFT
of the LP coefficients.

Given a predictor length p, a p-point DFT would be applied which yields p/2
frequency bins. For typical LP analysis p is rather small (*10-15), which leads to
a bad frequency resolution in the LP spectrum. The resolution can be improved by
non-linear interpolation (spline or sinc) or by zero-padding the LP coefficients to a
length N > p, which is equivalent to the sinc interpolation (Oppenheim and Schafer
1975). The spectral resolution in the latter case is determined by N and the sampling
rate of the original speech signal. For M bins (2M — p) zeros need to be appended
to the predictor coefficients.

2.2.7.4 Relation of LP Coefficients and the Cepstrum

A strong link between Cepstrum and LP AR coefficients exists due to their common
relation to the impulse response of the vocal tract system in the linear speech pro-
duction model. The link between cepstral coefficients C (i) and the linear predictor
coefficients g, is defined by the following recursion (Young et al. 2006) (starting with
i=0):
=
C(i) = —a; — - ;(z NaiC (i —j). (2.167)

2.2.7.5 Line Spectral Pairs

Besides the direct AR coefficient and the reflection coefficient representation of the
LP coefficients, an alternate parametrisation as Line Spectral Pairs (LSPs) or Line
Spectral Frequencies (LSFs) exists (Kabal and Ramachandran 1986). This represen-
tation is favoured for low bandwidth channel transmissions, as it was shown to be
less sensitive to quantisation noise (Soong and Juang 1984; Kang and Fransen 1985).

According to Kabal and Ramachandran (1986), the LSPs are obtained by a decom-
position of the LP coefficient polynomial in the z-domain (H (z)) with the help of the
following two constructed polynomials?*:

P(z) =HQ@) +z ""VH(E™) (2.168)

241n openSMILE the cLsp component implements LSP computation based on code from the Speex
codec library (www.speex.org).
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0@ =H(z) — 7z ""VHE ™, (2.169)
with z = ¢ = ¢V, (2.170)

where P(z) and Q(z) represent the vocal tract system with the glottis closed and
opened, respectively (Schuller 2013). More details on the computation of LSPs are
given by Kabal and Ramachandran (1986) and Schuller (2013) and are thus not
repeated here. In short, the roots of the polynomials P(z) and Q(z) (of order p + 1)
are determined empirically. The name Line Spectral Pairs stems from the fact that
these roots are all complex symmetrical pairs with respect to positive and negative
frequencies f (Schuller 2013; Furui 1996). In total, p roots can be found—the same
number as LP coefficients.

The LSPs are related to the formants of the speech signal, which are estimated
from the roots of the polynomial H(z). Precisely, two LSFs enclose a formant as left
and right boundaries.

2.2.8 Formants

Formants are resonance frequencies of the vocal tract system (Ruske 1993), which
characterise phonemes, esp. vowels. They have also been discussed in the context
of music, in particular the singing voice (Sundberg 1987). Hence, they are visible
in speech spectra as maxima of the envelope. From this, one method for identifi-
cation of formants is the application of a peak picking algorithm directly to speech
power spectra. However, this approach suffers from distortions by the fundamental
frequency and other peaks caused by other components of the speech production
system (room transfer function, for example) as well as additive noise (Ruske 1993).
The LP spectrum (Sect.2.2.7.3) can be used to eliminate the influence of the funda-
mental frequency and to obtain a smoothed spectral envelope for formant estimation.
An even more robust way of formant estimation bases on finding the roots of the
LP coefficient polynomial (see Sect.2.2.7), which will be outlined in the follow-
ing section.”> For all methods, again, one has to keep in mind that in the spectral
envelope and also in the LP coefficients other resonance frequencies (room) might
be contained and one must determine which peaks (or roots of the LP polynomial)
belong to formants and which can be attributed to external influences (McCandless
1974).

Most recent methods build on the fundamental extraction principles outlined
above, but consider temporal context for smoothing the formant trajectories and
correcting local errors. For instance, the Viterbi algorithm is used to smooth trajecto-
ries (Yan et al. 2007) and/or Kalman filters are applied (Yan et al. 2007; Mehta et al.
2012). Few methods, such as (Glaser et al. 2010) implement alternative algorithms

251n openSMILE formant extraction is implemented via this method in the cFormant component,
which processes the AR LP coefficients from the cLpc component.
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for identifying formant trajectories directly from spectrograms, i.e., not basing on
linear prediction. Temporal smoothing for formants is not considered in this thesis.

As for the nomenclature, the symbol F; with x > 1 will be used for formants. This
takes into account the fact that the fundamental frequency is denoted by the symbol
Fy and formants are, loosely speaking, higher orders of resonance frequencies excited
by the fundamental frequency.

2.2.8.1 Estimation from Linear Prediction

When computing formant frequencies from LP coefficients, it is assumed that the
formants are the resonance frequencies of the forward LP transfer function H (i)
(Eq. (2.165)). Thus, they represent zeros in the inverse transfer function, and hence
can be determined from a factorisation of the inverse transfer function polynomial
H;,, (2) in the z-domain (McCandless 1974).

Given a set of predictor coefficients h;,, = ao, ay, ..., a, with ag =1, the z-
domain inverse transfer function of the LP filter can be expressed as (Schuller 2013;
Ruske 1993):

Hupw@ =1+az ' +az?+--+az?. (2.171)

The factorisation of H;,, (z) is given by:

Hipy(2) = (1 — ’2) (1 — ’2) ----- (1 _ p—M) (2.172)
Z Z Z

The factorisation is estimated with numerical methods, such as the Newton-Rhapson
iteration (cf. Deuflhard 2011; Schuller 2013): the algorithm is initiated with an esti-
mate of the first zero; then, the value of the polynomial and the numerical derivative
at this location are computed. Iterative improvements of the estimate are computed
by adjusting the location of the zero in the direction of the derivative, until a conver-
gence criterion is reached (the delta from one iteration to the next is smaller than a
threshold). A polynomial division is performed to remove this zero from the polyno-
mial, and the algorithm is re-initialised for the next zero. This procedure is repeated
until all zeros have been found, i.e., the degree of the remaining polynomial is 1.
Because an error made for the first zero will propagate as an increased error to the
subsequent zeros, it is recommended to refine the estimates of all the zeros in a small
number of iterations on the whole polynomial.

The following algorithm to compute the formant frequencies from the transfer
function poles is described loosely after the implementation in (Boersma 2001).
Before computing the formant frequencies, the poles p; are mapped into the unit
circle by the following equation:

1
pi=—ifpil > L. (2.173)
p.

1
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Since all poles which are found for a polynomial H;,,,(z) with real-valued coefficients
are symmetric on the imaginary axis, i.e., for each pole a complex conjugate partner
pole exists, the poles with negative imaginary parts are discarded. Next, the phase
of each pole p; (with positive imaginary part) is converted to the frequency of the

formant F;:
Im(p;
arctan (m—(p)) ‘ . 2.174)

F;
Re(p;)

- T2m

The corresponding bandwidth (“width of the spectral envelope peak™) is estimated as:

FO — 1o (P 2.175
i og (szﬂ ( )

2.2.8.2 Estimation from the Spectral Envelope

Formants can theoretically be estimated directly from the spectral envelope by peak
picking. It is crucial though to choose an accurate method for estimating the spectral
envelope. Basically two approaches exist:

1. Direct method: smoothing of the magnitude spectrum with a low-pass filter, or
2. computing the LP spectrum from LP AR coefficients.

The direct method has numerous disadvantages, hence, the LP spectrum method is
the preferred way. The greatest disadvantage of the direct method is the influence
of the fundamental frequency F of voiced sounds. Because the range of possible
Fy values overlaps with the range of the first formant F, in some cases (especially
for female voices) these two peaks might not be separable, or Fy might be mistaken
for F;.

The LP spectrum (Sect.2.2.7.3) contains a spectral envelope where the influence
of Fy has been completely removed by the linear predictor, if the length of the
linear predictor p < N, g) (N g) is the length of the fundamental frequency period in
samples). Given that the LP spectrum has a sufficiently high resolution, the resonance
frequencies of the vocal tract can be estimated by identifying peaks in the LP spectrum
(McCandless 1974).

2.2.9 Perceptual Linear Prediction

The concept of Perceptual Linear Prediction (PLP) was introduced by Hermansky
(1990). It extends the standard LP analysis by a psychoacoustic model of sound
perception in the human auditory system. Hermansky (1990) defines the five steps
of the PLP procedure:
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1. Spectral analysis: 20 ms Hamming window with zero-padding to nearest larger
power of 2 for FFT,

Critical-band power spectrum,

Equal-loudness pre-emphasis,

Intensity loudness power law,

Autoregressive modelling.

Nk e

The result of the first four steps is a discrete auditory band spectrum X, 4,4 (b). With
this, Hermansky (1990) suggests autoregressive modelling (step 5) with the auto-
correlation method (as described in Sect.2.2.7.1) to obtain AR coefficients. These
coefficients can be then converted to a cepstral representation (Perceptual Linear Pre-
diction Cepstral Coefficients (PLP-CC)) with Eq.(2.167). Similarly, PLP-CC could
be computed directly from X, (m) by taking the natural logarithm of X, (m) and apply-
ing the Discrete Cosine Transformation (DCT). In this thesis, however, the original
method via autoregressive modelling is adopted.?¢

The following sections describe the steps of PLP as they have been implemented in
openSMILE for this thesis. Further, an extension to PLP, which accounts for temporal
properties of speech is summarised in Sect.2.2.9.5.

2.2.9.1 Ciritical-Band Spectrum

A critical-band power spectrum Xp(b) is obtained for B Bark or Mel bands, as
outlined in Sect.2.2.3.4. Hermansky (1990) suggests the use of a Bark scale for
frequency warping according to Eq.(2.62) (cf. Schroeder 1977).2 Yet, any other
non-linear frequency scale can also be used theoretically to obtain non-standard
PLP-like coefficients.?®

In this thesis triangular filters for the band spectrum are used, as implemented by
Young et al. (2006). Although, Hermansky (1990) gives a piecewise linear shape for
the band filters the triangular shape approximation has in practice been used more
frequently due to the implementation provided by Young et al. (2000).

2.2.9.2 Equal-Loudness Pre-emphasis
The band spectrum Xp(b) obtained in the previous step is now weighted by an

equal loudness curve function E(b) to attribute for the frequency dependent loudness
sensitivity of the human ear:

26PLP via this method is implemented in openSMILE via the cP1p component.

27In openSMILE this Bark scale can be selected in the cMelspec component by setting the specScale
option to ‘bark_schroed’.

28 5penSMILE allows for this flexibility because the PLP procedure builds on a chain of components:
cTransformFFT, cFFTmagphase, cMelspec (for the non-linear band spectrum), and cPlp (for equal
loudness and intensity power law and autoregressive modelling and cepstral coefficients).
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The equal loudness function adopted by Hermansky (1990) is originally from
Makhoul and Cosell (1976). It is given for a linear frequency f by:
10°! - (27f)? +56.8 x 10%) 27f)*
(@7f)? + 6.3 x 109)7 - (/)% 4 0.38 x 10%) (27f)7 + 1.7 x 1031
(2.177)

E(f) =

To evaluate the equal loudness function for frequencies f** on the Bark scale, one
substitutes f by:

f =050, (F"). (2.178)

For the band power spectrum Xp(b) the Bark scale band centre frequencies fc(”“”‘) b)
are used to compute the weights E(b) for each band b =0...B — 1. To speed up
computations, the equal loudness weights can be applied directly to the triangular
band filters (cf. previous section).

For compatibility with the Hidden Markov Toolkit (Young et al. 2006), the fol-
lowing approximation for the equal loudness curve is also investigated?’:

e 2 £2 4 1.44 x 10°
E _ . 2.179
ik (F) (fz +1.6 x 10 f2 +9.61 x 10° ( )

The same conversions from linear to bark frequencies and to band indices as above
can be applied to obtain the weighting factor for each band b.

2.2.9.3 Intensity Loudness Power Law (Compression)

To model humans’ non-linear perception of sound power (Zwicker and Fastl 1999), a
cubic root amplitude compression® is performed (Hermansky 1990), and a spectrum,

referred to as auditory spectrum herein, is obtained:
Xp.aud (D) = Xp.eq(0)*. (2.180)

See Fig.2.5 for an example auditory spectrogram. Xp ,,4(b) can be seen as a percep-
tually corrected band spectrum. The sum of the auditory spectrum over all bands is
a perceptual loudness measure, which approximates the Zwicker loudness (Zwicker
and Fastl 1999) and should be used for polyphonic wide-band signals as a substitute
for the narrow-band loudness approximation (Sect.2.2.2) in all cases.

2In openSMILE it is enabled by setting htkcompatible to Iin the cP1p component.
30Configurable via the option compression in the openSMILE component cP1p.
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Auditory Mel-spectrum
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Fig.2.5 Auditory spectrogram (based on 26-band Mel-band power spectrum) of a sample sentence
from the AVIC database (Sect. 6.1.3); female speaker, words: “change another colour”

2.2.9.4 Autoregressive Modelling

The auditory spectrum Xp 4,4(b) is now used to estimate linear prediction coeffi-
cients, which—due to the perceptual/auditory nature of this spectrum—are called
perceptual linear prediction (PLP) coefficients. These coefficients are estimated via
the autocorrelation method, as described in Sect.2.2.7.1. Instead of computing the
autocorrelation coefficients r(d) from the time domain signal x(r), these coefficients
are computed by applying the inverse DFT to the auditory spectrum. The auditory
spectrum is a power spectrum, and thus, the inverse DFT of Xp ,,4(b) resembles an
autocorrelation function. As only very few autocorrelation coefficients are required
(order of the linear predictor 10), computing only the first few coefficients viaa DFT
is faster than using a FFT to compute the full autocorrelation.

2.2.9.5 Temporal Filtering: RASTA-PLP

RelAtive Spectral TrAnsform (RASTA) PLP is an extension to PLP which was
first presented by Hermansky et al. (1992). It considers temporal properties of the
human hearing and speech production systems. In particular, it exploits the fact
that speech is primarily composed of modulations around 4 Hz (Zwicker and Fastl
1999; Hermansky et al. 1992). In RelAtive Spectral TrAnsform Perceptual Linear
Prediction (RASTAPLP) a bandpass filter adapted to a range around 4 Hz is applied
to the bands Xp(b) before the auditory processing steps of PLP are applied.
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An Infinite Impulse Response (IIR) filter for the RASTA bandpass is given by
Hermansky et al. (1992) in the z-domain:

247 —z3 277

H(z) =0.17*-
@ . 1— 098!

(2.181)

Adapting this filter for arbitrary lower (f;) and upper (f,) cut-off frequencies, and
splitting it into an array of 5 FIR coefficients a and one IIR coefficient b gives the
following set of equations for these filter coefficients:

2 —4do —4o0 2

a=|-, —, 0, —, —= |, (2.182)
d d d d

b=1-—sin (27rf1Tf) , (2.183)

where the helper variables o and d are defined as:

o = cos (27f,Ty) (2.184)

d = /10 (320> +8). (2.185)

Ty is the period (in seconds) of the frames Xp(b) (typically 10 ms).
Figure 2.6 shows the effect of the RASTA filter applied to the auditory spectrum
shown in Fig.2.5.

Auditory spectrum with RASTA filtering applied

‘Change another _ color

band #
log-magnitude

O FH N W & U1 O N 0 O

0.4 0.6 0.8 1 1.2 1.4
time (s)

Fig. 2.6 RASTA filtered auditory spectrogram (based on 26-band Mel-band power spectrum) of
a sample sentence from the AVIC database (Sect.6.1.3); female speaker, words: “change another
colour”
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2.2.10 Cepstral Features

The idea of separating source and filter parts of a speech signal by Cepstral analysis,
i.e., by applying a logarithm to the spectral magnitudes (cf. Sect.2.2.6) is exploited
by the group of cepstral features. These features are among the most successful and
probably the most often used acoustic features for Automatic Speech Recognition
(ASR) (Young et al. 2006; Rabiner and Juang 1993). They have also been applied
successfully to various other audio tasks, such as speaker identification (Martinez
et al. 2012), acoustic gunshot detection (Suman et al. 2014), music mood recogni-
tion (Nalini and Palanivel 2013), acoustic geo-sensing (Schuller et al. 2013a), and
Computational Paralinguistics (Schuller 2013).

