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Abstract. Common Knowledge C is a standard tool in epistemic logics.
Generic Common Knowledge J is an alternative which has desirable
logical behavior such as cut-elmination and which can be used in place
of C in the analysis of many games and epistemic senarios. In order
to compare their deductive strengths directly we define the multi-agent
logic S4CJ

n built on a language with both C and J operators in addition
to agents’ Kis so that any finite prefix of modal operators is acceptable.
We prove S4CJ

n is complete, decidable, and that Jϕ → Cϕ though not
Cϕ → Jϕ. Additional epistemic scenarios may be investigated which
take advantage of this dual layer of common knowledge agents.

Keywords: Generic common knowledge · Common knowledge · Epis-
temic logic · Modal logic

1 Introduction

In systems of multiple knowers, or agents, it is natural to consider what informa-
tion is publicly known. The most investigated such concept is that of common
knowledge. Informally, if a sentence or proposition ϕ is common knowledge, Cϕ,
then everyone knows it (Eϕ), and everyone knows everyone knows it (EEϕ),
and everyone knows everyone knows everyone knows it, etc., i.e., iterated knowl-
edge of ϕ, Iϕ. Common knowledge has overwhelmingly been formalized as an
equivalence of Cϕ and Iϕ via a finite set of axioms. In each multi-agent system,
C is unique.

However, there is a more general and eventually simpler conception of com-
mon knowledge, generic common knowledge, J . While Jϕ is sufficient to yield
iterated knowledge, it is not necessarily equivalent to Iϕ. This alternative offers
a broader view of common knowledge as it allows for a choice between mul-
tiple logically non-equivalent common knowledge operators. Moreover, generic
common knowledge which is not the traditional common knowledge naturally
appears in some canonical epistemic scenarios. For example, a public announce-
ment of an atomic fact A creates not common knowledge but rather universal
knowledge (an instance of generic common knowledge) of A since A, a posteriori,
holds at all worlds, not only at all reachable worlds. In the belief revision sit-
uations, such as the well-known Stalnaker-Halpern game, the revision function
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overspills to another reachability cluster of worlds and hence no longer should
obey the common knowledge assumption [4].

The generic common knowledge was introduced by McCarthy in [11] as ‘any
fool knows’ and independently by Artemov in [6] as ‘justified common knowl-
edge’ who later termed it ‘generic common knowledge.’ In [6] it was the implicit
‘forgetful projection’ counterpart to the explicit constructive knowledge LP com-
ponent of S4nLP, a logic in the family of justification logics. J differs from C in
logical behavior: its addition to a system does not hinder straightforward com-
pleteness proofs and as the cut-rule can be eliminated the way is paved for its
Realization to an explicit justification logic counterpart e.g. the realization of
S4J

n in S4nLP [5,6] or in LPn(LP) [2]. These realizations impart a rich semantics:
Jϕ asserts that ϕ is common knowledge arising from a proof of ϕ. In applica-
tions, J can be used in place of C whenever common knowledge is assumed as
a premise, rather than being the desired outcome [3]. The cut-rule for tradi-
tional common knowledge has been investigated in [1] and syntactic elimination
obtained for some systems as in [9].

This paper defines a multi-agent epistemic logic S4CJ
n which expands on the

n-agent logic S4n to encompass two formulations common knowledge C and J .
Completeness for this logic is shown, providing a basis for direct comparison of
the deductive strength of J and C. We shall see that Jϕ → Cϕ though not the
converse.

2 Axiomatization of S4CJ
n

In S4CJ
n we can consider formulas which may contain both C and J as well as

Ki modalities.

Definition 1. The language LS4CJ
n

is an extension of the propositional lan-
guage:

LS4CJ
n

:= {Var ,∧,∨,→,¬,Ki, C, J}

for i ∈ {1, 2, . . . , n} where Var is the set of propositional variables. Formulas are
defined by the grammar

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ | Kiϕ | Cϕ | Jϕ

where p ∈Var.
The formula K1K2ϕ has the intended semantics of ‘agent 1 knows that agent

2 knows ϕ’ while Cϕ and Jϕ have the intended semantics of ‘ϕ is common
knowledge’ and ‘ϕ is generic common knowledge’ respectively.

