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Abstract Accurately quantifying total greenhouse gas emissions (e.g. methane)
from natural systems such as lakes, reservoirs and wetlands requires the spatial-
temporal measurement of both diffusive and ebullitive (bubbling) emissions. Tradi-
tional, manual, measurement techniques provide only limited localised assessment
of methane flux, often introducing significant errors when extrapolated to the whole-
of-system. In this paper, we directly address these current sampling limitations and
present a novelmultiple robotic boat systemconfigured tomeasure the spatiotemporal
release ofmethane to atmosphere across inlandwaterways. The system, consisting of
multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent
operation, enables scientists to remotely evaluate the performance of sampling and
modelling algorithms for real-world process quantification over extended periods of
time. This paper provides an overview of the multi-robot sampling system including
the vehicle and gas sampling unit design. Experimental results are shown demon-
strating the system’s ability to autonomously navigate and implement an exploratory
sampling algorithm to measure methane emissions on two inland reservoirs.

1 Introduction

Quantification of greenhouse gas emissions to atmosphere is becoming an increas-
ingly important requirement for scientists and managers to understand their total car-
bon footprint. Methane in particular is a powerful greenhouse gas, approximately 21
times higher globalwarming potential than carbon dioxide.Water storages are known
emitters of methane to atmosphere [11]. The spatiotemporal variation of release is
dependent on many environmental and biogeochemical parameters. Therefore, in
order to accurately quantify this greenhouse gas release requires long duration and
repeat monitoring of the entire water body.

M. Dunbabin (B)
Institute for Future Environments, Queensland University of Technology,
2 George Street, Brisbane, QLD 4000, Australia
e-mail: m.dunbabin@qut.edu.au

© Springer International Publishing Switzerland 2016
D.S. Wettergreen and T.D. Barfoot (eds.), Field and Service Robotics,
Springer Tracts in Advanced Robotics 113, DOI 10.1007/978-3-319-27702-8_2

17



18 M. Dunbabin

There are two primary pathways for methane to be released from water storages;
(1) diffusion, and (2) ebullition (or bubbling). Diffusion is themost common pathway
considered due to greater consistency across a waterway. Rates of methane ebullition
represent a notoriously difficult emission pathway to quantify with highly variable
spatial and temporal changes [6]. However, the importance of bubbling fluxes in
terms of total emissions is increasingly recognised from a number of different glob-
ally relevant natural systems including lakes, reservoirs andwetlands. This represents
a critical challenge to currentmanual survey efforts to quantify spatiotemporal green-
house gas emissions and reduce the uncertainty associated with bubbling fluxes. This
is where robotics can play a significant role.

In this work, a novel system for direct measurement of the combined diffusive
and ebullitive methane flux and an ability to persistently monitor a wide spatial area
is presented. Named the Inference Robotic Adaptive Sampling System, it consists
of multiple (four) networked robotic boats (see Fig. 1) and provides an open archi-
tecture allowing researchers to evaluate new sampling algorithms with customisable
scientific payloads on real-world processes over extended periods of time.

The contributions presented in this paper are; (1) A novel ASV system for nav-
igating complex inland waterways, (2) a new greenhouse gas sampling system, (3)
a multi-robot sampling strategy to survey a previously unseen environment, and (4)
an experimental evaluation of the entire system on two inland water storages.

The remainder of this paper is as follows: Sect. 2 provides background informa-
tion. Section3 describes the Inference system and the gas sampling system. Section4
describes a preliminary sampling methodology with Sect. 5 showing results from
two inland water storages. Finally, Sect. 6 draws conclusions and discusses future
research.

Fig. 1 The multi-robot Inference Robotic Adaptive Sampling System
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2 Related Work

Robotic platforms capable of persistent environmental monitoring offer an efficient
alternative to manual or static sensor network sampling for studying large-scale
phenomena. However, in practice most applications are short-term experiments for
validating existing models [3]. Recent cross-disciplinary research extensively used
robots to investigate assumptions around spatiotemporal homogeneity of environ-
mental processes such as toxic algal blooms in lakes [5] and methane production in
reservoirs [6]. These studies show that combined robotic persistence and spatiotem-
poral sampling can provide significant new insight into environmental processes.
However, there are challenges to achieving persistent robotic process monitoring,
particularly in the complex environments considered here. These primarily relate to
robotic platforms for persistent navigation within complex and often dynamic envi-
ronments, and the ability to adaptively coordinate multiple robots to appropriately
sample the process of interest.