The general procedure for computing cepstral features is basically the same pro-
cedure as for computing the Cepstrum (Sect.2.2.6):

1. Power spectrum representation (typically non-linear band spectrum)
2. Application of logarithm to power spectrum

3. Inverse spectral transformation (typically DCT)

4. Filtering of cepstral coefficients, called liftering.

However, in contrast to Sect.2.2.6 for the cepstral descriptors discussed below, a
non-linear frequency scale band spectrum serves as basis for Cepstrum computation.
Further, the inverse FFT is replaced by a DCT.

In the following two sections the most prominent cepstral descriptors, namely
MFCC and PLP-CC are described.

2.2.10.1 Mel-Frequency Cepstral Coefficients

With the building blocks described in the previous sections, MFCC as used by Young
et al. (2006) are quickly described': A 26 band spectrum X" (b) (Sect.2.2.3.4) is
computed from a linear scale magnitude or power spectrum using triangular filters
which are equidistant on the Mel-frequency scale and have 50 % overlap, i.e., the left
and right endpoints of each triangular filter match the centres of the left and right
bands. The filterbank is typically designed for the range from 20 Hz (in order to avoid
the influence of DC components) to 8,000 Hz, in which case the bands have centre
frequencies and half bandwidths as listed in Table A.1 in Appendix.
Next, the logarithm is applied to X" (b):

log (x;,’"e” (b)) i XD (B) < Xgoor

Xfioor otherwise

X[(Jlog,mel) (b) = [ (2.186)

3n openSMILE MFCC are computed via cMelspec (taking FFT magnitude spectrum from
cFFTmagphase as input) and cMfcc.
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The value Xj,,, is used to floor very small values (resulting from quantisation noise)
in order to avoid large negative log values. If the input samples have been scaled to
arange [—1; +1], then Xp,,, = 1078 is assumed as default.>?

On the log Mel-spectrum X" (b), a Discrete Cosine Transformation Type-II
(DCT-1I) is performed (Young et al. 2006),33 resulting in K Mel-cepstral coefficients
C(mel) ( k)

B—1
2 k(1
CrD ) =\ = D X" (b cos (% (b + E)) . (2.187)
b=0

Typically K = 12... 16 is chosen for most speech and music tasks. The advantage
of these Cepstral coefficients is that they are decorrelated due to the orthogonal base
of the DCT transformation. This has made them very popular for the use in Hidden
Markov Model (HMM) systems with diagonal covariance matrices (Young et al.
2006).

In the final step, the Cepstral coefficients Ce (k) are filtered in a way to empha-
size lower order coefficients. Because this happens in the Cepstral domain, it is
called—in analogy to the wordplay of Cepstrum versus spectrum—Iiftering. Given
a liftering coefficient L, the liftering is expressed as a weighting with a biased sine
function:

(mel)’ _ (mel) £ : ﬂ—_k
o (k) = €Dl (145 sin 7= ) (2.188)

The final coefficients C?)’ (k) are those that are widely known and used as MFCC.

2.2.10.2 PLP Cepstral Coefficients

Similar to the MFCC, Cepstral coefficients can be computed based on the auditory
spectrum of PLP analysis (Sect.2.2.9) or RASTA-PLP (Sect.2.2.9.5). These can
either be computed in analogy to the MFCC by using the auditory spectrum from the
PLP procedure instead of the log Mel-spectrum, or by applying the cepstral recursion
from Eq. (2.167) to the PLP AR coefficients from Sect.2.2.9.4. The latter method is
the one implemented by Young et al. (2006) and in openSMILE.3*

321n openSMILE the floor value is also 10~ by default, and 1 when htkcompatible=1 in
cMfcc.

33Please note, that the DCT equation given in Young et al. (2006) and here differ because Young
et al. (20006) start the summation at b = 1 for the first Mel-spectrum band, while here the first band
issetatb = 0.

34PLP-CC can be computed in openSMILE by creating a chain of cFFTmagphase, cMelspec,
and cP1p and setting the appropriate options for cepstral coefficients in the cP1p component.
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2.2.11 Pitch

The previous descriptors have focussed on the vocal tract transfer function and have
ignored the excitation signal. However, for applications besides ASR—such as Com-
putational Paralinguistics and Music Information Retrieval—prosody (i.e., tonality,
melody, dynamics of speech) plays a major role (Batliner et al. 2007; Schuller 2013).
Prosody is mainly expressed through pitch and loudness.

This section deals with the estimation of pitch, or for most methods, an approxi-
mation of pitch via estimation of the fundamental frequency Fj. Pitch is a perceptual
term which refers to the perceived tonality, i.e., frequency of a tone (Zwicker and
Fastl 1999). It is related to the Fy, i.e., the lowest frequency in the harmonic series of
the tone, however, not identical. Various effects contribute to the perception of pitch,
leading to phenomena where the pitch of a tone is potentially perceived as higher or
lower than the actual fundamental frequency. The most prominent case is the case
of the missing fundamental (Zwicker and Fastl 1999). If a tone of 100 Hz (including
higher order harmonics) is transmitted over a channel with a high-pass or band-pass
characteristic (e.g., a telephone line), then the first harmonic might be the dominant
fundamental frequency on the receivers side, while the actual fundamental of 100 Hz
has been almost fully removed from the signal by the channel. Our ear reconstructs
the original pitch based on the structure of the harmonics, which are nonetheless
100 Hz apart and not 200 Hz as they would have to be for a tone which actually has
a pitch of 200Hz.

Many automatic extraction methods aim at detecting periodicities in the signal,
and thus constitute estimators of the fundamental frequency and not necessarily of
pitch. Despite this fact, the topic is often commonly referred to as pitch detection in
the literature (Hess 1983). Thus, the methods are also referred to as Pitch Detection
Algorithms (PDAs) in the literature and in this thesis. In general two groups of PDAs
exist: methods operating in the time domain, and methods operating in the short-time
domain (frames) (cf. Schuller 2013). Short-time domain methods provide an F esti-
mate for each frame (typically 20—60 ms), which represents an average over ~2—10
individual Fj periods. Time domain methods detect individual fundamental periods
directly from the waveform, and thus have a better temporal resolution than short-
time domain methods, which is required, e.g., for estimation of micro-perturbations
of Fy (Jitter, cf. Sect.2.2.13.1 and Schuller 2013). However, the frame-wise estimate
from a short-time domain method can be used to initialise a refined search in the
time domain, as will be shown in Sect.2.2.13. Most PDAs also provide a measure
of voicedness, the so called voicing probability p,, which indicates how close the
signal is to an ideal harmonic signal (high probability) or to a noise like signal (low
probability). In the case of the time domain methods (Sect.2.2.11.1), an additional
method for estimating the voicing probability must be used, e.g., via autocorrela-
tion (Sect.2.2.11.2). Since the value of Fj, is not well defined for unvoiced parts of
the signal, a value of 0 will be returned by all PDAs implemented in the scope of
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this thesis if p, of a frame is smaller than a pre-defined threshold (specific for the
respective PDA used).®

In the ongoing, four methods for pitch detection are described: in the time domain
via peak picking (Sect.2.2.11.1), via short-time autocorrelation (Sect.2.2.11.2), and
short-time Cepstral analysis (Sect.2.2.11.2), as well as a spectral method based on
subharmonic summation (Sect.2.2.11.4). All four methods provide estimates for
Fy on a frame or sub-frame level, without considering the context of neighbouring
frames. The context of a frame can be used, however, to eliminate errors a PDA
makes in the presence of noise-bursts or irregular phonation. Such a context-based
smoothing using the Viterbi algorithm is presented in Sect.2.2.11.5. More advanced
pitch detection algorithms such as Talkin (1995) and Cheveigne and Kawahara (2002)
are not considered in this thesis, as they are not well suited for simple, fast, and
efficient real-time on-line use due to their more complex smoothing methods and
context requirements.

2.2.11.1 Time-Domain Based Estimation

The earliest methods for pitch detection were based on algorithms which attempted
to directly estimate the fundamental period Ty of the speech signal from the time
domain waveform by smoothing and peak picking as reviewed by e.g., Ruske (1993)
and Schuller (2013).

Since the fundamental period can only be determined for voiced signals, for
each frame a decision is made, whether the frame contains a voiced (harmonic) or
unvoiced (noise-like) signal, based on, e.g., the ZCR (Sect.2.2.1.1) or any other
suitable method.

In voiced speech segments, maxima which have a certain minimum and maximum
distance are found: for a range of expected Fy values from Fy i, to Fo_uqc @ s€arch
window of length

1
T max — 2.189
0 FO, min ( )
and {
T0. min = , 2.190
0, Fo ( )

is assumed and the position of the maximum positive value within this window is
found. If multiple values which are of approximately equal height are found, the first
one is used. The position of this value is stored, and the start of the search window is
shifted to Ty, i, samples after this position and the search is carried out for the next
peak until the end of the voiced segment is reached.

35In openSMILE this behaviour is implemented in the pitch smoother components and in the
cPitchACF component; the output Fy final contains Fy with values forced to O for unvoiced
regions. See the documentation for more details.
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The accuracy of such a method is very sensitive to all sorts of signal distortions,
especially additive noise, digital clipping, and high-pass transfer characteristic chan-
nels. The noise robustness can be improved by low-pass filtering the signal with a
cut-off frequency of Fy_ e Or by applying the method to the (low-pass filtered) LP
residual signal. The method fails, however, to detect the correct F(y when the actual
Fy is missing (virtual pitch), or other harmonics are more dominant than F (influ-
ence of strong first and second formants). The advantage, on the other hand, is that
locations of individual pitch periods are obtainable (Schuller 2013).

2.2.11.2 Autocorrelation Based Estimation

The ACF of a frame (cf. Sect.2.2.5) can be used to robustly estimate the fundamental
frequency (Rabiner 1977; Boersma 1993). Peaks are found in the ACF at the period
lengths of the harmonics of a harmonic signal. The ACF method assumes that Ty is
given by the location highest peak in the ACF in the search window from Tj_, to
To, max (from the previous section). The amplitude of this peak, normalised by the
amplitude of the Oth ACF coefficient gives a measure for the voicedness of the signal,
i.e., the similarity of the pitch periods in the given frame. Thus, the probability of
voicing p, is estimated from the ACF as follows:

 ACF
Pv="4CF,

(2.191)

where ACF,,,, is the maximum value in the range 7o uin - - - To, max and ACFy is the
frame energy (Oth coefficient of the ACF).

2.2.11.3 Cepstrum Based Estimation

In early studies related to this thesis (e.g., Schuller et al. 2009a, 2010), a PDA
based on both autocorrelation and Cepstrum was used. Thereby the frequency F
is determined by the Cepstrum based method described in the following, and the
probability of voicing is determined by the ACF method described in the previous
section.

In a Cepstrum, as described in Sect.2.2.6, the excitation signal (source) and the
impulse response related to the filter transfer function of the linear model of speech
production are overlaid in an additive way. Because the impulse response rapidly
decays (due to the size of the human vocal tract), the higher order cepstral coefficients
contain approximatively only the source signal. In the case of voiced speech signals,
this is a Dirac impulse series. Due to the limited size of the analysis frame, often
only one (for male voices) or two (for female voices) Dirac impulses are contained
in the Cepstrum. F is thus again determined by finding the location of the highest
peak in the range Ty, yin to To, max (the Quefrency axis of the Cepstrum has the units
of seconds, thus the location of the peak corresponds directly to the fundamental
period Ty in seconds) (Noll 1967).
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For this thesis, a hybrid autocorrelation/Cepstrum pitch detector has been imple-
mented in openSMILE (Eyben et al. 2010a) and openEAR (Eyben 2009a).3® First
the probability of voicing is estimated from the ACF as described by Eq.(2.191).
Next, F is computed from the Cepstrum by searching for prominent peaks (extreme
values) of the Cepstrum in the range T, - - - N and favouring peaks with a lower
T. To this extent, the mean value of the Cepstrum over the full range is computed
(Ciean) and the absolute maximum value C,,, in the range Ty in ... N is found.
Then, a peak search starting at T = T i, up to T = N is performed, and the first
peak found which meets the following criterion is chosen as 7 peak:

C(TO) > 0.6 (Cmean + Cmax) . (2192)

The voicing probability p, is estimated from the ACF via Eq.(2.191). In Fig.2.8
(left), the pitch computed with this algorithm from the Cepstrum in Fig. 2.4 is shown.
Octave jumps (double the actual frequency), discontinuities, and unvoiced segments
which are wrongly classified as voiced (before ‘change’ and at the end and after
‘color’) are visible in the plot.

2.2.11.4 Subharmonic Summation (SHS)

A pitch detection method based on human perception principles (cf. Terhardt’s virtual
pitch theory (Terhardt 1974, 1979; Zwicker and Fastl 1999)) is shown in (Hermes
1988).%7 The method makes use of the harmonic structure of a signal to identify
the correct pitch, even if the fundamental frequency is missing. It is thus called
Subharmonic Summation (SHS) by the author. This method presented by Hermes
(1988) is numerically more efficient compared to other earlier methods, such as
the spectral-compression method (Schroeder 1968; Noll 1970) and the spectral-
comb method (Martin 1982), which both also exploit the subharmonic structure.
Therefore, the method by Hermes (1988) is adapted in this thesis and implemented
in openSMILE. The following text briefly summarises the method.

First, the audio signal x(n) is windowed by applying a 60 ms Gaussian window
with ¢ = 0.4. The Gaussian window is chosen because of its Gaussian spectral shape
with no side maxima, i.e., it does not distort the subharmonic structure. The larger
size (60 vs. 40ms as by Hermes 1988) is chosen to compensate for the flatter slope
of the Gaussian window (as compared to the Hamming window), and in order to not
distort low male pitch frequencies down to S0Hz by the windowing.

36In the cPitchACF component, which requires combined ACF and Cepstrum input from two
instances of the cAcf component.

3The method is implemented in openSMILE in two components: cSpecScale which per-
forms spectral peak enhancement, smoothing, octave scale interpolation, and auditory weighting;
cPitchShs which expects the spectrum produced by cSpecScale and performs the shifting,
compression, and summation as well as pitch candidate estimation by peak picking.
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A magnitude spectrum X, (m) is computed for the window. From there, the steps
of the SHS algorithm (Hermes 1988) are as follows:

(1) Spectral peak enhancement (cf. Martin 1981)
(2) Spectral smoothing (optional)

(3) Interpolation from linear- to log-scale spectrum
(4) Auditory weighting

(5) Summation of shifted versions of the spectrum
(6) Peak picking

For (1), all local maxima are detected and their positions are stored. Then, all spectral
bins which are more than two frames away from a local maximum are set to 0, to
preserve only the peaks and their immediate surroundings. The spectrum X (Afeak) (m)
is then smoothed (2) by convolving with a symmetric 3-tap filter in the spectral

domain:
1

SMoo 1 ed
X5 () = Zx,g’ Dm—1) + 5

XPeP (m) + %X}f‘f““ m+1). (2.193)
Next, the spectrum is transformed to a logarithmic octave (log,) frequency scale
(cf. Sect.2.2.3.3). B = M points on the target scale are assumed here, in contrast
to (Hermes 1988), where a fixed number of B, = 48 points per octave is used.
Spline interpolation (cf. Dalquist et al. 1974) is used to compute the magnitudes
at the frequencies belonging to the log-scale bins Xj(\,(,’“) (m©D) (3). The minimum
and maximum frequency (f,.;, and f,,..) of the target scale are set to 20Hz and the
maximum frequency of the source scale, respectively. The number of octaves N, is
then given as:

N, = log, (J]%—“") (2.194)

min
and the number of points per octave computed as:

B
B = —. (2.195)

oct

In order to model the sensitivity of the human auditory system for low frequen-
cies, a raised arctangent function is applied to the log-scale spectra XIE;C’) (m“’c’)) as
weighting function W (m©") (with m® =0...B — 1) (4):

(2.196)

. 1 (oct) 1— s
W(m?")y = 0.5 + — arctan (3m+—a) ,
™

B()Cl‘

with
65

0ty = Boer l0g, (%) ~1. (2.197)
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Fig. 2.7 Left octave (log(2)) scaled spectrum with peak enhancement, smoothing, and auditory

weighting applied (X ;}m’w)); right subharmonic sum spectrum Xz . Sample sentence from the AVIC
database (Sect. 6.1.3); female speaker, words: “change another colour”

The resulting spectrum X0 (m©") = W (m @)X 7 (m@") (see Fig.2.7, left)
is then shifted by a constant factor along the octave frequency axis (5), scaled by a
factor h; and all I scaled versions of the spectrum are summed:

1
XH(m(nct)) — Zhingmw) (m(oct) =+ 10g2 i) (2.198)

i=1

Thereby, I is the number of harmonics which are considered, i.e., the number of
harmonics to add up. The factor A; is given by Hermes (1988) as h; = v'~! with
the compression factor®® = 0.84. The result Xy (m) is called the subharmonic sum
spectrum. In Fig.2.7 (right) it can be seen that, in the subharmonic sum spectrum
the peak corresponding to the pitch (around 200 Hz) is stronger than in the octave
scale spectrum (left, in Fig.2.7) and it is more narrow. A more narrow peak gives a
better spectral resolution for pitch estimation. In SHS the spectral resolution in the
low-frequency regions of the spectrum is increased by the influence of the higher
harmonics.

