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Abstract This paper presents the recent advances of the theory of anticipatory
networks and its applications in future-oriented decision-making. Anticipatory
networks generalize earlier models of consequence anticipation in multicriteria
decision problem solving. This theory is based on the assumption that the decision
maker takes into account the anticipated outcomes of future decision problems
linked in a prescribed manner by the causal relations with the present problem.
Thus arises a multigraph of decision problems linked causally (the first relation) and
representing one or more additional anticipation relations. Such multigraphs will be
termed anticipatory networks. We will also present the notion of a superanticipatory
system, which is an anticipatory system that contains a future model of at least one
anticipatory system besides itself. It will be shown that non-trivial anticipatory
networks are superanticipatory systems. Finally, we will discuss several real-life
applications of anticipatory networks, including an application to establish efficient
collaboration of human and robot teams.
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1 Introduction

This paper presents the theory of anticipatory networks, which generalizes the ideas
related to anticipatory models of consequences in multicriteria optimization prob-
lems presented in [12, 13, 18]. It is assumed that when making a decision, the
decision maker takes into account the anticipated outcomes of each future decision
problem linked by the causal relations with the present problem. In a network of
linked decision problems the causal relations are defined between time-ordered
nodes. The future scenarios of the causal consequences of each decision are
modelled by multiple edges starting from an appropriate node. The network is
supplemented by one or more relations of anticipation, or anticipatory feedback,
which describes a situation where decision makers take into account the anticipated
results of some future optimization problems while making their choice. They then
use the causal dependences of future constraints and preferences on the choice just
made to influence future outcomes in such a way that they fulfill the conditions
contained in the definition of the anticipatory feedback relations.

Both types of relations as well as forecasts and scenarios regarding the future
model parameters form an information model called an anticipatory network [18].
In Sect. 2 we will show the basic properties of anticipatory networks as well as a
method for computing them.

Following [12] and [18], in Sect. 3 we will present an application of anticipatory
networks to select compromise solutions to multicriteria planning problems with the
additional preferences provided in the form of anticipatory trees and general net-
works. We propose a more general notion of preference structure as compared to [16]
and [18] that allows us to separate the preferences included in the anticipatory net-
work from those used in present-time decision making. The study of properties of the
anticipatory networks led us to introduce the notion of superanticipatory systems in
Sect. 4. By definition, an anticipatory system in the Rosen sense [11] makes its
decisions based on a future model of itself and of the outer environment. A super-
anticipatory system S is a system that is anticipatory and contains a future model of at
least one other anticipatory system whose outcomes may influence the current
decisions of S by a so called anticipatory feedback relation. This notion is idempotent,
i.e. the inclusion of other superanticipatory systems into the model of the future does
not yield an extended class of systems, but we can classify them according to a grade
that counts the number of nested anticipations. We will observe that most anticipatory
networks can be regarded as superanticipatory systems if we assume that future
decisions can be based on similar anticipatory principles as the present decision. The
class of superanticipatory systems has been introduced in [17] and [15].

The above mentioned theory arose from the need to create an alternative
approach to selecting solutions to multicriteria optimization problems, where the
estimation of an unknown utility function is replaced by a direct multi-stage model
of future consequences of the decision made [12]. The anticipatory behavior of
decision makers corresponds to the above definition of anticipatory systems pro-
posed by Rosen [11] and developed further by other researchers [3, 8, 10].
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A bibliographic survey of these ideas can be found in [8]. The ability to create a
model of the future (of the outer environment and of itself), which characterizes an
anticipatory system, is also the prerequisite for an anticipatory network, where
nodes model anticipatory systems that can influence each other according to causal
order. In this paper, anticipatory networks are restricted to model decisions made in
so-called networks of optimizers, where each node models an optimization problem
[18]. Similarly to anticipatory networks of optimizers, one can construct networks
with nodes modelling Nash equilibria, set choice problems, rankings, random or
irrational decision makers, or hybrid networks containing nodes of all types [16]. It
should be pointed out that most anticipatory networks, and all those considered in
this paper, are model-based, so that their nodes correspond to weak anticipatory
systems in the Dubois sense [3].

The networks of anticipatory agents can be constructed by applying future
decision problem forecasts and scenarios of anticipated consequences. The latter
can be provided by foresight projects. In the final Sect. 5 we will discuss further
extensions and applications of anticipatory networks that may be useful e.g. to build
holistic future models or to establish efficient collaboration of heterogeneous teams
consisting of robots and humans.