Robotic monitoring of marine and aquatic environments has received consider-
able attention over the last two decades [3]. Whilst most studies have focused on
underwater vehicles with restricted payloads and endurance, there is now increasing
focus on Autonomous Surface Vehicles (ASVs) with greater endurance and payload
carrying capacity for large-scale unsupervised environmental monitoring [12, 13,
16]. These systems are primarily designed for oceanographic surveys and are not
particularly suitable for relatively unexplored inland waterways with challenging
and often varying navigational requirements.

Recently, a series of ASVs have been designed and applied on inland waterways.
Typically, these catamaran style vehicles are of sufficient size for carrying scientific
payloads for tasks such as mapping hazards above and below the waterline [4], and
water quality monitoring [1, 7]. Whilst demonstrating environmental monitoring
capabilities, there is little flexibility for adding external payloads and their navigation
capabilities are generally customised to the specific environment. The provision of
a flexible, yet capable, robotic platform is a key consideration in this research.

Navigation around narrow inlandwaterways is oftenmore challenging than for the
ocean due to issues such as above, below and on-water obstacles and GPS reliability
(e.g. in mountainous and forested systems). A number of sensors have been used to
detect obstacles and in identifying free-space paths.Hitz et al. [7] usewater depth only
for detecting shallow regions, whereas Ferreira et al. [4] and Leedekerden et al. [9]
use scanning laser range finders and sonar to produce high-resolution 3Dmaps of the
above and below water environment. Cameras have also been proposed for detecting
specific objects on the water [2, 4]. Scherer et al. [14] have used cameras and laser
scanners (albeit on an aerial robot) to map the edges of waterways and the free-space
above the water as the robot traverses them. Whilst high-resolution sensors such as
lasers and sonar can provide robust navigation capabilities, for persistent monitoring
their power consumption can be a particular challenge. Exploiting lower power, and
cost, sensing modalities such as vision and ultrasonics to provide sufficient obstacle
detection capabilities is a goal of this research.
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The overall coordination of the mobile sensors (robots) is critical to accurately
measure spatiotemporal environmental processes. An emerging research area for
ASVs is that of mobile adaptive sampling where the ASV can alter its trajectory to
improve measurement resolution in space and time (e.g. [17]). The survey paper [3]
summarises advances in robotic adaptive sampling for environmental monitoring.
Past research has focused primarily on the Gaussian Process-based reconstruction
of stationary processes using combinations of mobile and static sensors networks
[8, 17]. Whilst demonstrating the ability to capture and reconstruct various para-
meter distributions, these studies offer simulation only or short duration small-scale
experimental validation. Larger-scale adaptive coordination of mobile sensing assets
(underwater gliders) has been considered for tracking large oceanographic plumes
in [10, 15]. Developing and demonstrating multi-robot adaptive sampling algo-
rithms for the large-scale monitoring and tracking of spatiotemporal environmental
processes is an over-arching goal of this research.

3 The Inference Autonomous Surface Vehicle

This section describes the current Inference Robotic Adaptive Sampling system and
the greenhouse gas sampling payload system as applied and evaluated in this paper.

3.1 High-Level Scenario

The Inference Robotic Adaptive Sampling system was developed with the goal of
providing a shared resource of multiple networked ASVs to allow researchers to
remotely evaluate new sampling algorithms on real-world processes over extended
periods of time. A typical use scenario proposed for the system is outlined below:

1. The ASVs, each carrying a scientific payload, are deployed on a water body.
2. Based on a desired sampling protocol (e.g. random, adaptive) and process mod-

elling requirements, new sampling locations are determined. This can be achieved
either from a remote centralised, or an on-board decentralised process.

