
Chapter 2
Bayesian and Evidential Paradigms

Abstract The first step is to distinguish two questions:

1. Given the data, what should we believe, and to what degree?
2. What kind of evidence do the data provide for a hypothesis H1 as against an

alternative hypothesis H2, and how much?

We call the first the “confirmation”, the second the “evidence” question. Many
different answers to each have been given. In order to make the distinction between
them as intuitive and precise as possible, we answer the first in a Bayesian way:
a hypothesis is confirmed to the extent that the data raise the probability that it is true.
We answer the second question in a Likelihoodist way, that is, data constitute
evidence for a hypothesis as against any of its rivals to the extent that they are more
likely on it than on them. These two simple ideas are very different, but both can be
made precise, and each has a great deal of explanatory power. At the same time, they
enforce corollary distinctions between “data” and “evidence”, and between different
ways in which the concept of “probability” is to be interpreted. An Appendix
explains how our likelihoodist account of evidence deals with composite
hypotheses.
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Two Basic Questions

Consider two hypotheses, H1, that a patient suffers from tuberculosis, and H2, its
denial. Assume that a chest X-ray, administered as a routine test for the presence of
tuberculosis, comes out positive. Given the datum that the test is positive, and
following the statistician Richard Royall’s lead, one could ask three questions:1

1. Given the datum, what should we believe, and to what degree?
2. What kind of evidence does the datum provide for H1 against an alternative

hypothesis H2, and how much?
3. Once questions 1 and 2 have been answered, what should we do?

We call the first question the confirmation question, the second the evidence
question, and the third the decision question.2 Like Royall, we think that they are
very different questions. Our concern in this monograph is with the first two.3 A
number of answers have been given to each. We want to use two of these answers
to make clearer an intuitive distinction between confirmation and evidence which
the questions presuppose, and then to show how this distinction both advances our
understanding of uncertain inference and provides solutions to notable epistemo-
logical puzzles. To this end, and for illustrative purposes, we draw on the Bayesian
and Likelihood statistical paradigms, the first to make precise a conception of
confirmation, the second of evidence. Each is at least somewhat familiar to many
philosophers and scientists, and all statisticians. In Chap. 3, we will show in more

1See Royall (1997). That the distinction between belief and evidence questions is pre-theoretically
intuitive is underlined by the fact that Royall himself is a Likelihoodist who eschews any reference
to an agent’s subjective degrees of belief (he is, however, a Bayesian in regard to the decision
question). Despite the philosophical differences that one or another of us has with him, our
monograph owes a great deal to his work. See in particular Royall (2004).
2For a Bayesian response to Royall’s three questions, see Bandyopadhyay (2007).
3Mark Kaplan (1996) is one of the very few philosophers to take note of the confirmation/evidence
distinction (p. 25, footnote 32), but his argument for making it seems to involve no more than a
reference to Nelson Goodman (quoted on p. 26, footnote 34), to the effect that “[a]ny hypothesis is
‘supported’ by its own positive instances; but support … is only one factor in confirmation.”
Kaplan’s own very interesting and extensive account of evidence is itself generally “Bayesian” and
makes no use of likelihoods. Goodman thinks that since incompatible and arbitrary hypotheses are
“supported by the same evidence,” there must be another “linguistic” (data-independent) factor
involved in “confirmation.” As we will see in Chap. 9, Goodman’s well-known “grue paradox,”
which he uses to argue for this claim, depends on running “confirmation” and “evidence” together.
Others who have made a confirmation/evidence distinction include Ellery Eells and Branden
Fitelson in their (2000) and Malcolm Forster and Elliott Sober in their (2004). Forster and Sober
are neither Bayesians nor Likelihoodists, which fact underlines our claim that the distinction is
pre-theoretical, that is to say, statistical-paradigm independent.
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detail how confirmation and evidence differ, and as a corollary how “data” are to be
distinguished from “evidence.” In Chap. 4 we consider, and then reject, four very
general objections that have been made to the kind of account we set out in this
monograph. In Chaps. 5, 6, 7 and 8 we will discuss some modifications of and
alternatives to them.

Probabilities and Beliefs

On the Bayesian way of construing what we (and not Royall) call the “confirmation
question”, the answer has to do with beliefs and with belief probabilities. On it,
data confirm (disconfirm) a hypothesis just in case they raise (lower) our degree of
belief in it. In John Earman’s vocabulary, we “probabilify” hypotheses by the data.4

There are at least three reasons for adopting a belief-probabilistic approach, over
and above various difficulties with the alternatives to doing so.

