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Abstract. Common Knowledge C' is a standard tool in epistemic logics.
Generic Common Knowledge J is an alternative which has desirable
logical behavior such as cut-elmination and which can be used in place
of C' in the analysis of many games and epistemic senarios. In order
to compare their deductive strengths directly we define the multi-agent
logic S457 built on a language with both C and J operators in addition
to agents’ K;s so that any finite prefix of modal operators is acceptable.
We prove 5457 is complete, decidable, and that Jo — C¢ though not
Cyp — Jy. Additional epistemic scenarios may be investigated which
take advantage of this dual layer of common knowledge agents.
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1 Introduction

In systems of multiple knowers, or agents, it is natural to consider what informa-
tion is publicly known. The most investigated such concept is that of common
knowledge. Informally, if a sentence or proposition ¢ is common knowledge, C'p,
then everyone knows it (F¢), and everyone knows everyone knows it (EEy),
and everyone knows everyone knows everyone knows it, etc., i.e., iterated knowl-
edge of ¢, Ip. Common knowledge has overwhelmingly been formalized as an
equivalence of C'v and Iy via a finite set of axioms. In each multi-agent system,
C' is unique.

However, there is a more general and eventually simpler conception of com-
mon knowledge, generic common knowledge, J. While Jyp is sufficient to yield
iterated knowledge, it is not necessarily equivalent to I¢. This alternative offers
a broader view of common knowledge as it allows for a choice between mul-
tiple logically non-equivalent common knowledge operators. Moreover, generic
common knowledge which is not the traditional common knowledge naturally
appears in some canonical epistemic scenarios. For example, a public announce-
ment of an atomic fact A creates not common knowledge but rather universal
knowledge (an instance of generic common knowledge) of A since A, a posteriori,
holds at all worlds, not only at all reachable worlds. In the belief revision sit-
uations, such as the well-known Stalnaker-Halpern game, the revision function
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overspills to another reachability cluster of worlds and hence no longer should
obey the common knowledge assumption [4].

The generic common knowledge was introduced by McCarthy in [11] as ‘any
fool knows’ and independently by Artemov in [6] as ‘justified common knowl-
edge’ who later termed it ‘generic common knowledge.” In [6] it was the implicit
‘forgetful projection’ counterpart to the explicit constructive knowledge LP com-
ponent of S4,LP, a logic in the family of justification logics. J differs from C in
logical behavior: its addition to a system does not hinder straightforward com-
pleteness proofs and as the cut-rule can be eliminated the way is paved for its
Realization to an explicit justification logic counterpart e.g. the realization of
S47 in S4,LP [5,6] or in LP,,(LP) [2]. These realizations impart a rich semantics:
Jp asserts that ¢ is common knowledge arising from a proof of (. In applica-
tions, J can be used in place of C' whenever common knowledge is assumed as
a premise, rather than being the desired outcome [3]. The cut-rule for tradi-
tional common knowledge has been investigated in [1] and syntactic elimination
obtained for some systems as in [9].

This paper defines a multi-agent epistemic logic 542‘] which expands on the
n-agent logic S4,, to encompass two formulations common knowledge C' and J.
Completeness for this logic is shown, providing a basis for direct comparison of
the deductive strength of J and C. We shall see that Jo — C¢ though not the
converse.

2 Axiomatization of 545‘7

In S47 we can consider formulas which may contain both C and J as well as
K; modalities.

Definition 1. The language Lg4cs is an extension of the propositional lan-
guage:

Lsger = {Var,A,V,—, -, K;,C, J}

fori € {1,2,...,n} where Var is the set of propositional variables. Formulas are
defined by the grammar

p=plenpleVele—p|p|Kyp|Cp|Jp
where p € Var.

The formula K7 K5 has the intended semantics of ‘agent 1 knows that agent
2 knows ¢’ while C'p and Jy have the intended semantics of ‘p is common
knowledge’ and ‘¢ is generic common knowledge’ respectively.