3. Determine which ASV goes to each of the updated sample locations. This may
involve optimising a cost function (e.g. minimising energy and/or travel time,
maximising solar energy harvesting).

4. Each ASV navigates to their commanded sampling location.
5. Each ASV takes its scientific measurement and reports it back through the net-

work.
6. Repeat steps 2–5 until a termination condition is met.

The system described in this paper is working towards achieving this goal with
a preliminary experimental evaluation of this scenario using a simplified random
exploration algorithm as described in Sect. 4.
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Fig. 2 One of the autonomous surface vehicles from the Inference system. The navigation sensors,
computing and batteries are located underneath the two solar panels. The scientific payload is
attached to the moon-pool opening underneath the camera. Note the pan-tilt dome camera visible
was not used in this study, only the smaller USB camera directly in front of it

3.2 Hardware Overview

The Autonomous Surface Vehicles used in the multi-robot Inference system are cus-
tom designed for persistent and cooperative operation in challenging inland water-
ways. The overall hull shape (see Fig. 2) has four key features; (1) A low draft
allowing traversal in shallow water, (2) open sides and low curved top deck to min-
imise windage and the associated drift when station keeping during sampling, (3) a
large top surface area angled for maximising energy harvesting from the solar panels,
and (4) a moon-pool (open centre section) with standardised attachment points to
mount custom sensor packages. The overall dimensional and mass specifications for
the ASVs are given in Table1.

Table 1 Physical and
performance specifications of
the ASVs

General specifications

Length 1.50 m

Width 1.50 m

Height (above waterline) 0.7 m

Draft 0.15 m

Weight 33 kg (without payload)

External payload: 4 kg

Propulsion 2 × BlueRobotics T100
brushless electric thrusters

Power 12V 20Ah LFP battery

2× 40 W solar panels

Speed Max: 2.3 ms−1

Typical survey: 0.5–0.8 ms−1
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Propulsion of theASVs is provided by twoBlueRobotics T100 brushless thrusters
mounted at the rear of each side of the hull. These provide the forward motion as
well as steering (through differential control) of the vehicles. The system is powered
by a single 20 Ah Lithium Iron Phosphate battery and two 40W solar panels. This
limited energy capacity requires advanced path-planning algorithms to coordinate
the ASVs for maximising energy harvesting as well as to meet the overall sampling
objectives. These algorithms are current ongoing research and not considered in this
paper.

The ASVs are required to autonomously navigate inland waterways using only
their on-board sensors. Each ASV has a suite of low-cost navigation sensors which
include a GPS, magnetic compass with roll and pitch, and a depth sensor for mea-
suring bathymetry. Of particular importance is the ability to detect the water’s edge
and potential obstacles on top of the water. The obstacle sensors used in this study
are a USB camera (Microsoft LifeCam) mounted above the moon-pool, and four
Maxbotix ultrasonic range sensors mounted just under the leading and trailing edges
of the top deck. These sensors are used to detect the edge of the water and at-surface
structure such as reeds, trees and water lilies (see Sect. 4). To minimise power con-
sumption and cost, typical scanning laser-based or radar sensors are not currently
used, although they can be added if required in future scenarios.

The ASV’s thrusters are controlled via a custom designed motor and sensor inter-
face board. This system is capable of providing waypoint control and ultrasonic and
depth sensor based obstacle avoidance. To facilitate vision-based obstacle avoidance,
each ASV has an Odroid C1 ARM Cortex-A5 1.5 GHz quad core CPU running the
Robotic Operating System (ROS) and OpenCV.

There are two communication systems on-board the ASVs. The first is a 2.4 GHz
WiFi system allowing communication to a gateway located on a floating platform
on the water storage. This gateway has a wireless router and 3G modem allowing
bidirectional data transfer from a centralised server located at the Queensland Uni-
versity of Technology. The second is a 2.4GHz wireless embedded system (XBee
IEEE 802.15.4) allowing serial communication between each vehicle as well as with
existing static floating sensor nodes located on the water body.