First, such an approach reflects the inductive character of the relation between
data and hypotheses. As we emphasized in Chap. 1, hypotheses “go beyond” the
data enlisted to support them in the sense that all of the data gathered might be
correct and yet the hypothesis, on the basis of further such data, be false.5 One way
in which to put this is to say that hypotheses are never more than probable given the
data.

Second, the mathematical theory of probabilities is well understood, universally
accepted, and precise. It allows for the methodical re-adjustment of the probabilities
of hypotheses over time in the light of new or different data, and thus captures the
non-monotonic character of inductive inference. In this way it also allows us to
rank-order hypotheses with respect to the data that have been gathered or observed.

Third, the use of probabilities affords simple and straightforward measures of
relevance. Thus data D are relevant to the confirmation of a hypothesis H just in
case Pr(H│D) ≠ Pr(H). Similarly, an auxiliary hypothesis H’ is useful in predicting
data from a target hypothesis H just in case Pr(D│H & H’) ≠ Pr(D│H), and so on
for many other examples.

There is more controversy in construing probabilities in this particular context as
degrees of “belief”, something in the heads of agents, and in this sense “subjective.”
The construal can be bolstered by two considerations.6

4Earman (1992).
5Although most of the hypotheses we will use to illustrate our argument do not take the form of
universal conditionals, “All A are B,” it is especially clear in their case that the claims they express
typically outrun the inevitably finite data gathered to support them.
6Understanding probabilities as degrees-of-belief and connecting them to confirmation has a long
history. See, for example, (Keynes 1921, pp. 11–12). Carnap, too, thought that inductive proba-
bility, i.e., the probability of the conclusion of an inductive argument given its various data
premises, is “ascribed to a hypothesis with respect to a body of evidence… To say that the
hypothesis h has the probability p (say 3/5) with respect to the evidence e, means that for anyone to
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First, confirmation has to do with something like a “logical” (although not
deductively valid) relation between data and hypotheses, i.e., it has an inferential
structure. But inferential structures are propositional in character, they express
relations between something like sentences. Beliefs on the usual account are
propositional attitudes, they have the sort of sentential form that allows them to
enter into inferences.7 Beliefs like propositions are the bearers of truth and falsity,
and probabilities attach to both.

Second, Royall’s “what to do?” question presupposes that the first be expressed
in terms of degrees of belief. For on the usual Aristotelian account, we act not on
the basis of what is true or somehow established, but on the basis of what we
believe to be true or established. For Bayesians, confirmation is linked to action by
way of the concept of belief.8

To say that this account of confirmation is probabilistic, and that probabilities in
connection with it are identified with degrees of belief, is to say that this account of
confirmation is generally “Bayesian.”9 What makes it more specifically Bayesian is
that central importance is accorded to Bayes Theorem, a way of conditioning

(Footnote 6 continued)

whom this evidence and no other relevant knowledge is available, it would be reasonable to
believe in h to the degree p, or, more exactly, it would be unreasonable for him to bet on h at odds
higher than [p(h)/p(1-h]).… Thus inductive probability measures the strength of support given to
h by e or the degree of confirmation of h on the basis of e (Carnap 1950, p. 441) As Skyrms (1986,
p. 167) summarizes the situation, the concepts of inductive and epistemic (which, as we saw in
Chap. 1, applies to statements rather than arguments) probabilities were introduced … as
numerical measures grading degree of rational belief in a statement and degree of support the
premises give its conclusion…. Why should epistemic and inductive probabilities obey the
mathematical rules laid down for probabilities and conditional probabilities? One reason that can
be given is that these mathematical rules are required by the role that epistemic probability plays in
rational decision” (our italics). James Hawthorne helped prepare this brief history. See his (2011).
For our purposes, it is as important to note that neither Keynes, nor Carnap, nor Skyrms distin-
guishes between confirmation and evidence (as the title of the selection from Carnap’s work in
Achinstein 1983, “The Concept of Confirming Evidence,” makes clear).
7Although it is not needed for our argument, it is worth mentioning that a
confirmation-generalization of logical entailment has been worked out by Crupi et al.(2013).
8On the traditional account of voluntary action, an action is voluntary just in case it is performed
by a rational agent on the basis of her desires and beliefs. For Skyrms and other Bayesians,
“rational agency” requires at a minimum that the agent’s beliefs conform to the rules of the theory
of probability.
9There are other ways in which to model belief within the context of a confirmation theory, for
example, the Dempster-Shafer belief function. See Shafer (1976). Since the probability-based
account is well-known and has a long tradition, we are resorting to it.
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degrees of belief on the data gathered. At any time ti, Bayes Theorem (to be
described very shortly) tells us to what extent it is reasonable to believe a particular
hypothesis given the data. On this account of confirmation, an agent should change
her degree of belief in a hypothesis H from ti to ti+1 by the amount equal to the
difference between the posterior probability of H, Pr(H│D), and Pr(H), its prior
probability.