Definition 2. The axioms and rules of S4CJ
n , for i ∈ {1, 2, . . . , n} where � is

Ki or J or C:
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classical propositional calculus:
A. axioms of classical propositional calculus
R1. modus ponens: � ϕ, ϕ → ψ ⇒ � ψ

S4 axioms for each modality:
K. �(ϕ → ψ) → (�ϕ → �ψ)
T. �ϕ → ϕ
4. �ϕ → ��ϕ

additional knowledge axioms:
Con. Jϕ → Kiϕ
ConC. Cϕ → Kiϕ

IA. ϕ ∧ C(ϕ → Eϕ) → Cϕ, where Eϕ =
n∧

i=1

Knϕ

necessitation for each modality:
R2. � ϕ ⇒ � �ϕ .

Proposition 1. Both Cϕ and Jϕ satisfy X in the Fixed Point Axiom,

X ↔ E(ϕ ∧ X).

Proof. Jϕ ↔ E(ϕ ∧ Jϕ):

(→)

1 JJϕ → EJϕ from Con and definition of E
2 Jϕ → JJϕ 4 for J
3 Jϕ → EJϕ from 2. and 1
4 Jϕ → Eϕ from Con and definition of E
5 Jϕ → (Eϕ ∧ EJϕ) from 3. and 4
6 Jϕ → E(ϕ ∧ Jϕ) from 5. as normal modalities commute with ∧

(←)

1 E(ϕ ∧ Jϕ) → Eϕ ∧ EJϕ normal modalities commute with ∧
2 Eϕ ∧ EJϕ → EJϕ
3 EJϕ → KiJϕ definition of E
4 KiJϕ → Jϕ T for Ki

5 E(ϕ ∧ Jϕ) → Jϕ from 1. – 4
Normal modals are those with K axiom and subject to necessitation (R2).

Each J axiom or rule has a C counterpart. Thus, as J satisfies the fixed point
axiom, so does C.

Proposition 2. S4CJ
n � Jϕ → Cϕ.

Proof. Reasons from propositional calculus are not listed.
1. Jϕ → EJϕ from 4 for J , Con, and definition of E
2. C(Jϕ → EJϕ) from 1. by R2 for C
3. Jϕ → C(Jϕ → EJϕ) from 2.
4. Jϕ → Jϕ
5. Jϕ → Jϕ ∧ C(Jϕ → EJϕ) from 3. and 4.
6. Jϕ ∧ C(Jϕ → EJϕ) → CJϕ IA on Jϕ
7. Jϕ → CJϕ from 5. and 6.
8. Jϕ → ϕ T for J
9. CJϕ → Cϕ from 8. by R2, K, R1 for C
10. Jϕ → Cϕ from 7. and 9.
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That the converse does not hold must wait till Proposition 4, after S4CJ
n is

shown to be sound and complete.
We will use the following proposition in the completeness proof (Theorem2).

Proposition 3. S4CJ
n � Cϕ → ECϕ.

Proof. Just as lines 1. – 3. in the forward direction of proof of Proposition 1.

Definition 3. An S4CJ
n -model is MCJ = 〈W,R1, . . . , Rn, RC , RJ ,�〉 such that

– W �= ∅ is a set of worlds;
– Ri ⊆ W × W is reflexive and transitive for i ∈ {1, . . . , n};

– RC =
( n⋃

i=1

Ri

)TC , the transitive closure of the union of Ris;

– RJ ⊆ W × W is reflexive and transitive and RC ⊆ RJ ;
– � ⊆ W × V ar so that for w ∈ W,p ∈ V ar, w � p iff p holds at w;
– � is extended to correspond with Boolean connectives at each world and so the

asccessibility relations Ri, RC , and RJ corresponds to the modalities Ki, C,
and J respectively, so that in MCJ

u � Kiϕ iff (∀v ∈ W )(uRiv ⇒ v � ϕ),

u � Cϕ iff (∀v ∈ W )(uRCv ⇒ v � ϕ),

u � Jϕ iff (∀v ∈ W )(uRJv ⇒ v � ϕ).

Note that the accessibility relation of C corresponds to reachability in each con-
nected component of the model and is exactly prescribed by the agents’ relations.
On the other hand there is flexibility for RJ to be any reflexive transitive relation
as small as RC or a large as the total relation.