Each ASV is capable of carrying additional custom payloads weighing up to
4kg. The payload is mounted under the moon-pool opening via six attachment bolts.
Currently available payloads include gas sampling (see Sect. 3.3), multi-beam and
profiling sonars, water sampling and a winch system for water column profiling. A
six pin connector is provided for use by the custompayloads. This connector provides
power as well as bi-directional serial communications via a standardised protocol
for triggering sampling, and reporting sample completion and possible faults.

3.3 Gas Sampling System

The goal of this study is tomeasure greenhouse gas emissions (efflux) from thewater-
way. Figure3 shows the self-contained greenhouse Gas Sampling System (GSS)
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developed to autonomously measure both the diffusive and ebullitive efflux. This
payload is mounted underneath the ASV via the moon-pool payload attachment
points as described in Sect. 3.2.

The GSS (Fig. 3) automates the traditional manual chamber-based sampling
process and consists of three primary components; (1) A frame allowing the lower-
ing and raising of a chamber into the water, (2) a chamber fitted with a continuous
methane gas (CH4) sensor and purge valve, and (3) a physical gas sampling unit.

The process of sampling the greenhouse gas being released from the water to the
atmosphere using theGSS is illustrated in Fig. 4 and consists of four steps. Firstly, the
ASV navigates to the desired sampling location it goes into a weak station-keeping
mode. This limits the control input to the motors to reduce any disturbance that may
influence the CH4 efflux at the expense of a slightly increased station bound. At this

Fig. 3 The Gas Sampling System (GSS) used to measure greenhouse gas (methane) release to
atmosphere from the inland water storages. The GSS is attached to the ASV as described in Sect. 3.2

Fig. 4 The sequence of actions required to measure greenhouse gas using the GSS
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point, the chamber purge valve (see Fig. 3) is opened and the chamber lowered using
the linear actuator to achieve a desired air volume within the chamber (Fig. 4a–c).
The second step involves closing the chamber purge valve and letting the methane
concentration within the chamber increase for a predetermined incubation time (see
Sect. 4 for a discussion on incubation time). During incubation, the methane sensor
continuously measures the concentration within the chamber (Fig. 4b, c). At the end
of the incubation, the third step (Fig. 4c) calculates the overall gas efflux rate from
the gradient of the recorded methane concentration time history. Also a physical
sample of gas from the chamber is collected for laboratory analysis using the gas
sampling unit (see Fig. 3). This involves a sequence of actions that firstly purges the
sample tube using the pump, then loads a pre-evacuated 12mL vial into the sampling
unit. A linear actuator on the unit drives a hypodermic needle into the vial whilst
pumping gas from the chamber. Once 20mL of gas has been pumped into the vial
(over pressure sampling technique), the needle retracts and the unit discharges the
vial ready for the next sample.

After sampling is completed, the final step involves opening the chamber purge
valve and raising the chamber out of the water. At this point the ASV can move to
the next sample location.

4 Technical Approach

This section outlines technical details relating to the sampling of greenhouse gas
(methane), obstacle avoidance, and the sample site selection algorithms used for
coordinating a number of the ASVs across a previously unexplored water body.

Gas Sampling Protocol

During the sampling phase, the concentration measured by the methane sensor is
polled every 2 s for the entire incubation period. A linear least squares line of best
fit applied to this time history and the gradient used to calculate the flux rate.

A key consideration for greenhouse gas sampling is determining the minimum
incubation time that maximises detection accuracy. The output from the continuous
methane sensor in theGSS is quantised to 0.01%.While diffusive fluxes are typically
less than 50 mg m−2 d−1, ebullitive fluxes in our region can be has high as 22,000
mg m−2 d−1 [6]. Varying the incubation time and/or head-space ratio (i.e. the ratio
of chamber surface area (Ac) to its internal air volume (Vc)) can be used to achieve
a desired detection accuracy. Figure5 shows the predicted variability in relative
measurement error (i.e. the percentage error between a true methane flux to that
which can be measured by the GSS) versus incubation time for different methane
efflux rates and head-space ratios. As can be seen, longer incubation times lead
to reduced errors as with increasing head-space ratios. However, longer incubation
times mean less sample points can be performed per day. In this study, the primary
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Fig. 5 The predicted
percentage relative
measurement error of
methane flux rate with
incubation time for the
prototype GSS (see Sect. 3.3)
with a sensor output
resolution of 0.01%. Two
efflux rates are considered,
1000 and 5000 mg m−2 d−1