Hermes (1988) now defines the pitch estimate as the location of the maximum
of Xy (m). Further, a method based on sub-frame correlation coefficients is given to
perform a voiced/unvoiced decision for each frame. In this thesis a more complex
method for picking multiple pitch candidate peaks is applied, and an alternative
method for performing voiced/unvoiced decisions directly from the subharmonic
sum spectrum is introduced below (Eq.(2.211)). First, all possible pitch candidates
are identified:

N, (typically 5-6) highest peaks are found by iterating through all the local max-
ima of Xy (m°?) and retaining the N, ones with highest magnitude. For each of these
peaks the magnitude X; and the discrete octave scale frequency m}om are stored. In
the next step the exact frequency and magnitude of each peak candidate i is refined by
quadratic interpolation from three points. The peak candidates are stored sorted by

38~ can be changed in openSMILE via the compressionFactor option of the cPitchShs compo-
nent.
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their magnitude, not by their frequency. This algorithm is the “greedy” peak picking
algorithm, because it finds all N, candidates with highest magnitude. The non-greedy
version (in old versions of openSMILE, and in feature sets up to the INTERSPEECH
2012 Speaker Trait Challenge (IS12) set—see Sect. 3.4) only detected multiple can-
didates if the candidates with higher frequencies than the first had a greater magnitude
than the first.>® This is acceptable when the best candidate (the first one) is selected
directly without Viterbi smoothing (as in the INTERSPEECH 2011 Speaker State
Challenge (IS11) set, for example—see Sect. 3.3), otherwise the greedy algorithm
should be used. This is implemented in the ComParE feature set (Sect.3.5).
Quadratic interpolation tries to fit a parabola to three points (xi, ), (x2,¥2),
(x3, y3) where the x-values meet the condition x; < x; < x3 and the y-values sat-
isfy y; <y, and y3 < y», i.e., the point (x,, y) represents a local maximum. The
interpolation algorithm computes the values of a, b, and ¢ of the quadratic equation:

y =ax*+bx +c. (2.199)
With the three given points a set of three linear equations is constructed, which is

solved for the variables a, b, and c. The closed form solution yields the following
equations for the parabola parameters:

gz 12 T+ Y2X3 + Y3X1 — Y3X2 — YaX1 — Y1X3

, 2.200
7 ( )
p = M2ty T ;xgyz_x%y' mhitz) (2.201)
2 2 2 2 2 2
XX X5X X3X1V2 — X3X2y1 — X5X1y3 — XTX
el 2Y3 + X3X3y1 + X3X1 Y2 — X3X2)1 — X5X1)3 1 3)’2, (2.202)
d
with the denominator:
d = x}xy 4+ X33 + X3x) — X3x3 — X3X] — X1X3. (2.203)

The refined estimates of the original local maximum in (x, y;) are now defined by
the vertex of the parabola given by a, b, and c. By applying elementary calculus
(solving for extreme values of functions), the coordinates x, and y, of the vertex are
found as:
—b
X, = " (2.204)
Yo =C— axg. (2.205)

The greedy peak picking algorithm behaviour is achieved in openSMILE when the
greedyPeakAlgo option is set to 1. The old (non-greedy) version of the algorithm searched
through the peaks from lowest to highest frequency and considered the first peak found as the first
candidate. Another candidate was only added if the magnitude was higher than that of the previ-
ous first candidate. This behaviour was sub-optimal for Viterbi based smoothing, which requires
multiple candidates to evaluate the best path among them.
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Here,
w1 = FO (0 1), (2.206)
Xy = FO (mi"“’)) : (2.207)
x3; = FOO (m}""” + 1) , (2.208)

where F©) (m}"C’)) is the octave scale frequency of the bin index of the ith peak

candidate. The parabolic refined estimates of the pitch candidate frequency and
amplitude are computed from the exact parabola vertex (x, ;, ¥, ;) with the following
equations (assuming a log, scale):

£ _ g, (2.209)
X/ = yor (2.210)

Next, the arithmetic mean py of Xy (m ") is computed. The voicing probability
po associated with each pitch candidate i is then given as a function of the pitch
candidate’s refined amplitude X:

0
poi=1- 77 (2.211)

The above equation is based on the assumption that a subharmonic sum spectrum of
a voiced signal will have a higher peak with respect to the mean than that of a noise
like signal. Practical experiments have shown that this assumption holds true for
many types of speech signals, except for signals with very low energy. Thus, a RMS
energy (Eq.(2.41)) threshold is defined as 0.001 (assuming that the input signal x ()
is in the range of [—1; +1]). Every frame with a RMS energy below this threshold
is assumed to be unvoiced (i.e., p,; = 0 is assigned).*’

From the N, pitch candidates, now, a single—most probable—candidate must
be selected. A simple solution*! is to choose the candidate with the highest refined
magnitude X7, i.e., the highest voicing probability (see Fig.2.8, right). It is better,
however, to perform this choice in context with past and future pitch candidates in
order to smooth the pitch trajectory and eliminate errors which are evident as rapid
jumps. Such a smoothing method is presented in the next section.

40In openSMILE this behaviour is not implemented in the cPitchShs component, but
is rather implemented via the configuration, e.g., for the smileF0_base.conf and
IS13_ComParE. conf configurations. Thereby, the cValbasedSelector componentis used
to force FO values to O (indicating unvoiced parts) if the energy falls below the threshold.

41 Available in openSMILE via the cPitchSmoother component.
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Fig. 2.8 Left pitch computed with the Cepstrum/ACF algorithm (Sect.2.2.11.2); right pitch
computed with the SHS algorithm (Sect.2.2.11.4). Sample sentence from the AVIC database
(Sect. 6.1.3); female speaker, words: “change another colour”

2.2.11.5 Post Smoothing with Dynamic Programming

To N, pitch candidatesi = 1 ... N, and associated scores (magnitudes, voicing prob-
abilities, etc.) estimated by an arbitrary PDA, dynamic programming can be applied
to find the best trajectory of pitch values and associated voicing probabilities. In
order for the algorithm to also perform the voiced/unvoiced decision dynamically,
an additional pitch candidate for the unvoiced case is added (i = N, + 1). The algo-
rithm described by Luengo (2007) is adopted in this thesis.** It implements a Viterbi
algorithm based least cost search. Thereby each pitch candidate i at time (frame)
n has an associated cost value c¢;(n). This cost has two components: the local cost
ci(l) (n), i.e., a cost value based on the likelihood of the current pitch candidate being
a valid candidate, and the transition cost cl@ (n), i.e., a cost value which considers
the current candidate in the context of possible past and future candidates. The total
cost is given as: ¢;(n) = cfl) (n) + cl@ (n).
The local cost cfl) (n) can be split into two parts (Luengo 2007):

") = ¢ () + weprc!™ (). (2:212)

The first part (c¢(V) is related to the costs of voiced parts. It is composed of a cost
derived from the voicing probability p, ;(z) and a cost derived from the frequency

fi(ﬁn) (n) of the candidate with respect to the expected range of pitch frequencies:

C(V) (l’l) — Wiocal (_ IOg(pvl(n)) +pthr,i(n)) + w}'an.qecyranQE) (l’l) i = Nc
’ 0 i=N,
(2.213)

“2In openSMILE the Viterbi based pitch smoothing is implemented in the cPitchSmoother
Viterbi component.
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with the statically defined frequency weighting cost:

2 it £ (n) = 0
‘ 1L if0 <™ (n) < 100
Iy = 10 if 100 < ™ () < 350, (2.214)
L300 i£350 < £/ (n) < 600
1.2 it £ (n) > 600

0 v,i I’l) < ev
Pinri(n) = { Poi . , (2.215)
wy,r otherwise

where 0, is the voicing probability threshold for voiced/unvoiced frames. The thresh-
old depends on the PDA used: for ACF based voicing probabilities, it is typically
in the range of 0.4-0.6 (default 0.5), for the SHS algorithm it is typically 0.6-0.8
(default 0.7). As an extension to (Luengo 2007), in this thesis the frequency range
weighting cost c}" "an9¢) (1) was added to the term for voiced candidates (i < N,.) in
order to account for different strengths of the candidates. As improvement, a speaker
dependent frequency range cost function ¢/ (n) could be constructed basing on
the incrementally updated mean and standard deviation of a given speaker. A sta-
tic case of speaker dependent frequency range post-processing was suggested by
Luengo (2007), but is not considered in this thesis. Such an adaptation requires
speaker ID knowledge, which was not always present or easily accessible in the
studies conducted.

The second part of Eq.(2.212) is related to the cost associated with the voicing
probability crossing a pre-defined threshold for voiced/unvoiced:

Vi *Pvi v
¢y — {0 I = Ne:puiln) <0y (2.216)

1 otherwise

The transition costs for a transition from frame n — 1 and pitch candidate j to frame
n and pitch candidate i are given for all possible transition categories, i.e., voiced—
voiced (V-V), voiced—unvoiced (V-U), unvoiced—voiced (U-V), and unvoiced-
unvoiced (U-U) by the following equation (Luengo 2007):

2" (n.n—1) forv—Vv
¢l mn—1) = { wruw for V—UorU-V, (2.217)
| Wi for U-U
with
“VV) .f;(ll”) (n) f[(lm) (n) f] in) (n _ 1)
¢j (n—1)=wry log—ms T Wrved | iy ) :
fi =1 i =1 fi(n=2)

(2.218)
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where j* is the pitch candidate at time n — 2 of which the frequency is closest to
the frequency of the pitch candidate j at time n — 1. This second delta continuity
constraint (weight wr,,,) has also been introduced here as an extension to (Luengo
2007).

Sensible defaults for the cost weights have been tuned empirically by inspecting
the final pitch detection results on various speech signals. These are—as used in the
ComParE 2013 feature set: Wipear = 2, Winr = 4, Wrange = 1, Wryy = 10, Wrypa =
S, Wryw = 10, and wrg, = 0. A higher value thereby means a higher weight for
the corresponding parameter in the cost function, i.e., penalising transitions of the
respective kind, or emphasising local cost parameters such as the correct frequency
range and correct voicing probability.

In order to find the least cost path, the costs for all possible paths are evaluated
recursively. Thereby, if paths meet in the same node, only the one with lowest cost
is kept. For details see (Viterbi 1967). In theory, for some worse cases, the whole
sequence of inputs has to be processed before the best path can be chosen. In other,
more ideal cases, the paths converge after a few frames and can be reduced to one
as described above. In this case the best path up to the meeting point is known. In
order to make the algorithm work with a fixed maximum delay in on-line systems,
a maximum buffer length J, is introduced. If paths have not merged to a single path
at time n — [, the path with the lowest cost at time n — [, is selected as the winning
path (potentially making a small error) and all other paths are discarded.

2.2.12 Fy Harmonics

A voiced speech signal is composed of a sinusoid at the fundamental frequency
and a series of sinusoids at its harmonics, as well as some noise signal. In the lin-
ear speech production model, the fundamental frequency is represented by a Dirac
pulse series, which corresponds to a comb spectrum with peaks at integer multi-
ples of Fy. In theory, in the source spectrum all peaks have the same amplitude.
The envelope of the comb spectrum is then shaped by the dynamic transfer func-
tion of the vocal tract to the spectrum of specific vowels. Thus, the amplitudes of
the Fy harmonics do contain valuable information about the state of the vocal tract.
This information is also reflected to some degree in other features such as spectral
LLDs (Sect.2.2.4) or Cepstral LLDs (Sect.2.2.10). A more direct approach to encod-
ing harmonics information, on the other hand, might reveal additional information
and—most important—produces parameters which can be assigned a direct physical
meaning, thus making the interpretation of results easier. An example is the ratio of
the first harmonic (H;) to the highest harmonic in the third formant range (Asz) as
reported on by Hanson and Chuang (1999) and Hanson (1997).
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First, all harmonics need to be identified. The algorithm implemented in

openSMILE for this thesis performs the following steps to find the first 7 harmonics**:

1. Starting at the estimated location of the ith harmonic (i = 0...I), which is the
closest magnitude spectrum bin to the frequency i - Fy, the closest local maxi-
mum is found in the range [(i — 0.5) - Fy; (i + 0.5) - F]. The amplitude of this
maximum is used as the amplitude H; of the ith harmonic. If no local maximum is
found within the search range, the ith harmonic is marked as a non-existant/invalid
harmonic,

2. Duplicates, i.e., where the frequency of the ith harmonic is equal to the frequency
of harmonic i + 1 are removed by marking the harmonic i 4+ 1 as an invalid
harmonic,

3. The amplitudes H; are converted to logarithmic relative amplitudes, by normalis-
ing with the amplitude of the Oth harmonic (i.e., amplitude of the Fy component):

H;
H"" ™ =201log,, (}T) . (2.219)
0

Next, harmonic amplitude differences (ratios in the linear scale) are defined as fol-
lows:
Hi;=H"™ —H™. (2.220)

Formant amplitudes A; are estimated by finding the highest spectral peak (local
maximum) in the range [0.8 - F;; 1.2 - F;] around the formant centre frequency F;
(estimated via LPC analysis, for example).

2.2.13 Voice Quality

In contrast to prosodic features, such as energy, loudness, and pitch, which describe
the “global” melody and intensity of a speech utterance, voice quality features
describe micro-prosodic variations within short-time frames (Schuller 2013).

2.2.13.1  Jitter

Jitter (ctf. Schuller 2013) describes the variation of the length of the fundamental
period from one single period to the next. The length of the first period ' — 1 is
To(n' — 1) and the length of the second period n’ is Ty(n). Then, the absolute period
to period jitter, also referred to as absolute local jitter, is given as (Schuller 2013):

T = |To(n) — To(n' — 1)| forn’ > 1 (2.221)

“31In openSMILE version 2.0 and above, these parameters are implemented by the cHarmonics
component.