Bayesian confirmation theory is “subjective” in the sense that all probabilities
are identified with degrees of belief and confirmation with the way in which new
data raise the probability of initially-held or prior beliefs. That said, many
philosophers believe that some Bayesian approaches are more “objective” than
others, depending on the constraints put on the determination of prior probabili-
ties.10 Those who reject a Bayesian approach in toto do so entirely on the basis of
such “subjectivity”, large or small, which in their view is incompatible with the
objectivity of science, although they also allege that subjective belief leads to
paradox. We will try to unravel the alleged paradoxes later in this chapter and in
Chap. 9. But we will not try to defend the Bayesian approach against every chal-
lenge. We think that the rule of conditional probability on which it rests makes
precise the notion of learning from experience, and that learning from experience is
the intuitive basis of all confirmation. Our use of the Bayesian approach in this
monograph, however, is purely instrumental, and is intended to make the distinction
between confirmation and evidence as sharp as possible.

Bayesian Confirmation

The account of confirmation we take as paradigm involves a relation, C (D, H, B)
among data D, hypothesis H, and the agent’s background information B.11 However
it is further specified, it is modeled on the basic rules of probability theory including
the rule of conditional probability, together with some reasonable constraints on
one’s a priori degree of belief in whatever empirical hypothesis is under consid-
eration. If learning from experience is to be possible, one of these constraints is that
the agent should not have an a priori belief that an empirical hypothesis is true to
degree 1, i.e., with full certainty, or 0, in which case it would have to be
self-contradictory. This said, the agent learns from experience by up-dating her

10See Bandyopadhyay and Brittan (2010).
11Except when it is important, we leave out reference to the background information in what
follows.
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degrees of belief that hypotheses are true by conditionalizing on the data as she
gathers them, i.e., in accord with the principle, derivable from probability theory,
that Pr(H│D) = Pr(H)Pr(H & D)/Pr(D). Assuming that Pr(D) ≠ 0, her degree of
belief in H after the data are known is given by Pr(H│D). Thus, D confirm H if and
only if Pr(H│D) > Pr(H). Call this the Confirmation Condition.12 It is qualitative,
i.e., compares the probabilities of a hypothesis before and after data have been
collected, the intuitional basis of this conception of confirmation. This definition
rests, as do most Bayesian conceptions of confirmation as a probability measure, on
the following principle: for any H, D1, D2,, the confirmation (disconfirmation) of
H in the light of D1 is greater (less) than the confirmation(disconfirmation) of H in
the light of D2 just in case Pr(H│D1) > (<) Pr(H│D2).

13 This principle makes
explicit that as the probability of the hypothesis increases (decreases) as a result of
further data-gathering, so too does its degree of confirmation (disconfirmation).
A quantitative notion of confirmation of a hypothesis at any given time, is mea-
sured, for instance, in terms of the difference between its prior and posterior
probabilities.14 A hypothesis is always confirmed to some degree if the confirma-
tion condition is satisfied. Whether it is “low” or “high” depends on the particular
confirmation measure chosen,15 the implicit standards of particular scientific
communities, and the purposes of the investigator. On its Bayesian reading, the
posterior probability of a hypothesis H equals its prior probability multiplied by the
probability of D given H, Pr(D│H), divided by the marginal probability of D,
Pr(D):