Theorem 1. S4CJ
n is sound with respect to MCJ models.

Proof (Soundness). Let M be an arbitrary S4CJ
n -model. Assume χ is provable

and show it holds in each world of M . It is enough to show that all the axioms
and rules are valid.

– χ is a propositional variable: u � χ for all worlds in the model M implies χ
is valid by definition.

– χ = ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ. If χ is formed by Boolean connectives, it is
valid by the definition of these connectives at each world.

– modus ponens: Suppose u � ϕ → ψ. Then by the definition of the connectives,
either u �� ϕ or u � ψ. If also u � ϕ, then u � ψ. So if ϕ → ψ and ϕ hold at
any world, so does ψ.
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– K axioms: Shown for Ki but analogous for C and J . χ = Ki(ϕ → ψ) →
(Kiϕ → Kiψ) = (Ki(ϕ → ψ) ∧ Kiϕ) → Kiψ. Suppose u � Ki(ϕ → ψ) ∧ Kiϕ,
then for all v such that uRiv, v � ϕ → ψ and v � ϕ. So as modus ponens is
valid v � ψ, and hence u � Kiψ. Therefore u � Ki(ϕ → ψ) → (Kiϕ → Kiψ)
is valid.

– T axioms: Shown for Ki but analogous for C and J . χ = Kiϕ → ϕ. Suppose
u � Kiϕ, then for all v such that uRiv, v � ϕ. Since Ri is reflexive, uRiu, and
so u � ϕ. Thus u � Kiϕ → ϕ is valid. RC is reflexive as it is the transitive
closure of a union of reflexive relations.

– 4 axioms: Shown for Ki but analogous for C and J . Suppose u � Kiϕ, then
for all v such that uRiv, v � ϕ. As Ri is transitive, for all w such that
vRiw, uRiw and so w � ϕ and so v � Kiϕ and hence u � KiKiϕ. Therefore
u � Kiϕ → KiKiϕ is valid.

– modal necessitation: Shown for Ki but analogous for C and J . Assume ϕ is
valid in M , then it is true at each world so u � ϕ, and for all worlds v such
that vRiu, v � ϕ. Thus u � Kiϕ. As the world u was arbitrary, Kiϕ holds at
all worlds and so is valid in the model. Therefore � ϕ ⇒ � Kiϕ is valid.

– Con axiom: χ = Jϕ → Kiϕ. Suppose u � Jϕ so that for all v such that uRJv,
v � ϕ. For all i, Ri ⊆ RJ by definition, so for all w such that uRiw, also
uRJw and so w � ϕ, thus u � Kiϕ.

– ConC: Analogous to the proof shown above for J ’s connection axiom Con.
– IA: χ = ϕ ∧ C(ϕ → Eϕ) → Cϕ. Suppose u � ϕ ∧ C(ϕ → Eϕ). Then for all

v such that uRCv, v � ϕ → Eϕ (∗∗). We want to show u � Cϕ, i.e. v � ϕ
for all v reachable from u. Proceed by induction on length of path l along Ris
from u to v. It is sufficient to show this for paths of length l along the Ris as
then the RC paths are of length ≤ l (and in fact of length 0 or 1 along RC).
– If l = 0 then u = v and by assumption, u � ϕ.
– Induction Hypothesis: Assume s � ϕ holds for worlds s reachable from u by
a path of length l.
– Suppose that v is reachable from u by a path of length l + 1. Then there is
a world t reachable from u in l steps and tRiv for some i. By the induction
hypothesis, t � ϕ but also by (∗∗) and modus ponens, t � Eϕ. But tRiv, so
v � ϕ. Thus u � Cϕ.

3 Completeness of S4CJ
n

Theorem 2. S4CJ
n is complete with respect to MCJ models.