74 2 Acoustic Features and Modelling

This definition yields one value for J,, for every pitch period, except the first one.
Often, however, short-time analysis is used, and descriptor values are expected at the
rate of the short-time frames (typically 10 ms). Thus, the average Jitter per frame is
used in this thesis. For N’ pitch periods n’ = 1...N’ within one analysis frame the
average local Jitter is given as:

_ .
= Z |To() — To(' — 1)]. (2.222)
n'=2

=N

In order to make the Jitter value independent of the underlying pitch period length,
it is normalised by the average pitch period length. This yields the average relative
Jitter**:

Jpp.rel = ﬁzy’ﬂv‘)m/)_%(”/— ])}
pp,rel — 7 .
1% 2521 To(n')

(2.223)

The variance of Jitter across frames can be described via the “Jitter of the Jitter”,
i.e., the delta period to period Jitter J,4,. It is defined as the difference between two
consecutive Jp, values:

Jaap@) = |Ipp(n) = Jpp(n' — 1)| forn’ > 2. (2.224)

The delta Jitter is also expressed as average over a short-time frame, and is normalised
by the average period length*’:

Tidorel = Jﬁ 22{,:3 HTO(n/) — To(n' — 1)| — ‘To(n/ — 1) =To( — Z)H
) % Zy:l To(n')

(2.225)

For local Jitter at least two, and for delta Jitter at least three pitch periods per analysis
frame are required. Since for low pitch (e.g., male voices) this might not always be the
case for typical analysis frame lengths (20-50 ms), in the implementation developed
for this thesis, the last frame period length and the last local Jitter from the previous
frame are stored for use on the next frame. Further, the last audio samples x of the
previous frame, which belong to an incomplete period, are also stored and appended
to the beginning of the next frame. The stored values are all set to 0 or deleted (in
case of the previous audio samples) when an unvoiced frame is encountered.

4 This definition of Jitter is implemented in openSMILE in the cPitchJitter component. It
can be enabled via the jitterLocal option.

4>This definition of delta Jitter is implemented in openSMILE in the cPitchJitter component.
It can be enabled via the jitterDDP option.
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In order to determine the exact length of pitch periods, a correlation based wave-
form matching algorithm is implemented. An extended and modified version of
the basic matching algorithm by Boersma (2001) is implemented. The algorithm is
guided by a frame based estimate of Ty = 1/F, determined by a spectral domain
PDA as described in Sect.2.2.11. The estimate of Ty is used to limit the range of
the period cross-correlation to improve both the robustness against noise and com-
putation time. The waveform matching algorithm operates directly on unwindowed
frames of the speech signal x(n).

The algorithm performs the following three steps for voiced frames:

(a) A range is defined for the allowed pitch period length in samples, based on the
estimated frame Ty and the sampling rate 7§:

Ty

N =1 —a) =,

0, min ( Oé) Ts

) Ty
Ny = (1 + @) T (2.226)

N

where « is the relative search range*® for the correlation from 0.01-0.99, typically
0.1-0.25.

(b) For each integer (sample) period length N¥ = N/} ... N{") . the normalised
cross-correlations (Pearson Correlation Coefficient—cf. Eq.(5.8)) of two periods
ranging fromastartindexnto (n + N — 1) and from (n + ND)to (n + 2NTD — 1)
are computed and stored in a vector ¢. The highest local maximum of ¢ is now
found, parabolic interpolation is applied (Eq.(2.199) in Sect.2.2.11.4) to enhance
the peak, and the resulting period length for the first period is computed from the
(real-valued) period length N corresponding to the interpolated peak location.
The corresponding period length in seconds is given as Ty = N’ T;. The amplitude
CC = ¢(N'D") of the correlation peak is used to verify the voicedness of the signal*’:
only if the amplitude is higher than 0.5, the current period is considered for the average
Jitter computation (Eqs. (2.223) and (2.225)).

The average, minimum, and maximum CC for all periods within a frame constitute
further acoustic descriptors*®: they describe the variation from period to period, i.e.,
the regularity of speech signal periods. The average CC will be higher for a regular
voice signal. It will be low for a voice signal with laryngalisation (irregular phonation;
creaky voice—cf. Schuller and Batliner 2013).

(c) algorithm step (b) is repeated for the next two periods, starting at the new start
index n; = n + N@ (end of the previous period), until the end of the analysis frame
is reached. The correlation search range defined by N, O NTD s kept constant

0, min * 0, max
for the whole frame, i.e., not updated on a period to period base.

4searchRangeRel option of the cPitchJitter component in openSMILE.

4Tmincc option in openSMILE.

BsourceQualityMeanand sourceQualityRange options in cPitchJitter of openS-
MILE.
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It is to note at this point, that the waveform matching algorithm does not estimate
the phase of the periods. The beginning of the first period in the first voiced frame is
chosen randomly as the first sample in that frame. If a correct tracking of all periods
in the voiced segment is assumed, the phase should be constant throughout the voiced
segment, though.

2.2.13.2 Shimmer

Shimmer describes amplitude variations of consecutive voice signal periods (Boersma
2001).

The waveform matching algorithm described in Sect.2.2.13.1 is used to identify
the exact period boundaries. As the phase of the segments determined with this
algorithm is random, the maximum and minimum amplitude (Xyqy, and Xpin.n)
within each period are found. In analogy to Jitter, the period to period amplitude
Shimmer is then expressed as (Schuller 2013):

Spp(n) = |A(') — A — 1)

: (2.227)

with the peak to peak amplitude A(n") = Xpax.w — Xminw -

This type of Jitter is very sensitive to additive noise, as this introduces large,
random peak amplitude variations which are not related to the original speech signal.
To mitigate this effect, the signal x(n) can be low-pass filtered with a cut-off frequency
between 600 and 800 Hz. This roughly preserves the first and—partially—the second
formant, and high-pass filtered with a cut-off of 50 Hz to remove low frequency noise
and slowly varying static offsets which might be introduced by low quality recording
equipment. Alternatively, as implemented in this thesis, the period to period RMS
amplitude variation can be used. Thereby the RMS amplitude (=unnormalised RMS
energy, cf. Eq. (2.41)—without normalising by the frame length) E,,,,;i/ ,» is computed
for each period n':

ErmsU,n/ =

N—1
sz(n), (2.228)
n=0

where N is the period length N, The period to period RMS Shimmer is then
expressed as:
Spp,rms(n/) = |ErmsU,n’ - ErmsU,n’fl . (2229)

Delta Shimmer, like delta Jitter, can also be computed by replacing Jitter with Shim-
mer in Eq. (2.224).

As for Jitter, the period to period Shimmer values are averaged over the scope of a
short-time frame in order to synchronise the rate of this descriptor with the constant
rate of all other short-time descriptors. The averaged, relative Shimmer values are
referred to as Sy, ) for the local Shimmer and Sy, yms) for the delta Shimmer. They
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are expressed as amplitude ratios, i.e., the per period amplitude values are normalised
to the per frame average amplitude (peak or rms, respectively):

1 N’
N -1 Zn’:Z SPP(quS) (n/)
1 N’
N 21 AM)
1 N’ ’
N—1 an:3 dep(,rms) (l’l )

A

Spp(,rmx),rel = (2230)

dep(,rms)frel = s (2231)

where the peak to peak amplitude A(n’) has to be substituted by the RMS amplitude
in case of the Sy s, s versions.

Amplitude ratios in audio signal processing are commonly expressed on a log-
arithmic scale, i.e., in dB. For converting the Shimmer ratios to dB the following
equation is implemented:

201 wet) dB - Spy > 107
dB:[OogIO(S[)d S > 1070 2232)

—1000 otherwise

2.2.13.3 Harmonics-to-Noise Ratio (HNR)

The HNR is defined as the ratio of the energy of harmonic signal components to
the energy of noise like signal components. In an early study by Yumoto and Gould
(1981), it is referred to as H/N ratio, and an algorithm for computing the ratio in
the time domain is given: a sequence of N’ periods with the same period length
is considered and the average period waveform is computed. The average period
waveform is assumed to strongly reflect the harmonic components because these are
assumed to be constant over the N’ periods, while the noise is uncorrelated and is
theoretically cancelled out by the averaging. The noise energy is then computed by
subtracting the average waveform from each individual waveform and computing
the RMS energy E,,;s. of the remaining signal over all N’ periods. The harmonic
energy Ej,, is computed as RMS energy of the average waveform. The HNR is then
expressed as HNR,;:

Enarm

, 2.233
Enuise ( )

HNR,,; =

where the subscript wf denotes the direct waveform method. In this thesis, the above
algorithm is implemented for voice quality analysis based on the waveform matching
algorithm in Sect.2.2.13.1. The average waveform is thereby computed over the N’
fundamental periods in a short-time frame. The advantage of the method is that under
ideal conditions (no jitter and shimmer, white noise) the result will be very accurate.
However, ideal conditions do not exist for real world speech signals, and, moreover,
the algorithm is vulnerable to errors from the pitch period detection process.
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Another method for computing the HNR, which does not require individual pitch
periods in the time domain, is based on the ACF. The method is similar to the
estimation of the voicing probability as used in ACF based PDAs (cf. Eq. (2.191)).
The HNR is given as HNRs (cf. Schuller 2006):

ACFy,

HNRyy = ——— 10
“/" ™ ACF, — ACFr,

(2.234)

where ACF7y, is the amplitude of the autocorrelation peak at the fundamental period
(see Sect.2.2.11.2) and ACF is the Oth ACF coefficient (equivalent to the quadratic
frame energy).

Since the HNR is an energy ratio, it is best expressed on a logarithmic scale in dB
(Schuller 2013) as HNR 7 1o and HNR 7 14

HNR .10y = 2010g,o (HNR,,) dB (2.235)
HNRuf.10g = 1010g,o (HNR,s) dB (2.236)

Both logarithmic HNR values are floored to —100dB.

An alternative method for computing the HNR is given by Krom (1993), for
example. It exploits the Cepstral domain for separating the harmonic and noise energy
components by applying comb-liftering.

2.2.14 Tonal Features

Tonal features are spectral features which are related to music theory. The tonal
features which are described in this section are based on the 12-tone scale of west-
ern popular music. The features were originally introduced by Fujishima (1999) as
Pitch Class Profiles (PCP) for the purpose of automatic chord recognition. They
were later also referred to as CHROMA features because they reflect the “colour”,
i.e., the tonal shape, of the spectrum (Miiller 2007). Moreover, PCP were improved
by several tweaks and extensions, such as the post-processing method CHROMA
Energy-distribution Normalised Statistics (CENS) suggested by Miiller et al. (2005b)
(Sect.2.2.14.3).

2.2.14.1 Semitone Spectrum

The first step in the computation of PCP is to obtain a magnitude spectrum Xj; (m)
(Schuller 2013) or power spectrum Xp(m) (Fujishima 1999)—usually via a FFT.
Then, this spectrum is mapped to an octave scale with 12 semitones per octave
(cf. Sect.2.2.3.3) and bins are combined to one bin per semitone, resulting in a
semitone band spectrum (Sect.2.2.3.4). Alternatively, a semitone band spectrum
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X ,{;C” (b) can be computed directly from the linear scale magnitude spectrum—i.e.,
without mapping to a semitone frequency scale—as described in Sect.2.2.3.4.

For the semitone band spectrum a first note with a positive non-zero frequency
has to be defined on which the scale is built. Typically the note A with 110 or 55Hz
is used in this context. The range of the spectrum typically covers 6—8 octaves (72—
96 semitones), which—when the first note is an A with 55 Hz—corresponds to a
frequency of 3.52, 7.04, and 14.08 kHz for the last note on the scale, respectively for
6, 7, or 8 octaves.

The semitone band spectra used in this thesis are implemented via a spectral
domain filterbank with rectangular filters, as described in Sect.2.2.3.4. Variations
exist where only peaks in the magnitude spectrum are considered and all other bins
are set to O (cf. Schuller 2013, p. 64). Such variations are not considered here.

2.2.14.2 Pitch Class Profiles

The goal of PCP is to describe the tonality of a piece of music independent of
the actual pitch. These descriptors are also known as CHROMA features (Miiller
2007).%° In the most basic case, for example, the semitone spectrum is warped to a
single octave resulting in a 12-dimensional feature vector regardless of how many
octaves the semitone spectrum spans.

The mapping of a semitone band spectrum X IE,;’”) (b) to a PCP vector PCP(s) with
s = 1..S, and S being the number of semitones to warp to, is given by the following
equation:

0-1
1
PCP(s) = > X, (s +i-S), (2.237)
i=0

where O is the number of octaves to warp.

In general, PCP are not constrained to a 12 dimensional vector. Gémez (2006)
describes Harmonic Pitch Class Profiles (HPCP), an extended version of the original
PCP, where sampling at sub-semitone level (half or third semitone) is possible,
resulting in 24 or 36 dimensional vectors. Also, warping not to a single octave but
to two or more consecutive octaves is possible (Schuller 2013), yielding 24 or 36
dimensional feature vectors with semi-tone resolution.

In order to make the PCP features independent of the sound level, each PCP
feature vector can be normalised to a length of one:

PCP(s)

V5 PCP(s)?

PCP/(s) = (2.238)

“In openSMILE CHROMA features are supported by the cChroma component, which requires
a semi-tone band spectrum as input, which can be generated by the cTonespec component
(preferred) or by the (more general) cMelspec component.
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This normalisation, however, emphasises noise, when the frame has very low energy
(Schuller 2013). To avoid problems in this respect, the PCP values should be set to
0 when the frame energy falls below a (low) pre-defined threshold.

2.2.14.3 CENS

PCP features are frame-wise descriptors and thus do not consider context of left and
right frames. However, in music rate of change of the tonal structure (240 Beats
per Minute (BPM), for example, equals 4 Hz) is well below the frame rate (100 Hz).
Thus, it is beneficial to consider the context of neighbouring frames. Above that,
noise from non-tonal signal parts (percussion, unvoiced vocals, etc.) might cause
differences between subsequent PCP vectors which are not related to tonal changes.
CENS features (Miiller et al. 2005a) attempt to compensate for these two deficiencies
of PCP features by implementing a smoothing over time and a quantisation of the
PCP values in order to improve robustness against non-tonal influences.*

The quantisation of the PCP amplitude a = PCP(s) is defined as (Schuller 2013):

4 04<a<l
3 02<a<04

Q@ =12 01<a<02 (2.239)
1 005<a<0.1
0 0<a<0.05

Next, a smoothing is applied by convolving the quantised PCP frames PCP,(s) with
a Hanning window of length 11 (Schuller 2013). To reduce redundant data, according
to Schuller (2013) this is followed by a downsampling of factor 4. However, in order
to be able to process all features at the same rate in the on-line system presented in
this thesis, the downsampling is not applied here.

2.2.15 Non-linear Vocal Tract Model Features

In contrast to the linear model of speech production, recently, the modelling of non-
linearities in the human speech production system has gained interest. Especially
studies on detection of stress from the voice have investigated methods to model
non-linearities in the glottal airflow (Zhou et al. 2001; Zuo and Fung 2011).

501n openSMILE CENS features can be computed from CHROMA (PCP) features with the cCens
component.
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2.2.15.1 Critical Band Filterbanks

Instead of approximating the frequency sensitivity and masking of the human audi-
tory system in the frequency domain (as in Sect.2.2.9.1, for example), a critical band
filterbank is constructed in the time domain. In this way, the filterbank of the human
auditory system can be approximated very closely with all its non-linear aspects.
In analogy to the frequency domain triangular filter banks for Bark- or Mel-scales
(Sect.2.2.3.4), the centre frequencies of the filters are approximately equidistant on
a Bark scale, and the bandwidths are approximately constant there. In this thesis
the filterbank from (Zhou et al. 2001) has been adopted. The centre frequencies
and bandwidths of the filters are given in Table2.1. Zhou et al. (2001) show the
centre frequencies for bands 1-16. Here, the table was extended for the full auditory

Table 2.1 Critical band filter bank according to Zhou et al. (2001) (up to band 16, bands 17-24
calculated for a filter spacing of 1 Bark, see text for details); the bandwidths (f},,) and linear scale

centre frequencies (fc(lin)) are rounded to the closest multiple of 10

Band # Uin) (1) £840 (Bark) fow (Hz)
1 150 1.5 100
2 250 2.5 100
3 350 35 100
4 450 4.5 110
5 570 55 120
6 700 6.5 140
7 840 75 150
8 1000 8.5 160
9 1170 9.5 190
10 1370 10.5 210
11 1600 115 240
12 1850 12,5 280
13 2150 13.5 320
14 2500 14.5 380
15 2900 15.5 450
16 3400 16.5 550
17 4050 17.5 630
18 4800 18.5 870
19 5800 19.5 1150
20 7000 20.5 1290
21 8500 215 1710
2 10,500 225 2450
23 13,500 235 3800
24 18,500 245 6670
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frequency range up to band 24, assuming a spacing of the centre frequencies f.*#*)
of 1 Bark and a bandwidth f3,, as is given by the following equation:

fow = 0,0 (FP0 +0.5) — ©, L (PP —0.5). (2.240)

Two types of filters are found in the literature (cf. e.g., Zhou et al. 2001) for the
implementation of critical band filterbanks: gammatone filters and Gabor filters,
both as introduced in Sect.2.2.3.5.