Pr HjDð Þ ¼ Pr Hð ÞPr DjHð Þ=PrðDÞ ð1Þ

12Or as it is sometimes called, “the positive relevance condition.” See Salmon (1983) for an
extended argument in behalf of the primacy of this condition in an analysis of confirmation.
13Following Crupi et al. (2013). The article includes a long list of Bayesians who subscribe to this
principle.
14Clark Glymour (in an e-mail comment to us) and Peter Achinstein (2001, especially Chap. 4)
object that this sort of account has a counter-intuitive consequence, that the same data could
confirm incompatible hypotheses to different degrees. But so long as our assignments of degrees of
belief are consistent, i.e., do not violate the rules of probability theory, it is possible to be rationally
justified in believing incompatible hypotheses to different degrees on the basis of the same data.
15That is to say, we use this as an exemplary measure of degree of confirmation. Many others are
possible. See Fitelson (1999), for a discussion of the sensitivity of confirmational values to the
measure used. We believe that the choice of a specific confirmation measure depends on the type
of question one is asking. The same idea, that the type of question asked determines the measure
chosen, applies to the evidence question as well. Although we have adopted the likelihood ratio to
weigh evidence, different evidential measures would be required if we were to ask a different set of
evidential questions. See Taper et al. (2008) and Chap. 5 for further discussion of alternative
measures.
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Pr(H│D) is also called the conditional probability of H given D. The prior prob-
ability of a hypothesis represents the agent’s degree of belief that the hypothesis is
true before (i.e., prior to) new data bearing on the hypothesis have been gathered.
This agent-relative prior probability component of the definition is the most con-
troversial element in the application of Bayes’ Theorem, and will be discussed in
more detail later.

The quantity Pr(D│H) is often referred to in the philosophical literature as the
likelihood. While numerically the likelihood of the hypothesis given the data is
equal to the probability of the data given the hypothesis, likelihood and probability
are not the same thing; likelihood is considered a function of the hypothesis,
whereas the probability is considered a function of the data. We here adopt the
common philosophical notation of denoting the likelihood by Pr(D│H) rather than
the common statistical notation of L (H; D),16 but do not mean to imply that the
hypothesis H needs to be considered a random variable.

The likelihood function provides a tool, through the likelihood ratio, to answer
the question, “How much support for a hypothesis is there in the data relative to
another hypothesis?” The likelihood function is an important tool for Bayesians and
non-Bayesians alike, but too rarely accorded the kind of importance that we do
here.

The final element of Eq. 1 is Pr(D). This is calculated as the marginal probability
of the data over the alternative hypotheses, that is, the probability that D would
obtain, averaged over H and ̴ H:17

Pr Dð Þ ¼ Pr Hð ÞPr DjHð Þþ Pr �Hð ÞPr Dj �Hð Þ: ð2Þ

16In the eyes of many statisticians this notation signals the difference between “probability” and
“likelihood,” as two different concepts. More than a simple notational difference is involved. The
“│” notation indicates conditioning on a random variable, i.e., in the case of Pr(D│H) the
hypothesis is a random variable, while Pr(D; H) indicates that the data are conditioned on a
variable that is considered fixed. The first is fundamentally Bayesian, the second is fundamentally
evidentialist.
17For convenience, hypotheses are most often presented as exhaustive pairs, H and ̴H, but in theory
the list of hypotheses considered is not limited to such pairs. It is difficult, among other reasons, to
compute the probability of the data under the catch-all hypothesis [Pr(D│ ̴ H), and in consequence
it is difficult to calculate the posterior probability of the catch-all. This difficulty then extends to
comparing the posterior probability of the catch-all with the posterior probabilities of other
hypotheses. We avoid such difficulties by confining our discussion to simple hypotheses. It might
be added here that on the present account of what is often called “incremental confirmation,” the
Special Consequence Condition does not hold see Salmon (1983, p. 106). To handle objections in
this connection, Kotzen has produced a principle which he calls “Confirmation of Dragged
Consequences:” If [Pr(H│D) > Pr(H), and H1 entails H2, and Pr(H2) < Pr(H1│D)] then
Pr(H2│D) > Pr(H2). See Kotzen (2012).
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Evidence and Likelihood Ratios

As we understand it, evidence invariably involves a comparison of the merits of two
hypotheses,18 H1 and H2 (possibly, but not necessarily, ̴ H1) relative to the data D,
background information B, and auxiliaries A.19 This is to say that we distinguish
“evidence” from “data.” All evidence depends on data. But data constitute evidence
only when, in context, they serve to distinguish and compare hypotheses. Four
preliminary points might be made in this connection.