To show completeness, the usual approach would be to construct the canonical
model. However, here the canonical structure turns out not to be a model of
S4CJ

n . So, instead of a single large model which acts as a counter-model for all
non-provable ϕ, for each non-provable ϕ we construct a finite model with a world
at which ϕ does not hold. Filtration techniques on the canonical structure yield
these counter-models. The proof of Theorem 2 is delayed until the end of Sect. 3.2
after the presentation on filtrations.
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Definition 4. The canonical structure for S4CJ
n is M ′ = 〈W,R1, . . . , Rn, RC , RJ ,

�〉 where

– W = {Γ | Γ is a maximally consistent set of S4CJ
n formulas};

– � ⊆ W × Var such that Γ � p iff p ∈ Γ for p ∈Var;
– ΓRiΔ iff Γ i ⊆ Δ, where Γ i := {ϕ | Kiϕ ∈ Γ};
– ΓRCΔ iff ΓC ⊆ Δ, where ΓC := {ϕ | Cϕ ∈ Γ};
– ΓRJΔ iff Γ J ⊆ Δ, where Γ J := {ϕ | Jϕ ∈ Γ}.

Lemma 1 (Truth Lemma). M ′ satisfies the Truth Lemma: for all Γ

M ′, Γ � ϕ ⇔ ϕ ∈ Γ. (1)

Proof. The proof by induction on ϕ is standard and mimics the S4n case but we
reproduce it here.

– base case: ϕ = p for p ∈Var. Holds by definition of �.
– Induction Hypothesis: Assume that the Truth Lemma holds for formulas of

lower complexity.
– Boolean cases: by extension of �, the induction hypothesis, and maximality

of Γ .
– modal case: Shown for Ki but analogous for C and J . ϕ = Kiϕ (⇐) Assume

Kiϕ ∈ Γ . Then for all Δ such that ΓRiΔ, ϕ ∈ Δ so by the induction hypoth-
esis, Δ � ϕ. Thus Γ � Kiϕ. (⇒) Assume Kiϕ /∈ Γ . Then Γ i ∪ {¬ϕ} must
be consistent by the maximality of Γ , for otherwise ϕ would be provable and
hence (by necessitation) so would Kiϕ, which would contradict the consis-
tency of Γ . If Δ is any maximally consistent set containing Γ i ∪ {¬ϕ}, then
ΓRiΔ by definition of Ri. So Γ �� Kiϕ.

Corollary 1. As a consequence of the Truth Lemma, any maximal consistent
set of formulas is satisfiable in M ′.

Thus S4CJ
n � ϕ ⇒ M ′, Γ � ϕ, so soundness holds for the canonical structure.

Lemma 2. The canonical structure M ′ is not a model of S4CJ
n (cf. [12] p. 50).

In M ′, all accessibility relations are reflexive and transitive and RC ⊆ RJ . How-

ever, RC �= ( n⋃

i=1

Ri

)TC as we only have
( n⋃

i=1

Ri

)TC ⊂ RC , thus M ′ is not a

model of S4CJ
n .

Proof. It suffices to show that RC �⊂ ( n⋃

i=1

Ri

)TC. Consider a set of formulas

Φ = {Ep,EEp,EEEp, . . . } ∪ {¬Cp} (2)

for some p ∈ Var and abbreviate EEEp as E3p, etc.

Claim. Φ is S4CJ
n -consistent.
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Proof (of Claim). Suppose Φ is inconsistent. Then there is a finite Δ ⊂ Φ which
is already inconsistent so say Δ = {Ek1p,Ek2p, . . . , Ekmp | ki < ki+1 for i <
m} ∪ {¬Cp}. (If Δ were already inconsistent, including {¬Cp} would keep Δ
inconsistent.) Consider the model N = 〈W,R1, R2, RC , RJ ,�〉t where

– W = N;
– R1 = {(n, n) | n ∈ N} ∪ {(n, n + 1), (n + 1, n) | n ∈ N and n even};
– R2 = {(n, n) | n ∈ N} ∪ {(n, n + 1), (n + 1, n) | n ∈ N and n odd};
– RJ = RC = (R1 ∪ R2)TC;
– x � p iff x ≤ km + 1.

1 2 3 4 5 . . .

R1

R2

= 

= 

Fig. 1. This shows the frame of N with the reflexive arrows of R1 and R2 suppressed.

For this model RC is an equivalence relation with one class, mRCn for all
m,n ∈ N. But N, 1 � Δ. To see why, consider an example where km = 3 thus
1, 2, 3, 4 � p,

1, 2, 3 � K1p ∧ K2p ∧ Ep though 4 � ¬K1p,
1, 2 � K1Ep ∧ K2Ep ∧ EEp though 3 � ¬K2K1p,

1 � K1EEp ∧ K2EEp ∧ EEEp though 2 � ¬K1K2K1p, and
1 � ¬Cϕ as 5 � ¬p and 1RC5.