All filters in this thesis are implemented as FIR filters for stability and imple-
mentation reasons. In order to implement filters which are described by an infinite
impulse response with FIR filters, the impulse response needs to be truncated. This
introduces a small error compared to the ideal IIR filter. The amount of error can be
controlled by setting the length of the truncated impulse response. A longer impulse
response will lead to a smaller error.

2.2.15.2 Teager Energy Operator Envelopes

The Teager energy operator (TEO) is an energy operator where a correction term is
added to the quadratic energy operator (Sect.2.2.2). It is also known as the Teager-
Kaiser energy operator because it was introduced in papers by Kaiser (1993). This
term accounts for non-linearities which are supposed to occur in the human vocal
tract (Teager and Teager 1990).

The TEO ®{x(n)} is defined for a discrete time signal x(n) as (Kaiser 1993):

O{x(n)} = xz(n) —x(n+ Dx(n—1). (2.241)

This TEO is now applied to each of the filterbank output signals x; (n) (b is the band
. . . . . (@)
number; see previous section) and the envelopes of the resulting signals x, " (n) are
computed, i.e., by computing the RMS energy for short-time frames or by applying

a maximum operator to each short-time frame.

2.3 Derived Features and Post-processing of Low-Level
Descriptors

Almost all of the LLDs shown in the previous sections are computed from isolated
frames of audio. No context from previous or future frames is considered, i.e., the
descriptors do not capture any signal dynamics beyond the frame boundaries.

To mitigate this issue, post-processing of the LLD signals is performed and derived
features are computed. The post-processing implemented for this thesis consists of
moving average smoothing as suggested by Schuller (2006) (see Sect.2.3.4). The
derived features consist of jth order simple differences and jth order delta regression
coefficients (Sect.2.3.1 and Sect.2.3.2, respectively).
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Other, more specific, variants of derived features have already been described
along with the respective LLDs, such as the spectral differences (Sect.2.2.4.11) or
the CENS features (Sect.2.2.14.3), for example. In a strict sense, these should not be
named LLDs, but derived descriptors. However, as they are so specific to a certain
descriptor (esp. CENS), they will be herein treated as LLDs nonetheless even though
they have been computed from multiple subsequent frames.

2.3.1 Differences

The most simple derived feature which captures signal dynamics beyond a single
frame, is the first order simple difference function.®! It corresponds to the first order
differential % of a continuous signal x(¢). For a discrete signal x(n), which describes
the value of an arbitrary LLD over the frame index n, the simple difference function
di(n) is expressed as:

di(n) =x(n) —x(n—1) (2.242)

The above function is in principle only defined for n > 1, if x(n) is defined for n > 0.
In practical implementations it is desirable, however, to obtain one vector of derived
features for every vector of LLDs, which especially concerns the first frame. Thus, the
signal x(n) is padded for negative x(n) (here: up to n = —1) either with zeros or with
the value of x(0). Padding with zeros is unsuitable for difference features because
the difference d; (0) will be very large compared to the subsequent differences, if the
magnitude of x(n) is rather large. In this thesis, therefore, the padding with the value
of x(0) is implemented, i.e., d; (0) = 0 always.

2.3.2 Delta Regression Coefficients

A different approach to the difference function is suggested by Young et al. (2006).%2
Thereby, a context window of length W is defined, over which the difference function
is computed and smoothed according to the following regression formula:

SV i-x+i)—xn—1i)

2.243
257 P (2248

8/ (n) =

3!In openSMILE the simple difference function can be applied with the cDeltaRegression
component with the delta window size set to 0 (option deltawin = 0).

2In  openSMILE these delta regression coefficients can be computed with the
cDeltaRegression component.
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Hence, these coefficients 5}” (n) are called delta regression coefficients. The size of
the context window>® determines the amount of context—and with that the amount
of smoothing—that is considered in the computation of the difference around the
pivot point at n. When using a larger window, the coefficients will reflect more
the mid-term and long-term dynamics of the signal, while with a shorter window,
the coefficients will capture the short-term dynamics. Thus, in theory, it makes sense
to use delta regression coefficients with different window sizes in the same feature
set, although this has not yet been considered in this thesis. The default window size
suggested by Young et al. (2006) of W = 2 is adopted here.

2.3.3 Higher Order Delta Regression Coefficients
and Differences

The simple difference and the delta regression coefficients shown in the previous
two sections can be extended to higher order differences, which capture higher order
dynamics of the signal. These correspond to higher order (j) differentials % of
the continuous signal x(#). The second order difference, for example, is commonly
known as acceleration coefficient (from physics, where the first order differential of
the distance as a function of time represents speed and the second order differential
represents acceleration).

The jth order discrete difference (d) or delta regression (d) function is expressed
recursively as the difference/delta of the (j — 1)th order difference/delta function

(Young et al. 20006):
di(n) = dj_y (1) — dj—y (n — 1), (2.244)

Vi (5;{1(;1 +i) = o (1= )
232 '

6/ (n) = (2.245)

2.3.4 Temporal Smoothing

The short-time analysis (Sect. 2.1.3) creates artefacts, which can be reduced by aver-
aging descriptors over a small number of neighbouring frames.>* Schuller (2006)
suggests the use of a moving average filter with a window length of W = 3. The
filter can be expressed (for odd W only) as:

330Option deltawin in openSMILE component cDeltaRegression.

5In openSMILE the smoothing via a moving average window is implemented in the
cContourSmoother component. Feature names often carry the suffix _sma, which stands for
‘smoothed (with) moving average (filtering)’.
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Ww-1/2

Xona(n) = 37 > xn+i), (2.246)
i=—(W=1)/2

where Xy, (n) is the smoothed output (sma stands for ‘smoothed (with) moving aver-
age (filtering)’). A reasonable default for removing windowing artefacts is W =3.

2.4 Supra-Segmental Features

In contrast to ASR which deals with short-term phenomena such as phonemes and
words, other speech analysis tasks such as affect recognition, speaker state and trait
analysis, and music analysis tasks such as mood recognition or chord and key recog-
nition deal with rather long-term phenomena. E.g., the affective state of a person does
not change every second, rather even a few seconds of speech material are required
in most cases (even by humans) to asses the emotional state of a person reliably.

To enable machines to robustly model such long-term phenomena, either the
classification framework must be able to handle long-range temporal dependencies
between inputs (Sect.2.5.2.2), or the features must summarise information over a
meaningful unit of time (where the length depends on the analysed phenomenon).
The latter approach has been mainly followed in this thesis and it was shown to be
highly effective (cf. e.g., Schuller 2013; Schuller and Batliner 2013 and Chap. 6).

The following sections will show various mechanisms to summarise features over
a segment of given length. Two basic categories are distinguished hereby:

1. methods which map a segment of a fixed length to a feature vector of a fixed
length, where the length of the resulting vector is proportional to the length of the
segment, and

2. methods which map a segment of variable length to a feature vector of a fixed
length.

2.4.1 Stacking of Low-Level Descriptors

Probably the most straightforward approach to generate a single feature vector X
from a series of N LLD feature vectors x(n) withn = 0...N — 1 is to stack all the
LLD vectors to a single, large vector:

x(0)

x(1)

X = (2.247)

XN — 1)


http://dx.doi.org/10.1007/978-3-319-27299-3_6
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In X all the information of the original features is contained. However, the size of
X is proportional to the length N of the series of LLD vectors. If the dimensionality
of x(n) and N are large, the dimensionality of X grows rapidly, which makes this
approach unsuitable for high dimensional LLD vectors and long segments.

This approach can be used for the sub-second segments and a dimensionality of
the LLD vector of approximately 50 or smaller. It cannot be used to summarise LL.Ds
in segments of variable length.

2.4.2 Statistical Functionals

In order to handle segments with variable length and get rid of the dependency of
the feature vector dimensionality on the segment length, statistical functionals can
be applied to the time series of LLDs. A functional .% maps a series of values x(n)
to a single value X (Schuller 2013):

xn) S Xy (2.248)

Thus, the result is independent of the length of the input. Examples of commonly
used functionals are the arithmetic mean, standard deviation, maximum value, and the
minimum value. Typically these functionals are applied to each LLD individually,
i.e., they are referred to as univariate functionals® by the author of this thesis.
Functionals can also be applied to multiple descriptors at the same time, such as
the covariance or correlation between two descriptors. Such functionals are named
multivariate functionals. However, they are beyond the scope of this thesis and not
considered here.

The following sections give an overview on the most frequently used functionals
for audio analysis and describe all the functionals used in this thesis in detail. A
univariate time series will be denoted by x(n). Each time series has N elements
n=0...N—1.

2.4.2.1 Means

Various types of mean values are implemented.’® The most common one, often
referred to simply as mean p, is the arithmetic mean p,:

55In openSMILE univariate functionals are accessible via the cFunctionals component.
3Implementations of mean value related functionals are contained in the cFunctionalMeans
component in openSMILE, which can be activated by setting functionalsEnabled = Means
in the configuration of cFunctionals.
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1 N—1
Ha= > x(m)

n=0

Variations are the arithmetic mean of absolute values i,

1 N-1
il = 5 z‘; b(n)],

and the arithmetic mean of positive (i, ) or negative (u,—) values:

1 N—1

Hat = N, 2 x(n) - s, (x(n)) ,
N—1

Ha— = 3~ 2 x(n) - s, (x(n)),

87

(2.249)

(2.250)

(2.251)

(2.252)

where N, and N_ are the counts of positive and negative values in x(n), respectively.

s, and s, mask out non-positive and non-negative values, respectively:

0 0
5, (x(n) = il ﬁg e

0 0
[l 20

Other types of means implemented, are the quadratic mean f1,:

1 N—-1
_ 2
Mg = N ;:O x(n)”,

the root-quadratic mean fi,,:

Hrg =

and the geometric mean i :

(2.253)

(2.254)

(2.255)

(2.256)

(2.257)
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The above equation for the geometric mean is numerically inefficient for large N. A
more efficient method—which is used in this thesis’>’—operates in the logarithmic
domain:

N-—1
1
j1g = exp Nglog )| ). (2.258)

!
The geometric mean is only defined, if all x(n) = 0. Thus, zero-values are excluded
in the computation of the geometric mean, i.e., ji, in this thesis always refers to the

geometric mean of all x(n) 20.
Further, for some LLDs (e.g., pitch) it might be of high relevance to compute other
types of mean values only from non-zero values. Therefore, the superscript 2 shall

denote a non-zero mean, i.e., a mean value computed only from values x(n) L 0.
For instance, p{"?, u‘(;’f), (", and p?). By the definition in the last paragraph, the
geometric mean is always computed from non-zero values only, thus y, = ué”Z). In
the same way as for the arithmetic mean, the quadratic mean and the root-quadratic
mean can be computed only for positive and negative values, denoted by fi(,)4+ and
Hr)g—+

Not a mean value, but related to the non-zero mean values® (thus listed in this
section), is the number of non-zero values N,,; in x(n). This number can be normalised
to the total number of values in the series (N)*°: Nyzret = Ny /N.

Further, the flatness jiy of a time series is described by the ratio of the geometric
mean to the arithmetic mean (of absolute values in both cases):

B >0
,U'f — Mlal (2259)

L e =0

This measure has originated as spectral flatness LLD, where it was applied to power
spectra (cf. Sect.2.2.4.5). Here it is generalised as a mean related functional which
can be applied to any time series x(7).

2.4.2.2 Moments

The arithmetic mean, as described in the previous section is also known as the first
order statistical moment. Higher order statistical moments®® are also very impor-
tant functionals, in particular the variance and standard deviation (Ververidis and
Kotropoulos 2006; Schuller 2006, 2013).

57 And is the implementation used in openSMILE.
38 And also implemented in the cFunctionalMeans component.

3In openSMILE the norm option of cFunctionalMeans can be set to segment to normalise
counts and times etc. by N.

%0Implemented in openSMILE in the cFunctionalMoments component.
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The second order statistical moment, also called variance o2, is defined as:

N—1
my, = o’ = Ii\/ Z (x(n) — ua)z. (2.260)
n=0

The standard deviation ¢ is defined as the root of the variance:

1 N-1
o= |5 > @) — pa) (2.261)
n=0

A variation of the standard deviation which neutralises the influence of the mean, is
the Coefficient of Variation (CV) (cf. Reed et al. 2002, for example), or normalised
standard deviation: o
o=—. (2.262)
/’[/Ll

Using the CV is only recommended for variables with an expected mean way greater
than zero (this is not true, however, if o is also very small). It is undefined for y, = 0.
To avoid invalid values in large-scale data-analysis in this thesis, in the case of i, = 0
the following substitution is used: o = o.

Higher order statistical moments are of less relevance, but for the completeness
of the presented set of features, order three and four are considered nonetheless. The
third central moment m; is defined as:

1 N—-1
my == D () = i)’ (2.263)
n=0

Due to the third power in the sum, the values of m3; can be very large (or close to
zero). Thus, instead of the central moment mj3, the third standardised moment 715 is
used here (commonly known as skewness):

_ ms

iy = — (2.264)

o3’

In the same way the fourth central and fourth standardised moment are defined:

1 N-1 .
m= %‘; (x(n) — 1), (2.265)
My = (2.266)
g

The fourth standardised moment is also known as kurtosis.
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2.4.2.3 Extreme Values

Extreme values®' can be important markers in a signal, i.e., the maximum pitch
value or the maximum energy value. In this thesis the following functionals related
to global extrema have been considered: global maximum and minimum value of
X (1) (Xmax»> Xmin), the positions (indices) of the global maximum and minimum value
(Mumax»> Mmin), and the range R, of the signal: R, = Xyax — Ximin-

Two additional functionals are formulated in this thesis, based on the maximum
and minimum values: the difference d,4x,, between the maximum value and the
arithmetic mean (dyax, s = Xmax — Ha) and the difference d,,;, , between the arith-
metic mean and the minimum value (d,,, in = ta — Xmin)-

2.4.2.4 Percentiles

The arithmetic mean, and especially the global extreme values (maximum and mini-
mum) are all sensitive to outliers, i.e., single values which are well out of the typical
range of the majority of values. If there is one single very large value which has been
caused by noise or corruption of the input, the maximum value (and its position)
will relate to this value (erroneously). Instead, for more robustness against outliers,
percentiles should be considered.®® The jth percentile P; is defined as the value x
below which j percent of all the values x(n) are, i.e., for j percent of the values in
x(n) the following is true: x(n) < P;.

For computational efficiency when computing multiple percentiles of the same
time series x(n), the series is sorted in ascending order (denoted here as s(n)). The jth
percentile can the be found in the sorted set of values at the index #n;, i.e., P; = s(n;)
with

v
nj = 755V =D +05]. (2.267)

This equation is inprecise if N is small and N is notevenly dividable by j, i.e., when the
actual percentile value lies between s(;) and either s(n; — 1) or s(n; + 1). For these
cases a linear interpolation method to improve the precision of the percentile values
has been implemented. With the the real valued (exact) index of the percentile P;

location njf, and the lower and upper bound integer indices (n; ; and r; ,, respectively),
the weights w;; and w; , for the values s(n; ;) and s(n;,) can be computed:

n = IJE(N -1, (2.268)
n = n, (2.269)

61In openSMILE extreme values can be extracted with the cFunct ionalExtremes component.
62Percentiles are implemented in openSMILE in the cFunctionalPercentiles component.
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ni = [n], (2.270)
Wi = n; = njy, (2.271)
Wiy = Njy — Nj. (2272)

With these weights, the linearly interpolated jth percentile value is expressed as:

!
P, [wj,lsmi!l) F ) = (2.273)

S(nj,l) nj1 = njy

The median of a set of values (e.g., a time series x(n)) is equivalent to the 50th
percentile of that set of values. Other well known percentiles are the quartiles I-
III, which correspond to the 25th, 50th, 75th percentile and the quintiles, which
correspond to the 20th, 40th, 60th, and 80th percentile.