2 Anticipatory Networks as Generic Causal Models

The idea behind introducing anticipatory networks as models of consequences was
formulated in [12, 18]. The basic principle is to use forecasts and foresight sce-
narios to estimate the parameters of future decision-making agents and to build a
network of them. The anticipated future consequences of a decision made are
modelled as changes in constraints and/or preference structures of future decision
problems. The nature of these changes is assumed known to the present-time
decision maker(s). It may result from model-based forecasts or foresight as well.
Then, the anticipated outcomes of future decision-making problems that—of course
—depend on constraints and preference structures, serve as a source of additional
information that can be used to solve the current problem. In addition, future
decision-making agents may use the same principle to make their decisions and this
must be taken into account at the preceding decision stages.

Constructive algorithms for computing the solutions to the current multicriteria
decision making problem taking into account the above anticipatory preference
information feedback may be applied if we know that:

e All agents whose decisions are modelled in the network are rational, i.e. they
make their decisions complying with their preference structures.

e An agent can assess whether the outcomes of some or all future decision
problems causally dependent on the present one are more or less desired. This
dependence is described as relations (usually multifunctions) between the



20 A.M.J. Skulimowski

decisions to be made now and the constraints and/or preference structures of
future problems.

e The above assessments are transformed into decision rules for the current
solution choice problem, which affect the outcomes of future problems in such a
way that they comply with the agent’s assessments. The decision rules so
derived form an additional preference structure for the decision problem just
considered.

e There exists a relevance hierarchy in the network; usually the more distant in the
future an agent is, the less relevant the choice of solution. However, this rule is
not a paradigm.

Anticipatory networks which contain only decision-making agents solving
optimization problems are termed optimizer networks. According to [18], an opti-
mizer O is a multivalued function that assigns to a set of feasible decisions U and to
the preference structure P a subset of the set of optimal decisions O(U, P) C U that
is selected according to P and to a fixed set of optimization criteria F' with values in
an ordered space E. Throughout this paper we will assume that the optimization
problems solved by the optimizers have the form

(F:U - E) - min(0), (1)
where E is a vector space with a partial order <, defined by a convex cone 6, i.e. iff
x<gyey-—xebforeachx,yeE.

The solution to (1) is the set of nondominated points defined as
H(U,F,0): ={ueU: WeU: F(v)<gF(u)=>v=ul}.

Thus the criteria F and the ordering cone @ characterize a given optimizer
uniquely. Most frequently, the decision maker’s aim is to select and apply just one
nondominated solution to (1). Thus the role of the preference structure P that occurs
in the definition of an optimizer is to restrict the set of nondominated points in the
solution process. Without a loss of generality we can assume that P is defined
explicitly by pointing out for each u € U which elements of U dominate u. These
are termed dominating sets and form a domination structure [2] which models the
way the decision maker takes into account additional information about preferences
when making the decision. Therefore P can be defined as a family of subsets of U in
the following way

P: ={zn(u) CU: uen(u) and [if ve n(u) and w € n(v) thenw € x(u)]}, c 1>

i.e. for each u € U n(u) is the set of elements preferred to u.

As in the case of orders defined by convex cones, the element u € U is non-
dominated with respect to P iff z(u) N U = {u}, which means that no other element
of U is preferred to u. The set of nondominated points with respect to P will be
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denoted by I1(U, F, P). If F and P are fixed or if F is an identity on U we will write
just ITI(U).

In a common case, where the preference structure P is defined by a convex
cone (,

n(u): =a(u,§)={veU: F(v)< F(u)} 2)

and I1(U, F, P) = [I(U, F, {). Conversely, in problem (1) I1(U, F, 6) = [I(U, F, Py)
with Py defined by (2). Now we can formulate the following:

Definition 1 The mapping O(U, F, 0, P), a multifunction of U, 0, P, as well as of
F with values in the family of all subsets of U is termed a free multicriteria
optimizer if for all U, F, 6, P O(U, F, 6, P) C II(U, F, ) and the following
implication holds

(U, F,0) nI1(U,F,P)#@=[0(U,F,0,P)+@AO(U,F,0,P) CII(U,F,0) n [I(U, F, P)].

If the latter condition is satisfied, but the Pareto optimality of O(U, F, 6, P) with
respect to the problem (1) cannot be taken for granted, however either O(U, F, 0,
P)c (U, F,0) or O, F, 0, P) C II(U, F, P) then O will be termed simply a free
optimizer.

If, beyond the criteria F, the ordering 6, and the preference structure P, an
optimizer O takes into account an additional decision making rule R, such as a
heuristics, numerical approximation, or a random choice rule from U then the set of
solutions returned by this optimizer need not be contained in I1(U, F, 8). However,
if X := O(U, F, 0, P) approximates in certain sense II(U, F, 0), e.g. in terms of the
Hausdorff distance, then O will be termed an approximate multicriteria optimizer.
Since in most real-life optimization problems only approximate solutions are
available, for the sake of brevity, whenever no ambiguity arises, approximate
multicriteria optimizers will be referred to as multicriteria optimizers.