Since 1 � E3p ∧ ¬Cp, this Δ is satisfied and hence is consistent. Since no finite
subset of Δ is inconsistent, Φ is consistent.Claim

We now finish the proof of Lemma2. Since Φ is consistent, it is contained in
some maximal consistent set Φ′. Let Θ = {¬p} ∪ {θ | Cθ ∈ Φ′}. Note that Θ is
consistent. As {θ | Cθ ∈ Φ′} ⊆ Φ′ which is maximal consistent, Θ could only be
inconsistent if ¬p ∧ p ∈ Θ. As ¬Cp ∈ Φ, Cp is not in Φ′, so p is not in Θ, so Θ
is consistent, and so contained in some maximal consistent set Θ′. Observe that

Φ′C ⊆ Θ′ so that in M ′, Φ′RCΘ′. However (Φ′, Θ′) �∈ ( n⋃

i=1

Ri

)TC as for each m,

Emp ∈ Φ′, but ¬p ∈ Θ′. Therefore, M ′ is not a model of S4CJ
n .

Essentially, M ′ fails to be an appropriate model because Ip �→ Cp, where I
is iterated knowledge.

3.1 Filtrations: The General Modal Case

Filtration is an established technique for producing a finite model from an infinite
one so that validity of subformulas is maintained. As in MCJ there are already
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only a finite number of Ri, a finite model must be one in which W is finite.
Each world in the finite model will be an equivalency class of worlds in the
original model. We look first at a general modal case, where our modality is
‘�.’ In the following section we apply these techniques to M ′ to produce finite
counter-models to those formulas not provable in S4CJ

n , concluding the proof of
completeness.

Definition 5. For a given finite set of formulas Φ, say two worlds in a model
M are equivalent if they agree on all formulas in Φ:

s ≡Φ t iff (∀ψ ∈ Φ)(M, s � ψ ⇔ M, t � ψ)

and define an equivalence class of worlds

[s]Φ := {t | s ≡Φ t},

or simply [s] if Φ is clear.

Note that ≡Φ is indeed an equivalence relation.

Definition 6. A model N = 〈S, T1, . . . , Tn,�N 〉 is a filtration of M through Φ
if M is a model 〈W,R1, . . . , Rn,�〉 and the following hold:

– Φ is a finite set of formulas closed under subformulas;
– S = {[w] | w ∈ W}, which is finite as Φ is finite;
– w � p ⇔ [w] �N p for p ∈ Var ∩ Φ and �N is extended to all formulas;
– Each relation Ti satisfies the following two properties for all modals �:
min(Ti/Ri) : (∀[s], [t] ∈ S)(if s′Rit

′, s′ ∈ [s], and t′ ∈ [t], then [s]Ti[t])
max(Ti/Ri) : (∀[s], [t] ∈ S)(if [s]Ti[t], then (∀�ψ ∈ Φ)[M, s � �ψ ⇒ M, t �

ψ]).

The condition min(Ti/Ri) ensures that Ti simulates Ri while max(Ti/Ri) per-
mits adding pairs to Ti independently of Ri if it respects �. Note that a filtration
will always exist as you can define the Ti by reconsidering either condition as a
bi-implication. This will give the smallest and largest (not necessarily distinct)
filtrations, respectively [8].

Theorem 3. Let N be a filtration of M through Φ, then

(∀ψ ∈ Φ)(∀s ∈ W )(M, s � ψ ⇔ N, [s] �N ψ). (3)

Proof. By induction on the complexity of ψ ∈ Φ.