Definition 2. The azioms and rules of 545‘], for i € {1,2,...,n} where O is
K; or Jor C:
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CLASSICAL PROPOSITIONAL CALCULUS:
A. axioms of classical propositional calculus
R1. modus ponens: -y, ¢ = = F Y
S4 AXIOMS FOR EACH MODALITY:
O(p — ¢) — (Op — TY)
Up — ¢
Op — OO
ADDITIONAL KNOWLEDGE AXIOMS:
Con. Jyp — K;p
ConC. Cp — Ko

n
A, oAC(p — Ep) — Cp, where Ep = N\ K,
i=1
NECESSITATION FOR EACH MODALITY:
R2. ko= FOp.

Proposition 1. Both Cy and Jy satisfy X in the Fized Point Aziom,

HAX

X « E(p AN X).
Proof. Jo < E(p A Jp):
1JJo— EJp from Con and definition of E
2Jp— JJp 4 for J
(=) 3Jo— EJp from 2.and 1
4 Jp — Ep from Con and definition of F
5Jo — (EpNEJy) from 3.and 4
6 Jp— E(pAJp) from 5. as normal modalities commute with A
1E(@eANJp) — EoNEJp normal modalities commute with A
2 Bp AEJp — EJp
(«) 3EJp — K;Jp definition of F
4 K;Jp— Jyp T for K;
5E(eAJp)— Jp from 1.— 4

Normal modals are those with K axiom and subject to necessitation (R2).
Each J axiom or rule has a C counterpart. Thus, as J satisfies the fixed point
axiom, so does C.

Proposition 2. 545‘] FJp— Coe.

Proof. Reasons from propositional calculus are not listed.

1. Jp— EJy from 4 for J, Con, and definition of £
2. C(Jp— EJyp) from 1. by R2 for C
3. Jo—C(Jp— EJp) from 2.
4 Jgp — J(p

5. Jo—> JoANC(Jp — EJyp) from 3. and 4.
6. JoANC(Jp — EJp) — CJy IA on Jp
7. Jp—Clyp from 5.and 6.
8. Jp— T for J
9. CJp — Cyp from 8.by R2, K, R1 for C
10. Jo — Cop from 7.and 9.
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That the converse does not hold must wait till Proposition 4, after 545‘] is
shown to be sound and complete.
We will use the following proposition in the completeness proof (Theorem 2).

Proposition 3. 545‘] FCyp— ECy.
Proof. Just as lines 1. - 3.in the forward direction of proof of Proposition 1.
Definition 3. An S4T?J-model is M¢/ = (W,Ry,...,R,,Rc, Ry, IF) such that

— W # 0 is a set of worlds;
— R; CW x W is reflexive and transitive for i € {1,...,n};

n
c .. .
— Re = ( U RZ-)T , the transitive closure of the union of R;s;
i=1

— R; CW x W is reflexive and transitive and Ro C Ry;

— I C W x Var so that for w € W,p € Var, w I p iff p holds at w;

— |k is extended to correspond with Boolean connectives at each world and so the
asccessibility relations R;, Rc, and R; corresponds to the modalities K;, C,
and J respectively, so that in M¢7

ulk Ky iff (Yo € W)(uRwv = v Ik @),
ul- Cp iff (Vv € W)(uRcv = v Ik ¢),

ulk Jp iff (Vo € W)(uRjv = v Ik p).

Note that the accessibility relation of C' corresponds to reachability in each con-
nected component of the model and is exactly prescribed by the agents’ relations.
On the other hand there is flexibility for R; to be any reflexive transitive relation
as small as R or a large as the total relation.

Theorem 1. S4S7 is sound with respect to M7 models.

Proof (Soundness). Let M be an arbitrary S45/-model. Assume y is provable
and show it holds in each world of M. It is enough to show that all the axioms
and rules are valid.

— x is a propositional variable: u I x for all worlds in the model M implies y
is valid by definition.

- x="9| A ]| V]| p— . If xis formed by Boolean connectives, it is
valid by the definition of these connectives at each world.

— modus ponens: Suppose u IF ¢ — 1. Then by the definition of the connectives,
either u I ¢ or w I 9. If also u IF ¢, then u I+ 1. So if ¢ — 1 and ¢ hold at
any world, so does .
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— K axioms: Shown for K; but analogous for C and J. x = K;(¢ — ¢) —
(Kip = Kip) = (Ki(p — ¢) N Kip) — K. Suppose u l- Ki(p — ) A Kip,
then for all v such that uR;v, v IF ¢ — ¥ and v I+ ¢. So as modus ponens is
valid v IF ¢, and hence u |- K;3. Therefore u IF K;(¢ — ¢) — (K;p — K;1)
is valid.