Observe that in a free multicriteria optimizer O with P := P, where { C E'is a

convex cone, from the basic properties of domination structures it follows that for
alld c ¢,

O(U,F,0,P)c{ucU: [WeU: Fv)<gFu)=>v=ul}n{ueU: WeU: F(v)<;F(u)=>v=u|}
=1(U,F.0).

In the above case the preference structure represented by the cone { may result
from an iterative process of gradually restricting the set of nondominated points to
(1). This technique is referred to as the contracting cone method [4] since the dual
cones to an increasing sequence of ordering cones © C {; C {, ... C  contract as do
the sets I1(U, F, 0), [I(U, F, {,), ..., II(U, F, {). Here, we refer to this methodology
to show its similarity to the anticipatory network technique described in the
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Anticipatory Decision-Making Problem (ADMP, cf. Sect. 3). Indeed, it can be seen
[18] that the more anticipatory feedbacks taken into account in an anticipatory
network with the starting node, the more opportunities exist to confine the choice in
problem (1) to a smaller subset of the set II(U, F, 0, P). If for all u, v € U

F(v)<oF(u)=>ven(u)

then we will say that P conforms to the criteria F and order 6; in short P is con-
forming. Observe that this is the case if P := P, and @ C . If P is conforming then to
select an X C II(U, F, 6) the action of the optimizer can be stretched on the whole
set U, without computing 71(U, F, 0), otherwise it must be restricted to I1(U, F, 0)
yielding a bi-level optimization problem. Let us note that the computation or even
an approximation of 7I(U, F, 6) can be a hard task, so the conforming P are sought
in the first order of importance when solving (1).

If in a free multicriteria optimizer we fix the preference structure P and the
ordering cone @ then the resulting mapping Opy will be termed a multicriteria
selection rule if for all U, and a given class @ of E-valued functions for each F € @
it selects a non-empty subset of the nondominated subset [I(U, F, 6) of U with
respect to 6, i.e. if

Opo(U,F): =N(U,F,0,P)CH(U,F,0): ={ucU: WeU: Fv)<gF(u)=>v=u]} (3)

It is easy to see that if P is conforming then Opy is a multicriteria selection rule.
A multicriteria selection rule is termed proper iff II(U, F, 0, P) contains a single
point. For instance, if P is defined by (2) and z(u) := {v € U: vIx < 0} for a certain
x € 0%* where 6* is the dual cone to a convex, pointed 6 (i.e. such that
0 n (—6) = {0}) with int(0) # , and @ is such that F(U) is closed, bounded and
strictly convex then for all U and F II(U, F, 6, P) = {uy} and uy € I[I(U, F, ). Thus
the selection rule Opy is proper.

As already mentioned, besides their optimizing capabilities, optimizers may
form networks with several new properties compared to the theory of single
or sequential decision problems. In particular, in feed-forward networks of opti-
mizers constraints and preference structures in some optimizers are causally linked
to the solutions of other problems and may depend on their preference structures.
Thus, in a network of optimizers, the parameters of the actual instances of opti-
mization problems to be solved vary as the results of solving other problems in the
network.

Definition 2 If O, := X (U, Fy, 04, P;) and O, := X,(U,, F,, 6,, P,) are free
multicriteria optimizers then a constraint influence relation r between O; and O, is
defined as

017 02 & 3p: X; = 2% Xp =p(X)). (4)
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Acyclic r are termed causal constraint influence relations—in short, causal
relations.

Causal relations are represented by a (causal) network of optimizers. Defini-
tion 2 models the situation where the decision maker anticipating a decision output
at a future optimizer can react by creating certain decision alternatives or forbidding
them. This is described by influencing the constraints by multifunctions ¢
depending on the outputs from the preceding problems. As in [18] and [16], from
this point on the term causal network will refer to the graph of a causal constraint
influence relation. To complete the definition of anticipatory networks, we will
define the anticipatory feedback relation.

Definition 3 Suppose that G is a causal network consisting of free optimizers and
that an optimizer O; in G precedes another optimizer, O;, in the causal order r. Then
the anticipatory feedback between O; and O; in G is information concerning the
model-based anticipated output from O;, which serves as an input influencing the
choice of decision at optimizer O;. Such a relation will be denoted by f; ;.

By the above definition, the existence of an anticipatory information feedback
between the optimizers O,, and O,, means that both condition below apply:

e the decision maker at O,, is able to anticipate the decisions to be made at O,,
e the results of this anticipation are to be taken into account when selecting the
decision at O,,,.