– ψ = p: by definition of �N .
– I.H.: As Φ closed under subformulas, M, s � ψ ⇔ N, [s] �N ψ holds for ψ of

lower complexity.
– ψ = ¬ϕ: M, s � ¬ϕ ⇔ M, s �� ϕ ⇔ (by I.H.) N, [s] ��N ϕ ⇔ N, [s] �N ¬ϕ.
– ψ = ϕ ∧ ϕ′: M, s �M ϕ ∧ ϕ′ ⇔ M, s �M ϕ and M, s �M ϕ′ ⇔

(by I.H.) N, [s] �N ϕ and N, [s] �N ϕ′ ⇔ N, [s] �N ϕ ∧ ϕ′.
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– ψ = �ϕ: (⇒) Suppose M, s � �ϕ. Let [t] be such that [s]T [t]. By
max(T/R), M, t � ϕ. By I.H.N, [t] �N ϕ. As [t] was arbitrary, N, [s] �n �ϕ.
(⇐) Suppose N, [s] �N �ϕ, so ∀[t] such that [s]T [t], N, [t] �N ϕ. Let u ∈ W
be any state such that sRu, then by min(T/R) [s]T [u] so that N, [u] �N ϕ. By
I.H.M,u � ϕ and since u was an arbitrary world accessible from s, M, s � �ϕ.

3.2 Filtrations: The Canonical Structure M ′ Case

We now consider filtrations in the context of S4CJ
n .

Definition 7. A formula ϕ has a suitable set of subformulas Φ if Φ = Φ1 ∪ Φ2 ∪
Φ3 ∪ Φ4 where for i ∈ {1, . . . , n}:

Φ1 = {ψ,¬ψ | ψ is a subformula of ϕ};
Φ2 = {KiKiψ,¬KiKiψ | Kiψ ∈ Φ1};
Φ3 = {KiJψ,¬KiJψ,Kiψ,¬Kiψ | Jψ ∈ Φ1};
Φ4 = {KiCψ,¬KiCψ,Kiψ,¬Kiψ | Cψ ∈ Φ1}.

Crucially, a suitable set is finite and closed under subformulas.

Corollary 2. Let Φ be a suitable set for ϕ and M a model such that M, s � ϕ.
If N is a filtration of M through Φ, then N, [s] �N ϕ.

Proof. By Theorem 3 and ϕ ∈ Φ.

Definition 8. For M ′ = 〈W,R1, . . . , Rn, RC , RJ ,�〉, the canonical structure of
S4CJ

n , and a suitable set Φ for a consistent formula ϕ, define a model N =
〈S, T1, . . . , Tn, TC , TJ ,�N 〉 such that, for i ∈ {1, 2, . . . , n}:

– S = {[w] | w ∈ W}, which is finite as Φ is finite;
– w � p ⇔ [w] �N p for p ∈ Var ∩ Φ and �N is extended to all formulas;
– Ti ⊆ S × S such that [s]Ti[t] iff (s � Kiψ ⇒ t � ψ) for those Kiψ ∈ Φ;

– TC =
( n⋃

i=1

Ti

)TC;

– TJ ⊆ S × S such that [s]TJ [t] iff (s � Jψ ⇒ t � ψ) for those Jψ ∈ Φ.

We now drop the subscript on �N to simplify notation. As worlds in N are
equivalency classes, it will be clear as to which model is in question.

Lemma 3. N is a model of S4CJ
n (see Definition 3).

Proof. All accessibility relations are reflexive and transitive and Ti ⊆ TC ⊆ TJ .

– Ti is reflexive: For an arbitrary s ∈ [s], (s � Kiψ ⇒ s � ψ) always holds. If
the antecedent is true, then by the definition of � and the reflexivity of Ri,
the consequence follows. If the antecedent fails, the implication is vacuously
true. Thus for all [s] ∈ S, [s]Ti[s], so Ti is reflexive.
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– Ti is transitive: Suppose [s]Ti[t] and [t]Ti[u] and s � Kiψ for Kiψ ∈ Φ. As Φ
is suitable, also KiKiψ ∈ Φ. As Ri is transitive, the 4 axiom is sound so we
have (s � Kiψ ⇒ s � KiKiψ), so as [s]Ti[t] and KiKiψ ∈ Φ, (s � KiKiψ ⇒
t � Kiψ). Since Kiψ ∈ Φ and [t]Ti[u], (t � Kiψ ⇒ u � ψ) so u � ψ. Thus for
Kiψ ∈ Φ, (s � Kiψ ⇒ u � ψ) holds so [s]Ti[u], hence Ti is transitive.

– TC is reflexive as for every [s] ∈ S, [s]Ti[s] and Ti ⊆ TC . TC is transitive by
definition.