— T axioms: Shown for K; but analogous for C' and J. x = K;ip — ¢. Suppose
u - K;p, then for all v such that uR;v, v IF ¢. Since R; is reflexive, uR;u, and
so u I . Thus u IF K;o — ¢ is valid. R¢ is reflexive as it is the transitive
closure of a union of reflexive relations.

— 4 axioms: Shown for K; but analogous for C' and J. Suppose u I K;p, then
for all v such that uR;v, v IF ¢. As R; is transitive, for all w such that
vR;w, uR;w and so w IF ¢ and so v IF K;p and hence u I+ K; K;p. Therefore
ulF Kjp — K; K;p is valid.

— modal necessitation: Shown for K; but analogous for C and J. Assume ¢ is
valid in M, then it is true at each world so u IF ¢, and for all worlds v such
that vR;u, v IF @. Thus u IF K;p. As the world u was arbitrary, K;¢ holds at
all worlds and so is valid in the model. Therefore - ¢ = F K,y is valid.

— Con axiom: xy = Jp — K;p. Suppose u IF Jp so that for all v such that uR jv,
v IF . For all ¢, R; C Rj by definition, so for all w such that uR;w, also
uwRjw and so w IF ¢, thus u I- K;p.

— ConC: Analogous to the proof shown above for J’s connection axiom Con.

—1A: x = o AC(¢ — Eyp) — Cy. Suppose u IF ¢ A C(¢ — Ey). Then for all
v such that uRcv, v IF ¢ — Ep (xx). We want to show u IF Cop, i.e.v Ik ¢
for all v reachable from u. Proceed by induction on length of path [ along R;s
from u to v. It is sufficient to show this for paths of length [ along the R;s as
then the R paths are of length < (and in fact of length 0 or 1 along R¢).
—If | =0 then v = v and by assumption, u I .

— Induction Hypothesis: Assume s I ¢ holds for worlds s reachable from u by
a path of length [.

— Suppose that v is reachable from u by a path of length [ + 1. Then there is
a world ¢ reachable from u in [ steps and tR;v for some 7. By the induction
hypothesis, t IF ¢ but also by (#*) and modus ponens, ¢ IF Ep. But tR;v, so
v Ik . Thus u I Cop.

3 Completeness of 542‘]

Theorem 2. 545‘] is complete with respect to M7 models.

To show completeness, the usual approach would be to construct the canonical
model. However, here the canonical structure turns out not to be a model of
545‘]. So, instead of a single large model which acts as a counter-model for all
non-provable ¢, for each non-provable ¢ we construct a finite model with a world
at which ¢ does not hold. Filtration techniques on the canonical structure yield
these counter-models. The proof of Theorem 2 is delayed until the end of Sect. 3.2
after the presentation on filtrations.
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Definition 4. The canonical structure for 545‘] isM'= (W,Ry,...,R,,Rc, Ry,
IF) where

—~ W ={I' | I' is a maximally consistent set of $45” formulas};
— Ik € W x Var such that I' I+ p iff p € I" for p € Var,

-~ T'R;Aff I C A, where I' := {¢ | Kijp € I'};

~ I'RcAiff ¢ C A, where I'C := {p | Cp € I'};

~ I'RyjAiff 'Y C A, where I'V .= {¢ | Jp € T'}.

Lemma 1 (Truth Lemma). M’ satisfies the Truth Lemma: for all I’
M T'Fpepel (1)

Proof. The proof by induction on ¢ is standard and mimics the S4,, case but we
reproduce it here.

— base case: ¢ = p for p € Var. Holds by definition of I-.

— Induction Hypothesis: Assume that the Truth Lemma holds for formulas of
lower complexity.

— Boolean cases: by extension of I, the induction hypothesis, and maximality
of I.

— modal case: Shown for K; but analogous for C' and J. ¢ = K;p (<) Assume
K,;p € I'. Then for all A such that I'R; A, ¢ € A so by the induction hypoth-
esis, A IF ¢. Thus I' IF K;p. (=) Assume K;p ¢ I'. Then I'* U {—~¢} must
be consistent by the maximality of I', for otherwise ¢ would be provable and
hence (by necessitation) so would K¢, which would contradict the consis-
tency of I'. If A is any maximally consistent set containing I'* U {—¢}, then
I'R; A by definition of R;. So I' I} K;¢p.