The anticipatory feedback relation does not need to be transitive. As in the case
of causal relations, there may also exist multiple types of anticipatory information
feedback in a network, each related to the different way the anticipated future
optimization results are considered at optimizer O,,. The multigraph of r (cf. (4))
and one or more anticipatory feedbacks define an anticipatory network of
optimizers:

Definition 4 A causal network of optimizers £2 with the starting node O, and at
least one anticipatory feedback relation linking Oy or an optimizer O, causally
dependent on Oy with another node in the network will be termed an anticipatory
network (of optimizers). 2 is termed proper iff n=0.

In [18], the anticipatory information feedback in causal networks of optimizers
was applied to selecting a solution to an optimization problem modelled by the
starting element in an anticipatory optimizer network G. Specifically, while making
the decision, the decision maker takes into account the following information
contained in G:

e forecasts concerning the parameters of future decision problems represented by
the decision sets U, criteria F, and the ordering structure of the criteria values 6,

e the anticipation concerning the behavior of future decision makers acting at
optimizers, represented by the preference structures P,
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o the forecasted causal dependence relations r linking the parameters of optimizers
in the network,

e the anticipatory relations pointing out which future outcomes are relevant when
making decisions at specified nodes and the anticipatory feedback conditions.

We will now present a few key definitions that refer to solving multicriteria
decision problems using an anticipatory network of optimizers as a source of
additional preference information.

Definition 5 An anticipatory network (of optimizers) is said to be solvable if the
process of considering all anticipatory information feedbacks results in selecting a
non-empty solution set at the starting problem.

Definition 6 A causal graph of optimizers G that can be embedded in a straight line
will be called a chain of optimizers. If it contains at least one anticipatory feedback
fio then G will be termed an anticipatory chain (of optimizers)

The causal constraint influence relations ¢(j) (cf. Definition 2) are defined as
¢(j) := Y;° F;, where the multifunctions Y;:F(U;) —»— U; model the dependence of
the scope of decisions available at O; on the optimization outcomes of the problem
O;. Following [12], the total restriction of the decision scope at O; generated by Y is
denoted by R;, i.e.

The resulting restriction of the set of nondominated outcomes at O; is denoted by
S;. In an anticipatory chain, as exemplified in Fig. 1, there is only one predecessor
of each optimizer O;, for i > 0, so in the above formula i can be replaced by j — 1.
By definition, the causal relation represented by ¢; ; is non restrictive iff S; = II(U,,
F;, 0,). We will say that ¢, ; complies with O; ift S; C II(U;, F;, 6;).

> 2| % | O
~ . — L

Fig. 1 Two examples of a chain of optimizers with anticipatory feedbacks: in figure a the
anticipatory feedbacks linking O, with Oy, and with further future optimizers have no influence
on the decisions made at the starting node O,. They are taking into account exclusively the
decisions made at Oy, while the latter do not rely on any future considerations. The figure b depicts
a case of anticipatively connected chain of optimizers. The temporal order complies in both cases
with the causal relations defined by multifunctions ¢(j) := Y;° F;_,
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Example 1 Figure 1 presents two examples of anticipatory chains of optimizers
with different configurations of anticipatory feedbacks. In the case (a) above
there are, in fact, two separate decision making problems, where a decision made at
the optimizer Oy = (U, Fy, IR'J',(O)) is selected taking into account the anticipated
outcomes at O, = (U;, Fy, IR") and Oy = (Uy, Fy, IR™™) takes into account the
outcomes of Oy, and other future optimizers, but the decision made at O is in no
way related to the decisions made at the future decision nodes beyond O,. Although
O, influences future choices at O,, Os, ..., Oy, this optimizer does not select its
decision in any way that may facilitate or hinder the achievement of any specific
future goal. The solution of the problem O, = (U, F1, IR™™) is accomplished based
on the local preference relation P; only. Thus the analysis of decisions in the
anticipatory chain (a) may be decomposed into the analysis of the chains Oy — O,
and O, — Oy, — --. The case (b) presents an anticipatory chain equivalent to the
decision situation considered in [12, 13], where the decision made at O, takes into
account the outcomes of all subsequent problems, but there are no decision feed-
backs between future optimizers.

Although the anticipatory chains constitute the simplest class of anticipatory
networks, they are capable of describing a variety of sequential decision problems.
A more advanced model is needed when an optimizer O, influences two or more its
immediate successors, say Oy; and O,,, and the decision maker of O, or of any of
its predecessors, is interested in the decision outcomes of both, O;; and Oy, or in
the outcomes of two arbitrary optimizers that one following in the causal order Oy;,
the other Oy;. If no optimizer is influenced by more than one immediate predecessor
then the causal graph is a tree and we can formulate the following definition.