with head-space ratios
(Ac/Vc) of 10 and 20 m−1

interest is the detection of methane “hot-spots”, that is where it is bubbling from the
water. Therefore, incubation times of 15–20min were chosen here to allow detection
of methane rates as low as 1000 mg m−2 d−1, albeit at lower accuracy. However, the
higher the efflux rate, the more accurate the measurement.

Obstacle Avoidance

The ASVs have three sensors for obstacle avoidance; (1) ultrasonic sensors, (2) a
camera, and (3) water depth sensor. The ultrasonic sensors have a maximum range
of 6.5m and are used to detect above water objects in front of the ASV such as land,
reeds, trees and larger buoys. The camera, only used when moving between sample
waypoints, is used to detect water lilies on the water’s surface. The image stream is
processed at 1Hz.With the camera fixed to theASV, the horizon can be approximated
and only the scene below the horizon considered. Image segmentation is conducted
using an empirically determined threshold on the green and blue color channels with
an approximate water lily size threshold to reduce noise. Figure6 shows an example
image from an ASV and the resulting segmentation of the water lilies (shown in red).

To detect shallow, non-traversable water, the depth of water below the ASV is
continuously monitored. The outputs from all obstacle sensors are parsed by the
on-board controller. When a detection occurs, the ASV trajectory is modified as
described in the following section.

Multi-robot Sample Site Selection

A random walk-based algorithm is proposed here for selecting locations for n ASVs
to sample the environment in an attempt to identify regions with high methane gas
flux. There are two key assumptions: (1) the boundary of the water body is known
from sources such as GIS, and (2) the ASVs can communicate between each other
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Fig. 6 Example of image segmentation from the ASV for detecting on-water obstacles such as
water lilies (Left original image. Right image with detected obstacles highlighted in red)

and can share their list of previous and next sample locations. In this study, we do
not use bathymetry but it could be used in the future to help guide the algorithm.

The selection of new sample locations is based on an online random walk and
potential fields. Iterating through each robot, the basis of the algorithm is as follows:

1. All previously sampled sites for all robots are represented as 2D Gaussian poten-
tials centred at those points with fixed amplitude and standard deviation.

2. A random position at radius r from the current position is selected. If this position
is not on land, and the value from the closest Gaussian potential is less than a
threshold, this becomes the next sample point for that robot. If this condition is
not met, the process is iterated until a location can be found. If no location can be
found after a set number of iterations, the search radius is increased by �r and
the process repeated until a site is found or some termination criteria is met.

3. To increase local intensification of sampling in methane “hot-spots”, if the mea-
sured flux rate at the robot’s current location exceeded some threshold, the search
radius for the next sample step is set to βr where (0 < β ≤ 1) and the potential
threshold trigger relaxed.

During waypoint execution each robot drives in a straight line towards the goal. If
the water depth falls below a threshold (i.e., too shallow), or an obstacle is detected,
the vehicle starts to move either clockwise or counter clockwise around the contour
until a new straight line to the goal can be achieved. This entire process is repeated for
all robots until a desired number of samples are collected or some other termination
condition met.

5 Results

An experimental evaluation using two ASVs with gas sampling payloads was con-
ducted on two water reservoirs in South East Queensland, Australia; (1) Gold Creek
Dam, and (2) Little Nerang Dam. These are established study sites and selected as
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they exhibit regions of significant methane ebullition and provide a range of chal-
lenging operational conditions for evaluating robotic systems.

Previous studies [6] had collected georeferenced outlines of the water’s edge
(boundary) as well as bathymetry maps for both sites. Only the boundary was used
in this study for implementing the sample site selection algorithmdescribed in Sect. 4.
Figure7 shows the two ASVs used in this study on Gold Creek Dam.