Corollary 1. As a consequence of the Truth Lemma, any mazimal consistent
set of formulas is satisfiable in M’'.

Thus 545‘] F o= M' Il @, sosoundness holds for the canonical structure.
Lemma 2. The canonical structure M’ is not a model of S457 (cf. [12] p. 50).

In M’, all accessibility relations are reflexive and transitive and Rc C R ;. How-
n n

ever, Ro # ( U RZ-)TC as we only have ( U Ri)TC C R¢, thus M’ is not a
i=1 i=1

model of 5457,

Proof. 1t suffices to show that Rc ¢ ( U Ri)Tc. Consider a set of formulas

i=1
¢ = {Ep, EEp, EEEp, ...} U{~Cp} (2)
for some p € Var and abbreviate EEEp as E3p, etc.

Claim. & is S457-consistent.
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Proof (of Claim). Suppose @ is inconsistent. Then there is a finite A C ¢ which
is already inconsistent so say A = {E¥p, E*2p, ... Efmp | ki < kiyq for i <
m} U {-Cp}. (If A were already inconsistent, including {—Cp} would keep A
inconsistent.) Consider the model N = (W, Ry, Ro, Rc, Ry, IF)t where

-W=N;

- Ry ={(n,n) |neN}U{(n,n+1),(n+1,n) | n €N and n even};
— Re={(n,n) | neN}U{(n,n+1),(n+1,n) | n €N and n odd};
- Ry = Ro = (R URy)™;

—zlkpiff x <k, + 1.

Fig. 1. This shows the frame of N with the reflexive arrows of R; and R2 suppressed.

For this model R¢ is an equivalence relation with one class, mR¢cn for all
m,n € N. But N,1IF A. To see why, consider an example where k,, = 3 thus
1,2,3,41F p,

1,2,31F Kip A Kop A Ep though 4 IF =K;p,

1,2l K1Ep AN KsEp A EED though 3 IF =K K p,
1Ky EFEp NKyEEp AN EEEp though 2 IF-K; KoK, p, and
11 -Cy as 5F =p and 1Rc5.
Since 1 IF E3p A ~C)p, this A is satisfied and hence is consistent. Since no finite
subset of A is inconsistent, @ is consistent. ciqim

We now finish the proof of Lemma 2. Since @ is consistent, it is contained in
some maximal consistent set ¢'. Let @ = {-p} U {0 | CH € &'}. Note that O is
consistent. As {0 | CO € &'} C &' which is maximal consistent, © could only be
inconsistent if -p Ap € ©. As =Cp € &, Cp is not in &', so p is not in O, so O
is consistent, and so contained in some maximal consistent set @’. Observe that

@'Y C @ so that in M, & RcO'. However (#',0") ¢ ( Ri)TC as for each m,
i=1
E™p e @' but —-p € ©'. Therefore, M’ is not a model of S4,C;J.
Essentially, M’ fails to be an appropriate model because Ip /4 Cp, where
is iterated knowledge.
3.1 Filtrations: The General Modal Case

Filtration is an established technique for producing a finite model from an infinite
one so that validity of subformulas is maintained. As in M7 there are already
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only a finite number of R;, a finite model must be one in which W is finite.
Each world in the finite model will be an equivalency class of worlds in the
original model. We look first at a general modal case, where our modality is
‘0." In the following section we apply these techniques to M’ to produce finite
counter-models to those formulas not provable in 545‘1 , concluding the proof of
completeness.

Definition 5. For a given finite set of formulas @, say two worlds in a model
M are equivalent if they agree on all formulas in @:

s=¢ tiff (Vip € B)(M, sl < M,tIF))

and define an equivalence class of worlds

[slo :={t [ s =a t},
or simply [s] if @ is clear.

Note that =¢ is indeed an equivalence relation.