Definition 7 A causal graph of optimizers G that is a tree and contains at least two
anticipatory feedbacks f;o and f;, each of them starting at optimizers that are not
mutually causally conected, will be termed a proper anticipatory tree (of optimizers).

As a consequence, any anticipatory tree contains at least one optimizer that
influences two or more its immediate successors. Such nodes in an anticipatory tree
are termed bifurcation optimizers.

Along with chains, anticipatory trees are another special class of anticipatory
networks that may be solved with dedicated algorithms. These are based on the
decomposition of a tree into chains and on a subsequent analysis of them, starting
from chains having a common bifurcation optimizer that is most distant in time
[18]. Let us observe that if all anticipatory feedbacks in a tree were situated on one
of its chains then the analysis of this tree could be reduced to just one chain.
Anticipatory trees that possess this property are not proper.

Besides of bifurcation optimizers, the anticipatory trees contain a new phe-
nomenon related to the anticipatory component of the multigraph, namely the
spurious anticipatory feedbacks. These appear when the decision maker at an
optimizer O, would like to take into account the future outcomes of an optimizer
0,,, but Oy and O,, are not causally connected, so there is no way to influence O,, to
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Fig. 2 An example of a tree of optimizers, with three bifurcation optimizers Oy, O; and Og.
Causal relations are defined by the multifunctions ¢;; := Y;° F;_;. Eight anticipatory feedback
relations are denoted by f ., where k is an index of a future node with the outcome taken into
account by the optimizer O,,. There is also one spurious anticipatory feedback f; 1o

force or suggest a decision choice satisfying the condition defined in an anticipatory
feedback.

An example of a tree of optimizers that contains a spurious anticipatory feed-
backs is shown in Fig. 2.

3 Decision Making Problems in General Anticipatory
Networks

In a non-trivial anticipatory network the following problem can be formulated:
Anticipatory Decision-Making Problem (ADMP, [17, 18]). For all chains of

optimizers in an anticipatory network G with finite decision sets find the set of all

admissible sequences of decisions (u, ..., u,) that minimize the function

8o, .o tn): = X 50y Mui q(0, 1) )wo,; (5)

and such that for all i, 1 < i < n, the truncated decision chain (u;, ..., u,,) minimizes
gluis - un): = X i h(wi, q(i, ) wi, (6)

where J(i),i =0, 1, ..., n, denote the sets indices of decision units in G, which are in
the anticipatory feedback relations with O; and w;; are positive coefficients corre-
sponding to the relevance of each anticipatory feedback relation between the
optimizers O; and O;. The function & may be defined as
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; (7)

where ¢(i, j) are user-defined reference levels of criteria F;, for i=0,1,...,n.

From the formulation of the above decision-making problem it follows that the
decision maker at Oy, while selecting the first element of an admissible decision
sequence iy € U uses the anticipatory network G and the function g as an auxiliary
preference structure to solve the problem (1). The key notion for the theory of
anticipatory decision making can now be defined as follows:

h(wq(i.)): = ||Fi(w) —q(i.j)

Definition 8 A solution to the ADMP, a family of decision sequences ug (), ---
Un,mvy Minimizing (5)—(7), will be called anticipatory paths.

Constructive solution algorithms for solving the ADMP take into account the
information contained in an anticipatory network G. These have been proposed in
[18] (Algorithms 1 and 2) for a class of anticipatory networks with discrete decision
sets U;, when the graph of causal relation r is either a chain or a tree. The antici-
patory feedback conditions have been defined there as a requirement of O; that the
decisions at O, for j from a certain index set J(i) such as O; precedes O; in causal
order r are selected from the subsets {V;;} ;). Vij C U;. Usually, this means that the
values of criteria F; admitted on Vj; are of special importance to the decision makers
and can be defined as reference sets [14]. The general principles behind these
algorithms are as follows:

e Decompose the anticipatory network into causal chains of optimizers linked by
causal relations.

o Identify elementary cycles in each chain in the anticipatory network, i.e. cycles
which do not contain other such cycles except themselves, consisting of causal
relations along chains and anticipatory feedback relations.

Solve the decision problem for each chain, by eliminating the elementary cycles.
Use the logical conditions that defined the anticipatory requirements to bind the
solution sequences to the common parts of the anticipatory chains.

Thus it is possible to reduce the analysis of anticipatory trees to a recursive
analysis of anticipatory chains in the tree. Moreover, a general network can be
decomposed into trees or chains, which makes it possible to apply solution rules for
chains iteratively, gradually eliminating solved trees and chains. However, the
solution procedures for anticipatory trees cannot be directly adopted for the solution
of the problems where there may exist units that are influenced causally by two or
more predecessors without taking into account synchronization problems.