Further, percentile ranges have been often used in related work (Schuller 2006,
2013). The range between percentile j and percentile i is defined as the difference
between the respective percentile values: P;; = P; — P; for j > i. Special cases of
percentile ranges are the three Inter-Quartile Ranges (IQRs): IQR1-2 is Psg — P»s,
IQR2-3 is P75 — P5() and IQR1-3 is P75 — P25.

In order to robustly express maximum and minimum signal values for noisy
signals, itis suggested here to use the 95th and 05th percentile instead of the maximum
and minimum value, respectively. Alternatively, for longer segments (> & 25s), the
99th and O1st percentile can be used.

2.4.2.5 Temporal Centroid

Similar to the spectral centroid (Sect.2.2.4.6), the temporal centroid #.¢,iq Of the
signal x(n) can be computed as®:

>N tm)x(n)

, 2.274
>y x(n) 2279

Xcentroid =

where #(n) is a time-scaling function that can be used to modify the time units. For a
time scale in seconds #(n) = nTy, for a time-scale in frames 7(n) = n, and for a time
scale in relative percentage of the segment t(n) = n/N.

63In openSMILE the temporal centroid is implemented by the cFunctionalRegression com-
ponent, as the sums are shared with the regression equations, thus computing both descriptors in
the same component increases the efficiency.
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2.4.2.6 Regression

In order to describe the general shape of the time series x(n), linear and quadratic
regression coefficients can be used.**

For the linear regression the values of the series y = x(n) are approximated by a
line y = mn + o in a way that the quadratic error between the line and the actual series
is minimised. The regression coefficients 7 and 0% are sometimes also known as m
(slope) and ¢ (offset), respectively, or plainly a and b, respectively. The derivation for
the linear regression coefficients is the same as for the spectral slope (Sect.2.2.4.2). It
is thus, not repeated here. A generalisation for different time-scales (other than frame
index n) can be easily obtained by substituting a general time-scale function #(n) for
the frame index n in all equations and L’ = #(N) for the length of the sequence x(n)
on the new time scale. The solutions for m and o for the general case of y = x(¢(n))
are as follows:

Ny — %%,
m=—2 "= (2.275)
NXp — 37
- (s o (2.276)
T\ ) '
where
N-1
Ty =D x(n), (2.277)
n=0
N-—1
= > 1), (2.278)
n=0
N—1
Y. = Zt(n)z, (2.279)
n=0
N-1
Ty = D tm)x(n). (2.280)
n=0

For a linear time scale #(n) = gn with a general time-stretch factor g, the following
simplifications to speed up the computations can be made (using exponential series
expansions from Rade et al. 2000, p. 189):

1
% =ggN(V - D). (2.281)

%In openSMILE the cFunctionalRegression component computes linear and quadratic
regression coefficients.

65 As used in this thesis, in order to avoid a name conflict with the quadratic regression coefficients
a and b and time ¢.
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)1
Yp=yg EN(N - DE@N -1). (2.282)

The unit of the slope m is the unit of x(n) (e.g., an amplitude, or power unit, or Hz
for a frequency) per time-unit (unit of #(n), e.g., frames, seconds, or relative segment
percentage). The unit of the offset b is the same as the unit of x(n).

For the quadratic regression the values of the series y = x(¢(n)) are approximated
by a parabola $ = X(¢(n)) = at(n)> + bt(n) + c. The derivation of the least-squares
fit of the parabola to the series follows the same pattern as for the linear regression:
The minimisation of the quadratic error ¢ between the quadratic approximation of
the function and the function itself is expressed as:

N—1

=D (xtm)—itm))’ = (2.283)

0
1

3
Il

=

(x (¢ (1)) — at (n)? — bt (n) — ¢)° = min.

3
Il
=

From this, the following three differential equations for a, b, and c for the points
(t(n),x(t(n))) withn =0...N — 1 are obtained:

N—1

ae2 = Z(; —21(m)? (x(t(n)) — at(n)> — br(n) — ¢) =0, (2.284)
N-—1

%ez =" —24(n) (x(1(n)) — at(n)> — bi(n) — c) = 0, (2.285)
i=0
N—1

gez = > =2 (x(t(n) — at(n)* — bt(n) — c) 0. (2.286)

C

i=0

Solving these three equations for a, b, and c yields solutions for these parameters in
terms of the given points (t(n), x(t(n))). With

N-—1

Tey = > t()’y(n), (2.287)
n=0
N—1

T = Zt(n)3, (2.288)
n=0
N-1

Tu = Zt(n)4, (2.289)

n=0



94 2 Acoustic Features and Modelling

the above system of equations can be re-written in matrix form:

PIFEDIF D I a Xy
Y3 Xp X bl=1 %2y |. (2.290)
Yo ¥, N c X,

Again, for a linear time scale t(n) = gn, the following substitutions can be applied
to speed up the computation (using exponential series expansions from Rade et al.
2000, p. 189):

3
5 = %Nz (N =12, (2.291)

4
g s 1 PR 3 1
Yu==(N-1 - (N—-1 - N=-1)——N-1). 2.292
' 5( )+4( )+3( ) 3)0( ) ( )

The solution is then given by Cramer’s rule (Rade et al. 2000, p. 93) as:

Ypy Lp Lp
Xy e X |, (2.293)
%, X N

X Xpy Lp
Xp Xy X, (2.294)
Yp X, N
X Xp g,
DIEIDILED IR (2.295)
Yp ¥ X,
Y Xp Xp
d=\|2sZp % |. (2.296)
Yo ¥ N

1
d
1
d

1
d

Regression coefficients obtained with the above equations, where t(n) = n (frame
index time scale) can be converted to another linear time-scale ¢t(n) = gn with the
linear scale factor g by the following transformations:

m =g 'm, (2.297)
d =g la, (2.298)
b =g 'b. (2.299)

The scale factor g can be set to g = Ty for an absolute time scale in seconds, or to
g = 1/N for a percentage time scale relative to the segment length N.% The derivation

%In openSMILE, the time scaling feature is enabled by the normRegCoeff option in
cFunctionalRegression component. Setting it to 1 enables the relative time scale g = 1/N
and setting it to 2 enables the absolute time scale in seconds.



2.4 Supra-Segmental Features 95

of these transformations is obtained by setting #(n) = gn in Egs. (2.278)—(2.280)
and in Egs. (2.287)—(2.289) and re-evaluating Eqgs. (2.275)—(2.276) and Eqgs. (2.293)—
(2.295). In this way it is also shown that linear scaling of the time scale has no
influence on the linear regression coefficients o (linear offset), and the quadratic
regression offset c.

If the coefficients must be independent of the range R, of values in x(n), the
coefficients m, a, and b must be divided by R, :

mrom — 2L (2.300)
R,
Equation (2.300) also applies to a and b. The offset coefficients 0 and ¢ must be
transformed according to (also applies for ¢)°’:
plnorm) = &= Tmin, 2.301)
R,
The derivations are made by setting
(norm) 1
x "t (n)) = R (x(t(n)) — Xpmin) (2.302)

in the regression coefficient equations.

Besides the linear or quadratic regression coefficients, an informative measure is
the regression error e, i.e., the remaining (minimised) difference between the com-
puted regression line or curve X(#(n)) and the actual time series x(¢(n)) (Eq. (2.283)).
The error is normalised by the length of the series to obtain a measure ¢ which is
independent of the sequence length:

(2.303)

]
I
|

)

The error is either called linear regression error when it is computed as difference
between x(n) and a line, or quadratic regression error, when itis a difference between
x(n) and a parabola. As alternative to the normalised sum-square error e (Eq. (2.283)),
the normalised absolute error e, is additionally used:

1N

-1
= > Jx(tm) = 2] . (2.304)
n=0

%7 Option normInputs in openSMILE component cFunctionalRegression—also affects
linear and quadratic error.
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The regression errors can be normalised to the range R of x(n) in order to have

comparable errors across segments with different magnitudes®®:

1
—(norm) __ —a, 2.305
e = 2° ( )
—(norm) __ 1 > (2 306)
¢ - R '

For quadratic regression, also the (relative) temporal location n, of the parabola
vertex and its corresponding amplitude x(n,) are of interest. If the vertex is within
n=0...N — 1, then also the slope of the line connecting the point at n = 0 with the
vertex (left slope) and the slope of the line connecting the vertex with the last point
at n = N — 1 (right slope) can be computed. The vertex coordinates n, and x(n,)
are computed according to the following equations (cf. Sect.2.2.11.4—quadratic
interpolation):

ny = —, (2.307)

x(ny) =c¢c— —. (2.308)
4a
To avoid outliers, the range of n, is limited to [0; N — 1], thus the corresponding
X(ny) is actually computed as:

X(ny) = an® + bn, +c. (2.309)

The parabola vertex coordinates can be normalised to the scale n = 0...1 (for n,)
and to the range R of the values in x(n) (for X(n,)) by:

(norm) — My
v N-T
F(ny) o — M. 2.311)

n

(2.310)

For the computation of linearised left and right slopes of the parabola, the parabola is
evaluated for n = 0, yielding x(0) = ¢, and for N — 1, yielding x(N — 1) = a(N —
1) 4+ b(N — 1) + c. The left slope myep; is then formulated as:

x(ny) —c¢ 0
—— >

mg=1 n . (2:312)
0 n, <0

and the right slope m,;¢, is given as:

%80ption normInputs in the openSMILE component cFunctionalRegression—note that
this option also affects the regression coefficients as it effectively normalises the input range.
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(N — 1) — X(ny)
Myight = N—-1- ny
0 n,>N-—1

L <N-—1
o = . (2.313)

The slopes normalised to the value range, or the scale n = 0. .. 1, or both, are given
by using the respective normalised values in Egs. (2.312) and (2.313):

)’e (nv ) (norm) __ C(norm)

(norm) __ (norm) ny > 0 21314
My~ = ny s 2. )
0 n, <0
),(\?(N _ 1)(norm) _ )’e(nu)(norm)
(norm) __ (norm) ny < 1
mright - 1-— ny . (2315)
0 n, > 1

An important property of the regression coefficient functionals is the irreversibility,
i.e., that if the input sequence is reversed, a different value is obtained (except for the
rare case of exactly symmetric input series and quadratic regression coefficients).
Most other functionals, such as the means, moments, extreme values (excluding
positions), temporal distributions, peak amplitudes, and some of the modulation
features, will return the same value even if the input sequence is reversed in time.

2.4.2.7 Temporal Distribution

The temporal distribution of the signal is described by statistics which give the
percentage of values x(n) in the time series which are above or below a certain
threshold xy. Hence, these functionals are assigned the name up-/down-level times,
respectively.®

In this thesis a range-relative threshold x{fl is used to ensure independence from
variations of the signal dynamics. xg“” can be in the range [0; 1]. The absolute thresh-
old xy is computed dynamically from the range (R,) and minimum value (x,,;,) of

x(n) and the relative threshold:
X9 = Xonin + X5'R,.. (2.316)

Two kinds of threshold-based temporal descriptors are implemented: the up-level
and down-level times. The up-level time is defined as the time or number of frames
(absolute or relative)’ the signal is above the threshold (x(n) > xp). The down-level
time is defined as the time or number of frames (again, absolute or relative) the signal
is below or equal to the threshold (x(n) < xg). Typical relative thresholds which are
considered in standard feature sets are 0.25, 0.5, 0.75, and 0.9. The corresponding

%1In openSMILE these functionals are implemented in the component cFunctionalTimes.
70Configurable with the norm option in openSMILE.
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descriptors are then referred to as the 25, 50, 75, and 90 % up- or down-level times,
respectively. The up- and down-level times with the same threshold are always com-
plementary, i.e., their sum is 1 (for relative times) or the length of x(n) for absolute
times. Due to this redundancy, it is sufficient to use one or the other (up or down) in
a feature set.

Additionally, rise time and fall time are considered. These are defined as the
time or number of frames (absolute or relative) the signal is rising or falling, i.e.,
x(n —1) < x(n) orx(n — 1) > x(n), respectively. Similarly, the left-curvature time
and right-curvature time are defined as the time or number of frames the signal has a
left or right curvature, i.e., x(n) —x(n — 1) < x(n + 1) — x(n) (left) orx(n) — x(n —
1) > x(n+ 1) — x(n), respectively. In contrast to the up- and down-level times the
rise-/fall times and the curvature times are not complementary because the case of a
flat signal (x(n — 1) = x(n) and x(n + 1) = x(n)) is not considered in the definition,
i.e., for a constant signal all four of these descriptors will be 0, while for a signal
which represents a line, the curvature times will be 0.

2.4.2.8 Peaks and Valleys

Peaks (maximum values) and valleys (minimum values) can be important markers
in a signal. Both the amplitude and the position of the peaks are valuable. Various
peak based descriptors have been implemented for this thesis.”' These descriptors
are described in the following, assuming a given set of I peaks (x, ;; n, ;) with i =
0...1 —1andJ valleys (x, j; n,;) withj=0...J — 1:

Number of peaks (/)—optionally normalised to peaks per second,
e Arithmetic mean of the peak amplitudes x#****):

xlpeaky) — pr i (2.317)

Absolute peak amplitude range (maximum peak amplitude - minimum peak ampli-
tude),

Peak amplitude range normalised to the input contour’s arithmetic mean,

e Difference of the arithmetic mean of the peak amplitudes to the arithmetic mean
of x(n),

Ratio of the arithmetic mean of the peak amplitudes to the arithmetic mean of x(n)
(relative peak mean),

Mean of peak to peak amplitude differences,

Mean of peak to peak amplitude differences normalised by range R,

Standard deviation of peak to peak amplitude differences,

Standard deviation of peak to peak amplitude differences normalised by range R,

"In openSMILE these functionals can be applied with the cFunctionalPeaks2 component;
the cFunctionalPeaks component contains an older, obsolete peak picking algorithm.
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Mean distance between peaks d7“*):

1 -1

d}({)e(lk.\') — 7 Zl (np,i — np,i—l) s (2.318)

e Mean of difference of consecutive peak distances,
e Standard deviation of inter-peak distances d¥°%:

-1
ek _ ;Z(”Pl — ) (2.319)

i=1

Arithmetic mean of the valley amplitudes x(""":

(mlmma) _ Z X js (2320)

e Absolute valley amplitude range,
e Valley amplitude range normalised to the input contour’s arithmetic mean,
e Difference of the arithmetic mean of x(n) to the arithmetic mean of the valley

amplitudes,

Ratio of the arithmetic mean of the valley amplitudes to the arithmetic mean of
x(n),

Mean of valley to valley amplitude differences

Mean of valley to valley amplitude differences normalised by range R,

Standard deviation of valley to valley amplitude differences,

Standard deviation of valley to valley amplitude differences normalised range R,
Arithmetic mean of rising slopes, i.e., the slopes of the lines connecting a valley
with the following peak. The rising slope m; ; for valley j and peak i, where i = j
(if x(n) starts with a valley) or i = j + 1 (if x(n) starts with a peak), is given by:

Xpi — Xv,j

mj.i = —T (np,i — nv,-)’

(2.321)

where T is a normalisation factor. T is equivalent to the frame period length (in
seconds) for all experiments in this thesis’> which results in a unit for the slope as
amplitude difference per second. T can, however, also be set to T = 1 to obtain
a slope in terms of amplitude difference per frame’® or T = 1/N for a slope in
terms of amplitude difference per relative segment length.”* The first (x(0)) and

72In openSMILE in cFunctionalPeaks2 norm=second has to be set for this behaviour
(default).

73
74

norm=frame in openSMILE.
norm=segment in openSMILE.
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last (x(N — 1)) value of the signal x are treated as first/last valley/peak (the latter
depending on whether the respective value is followed/preceded by a peak/valley,
respectively) in order to compute at least one slope, even if O or only 1 peak (or
valley) is present in the signal.