Definition 6. A model N = (S,T1,...,T,,IFn) is a filtration of M through ®
if M is a model (W, Ry, ..., R,,IF) and the following hold:

— & is a finite set of formulas closed under subformulas;

— S ={[w] | we W}, which is finite as @ is finite;

—wlkp<e [w by pfor p € Var N and IFy is extended to all formulas;

— Each relation T; satisfies the following two properties for all modals O:

min(T;/R;) = (V[s], [t] € S)(if s'R;t’, s’ € [s], and t' € [t], then [s]T;[t])

max(T;/R;) = (V[s], [t] € S)(Gf [s]Ti[t], then (VOy € ®)[M,s IF Oy = M,t I+
o)),

The condition min(T;/R;) ensures that T; simulates R; while maxz(T;/R;) per-
mits adding pairs to T; independently of R; if it respects O. Note that a filtration
will always exist as you can define the T; by reconsidering either condition as a
bi-implication. This will give the smallest and largest (not necessarily distinct)
filtrations, respectively [8].

Theorem 3. Let N be a filtration of M through @, then
(Vi € P)(Vs € W)(M,s - < N,[s]lFy ¥). (3)
Proof. By induction on the complexity of ¢ € @.

— 1 = p: by definition of IFy.

— LH.: As & closed under subformulas, M, s IF ¢ < N, [s] |-y ¢ holds for ¢ of
lower complexity.

— == M,slk-p< M,slf o< (by LH.) N,[s] n ¢ < N,[s] IFn —.

- = o AN¢: M,s by o N@ & M,s by © and M,s by ¢ <
(by ILH.) N,[s] IFx ¢ and N,[s] lFny @' <& N, [s] Fn @ A @',
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~ ¢ = DO¢: (=) Suppose M,s |- Op. Let [t] be such that [s]T[t]. By
max(T/R), M,tIF . By LH. N, [t] IFn . As [t] was arbitrary, N, [s] Ik, Oep.
(<) Suppose N, [s] -y O, so V[t] such that [s|T[t], N,[t] IFn ¢. Let u € W
be any state such that sRu, then by min(T/R) [s]T[u] so that N, [u] IFy ¢. By
ILH. M, u I ¢ and since u was an arbitrary world accessible from s, M, s IF Op.

3.2 Filtrations: The Canonical Structure M’ Case
We now consider filtrations in the context of 545‘].

Definition 7. A formula ¢ has a suitable set of subformulas @ if @ = ¢ UP, U
&3 U P,y where for i € {1,...,n}:

&1 = {1, ) | ¥ is a subformula of p};

Gy = {K;Kitp, ~K;Kip | Kiyp € &1}

D3 = {K; JJop, ~K; JY, Kpnp, ~ Ky | Jyp € Py}
Oy = {K;C,~K;Cp, Kitp, ~Kp | Cip € D1}

Crucially, a suitable set is finite and closed under subformulas.

Corollary 2. Let @ be a suitable set for ¢ and M a model such that M, s I+ .
If N is a filtration of M through @, then N, [s] IFn .

Proof. By Theorem 3 and ¢ € &.

Definition 8. For M’ = (W, Ry,..., Ry, Rc, Ry,IF), the canonical structure of
$4°7 and a suitable set @ for a consistent formula ¢, define a model N =

n

<S,T1,. .. ,Tn,Tc,TJ,H—N> such that, for ¢ € {1,2, S ,n}:

— S ={[w] | we W}, which is finite as @ is finite;
—wlkps [w by pfor p € Var N® and IFy is extended to all formulas;
— T; € S x S such that [s]T;[t] iff (sIF K;9 = tIF ) for those K € &,

" C
- Te=(UTn)'
i=1
— T; C S x S such that [s]T;[t] iff (sIF Jy = ¢ IF ) for those Jy € &.

We now drop the subscript on IFy to simplify notation. As worlds in N are
equivalency classes, it will be clear as to which model is in question.

Lemma 3. N is a model of 457 (see Definition 3).
Proof. All accessibility relations are reflexive and transitive and T; C T C T7.