Such networks can model problems where multiple resources, provided as
outcomes of a number of different and independent decision processes, determine
the scope of a later-stage decision. For example, to optimize the decisions in a
potential future joint venture created to develop a new product (so-called NPD
problem), the outputs provided by the potential future partners of this joint venture
should be considered. It can be shown that taking into account the possibility of
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Fig. 3 A causal network of seven optimizers, where Oy, O, and O; are bifurcation optimizers,
while O4, Os, and Og are each influenced by two predecessors. The shadowed areas between 4
and 7,” and between #¢' and #,” on the time axis denote the synchronization intervals for the
simultaneous influence of O, and O3 on the outcomes of Oy, and of O, and Os on Og, respectively.
The synchronisation interval for Os, [f5', t5"], is contained in [z4', #,"]. The anticipatory feedback
f5.4 between Os and O, is induced by the information flow from Os to O,

creating future production alliances and representing such relations in an antici-
patory network results in a competitive advantage over agents optimizing their own
future outputs only. An example of a general anticipatory network is shown in
Fig. 3.

To analyze general networked optimizers, it will need to be assumed that if an
optimizer O, is directly influenced by more than one predecessor then the aggre-
gation rules are defined for each subset of influencing factors generated by the
preceding optimizer (e.g. as an intersection or a union of the sets of feasible
alternatives, each one imposed by a different preceding optimizer).

In addition, these rules must take into account the synchronization of influence
that was not necessary in the case of anticipatory trees. Specifically, the simulta-
neous action of predecessors on O, may be restricted to the prescribed time
intervals. This is depicted above in Fig. 3, where ¢ and #,” denote the start and end
of a synchronization time interval for the i-th optimizer.

In the most common situation, where the influence of preceding optimizers
imposes a logical product of individual influences, the synchronization problem
reduces to analysing the time intervals when the intersection of constraints resulting
from multiple influencing multifunctions can still yield a feasible solution. How-
ever, in general, all combinations of logical conditions binding independent influ-
ences should be considered, including the situation where one agent’s influence
results in removing another agent’s constraints. The analysis of such cases requires
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further studies, which, however, can be based on the solution scheme presented
above and in [18].

The emergence of induced anticipatory feedback is a new phenomenon that could
not occur in anticipatory chains of trees. In the example provided in Fig. 3 the
anticipatory feedback fs 4 between Os and O, is induced, but it is not spurious, as e.g.
the spurious feedback fg ;o in Fig. 2, although there is no causal relation between
these optimizers. There are four necessary conditions for the existence of an induced
anticipatory feedback. The first one is precedence in time of the decision made at the
optimizer which is the target of the anticipatory feedback. The second is the exis-
tence of an information exchange between the optimizers that are source and target
of induced anticipatory feedback. The third is the existence of at least one other
optimizer that is influenced directly or indirectly by both, the source and the target
optimizers of the induced anticipatory feedback, and the joint influence is restrictive,
i.e. the influenced optimizer may select the decision from the intersection of sets
provided as values of influencing multifunctions. The fourth condition is most
specific and requires that the sets that define the anticipatory feedbacks at the source
optimizer and commonly influenced optimizers were appropriately configured with
respect to the values of influencing multifunctions. This is exemplified below.

Based on the example presented in Fig. 3, the phenomenon of induced feedback
may be explained as follows: due to the assumed information exchange, the
decision maker responsible for selecting the decision at O, knows both, the mul-
tifunction ¢s ¢ that influences Og and the anticipatory feedback f 5. Similarly, the
decision maker at Os knows the multifunction ¢4 ¢ and the actual choice made by
O,4. Then Oy can select such a decision v € I1(U,) so that Os is forced to select a
decision from the set Vs 4 that defines the anticipatory feedback fs 4 to get a satis-
factory solution of the problem solved by the commonly influenced optimizer O,
specifically an element of Vj s.

Of course, the more decision problems commonly influenced by the same pair of
optimizers in a network, the more likely is the occurrence of induced anticipatory
feedbacks. In addition, more complex configurations of induced feedbacks may
arise if in an anticipatory network the same optimizer is causally influenced by three
of more causally independent predecessors or when the information flow on the
causal influences, anticipatory feedbacks, or preference structures is asymmetric.

The above presented phenomenon of induced anticipatory feedback, its exten-
sions and relations to the topology and other properties of the network is a subject
of an ongoing research that may potentially discover new applications of antici-
patory networks as well as new problems to be investigated.