– TJ is reflexive and transitive by the same reasoning as for Ti. It must also be
shown that TC ⊆ TJ . Suppose [s]Ti[t], then we want to show [s]TJ [t], i.e. for
Jψ ∈ Φ, (s � Jψ ⇒ t � ψ) holds. If Jψ ∈ Φ, then as Φ is suitable, KiJψ ∈ Φ.
Suppose s � Jϕ, then as M ′ is sound and S4CJ

n � Jϕ → KiJϕ, s � KiJϕ.
Then since [s]Ti[t], (s � KiJψ ⇒ t � Jψ) holds, so t � Jϕ holds, and since
RJ is reflexive, t � ψ. Thus for Jψ ∈ Φ and [s]Ti[t], (s � Jψ ⇒ t � ψ) holds,
so [s]TJ [t]. Since Ti ⊆ TJ , TC ⊆ TJ .

Lemma 4 (Definability Lemma). Let S = {[s] | s ∈ W} for some suitable set
Φ. Then for each subset D ⊆ S there is some characteristic formula χD such
that for all [s] ∈ S, s � χD iff [s] ∈ D. Note that all D are finite as S is.

Proof. Let the set
∧{s} be the conjunction of all ψ ∈ Φ that are true at s. By

definition of [s], t �
∧{s} iff [s] = [t]. Let χD =

∨

[t]∈D

(
∧{s}).

s � χD ⇔ s �
∨

[t]∈D

(∧
{s}

)
⇔ s �

∧
{t} for some t ∈ [t] ∈ D

⇔ [s] = [t] for some t ∈ [t] ∈ D ⇔ [s] ∈ D.

Theorem 4. N of Definition 8 is a filtration of M ′ through Φ (cf. [12]).

A relation T is a filtration of R if it satisfies min(T/R) and max(T/R).

Proof. It needs only to be confirmed that the accessibility relations Ti, TC , and
TJ meet the conditions min(T/R) and max(T/R).

• Ti : Ti satisfies max(Ti/Ri) by definition so it remains to check min(Ti/Ri).
Suppose [s], [t] ∈ S with s′ ∈ [s] and t′ ∈ [t] such that s′Rit

′. For Kiψ ∈ Φ we
have

s � Kiψ ⇔ s′ � Kiψ ⇒ t′ � ψ ⇒ t � ψ.

Thus [s]Ti[t] by definition, satisfying min(Ti/Ri).
• TJ : TJ is a filtration of RJ by the same reasoning as in the Ti case, thus

min(TJ/RJ) and max(TJ/RJ) are satisfied.
• TC : To see that TC satisfies min(TC/RC), suppose that sRCt. Let D =

{[w] ∈ S | [s]TC [w]}, the set of worlds reachable from [s] by TC . It is sufficient
to show

s � CχD, (4)
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as then sRCt gives t � χD and so by definition of χD, [t] ∈ D and so [s]TC [t].
Now we show (4).
As IA is valid in the canonical structure,

s � C(χD → EχD) → (χD → CχD). (5)

To see that s � C(χD → EχD) holds, consider the following. Suppose for some
w, sRCw and w � χD. We want to show w � EχD, i.e., for all i, w � KiχD,
i.e. for all u, wRiu, u � χD. Since w � χD, [w] ∈ D so [s]TC [w]. This means
there is a path of length l from [s] to [w] along the union of Tis. As each Ti is a
filtration of Ri we also have for all those worlds u accessible from w, [w]Ti[u].
Thus there is a path of length l+1 along the Tis from [s] to [u] and so [s]TC [u].
This means that u � χD, so w � EχD. Since the antecedent of (5) holds, we
have s � χD → CχD so in order to conclude (4), we must show s � χD.
Which we have by the reflexivity of TC . Thus TC satisfies min(TC/RC).
TC must also satisfy max(TC/RC). Suppose that [s]TC [t] and for some s ∈ [s],
s � Cψ for Cψ ∈ Φ. We must show that t � ψ. Note that as Φ is suitable, for
each i, KiCψ, i.e. ECψ ∈ Φ as well. Recall from Proposition 3 that S4CJ

n �
Cψ → ECψ so by soundness, s � Cψ ⇒ s � ECψ. As [s]TC [t] and TC is
built from filtrations of the Ris, there is a path of length l along the Ris
from s to t. As s � ECψ and ECψ ∈ Φ, Cψ also holds at the next world on
this path towards t, for whichever Ri used. By induction on the length of the
path we get t � Cψ. Since TC is reflexive we have t � ψ. Thus TC satisfies
max(TC/RC).