— T; is reflexive: For an arbitrary s € [s], (s IF K;% = s IF ¢) always holds. If
the antecedent is true, then by the definition of IF and the reflexivity of R;,
the consequence follows. If the antecedent fails, the implication is vacuously
true. Thus for all [s] € S, [s]T;[s], so T; is reflexive.
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— T; is transitive: Suppose [s]T;[t] and [¢t]T;[u] and s IF K, for K¢ € . As &
is suitable, also K;K;v € &. As R; is transitive, the 4 axiom is sound so we
have (s I Ko = s Ik K;K;v), so as [s]T;[t] and K; K¢ € &, (s Ik K; K¢ =
tIF K;4). Since K¢ € @ and [t]T;[u], (¢t IF K9 = wlk ) so u - . Thus for
K¢ € @, (slk K;1p = w - ) holds so [s]T;[u], hence T; is transitive.

— T¢ is reflexive as for every [s] € S, [s]T;[s] and T; C Te. Te is transitive by
definition.

— Ty is reflexive and transitive by the same reasoning as for 7;. It must also be
shown that Tc C T'y. Suppose [s]T;[t], then we want to show [s]Ts[t], i.e. for
JY € P, (slk Jy =tk 1) holds. If Jy € @, then as @ is suitable, K;Ju € P.
Suppose s I Jp, then as M’ is sound and S4g‘7 FJpo — K;Jp, sk K;Jyp.
Then since [s]T;[t], (s IF K;J¢ = t IF Jy) holds, so ¢ I Jy holds, and since
R is reflexive, t IF 4. Thus for J¢ € @ and [s|T;[t], (s Ik Ji = ¢ IF ) holds,

o [s]Ty[t]. Since T; C Ty, Tc C Ty.

Lemma 4 (Definability Lemma). Let S = {[s] | s € W} for some suitable set
®. Then for each subset D C S there is some characteristic formula xp such
that for all [s] € S, sk xp iff [s] € D. Note that all D are finite as S is.

Proof. Let the set A{s} be the conjunction of all ¢ € ¢ that are true at s. By

definition of [s], t IF A{s} iff [s] = [¢]. Let xp = [t]\E/D(/\{s}).

slkxp & sl \/ (/\{s})@sll—/\{t} for some ¢ € [t] € D

[tleD

< [s]=t] for some t € [t] € D < [s] € D.
Theorem 4. N of Definition 8 is a filtration of M’ through @ (cf. [12]).
A relation T is a filtration of R if it satisfies min(T/R) and maz(T/R).

Proof. Tt needs only to be confirmed that the accessibility relations T3, T¢, and
T; meet the conditions min(T/R) and max(T/R).

o T;: T, satisfies max(T;/R;) by definition so it remains to check min(T;/R;).
Suppose [s], [t] € S with s’ € [s] and ¢’ € [t] such that s'R;t’. For K;3p € & we
have

sFKap e s FKap =t Fi=th.

Thus [s]T;[t] by definition, satisfying min(T;/R;).

e Ty : Ty is a filtration of R; by the same reasoning as in the T; case, thus
min(T;/Ry) and max(Ty/Ry) are satisfied.

e T : To see that T¢ satisfies min(T¢/Rc), suppose that sRot. Let D =
{[w] € S| [s]Tc[w]}, the set of worlds reachable from [s] by T¢. It is sufficient
to show

sl CXD, (4)
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as then sRct gives t |- xp and so by definition of xp, [t] € D and so [s]T¢[t].
Now we show (4).
As IA is valid in the canonical structure,

slFC(xp — Exp) — (xp — Cxp)- (5)

To see that s IF C(xp — Exp) holds, consider the following. Suppose for some
w, sRcw and w IF xp. We want to show w IF Exp, i.e., for all i, w IF K;xp,
i.e. for all u, wR;u, u I xp. Since w I+ xp, [w] € D so [s]T¢[w]. This means
there is a path of length [ from [s] to [w] along the union of T;s. As each Tj is a
filtration of R; we also have for all those worlds u accessible from w, [w]T;[u].
Thus there is a path of length [+ 1 along the T;s from [s] to [u] and so [s]T¢[u].
This means that u I- xp, so w Ik Exp. Since the antecedent of (5) holds, we
have s IF xp — Cxp so in order to conclude (4), we must show s IF xp.
Which we have by the reflexivity of T¢. Thus T¢ satisfies min(Te/Rc).