4 Anticipatory Networks as Superanticipatory Systems

Let us observe that in the above presented approach to solving anticipatory net-
works, we have assumed that anticipation is a universal principle governing the
solution of optimization problems at all stages. In particular, future decision makers
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modelled at the starting decision node Oy can in the same way take into account the
network of their relative future optimizers when making their decisions. Thus, the
future model of the decision maker at Oy contains models of future agents including
their respective future models. This has led us to introduce the notion of super-
anticipatory systems [15, 17] which directly generalize anticipatory systems in the
Rosen sense [11] and weak anticipation in the Dubois sense [3]:

Definition 9 A superanticipatory system is an anticipatory system that contains at
least one non-trivial model of another future anticipatory system.

Since a superanticipatory system is required to contain a model of another
system, the above definition excludes the case where an anticipatory system models
itself recursively. This is discussed later in this section.

By definition, this notion is idempotent, i.e. the inclusion of other superantici-
patory systems in the model of the future of a superanticipatory system does not
yield an extended class of systems since every superanticipatory system is also
anticipatory.

Superanticipatory systems can be classified according to a grade that counts the
number of nested superanticipations.

Definition 10 A superanticipatory system S is of grade n if it contains a model of a
superanticipatory system of grade n — 1. An anticipatory system which does not
contain any model of another anticipatory system is defined as superanticipatory of
grade 0.

Let us note that the actual grade n of a superanticipatory system S depends on the
accuracy of the model of other systems used by S. In addition, when constructing its
model of the environment, S may underestimate the actual content of the other
system models. Then, according to Definition 10, the grade of superanticipation of
S should be regarded as a grade of the model, rather than the actual grade of the
physical system.

It may be conjectured that if a superanticipatory system uses an empirical and
rational modelling approach then it is more likely that the other systems will have
models of a higher grade than S has estimated based on experiments. Thus the grade
of the rational system S, when determined based on the information coming solely
from the same system, can be regarded as the lower bound of an actual grade.
Perfect knowledge of the grade can be attributed to a hypothetical ideal external
observer only.

When referring to an anticipatory network, which is always a result of a certain
modelling compromise, the following statement can be formulated

Theorem 1 Let G = (O, r, f) be an anticipatory network, where O is the (finite)
family of optimizers, r is the causal influence relation, and f is the anticipatory
feedback relation. If G contains an anticipatory chain C such that there exist exactly
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n optimizers in C, {Ocy, ..., Oc,} C C = (04, ..., Oy, 1, f), N > n, with the
following property:

vie{l,....n}Jc(i)#@and (3j#i: OcrOc.; and i € Jc(j)), (8)

where J(i) is the set of indices of optimizers in G, which are in the anticipatory
feedback relation with O;. and no other chain in G has the property (8) with
m > n then G is a superanticipatory system of a grade of at least .

The proof of the above Theorem 1 follows directly from the definitions of
anticipatory networks (Definition 4) and superanticipatory systems (Definitions 9
and 10). Its first version appeared in [17].

It is easy to see that an anticipatory network containing a chain on n optimizers,
each one linked with O, and with all its causal predecessors with an anticipatory
feedback is an example of a superanticipatory system of grade n.

The notion of superanticipation is obviously related to the general recursive
properties of anticipation. By definition, superanticipation makes sense only when
the anticipation of the future is based on a predictive model. Problems to be solved
that arise in a natural way are related to the accuracy of such models and to the
grade of superanticipation. They are also related to the relation between internal
(system) time, when the model is built and analyzed, and external real-life time,
when the modelled objects evolve. A brief discussion of other recursive approaches
related to anticipation such as recursion in Rosen’s theory, Dubois’
meta-anticipation, and information set models in multi-step games is given in [17].

A recursive anticipation can be applied in n-stage games, when one player
anticipates the behavior of the others, cf. e.g. [7]. From the point of view of player
G|, anticipation is defined here for k(G) steps forward and includes the anticipatory
models for the other players G, ..., Gy. Each player can also possess a model of
themselves (G;) and of some or all the remaining participants with an anticipation
horizon of k(G;) moves, i = 2, ..., N. Player G, thus fulfills the definition of a
superanticipatory system and the game can be represented as an evolving antici-
patory network. However, when the future moves of the other players result from a
deterministic algorithm rather than from a decision-making model, anticipation may
be based on the knowledge of the (deterministic) function identified with the
operation of that algorithm. This may happen when a human player plays a
deterministic game with a computer, or when a machine-machine interaction is
modelled. Such games could be modelled by the master-slave (or driver-response)
structure of the coupled system analogous to the leader-follower relation in multi
stage Stackelberg games [5, 9].
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5 Conclusions and a Discussion of Future Research
Directions