Standard deviation of rising slopes,

Maximum rising slope,

Minimum rising slope,

Arithmetic mean of (positive) falling slopes, i.e., the slopes of the lines which
connect a peak with the following valley. The positive falling slope m; ; for peak
i and valley j, where j = i (if x(n) starts with a peak) or j = i + 1 (if x(n) starts
with a valley), is given by:

Xpi — Xvj

_pi v (2.322)
T (”v,j - ”P,) ‘

m;j =

where T is a time-domain normalisation factor (see rising slope above for details),
e Standard deviation of falling slopes,
e Maximum falling slope,
e Minimum falling slope.

The inter peak and valley distances measured in frames, and their standard devia-
tions, can be converted to either distances in seconds by multiplying with the frame
period length 7 (in seconds), or to distances measured as proportions of the segment
length N by dividing by N.” Normalising parameters to a time scale of seconds
is recommended for all peak and valley related functionals because this makes the
descriptors independent of the input length and the underlying frame rate.

To find the peaks, a peak picking algorithm must be applied. The most simple
algorithm is the extreme value search for maxima (x(n — 1) < x(n) > x(n + 1)),
which finds all local maximum values. However, in speech and music signals small
local extreme values might occur due to windowing artefacts or noise. These values
are insignificant and have no global meaning. Thus, a threshold should be used to dis-
card extreme values with a low local/relative amplitude. The algorithm implemented
for this thesis consists of three steps. It

1. finds all local maxima and minima (extrema) in x(n),

2. discards extrema with a low relative amplitude (based on an absolute threshold
which is a configurable fraction of the range of x(n)—see Eq.(2.316)),”® and

3. enforces a constraint of alternating maxima/minima, i.e., it discards two adjacent
maxima with no valid (!) minimum in between and vice versa.

SIn openSMILE the norm option controls this behaviour (frames, seconds, segment—
respectively).

76See the absThresh and relThresh options in the openSMILE component
cFunctionalPeaks2.
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24.2.9 Segments

Some signals can be divided into meaningful, continuous segments, such as voiced
and unvoiced parts of the pitch contour, or high and low signal energy regions. The
shape and structure of these segments contains valuable paralinguistic information,
in particular temporal and rhythmic information. Based on unsupervised statistical
segmentation algorithms, segments based on statistics can be found in any arbi-
trary signal (e.g., MFCC, etc.).”” Depending on the segmentation algorithm and the
meaning of the segments when considering the underlying LLD, segments are either
defined as adjacent, i.e., the end of the first segment is identical to the beginning of
the second segment, or as separated by gaps, i.e., between segment one and two there
is a gap of at least one sample/frame length. The following segmentation algorithms
which return adjacent segments are considered in this thesis:

delta threshold A segment boundary is placed wherever x(n) > x(n) + J,, with
X(n) being the sliding window moving average over w frames (Schuller 2006).
w is estimated from the maximum number of allowed segments Ny yqx a8 W =
2N /Nieg, max- If required, w can also be set to a fixed custom value’®—however,
this has not been applied in the experiments in this thesis. d, is the threshold that
has to be exceeded in order for a new segment to begin. Is is computed from a
range-relative threshold 0 as §, = R, 0.
relative threshold A segment boundary is placed wherever x(n) or a running aver-
age X (sliding window, size w = 3 frames) of x(n) crosses or touches a pre-defined
threshold a, i.e., the boundary is placed at frame n, when x(n — 1) < a < Xx(n) or
X(n — 1) > a > x(n). The absolute threshold a can be computed from a range-
relative threshold 60g:
a = Xpin + ROk, (2.323)

where R, is the range of x(n), or from a mean-relative threshold 6,,:
a= b, (2.324)

where pi, is the arithmetic mean of x(n).
change from/to constant A segment boundary is placed wherever x(n) changes
from x(n) = a to x(n) # a or vice versa.

Further, the following algorithms which return segments of interest which are
separated by gap segments are implemented:

unequal to  Segments are separated by continuous regions in which x(n) = a.
Within a segment, x(n) # a must be true for the samples within the segment
(except for small gaps, see below). a is a configurable threshold parameter and
depends on the type of input (LLD) the functional is applied to. In this thesis, this

"TIn openSMILE segment-based temporal functionals can be computed with the component
cFunctionalSegments.

78Use the ravgLng option of the cFunctionalSegments component in openSMILE.
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functional is applied to the Fjy LLD, for example, and a = 0. Thus, the segments
considered correspond to voiced segments where by definition Fjy > O is true.
In order to increase noise robustness (e.g., robustness to Fy extraction errors), a
minimum gap (pause) duration of 2 frames is enforced.”® If a gap is shorter or
equal to the minimum pause duration, the segments left and right of the short gap
are considered as a single segment, including the gap.

equal to In analogy to the unequal to condition, segments are separated by con-
tinuous regions where x(n) # a, and x(n) = a is true within a segment.

Additionally, for all algorithms, a minimum segment length constraint is enforced
to avoid segments of one frame length due to noise. The minimum segment length
lseg, min 1s estimated from the maximum number of allowed segments Nyeg max:
lseg, min — N/Nseg,mwr - L

From the segment boundaries, the following temporal descriptors are computed:

e Number of segments,

Arithmetic mean of segment lengths,
Standard deviation of segment lengths,
Maximum segment length,

Minimum segment length,

If the segments are not defined as adjacent segments, but as segments separated by
gaps, the following functionals can be additionally computed:

Arithmetic mean of the gaps between segments,
Standard deviation of the gaps between segments,
Maximum length of gap between segments,
Minimum length of gap between segments.

2.4.2.10 Onsets

An onset is generally defined as a sudden, steep amplitude rise in x(n), e.g., the
beginning/onset of an acoustic event. Here, onsets as a functional follow a more
simple definition, similar to the threshold definition for segment based functionals
(Sect.2.4.2.9): An onset is marked at each position n where x(n) rises above a given
absolute threshold a: x(n — 1) < a < x(n). An “offset” marks the inverse, i.e., the
case when x(n) falls below a: x(n — 1) > a > x(n). For some LLDs it might make
sense to use the absolute value of x(n) to define onsets only by the magnitude of
the descriptor. While this has not been used in this thesis, as onset functionals have
been applied to F(y contours only, the equations for the conditions are given here as:
[x(n — 1)| < a < |x(n)| for an onset and |x(n — 1)| > a > |x(n)| for an “offset”.

7This length can be changed via the pauseMinLng option of the cFunctionalSegments
component.
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The following functionals are computed from the onset and “offset” positions®’:

The position of the first onset, either as frame number 7, relative to the segment

length n,; = n/N, or as atime in secondst =n-T,

e The position of the last “offset”, either as frame number 7, relative to the segment
length n,,; = n/N, or as a time in seconds t =n - T,

e The absolute number of onsets N,,ezs,

o The absolute number of “offsets” Nogers (only provided for completeness, but not

used, as it is highly redundant with the number of onsets—a more informative

feature for future work would be the difference between onsets and “offsets”,

which can be either —1, 0, or +1, depending on whether x(n) starts/ends with a

value above/below the threshold a),

The onset rate (frequency) in Hz: f,,5eis = Nongess

N-T *

2.4.2.11 Crossings

With the definition of ZCR from Sect.2.2.1.1, ZCR can be applied as a functional.®!
Since—in contrast to time domain audio signals—most LLDs are not symmetric
around zero, the MCR is favoured. The MCR is defined like the ZCR but computed
from x(n) after mean removal as given by Eq. (2.37).

2.4.2.12 Sample Values

In order to capture sample values of x(n) at given temporal positions independent
of the length of x(n), values are sampled at given relative time instants n,,;, where
ny 18 in the range [0; 1] and gives the sample time as percentage of the length of
x(n). Thereby the absolute position n is computed as n = N - n,;. This functional is
recommended for rather short segments, such as isolated phonemes, words, beats or
bars. In this case the relative positions have meanings, such as the beginning, middle,
and end of the segment (for 3 sample values placed accordingly).®

2.4.3 Modulation Functionals

Modulation features have recently gained attention in speech related tasks (cf.
Mubarak et al. 2006; Wu et al. 2011; Chi et al. 2012) and have been inherently
used for rhythmic analysis in Music Information Retrieval (Mubarak et al. 2006;
Schuller et al. 2007).

80Computed in openSMILE by the cFunctionalOnset component.
81provided by the cFunctionalCrossings component in openSMILE.

82Sample-based functionals are provided by the cFunctionalSamples component in
openSMILE.
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The goal of modulation features is to qualitatively describe the modulations and
periodicities of a signal x(n), as well as the shapes thereof with a set of numerical
descriptors. For this thesis the following types of modulation functionals applicable
to LLD signals have been considered: Discrete Cosine Transformation coefficients
(Sect.2.4.3.1), LPC coefficients (Sect. 2.4.3.2), and modulation spectrum coefficients
(Sect.2.4.3.3).

2.4.3.1 Discrete Cosine Transformation Coefficients

For the DCT coefficient functional,®® the DCT base functions from order o to order
oy are computed and applied to the signal to obtain the 0; — 09 + 1 DCT coefficients
from order o( to 0;. The base functions are expressed relative to the length N of
the input x(n). This leads to functionals which describe the overall contour of each
input segment as if all segments were normalised to a common length. Thus, the
DCT coefficients do not correspond to absolute frequencies, but rather frequencies
relative to the segment length. For modulation coefficients corresponding to absolute
frequencies, independent of the segment length, the modulation spectrum coefficients
(Sect.2.4.3.3) were designed.

The same DCT-II as used in Sect.2.2.10.1 for MFCC is applied here. The oth
DCT base function bg’ér (n) is thus givenas (n =0...N — 1):

b\ (n) = cos (ﬁzzv 0+ 0.5)) : (2.325)

The oth DCT coefficient is then computed as:

N—1
DCT (0) = \/% > x(mb (). (2.326)
n=0

Typically DCT coefficients 1-5 are used as functionals because most affective and
paralinguistic information is hidden in the lower frequency modulations, which cor-
respond to the lower order DCT coefficients. If the length of segments varies strongly,
DCT coefficient functionals should not be used, due to reasons discussed above.

2.4.3.2 Linear Predictor Coefficients

Although Linear Predictive Coding has been derived from the source-filter model of
speech production, linear prediction is a general method to model linear dependen-
cies present among subsequent samples of an arbitrary signal x(n). LP analysis can
therefore be used as a functional on LLD signals.?*

81n openSMILE the cFunctionalDCT component computes DCT coefficient functionals.
84In openSMILE the cFunctionalLpc component computes LP-analysis functionals.
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LPC coefficients are computed from a signal x(n) (length N) with the autocorre-
lation method which is described in Sect.2.2.7.1. In most experiments reported on
in this thesis the coefficients a; with i = 1...6 are used, as well as the gain of LP
analysis (the energy of the remaining error signal). A low gain indicates a signal
which can be well approximated by LP analysis, i.e., a deterministic signal, while a
high gain indicates a stochastic signal.

As most LLDs are sampled at a constant rate of 100Hz, LP coefficients are
independent of the segment length and can be used when the segment length varies
strongly—in contrast to the DCT coefficients. L.e., if a signal of N/2 frames is
appended to itself to obtain a sequence of length N, the resulting LP coefficient
functionals will be very similar to those LP coefficients computed from only the
N /2 length signal. The resulting DCT coefficients, however, will differ significantly
across both cases. More precisely, they will be shifted by one order, i.e., DCT(1) of
the N /2 length signal will be roughly equal to DCT (2) of the full (NV) length signal.

2.4.3.3 Modulation Spectrum

The modulation spectrum®® of a (LLD) signal x(n) of length N is computed via a
Short-Time Fourier Transform (STFT) approach (short-time analysis, cf. Sect.2.1.3).
Thereby the signal x(n) is divided into / frames (each Ny samples long), a windowing
function (cf. Sect.2.1.3) is applied to the frames, zero-padding is performed, and a
FFT is applied to each windowed signal x;(n) (i = 1...I) and the linear magnitudes
of the resulting complex spectrum are computed (cf. Sect.2.2.3.1). The magnitude
spectra X; of each short-time frame are averaged over all / frames, resulting in the
raw modulation spectrum X ™°¢-"*) With a constant window size Ny, this method
enables the efficient computation of the modulation spectrum on arbitrary length
signals in linear time with respect to the signal length N.

As a last step, the spectrum X "°¢-7@®) g scaled and interpolated to a fixed num-
ber of bins M’, a number which is independent of the window size Ny. This way
it is ensured that modulation spectrum features computed with arbitrary (Ny, N)
combinations are compatible. Spline interpolation (Steffensen 2012) is used to map
X (modsraw) () to XD (') (m’ = 1...M’). The spline function is constructed with
the points (F(m), X mod) (17)), where F (m) maps a bin index m to a linear frequency
(Hz) f (cf. Sect.2.2.3.1). The spline function is then evaluated for the frequencies
f' = F'(m') corresponding to the bins of the spectrum X °® to obtain the respective
(interpolated) magnitudes.

Phase information of the modulation spectrum is not considered here. In future
work, however, this could be addressed when segments with meaningful start and
end points are analysed, i.e., the segments are not selected as fixed length segments at
a fixed rate from a stream. Such segments could be for speech: whole words, phrases,

85In openSMILE the cFunctionalModulation component computes modulation spectrum
functionals.
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parts of sentences, or full sentences, for example, and for music: beats, one or more
bars, or the chorus, for example.

As a default recommendation, the frequency resolution &; for X9 was chosen
between 0.1 to 0.5 Hz and a range from 0.25 to 30 Hz was considered by the author of
this thesis, which results in Ny = 298 bins (§y = 0.1) and N; = 60 bins (5; = 0.5).

The modulation spectrum can either be used as a feature vector directly, or further
statistics can be computed from this spectrum. All statistics applicable to normal
magnitude and power spectra can be applied. Most important, however, seem to be
the frequency(-ies) related to the peak(s) of the modulation spectrum and the flatness
of the modulation spectrum. ¢

2.4.3.4 Rhythmic Features

For music analysis, rthythmic features are of high relevance. While for speech, mod-
ulation spectrum, and LPC based modulation features might be sufficient, the highly
structured rhythm of music requires features developed specifically for music rhythm
analysis. Such features have been proposed by the author of this thesis in (Schuller
etal. 2007), originally.®” The features are derived by a 2-step comb-filterbank analysis
of Mel-scale auditory band spectra. A so-called Tatum vector (resembling a modula-
tion spectrum in a range which covers very fast tempi) and a meter vector, which is a
modulation spectrum computed at multiples of the Tatum tempo, are computed for a
music segment or a whole piece of music. The Tatum tempo is computed by finding
the most prominent peak in the Tatum vector. For details, the reader is referred to
Schuller et al. (2007) and Eyben and Schuller (2010b). By definition in (Schuller
et al. 2007), the Tatum vector has 57 elements, and the meter vector has 19 elements,
which covers 19 metrical levels, i.e., 19 multiples of the Tatum tempo.

2.5 Modelling

In order to evaluate the acoustic features and especially the standard feature sets
introduced in the previous chapters, classification experiments were performed. This
section gives a brief overview over the classification and modelling methods used in
this thesis and a theoretical introduction to the two categories of modelling: static
(Sect.2.5.1) and dynamic (Sect.2.5.2).

861n openSMILE, the statistics can be applied to the modulation spectrum with the cSpectral
component. Also other components which expect magnitude spectra (e.g., ACF in cAcf) can read
from the output of cFunctionalModulation.