Te must also satisfy max(To/Re). Suppose that [s]T¢[t] and for some s € [s],
sIF Cvy for Cyp € @. We must show that t I- 1. Note that as @ is suitable, for
each i, K;C, i.e. ECY € @ as well. Recall from Proposition 3 that 545‘] F
Cv¢ — EC1% so by soundness, s IF Cy = s |k ECy. As [s|T¢[t] and T is
built from filtrations of the R;s, there is a path of length [ along the R;s
from s to t. As s IF ECvy and ECY € @, Cy also holds at the next world on
this path towards ¢, for whichever R; used. By induction on the length of the
path we get t IF Cy. Since T¢ is reflexive we have t I- 1. Thus T satisfies
max(Tc/Re).

We can now finish the proof of Theorem 2 that S4SJ is sound and complete
with respect to 545‘] -models. Soundness was shown in Theorem 1.

Proof (Proof of Completeness). Suppose S457 t/ . Then {-¢} is contained
in some maximal consistent set @ and for the canonical structure M’ we have
M', 0 I —p. Defining a suitable set @ of subformulas of =, we can construct an
S4gJ—model N (Lemma 3), which, as it happens to be a filtration of M’ through
@ (Theorem 4), agrees with M’ on formulas of @ (Theorem 3) and so N, [O] Iff ¢.

Corollary 3. S4gJ ezhibits the Finite Model Property and so is decidable.

Soundness yields the following two propositions.

Proposition 4. 545‘]  Co — Jp, as was promised after Proposition 1.

Proof. Consider a model of S45'7 with W = {a,b} such that Ry = Ry = R¢ =
{(a,a),(b,b)} and R; = {(a,a), (b,b), (a,b)}. Let only a IF p and all other propo-
sitional variable fail at both worlds. While a IF Cp, a If Jp so a lf Cp — Jp so
alF =(Cy — Jg), so by soundness S457 t/ (Co — Jo).
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Proposition 5. S is a conservative extension of both S4; and S4S.

The axiomatization and models of $47 and $4¢ can be obtained by removing C
or J, respectively, from the language and axiomatization of 547 and R¢ or Ry
from its models. For more on S47 see [2,5,6]. For more on S45 see [8,10,12].
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Proof. Conservativity of $457 over S4/: We need to show that for each S4-
formula F, if 545‘1 F F, then S4;€ F F. By contraposition, suppose S4i t F.
Then, by the completeness theorem for S4i , there is a S4i—mode1 M such that
F does not hold in M. Now we transform M into an S4S‘I—m0del M* by adding
the reachability relation Rc. This can always be done and leaves the other
components of M unaltered. Since the modal C' does not occur in F', the truth
values of F' in M and in M* remains unchanged at each world, hence F' does
not hold in M*. By soundness of S457, 5457 1/ F,

Conservativity of S457 over S4%: Let G be an S4-formula not derivable in
54¢ . We have to show that G is not derivable in 545‘] either. By completeness of
S4% there is an $4¢-countermodel N for G. Make N into an $457-model N* by
the addition of R; as the total relation (alternatively, we could put Ry = R¢).
As G contains no J, at each world, these models agree on the valuation of G,
thus G does not hold in N* either. By soundness, 545‘] VG.

4 Conclusions

545‘] is a sound and complete system in which we can directly compare J and
C. As Jp — Cyp, J can be used in place of C in situations in which common
knowledge is used, such as in the assumption of common knowledge about game
rules or public announcement statements. One advantage of using J over C' is
the possibility to realize these statements in a explicit justification logic, another
is that it maybe a more accurate representation of these scenarios [4,6]. Another
opportunity this logic provides is to examine or develop an interesting class of
epistemic scenarios which exploit these nested yet distinct forms of common
knowledge. Keeping in mind the connection axioms Con and ConC, C' might
represent an oracle-like agent while J might also be an infallible agent but one
whose statements can be confirmed by evidence if needed.

There is also potential for future syntactic developments. As can be noted by
the models of S4§J, the logical strength of J can be chosen independently from
that the other agents. For instance, while the K; and C remain S4 modalities, J
could be S5 or perhaps weaker such as K4 to represent belief, while maintaining
Con. The logic can also be expanded to encompass multiple distinct J operators.

S4°7 is a logic which provides a context in which to investigate distinct
forms of common knowledge. This, together with the conservativity results of
Proposition 5, indicate that generic common knowledge is useful generalization
of common knowledge with technical and semantic advantages.
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