The theory of anticipatory systems emerged originally in order to explain behav-
ioral phenomena in systems biology, yet it turned out soon that it may also explain
the collaboration and conflict patterns of human, artificial, as well as hybrid
autonomous systems. Despite the efforts of its founder, Rosen, and Rosen’s suc-
cessors, in original formulation it contained a notion of ‘internal model’ of itself and
other systems’ future that has been regarded as vague and hard to implement
constructively. The hitherto attempts to create a constructive theory of ‘forward
systems’ symmetric to delayed control systems yielded a formal description that
provided a correct computational framework in few cases only. A breakthrough was
possible due to the introduction of the notion of anticipatory feedback that makes
possible to describe the interaction between the models of the future systems and
present-time decision makers, and of extending the anticipatory modelling to nested
systems, whereas future generations of anticipatory systems have the same right as
the present ones to define anticipatory feedbacks. The ability to define an antici-
patory feedback is restricted to the case where the agent linked by an anticipatory
feedback can causally influence the target agent of this feedback.

This paper examined the principle ideas concerning anticipatory networks as a
new tool to model the multicriteria decision problems and the basic methods for
solving them. Their extension, so-called superanticipatory systems, was also pre-
sented. We have also shown some potential further extensions of the theory of
anticipation and presented research-in-progress on these topics.

Anticipatory networks may be applied to model and solve a broad range of
problems. Apart from the above-mentioned potential uses in foresight, roadmap-
ping, and socio-econometric modelling, there are further potential fields of appli-
cation, such as:

e Aanticipatory modelling of sustainable development: the underlying assumption
of the anticipatory network theory, namely that the present decision maker
wants to ensure that future decision makers have the best possible opportunities
to make satisfactory decisions corresponds to the ‘future generation’ paradigm
of sustainability theory. These ‘future generations’ are modelled by other net-
work nodes.

e Anticipatory planning based on results of foresight studies, such as development
trends, scenarios, and relevance rankings of key technologies, strategic goals,
etc. Such planning can use deterministic as well as stochastic planning tech-
niques and include multi-step game models.

e Anticipatory coordination of robotic swarms and human-robot systems, where
anticipation is coped with multi-stage cooperative and leader-follower game
models.
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Anticipatory networks can also contribute to solving the stochastic optimization
problems related to portfolio selection [1], road traffic management [6, 20], and to
implementing the knowledge contained in foresight scenarios in a clear, formal
way. Further real-life applications are discussed in [18] and [19].

Specifically, the development of the theory outlined above has been motivated
by the problem of modelling the process of finding feasible foresight scenarios
based on the identification of future decision-making processes and on anticipating
their outcomes. Such an anticipatory network was applied in a recent information
technology foresight project to build a strategy for a Regional Creativity Support
Center [19]. Scenarios, such as those defined and used in foresight and strategic
planning [4], may depend on the choice of a decision in one of the networked
optimization problems and can be external-event driven. When included in a causal
network of optimizers, the anticipation of future decisions and alternative external
events would allow us to generate alternative structures of optimizers in the
network.

Anticipatory networks, those that contain solely optimizers as well as hybrid
ones [15], extend the plethora of modelling tools that can be used to formulate and
solve decision making problems taking into account new future-dependent pref-
erence structures. When regarded as a class of world models for robotic systems,
anticipatory networks provide a flexible representation of the outer environment,
while superanticipation allows us to model collective decision phenomena in
autonomous robot swarms. Further studies on this class of models may also con-
tribute to the general theory of causality and lead to discovering surprising links to
theoretical biology, quantum physics and the causal fields theory, as well as to the
mirror neuron research in neurosciences. The theory of anticipatory networks links
the ideas of anticipatory systems and models with multicriteria decision making,
game theory, and the algorithmics. The formal methods that will be used to further
develop the anticipatory networks theory include multigraphs and hypergraphs,
dynamic programming in partially ordered spaces, controlled discrete-event sys-
tems, and general causality theory.

The above links and methods will make the research on networked anticipation
truly interdisciplinary and may provide intriguing ties to the hard consciousness
problem in cognitive sciences and the nature of time as qualia in the philosophy of
mind. The relations to the theory of cooperative systems, specifically anticipatory
robots, predictive and anticipatory control, foresight and backcasting, as well as to
other areas of applicable basic research will assure the existence of a variety of
potential real-life applications.

Finally, le us note that the above presented progress in the theory of anticipation
and causality has appeared as a parsimonious effect of a foresight project devoted to
modelling the ICT and Al futures, namely as a methodology to filter out the
irrational technological and economic scenarios and to perform the technological
and strategic planning.
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