The first experiment was conducted at Gold Creek Dam. This is a small, relatively
open dam with a narrowing distal arm. The sample selection algorithm was run to
collect 12 samples for each ASV, with a step radius of 100 m, and intensification
factor of 0.5. The trigger was set at 1000 mg m−2 d−1 with 20min incubations. The
time to complete the sampling was approximately 5 h. Figure8 shows the results of
implementing the sample strategy for both ASVs. These results show the ASVs were
capable of navigating the water storage and implementing the sample protocol. The
online detections of methane exceeding the trigger threshold (markers in yellow)
correspond to areas physically observed to have methane ebullition. As ebullition
is essentially a point source emitter, there can be extreme variability even at short
spatial and temporal scales (see [6]). Therefore, whilst ebullition can often be seen
in expected regions (e.g. top image of Fig. 8) a sample within that region does not
always guarantee the capture of gas bubbles sufficient to achieve high rates.

A second experiment was conducted at Little Nerang Dam. This is a longer and
narrower water storage with a steep sided catchment. The sample selection was run
with a total of 30 samples for each ASV, step radius of 200m and an intensification
factor of 0.5. The trigger was set at 1000 mg m−2 d−1 with 15min incubations. The
time to complete the experiment was approximately 10.5 h.

Figure9 shows the results of implementing the sample strategy for both ASVs.
These results again show the ASVs ability to implement the sample protocol and

Fig. 7 The two ASVs at the start of a sampling campaign on Gold Creek Dam, Queensland. The
retracted gas sampling unit is visible underneath the ASV on the right
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Fig. 8 Sampling locations and ebullition detections from 20min incubations using two ASVs on
Gold Creek Dam, Queensland. Top An aerial image of Gold Creek Dam with red overlay showing
the regions of physically observed methane ebullition. Lower The trajectory and resulting sample
locations indicated by the circles for ASV1 and triangles for ASV2. The start location for both
ASVs is indicated by the green dot. The circles and triangles highlighted in yellow indicate the
online chamber measurements that exceeded 1000 mg m−2 d−1

navigate the water storage. The online detections of methane exceeding the trigger
threshold (markers in yellow) are consistent with previous research at the dam [6].

Whilst these experiments demonstrated the system for real-time sampling of
greenhouse gases across water bodies, the online component of gas sampling system
was not optimised for detecting lower (and more common) flux rates of less than
1000 mg m−2 d−1. Future work will look at adaptive chamber head-space control
as well as higher precision sensors to improve the utility of the system for accurate
quantification of the combined diffusive and ebullitive flux of greenhouse gases.
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Fig. 9 Sampling locations and ebullition detections from 15min incubations using two ASVs
on Little Nerang Dam, Queensland. Left An aerial image of Little Nerang Dam with red overlay
showing the regions of physically observed methane ebullition. Right The trajectory and resulting
sample locations indicated by the circles for ASV1 and triangles for ASV2. The start location
for both ASVs was at the dam wall located at the northern most end. The circles and triangles
highlighted in yellow indicate the online chamber measurements that exceeded 1000 mg m−2 d−1

6 Conclusions

This paper has presented a novel robotic sampling system for conducting large-scale,
persistent monitoring on complex inland waterways. The system, named Inference,
consists of multiple networked Autonomous Surface Vehicles (ASVs) carrying a
range of scientific payloads. Experimental results demonstrate the ASV’s ability to
navigate complex waterways whilst executing a multi-robot online sampling pro-
tocol. Using a custom Gas Sampling System (GSS) attached to each ASV, experi-
mental results also show the robotic system is capable of measuring and localising
strong greenhouse gas release (methane) to atmosphere. Future research is focused on
developing more sophisticated multi-robot adaptive sampling algorithms to achieve
persistent monitoring and mapping of spatiotemporal processes whilst considering
energy, speed and sampling constraints of the vehicles. Additionally, new sensors
and algorithms for head-space control of the GSS are being developed to improve
its lower detection limit for sampling regions with low gas flux rates.
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