We can now finish the proof of Theorem2 that S4CJ
n is sound and complete

with respect to S4CJ
n -models. Soundness was shown in Theorem 1.

Proof (Proof of Completeness). Suppose S4CJ
n �� ϕ. Then {¬ϕ} is contained

in some maximal consistent set Θ and for the canonical structure M ′ we have
M ′, Θ � ¬ϕ. Defining a suitable set Φ of subformulas of ¬ϕ, we can construct an
S4CJ

n -model N (Lemma 3), which, as it happens to be a filtration of M ′ through
Φ (Theorem 4), agrees with M ′ on formulas of Φ (Theorem 3) and so N, [Θ] �� ϕ.

Corollary 3. S4CJ
n exhibits the Finite Model Property and so is decidable.

Soundness yields the following two propositions.

Proposition 4. S4CJ
n �� Cϕ → Jϕ, as was promised after Proposition 1.

Proof. Consider a model of S4CJ
2 with W = {a, b} such that R1 = R2 = RC =

{(a, a), (b, b)} and RJ = {(a, a), (b, b), (a, b)}. Let only a � p and all other propo-
sitional variable fail at both worlds. While a � Cp, a �� Jp so a �� Cp → Jp so
a � ¬(Cϕ → Jϕ), so by soundness S4CJ

n �� (Cϕ → Jϕ).

Proposition 5. S4CJ
n is a conservative extension of both S4J

n and S4C
n .

The axiomatization and models of S4J
n and S4C

n can be obtained by removing C
or J , respectively, from the language and axiomatization of S4CJ

n and RC or RJ

from its models. For more on S4J
n see [2,5,6]. For more on S4C

n see [8,10,12].
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Proof. Conservativity of S4CJ
n over S4J

n: We need to show that for each S4J
n-

formula F , if S4CJ
n � F , then S4J

n � F . By contraposition, suppose S4J
n �� F .

Then, by the completeness theorem for S4J
n, there is a S4J

n-model M such that
F does not hold in M . Now we transform M into an S4CJ

n -model M∗ by adding
the reachability relation RC . This can always be done and leaves the other
components of M unaltered. Since the modal C does not occur in F , the truth
values of F in M and in M∗ remains unchanged at each world, hence F does
not hold in M∗. By soundness of S4CJ

n , S4CJ
n �� F .

Conservativity of S4CJ
n over S4C

n : Let G be an S4C
n -formula not derivable in

S4C
n . We have to show that G is not derivable in S4CJ

n either. By completeness of
S4C

n there is an S4C
n -countermodel N for G. Make N into an S4CJ

n -model N∗ by
the addition of RJ as the total relation (alternatively, we could put RJ = RC).
As G contains no J , at each world, these models agree on the valuation of G,
thus G does not hold in N∗ either. By soundness, S4CJ

n �� G.

4 Conclusions

S4CJ
n is a sound and complete system in which we can directly compare J and

C. As Jϕ → Cϕ, J can be used in place of C in situations in which common
knowledge is used, such as in the assumption of common knowledge about game
rules or public announcement statements. One advantage of using J over C is
the possibility to realize these statements in a explicit justification logic, another
is that it maybe a more accurate representation of these scenarios [4,6]. Another
opportunity this logic provides is to examine or develop an interesting class of
epistemic scenarios which exploit these nested yet distinct forms of common
knowledge. Keeping in mind the connection axioms Con and ConC, C might
represent an oracle-like agent while J might also be an infallible agent but one
whose statements can be confirmed by evidence if needed.

There is also potential for future syntactic developments. As can be noted by
the models of S4CJ

n , the logical strength of J can be chosen independently from
that the other agents. For instance, while the Ki and C remain S4 modalities, J
could be S5 or perhaps weaker such as K4 to represent belief, while maintaining
Con. The logic can also be expanded to encompass multiple distinct J operators.

S4CJ
n is a logic which provides a context in which to investigate distinct

forms of common knowledge. This, together with the conservativity results of
Proposition 5, indicate that generic common knowledge is useful generalization
of common knowledge with technical and semantic advantages.
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