87These features are not part of openSMILE (yet). It is planned to include them in future releases.
C code is available from the author of this thesis upon request.
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In the field of affect recognition and Computational Paralinguistics, most methods
in the past have dealt with classification on an utterance level, e.g., Ververidis and
Kotropoulos (2006); Vlasenko et al. (2007); Schuller et al. (2009b, 2013b). Thereby
each utterance or a part of an utterance is associated with one set of affective labels
and the classifier/regressor assigns exactly one set of predictions to one utterance.
As shown by Vlasenko et al. (2007), for example, either a static classifier, such as a
Support Vector Machine (SVM) (e.g., Schuller et al. 2006) or a dynamic classifier,
such as a Hidden Markov Models (HMMs) can be used (e.g., Schuller et al. (2003)).
The SVM estimates a classification label from a single high dimensional feature
vector, which summarises the utterance. The HMM computes a likelihood score for
every frame of low-level features and from the most likely path over the utterance
estimates the most likely class. Recently, databases with dimensional affect ratings
have emerged: the Sensitive Artificial Listener (SAL) set in the HUMAINE database
(Douglas-Cowie et al. 2007), the SEMAINE database (Schroder et al. 2012), the
RECOLA database (Ringeval et al. 2013), and a set of continuous music mood
annotations (Soleymani et al. 2013). Tools like Feeltrace (Cowie et al. 2000) have
been used for continuous rating, both in time and value. Such databases have caused
a shift in methods, first of all moving from classification to regression to be able to
model continuous affective dimensions (Grimm et al. 2007; Wollmer et al. 2008), and
next moving from utterance or segment level labels to quasi time-continuous labels
(Eyben etal. 2010c, 2012; Schroder et al. 2012; Schuller et al. 2012b; Weninger et al.
2013, 2014)—creating a need for research on dynamic, context aware modelling
methods. This thesis proposes and evaluates such a modelling method based on
combining supra-segmental features with dynamic modelling by Long Short-Term
Memory Recurrent Neural Networks (LSTM-RNNSs) in Sect. 6.4.

In the field of MIR, static modelling has also been applied for several tasks such as
dance-style recognition (Schuller et al. 2007), genre identification (e.g., Tzanetakis
and Cook 2002; Eyben and Schuller 2010a), and chord and key transcription (e.g.,
Lee and Slaney 2008; Schuller et al. 2008). Music fingerprinting and identification
of artist and title based on a fingerprint can also be seen as a static classification task
(e.g., Wang 2003).

As the main aim and novelty of this thesis is to explore efficient large-scale, on-
line feature extraction and propose ground-breaking standard feature sets, only the
two most popular modelling methods Support-Vector Machines for the static case,
and (Long Short-Term Memory) Recurrent Neural Networks for the dynamic case,
are discussed in this section.

2.5.1 Static Modelling with Support Vector Machines

In static modelling a segment of audio is represented by a single, fixed dimensional
vector of parameters (supra-segmental features, see Sect.2.4) and modelled with a
static classifier—usually a distance based, i.e., nearest neighbour or polynomial clas-
sifier, or a statistical classifier, such as a Bayes classifier (Kroschel et al. 2011). Due
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to the great success of SVMs in speech analysis for emotion recognition and Compu-
tational Paralinguistics (Schuller and Batliner 2013), this distance based polynomial
classifier is the favoured classifier for static classification in this thesis.

SVMs—originally introduced by Cortes and Vapnik (1995)—are probably the
most frequently used classifier for paralinguistic speech and music analysis tasks
(Schuller 2013; Schuller and Batliner 2013) at present. This fact can be attributed to
a handful of convenient properties—mainly their ability to handle high dimensional
feature spaces (e.g., the baseline acoustic feature sets created for this thesis—cf.
Chap. 3), noisy and sparse features (e.g., features which are almost always zero, such
as frequently encountered in vector space modelling of linguistic features, cf. Schuller
and Batliner 2013), and the robustness of their training algorithms to over-fitting.
These properties have been discussed and pointed out by Joachims (1998) in the
context of classification of texts with linguistic features, and they have subsequently
been exploited for acoustic classification, too. Another advantage is that SVMs can
be easily extended to continuous class labels (regression tasks) by Support Vector
Regression (SVR) as introduced by Cortes and Vapnik (1995). In order to avoid
repetition of material, which has been already described many times elsewhere, only
a very coarse summary of the concept of linear SVM (as used in this thesis) is given
at this point. For more details the reader is referred to the excellent summary of
SVMs and SVR by Schuller and Batliner (2013) and the original paper by Cortes
and Vapnik (1995).

The core idea of SVM is built around the concept of binary linear classifiers
and is optimised towards providing the best possible separation between classes in
the given feature space—which is the core difference to other classifiers with linear
decision boundaries, such as the nearest neighbour classifiers. When training a SVM
a hyperplane which separates the two classes in the feature space is constructed.
In order to improve generalisation and limit over-fitting, a margin between the two
classes which should be free of feature vectors is enforced and maximised during
the construction of the hyperplane (Cortes and Vapnik 1995). Thereby a trade-off
between margin maximisation and data points which then fall into the margin region
must be found.

This optimisation criterion leads to a description of the hyperplane based on so
called ‘support vectors’ which lie in between the centres of gravity of the classes
and define the decision boundary (the hyperplane including a margin between the
classes). The concept of the hyperplane and maximum margin is illustrated in Fig. 2.9.

The support vectors are chosen by solving a quadratic optimisation problem, for
which efficient algorithms are available (cf. Cortes and Vapnik 1995; Platt 1998).
As a result, the classification is based on a small subset of the training set of data
points, effectively reducing the risk of over-fitting and improving generalisation
performance. In order to solve non-linear decision tasks, i.e., tasks where the two
classes cannot be separated by a linear decision border (hyperplane) in the feature
space, the ‘kernel trick’ (Scholkopf and Smola 2002) is applied to map the non-
linear problem into a higher dimensional space where it can be solved linearly in
order to retain the low complexity of the (linear) support vector principle. For the
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Fig. 2.9 Example of an A
(optimal) hyper plane H; X2
(solid line) with maximum

margin (1) and a
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“x” and “0” represent
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two classes, respectively

(Schuller and Batliner 2013)
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mathematics behind the training algorithms of support vector machines and support
vector regression the summary by Schuller and Batliner (2013) can be consulted.

The SVMs as described so far are capable of discriminating between two classes
only. For multi-class problems extensions must be built on top of the binary SVM.
This could be, e.g., by building SVMs for each pair of classes, summing up the
‘votes’ for each class during recognition and then choosing the class with the most
votes as winner, or by forming a binary decision tree (cf. Schuller and Batliner 2013)
with each binary decision being performed by a SVM classification.

For linear kernel SVM, the hyperplane can be expressed in a compact representa-
tion by its normal vector. This makes linear kernel SVM highly suitable for real-time,
on-line recognition tasks, as the decision function for an unknown instance can be
computed as the scalar product of the normal vector and the feature vector of the
unknown instance.

2.5.2 Dynamic Modelling

Dynamic modelling involves modelling of signal dynamics and context. In contrast
to static modelling, where a single vector is mapped to a class or regression label, in
dynamic modelling a sequence of feature vectors is mapped to a label or a sequence
of labels. The modelling framework must be capable of modelling not only the asso-
ciations of feature vectors to labels or label probabilities but also the dependencies
between the labels in relation to the inputs (feature vectors) and the labels.
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The most well known dynamic modelling technique in the field of ASR is HMMs
(Rabiner and Juang 1986; Rabiner 1989). There, a statistical framework models the
transitions between frames, while a probabilistic classifier models the data for each
feature vector. For the latter, most commonly Gaussian Mixture Models (GMMs) are
used. However, any classifier which is capable of returning an observation probability
for a given feature vector could be used. Common examples are Neural Networks
(NNs) (Stadermann and Rigoll 2006) and SVMs (Stadermann and Rigoll 2004). As
HMMs are not a core topic of this thesis, the author refers to Rabiner (1989), Young
et al. (2006), and Schuller and Batliner (2013) for more details on the concepts of
HMMs for speech and music analysis.

An alternative dynamic modelling approach is based on neural networks. A stan-
dard Feed-Forward Neural Network (FFNN) can be extended to have access to data
from previous timesteps. This extension is called Recurrent Neural Network (RNN)
and will be described in the following section.

2.5.2.1 Recurrent Neural Networks

A standard FFNN is given by one or more hidden layers of sigmoid units. Each
sigmoid unit (also referred to as neuron) consists of a weighted summation of inputs
followed by a nonlinearity (Fig. 2.10, left). The output y of a sigmoid unit is described
by the following equation:

N-1
y=g(b+y~z)=g(b+2w,-x,-), (2.327)
i=0
where N is the dimensionality of the input vector x and the weight vector w (both
dimensions must match), and w; and x; are the ith elements of these vectors.
The function g(.) can be any non-linear differentiable function in theory. Practi-
cally, however, the sigmoid function is used most often (Schuller 2013):

Gsigmoid (X) = (2.328)

1 +e’
in its special case where o = 1, which is known as the logistic function (Verhulst
1945). Alternatively, the hyperbolic tangent function tanh (Rade et al. 2000):

—2x

—e

1
Granh ()C) = (2329)

1+e 2’
is used.

The purpose of the non-linearity is to (a) limit, i.e., compress, the output values
and ensure stable outputs for a wide range of inputs, and—most important—(b) to
enable the network to approximate any arbitrary non-linear function. For more details
on the fundamentals of FFNNSs, such as the training algorithms, the reader is referred
to Bishop (1995).
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Fig.2.10 Sigmoid neuron in a feedforward neural network (l/eft) and sigmoid neuron in a recurrent
neural network (right). Input vector x, previous output (from all cells in the current layer) in vector
Yy,_,»output activation y (scalar), constant bias b, and non-linearity g(.)

FFNNs with the standard sigmoid units have no memory, i.e., they have no knowl-
edge of other inputs than those of the current timestep. A logical extension is to make
the network recurrent, i.e., add a feedback from the output to the input with a delay
of one timestep. Such networks are known as RNNs. In a RNN typically the outputs
of all neurons of a recurrent hidden layer are connected back to the inputs of each of
the neurons in that layer through a recurrent connection which has a time delay of
one timestep. A single recurrent sigmoid unit is shown in Fig. 2.10 (right).

2.5.2.2 Long Short-Term Memory Recurrent Neural Networks

RNNss as introduced in the previous section, however, suffer from the Vanishing Gra-
dient Problem (Hochreiter et al. 2001). This means that the activations and the back-
propagated error on the recurrent connections (with weights ranging from 0...1)
decay exponentially. This severely limits the amount of temporal context which is
accessible to the networks effectively to approximately 10 frames. To overcome this
problem, LSTM-RNNs have been proposed originally by Hochreiter and Schmidhu-
ber (1997) and extended to the version used in this thesis by Graves and Schmidhuber
(2005). The main difference between the original version and the version used here
(and by Graves and Schmidhuber 2005) is the use of peep-hole connections (and
according weights) from the internal cell memory state ¢, to the input, output, and
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II-I 'xt bc

Fig. 2.11 Long Short-Term Memory block, with one LSTM cell and the input (i), output (o) and
forget (f) gates. The block state is shown at timestep ¢. Input data vector (x), connection weights
wgp (multiplicative), bias values b, block output y. Vectors are indicated by underlined bold face
font, all other variables are scalars. The vector containing all cell outputs y; of the current hidden
layer at timestep ¢ is denoted as Y. T denotes a time delay unit of one timestep/frame. X in a circle
denotes a multiplicative unit. ¥ denotes a summation unit. (), g(), and 4() are non-linear activation
functions (squashing functions)

forget gate summation units (cf. w,, . in Fig.2.11). Compared to a conventional RNN,
the sigmoid summation units in the hidden layers are replaced by so-called Long
Short-Term Memory (LSTM) blocks. LSTM blocks can theoretically store informa-
tion in the cell variable ¢; for an infinite amount of time due to the Constant Error
Carousel (CEC) in which the previous cell state ¢, is connected to the current state
via a recurrent connection with a constant weight of 1 (excluding the multiplicative
influence of the forget gate)—see Fig.2.11. In this way, the network can dynamically
exploit long-range temporal context present in the input data. In practice this ability
has successfully been demonstrated on many speech and music analysis tasks, e.g.,
Wollmer et al. (2008, 2010, 2013), Eyben et al. (2009b, 2010b), Bock and Schedl
(2012), and Weninger et al. (2014).

Each LSTM block consists of a memory cell and three multiplicative gates: the
input gate, the output gate, and the forget gate, as shown in Fig.2.11. These gates
control the access to the block’s internal memory cell ¢;. According to Fig.2.11, the
input, output and forget gate activation values i, o, and f; are computed, respec-
tively, as:
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i =fwx, +wyy |+ wpici—1 + by, (2.330)
=W, + W,y |+ Wpol: + bo), (2.331)
Ji =f (WX, +wyy + wyrcr—1 + by), (2.332)

where w, and w, are weight vectors (row vectors) matching the dimensionality of
xory, respectlvely x, is the input vector at timestep ¢, Y, 1s the vector of hidden
layer activations (outputs of all N cells in the hidden layer) at the previous timestep,
and b; , s denotes the respective input, output, or forget gate bias value for the cell.
The forget gate controls the decay of the stored input ¢,. If f; = 0, the previous cell
state ¢, is fully erased. The input and output gates are responsible for dynamically
weighting the cell input and output, respectively. The cell state ¢, at timestep ¢ is
expressed as:
=fier1 +ig(w, X, + .y +be). (2.333)

and the cell output is given as:
¥, = oh(cy). (2.334)

The activation functions f (for the gates), g (for the input), and & (for the output)
are non-linear squashing functions like those in normal sigmoid neurons. Common
choices are the logistic function or the tanh function (Sect.2.5.2.1). Recently, also
Rectified Linear Units (ReLUs) have been proposed for standard (deep) NNs and
for LSTM (Krizhevsky et al. 2012; Pham et al. 2013). While they give performance
gains for (deep) NNs (Krizhevsky et al. 2012; Dahl et al. 2013), this was not reported
for LSTM (Pham et al. 2013). Thus, the standard configuration as used by Graves
and Schmidhuber (2005), for example, and most other related work® which uses
LSTM and/or Bidirectional Long Short-Term Memory (BLSTM), is applied for this
thesis: tanh activation functions for the cell input and output (functions g and /) and
logistic activation functions for the gates (functions f).

In a LSTM-RNN a LSTM hidden layer consists of N LSTM blocks (Fig.2.11)
which are fully connected to all inputs and recurrently to all outputs of this layer as
shown in Fig.2.12.

In addition to LSTM-RNN, Bidirectional Long Short-Term Memory Recurrent
Neural Networks (BLSTM-RNNG5) (Schuster and Paliwal 1997) are employed in this
thesis. A bidirectional recurrent network can access context from both past and future
inputs, which makes it very suitable for processing data with de-synchronised inputs
and outputs, or where the outputs (targets) have been centred at the middle (time-
wise) of an input event. The bidirectional context is made possible by processing
the data in both directions with two separate hidden layers, one processing the data
sequence forward, the other backward. The output activations from both hidden layers
are then fed to the same output layer, where they are fused. The combination of the

83, g, as is also implemented in the CURRENNT toolkit (http://sourceforge.net/projects/currennt)
and the RNNLIB (http://sourceforge.net/projects/rnnl/).


http://sourceforge.net/projects/currennt
http://sourceforge.net/projects/rnnl/

114 2 Acoustic Features and Modelling

output
(to next layer)

input
(from previous layer)

Fig. 2.12 Long Short-Term Memory hidden layer with N LSTM blocks, showing the fully con-
nected recurrent connections of the outputs y

concept of bidirectional RNNs and LSTM blocks leads to BLSTM-RNNs (Graves
and Schmidhuber 2005; Graves 2008).

LSTM-RNNs and BLSTM-RNNS as well as standard RNNs can be trained with a
gradient descent method where the weights are iteratively updated, known from the
backpropagation algorithm for FFNNs and extended to Backpropagation Through
Time (BPTT) by Werbos (1990) for recurrent networks. A variation of the back-
propagation algorithm is Resilient Propagation (rProp) introduced by Riedmiller
and Braun (1993). There, only the sign of the error gradient is backpropagated and
used for weight updates instead of the absolute value of the error weighted by the
learn rate. Resilient propagation produces more stable convergence (e.g., Eyben et al.
2010c) and thus can outperform standard backpropagation, especially with respect
to the number of training epochs required.

A more detailed summary of BLSTM-RNNS and the training algorithms is found
in Schuller (2013) and an extensive discussion is found in the PhD thesis of Graves
(2008).
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