First, it is a commonplace that not all data constitute evidence. Whether they do
so or not depends on the hypothesis being tested, whether the data “fit” or are
relevant to appraising the hypothesis. Whether data constitute evidence is a matter
of context. Data themselves, which are often taken as a first approximation as the
reports of observations and the results of experiments, are in this sense context-free.

Second, data are paradigmatically invoked as evidence in the history of science
in a comparative context; Galileo’s sighting of Jupiter’s moons was rightly taken as
evidence for the truth of the Copernican as against the Ptolemaic hypothesis.

Third, a comparative account of evidence meets the demand of one key goal of
science. The goal is to understand and explain natural phenomena. To do so,
scientists propose descriptive-explanatory models of these phenomena, and seek
better and better models as closer and closer approximations to the truth. We think
that there is in some meaning of the words, truth or reality which we study with the
help of models. But, none of the models are true since they all contain idealizations
which are false. Our evidential framework is designed to quantify in what sense and
by how much one model is a superior approximation to the truth about natural
phenomena than another.

Fourth, a distinction between data and evidence first allows us to understand and
then helps resolve many if not all of the difficulties that beset traditional theories of
confirmation. In Chap. 9, for example, we take up “the old evidence problem” for
subjective Bayesian accounts of confirmation. Unless a distinction between data
and evidence is made, the problem is trivial. To the question “does old evidence
provide evidence for a new theory?” the obvious answer is “yes, of course.” But the

18Statisticians prefer to use the term “models,” by which they mean statistical models that allow for
quantitative testing vis-à-vis the data, rather than “hypotheses” in this connection. Although we
mostly stick to the more general (albeit vaguer) philosophical usage, the difference in meaning
between the terms is important. As we emphasize at the end of this chapter in connection with
various interpretations of probability, a hypothesis is a verbal statement about a natural state or
process, a model is a mathematical abstraction that captures some of the potential of the
hypothesis. Although we occasionally use the terms interchangeably, it matters a great deal
whether one has models or hypotheses in mind when it comes to the correct characterization of the
hypothesis-data and model-data relationships.
19Again in what follows, and except where it matters, we will not include reference to A or B in our
formulations.

22 2 Bayesian and Evidential Paradigms

http://dx.doi.org/10.1007/978-3-319-27772-1_9


question is no longer trivial when it is re-phrased: “do old data provide evidence for
a new theory?” The answer to this second question requires serious reflection.20

On our account of evidence, a model or hypothesis is a defined data-generating
mechanism. Observed data support model1 over model2 if the data that would be
generated by model1’s mechanism are by some measure more similar to the observed
data than the data that would be generated by model2. Thus on our account, data
provide evidence for one hypothesis against its alternative independent of what the
agent knows or believes about either the available data or the hypotheses being
tested.21 A subtle but important distinction in this connection is between knowing that
the data are available and knowing the probability of the data. One can know how
probable observations of the data are without knowing whether the data have actually
been observed. For example, one could calculate the probability of obtaining 100 tails
out of 100 flips of a coin on the hypothesis that the coin is biased towards tails with a
probability of 0.9. This differs from asserting that we know on the basis of the data
that out of 100 flips a coin has landed tail-side up 90 times.

One final preliminary. We have assumed for the sake of clarity and convenience
that the hypotheses in our schematic examples are simple and not complex.
Error-statisticians object that clarity and convenience have little to do with it; we are
forced to make this assumption in the case of our account of evidence because it
cannot deal with composite hypotheses.22 The issues involved are technical, and for
that reason we have put our discussion of them in an Appendix to this chapter.
Suffice it to say here that this objection can be met.

The Evidential Condition

Now back to our characterization of evidence. It is made precise in the following
equation:23

D is evidence for H1&B as against H2&B if and only if LR1;2

¼ PrðDjH1&BÞ
PrðDjH2&BÞ

� �
[ 1

20Robert Boik pointed this out to us.
21It thus stands in sharp contrast to the well-known position of Williamson (2000), whose sum-
marizing slogan is “a subject’s evidence consists of all and only the propositions that the subject
knows.” Williamson is not analyzing the concept of “evidence,” or more precisely “evidence for a
hypothesis or theory,” but the concept of “evidence for a subject.” This concept is important in
classical epistemology, but has little use, or so we believe, as applied to scientific methodology or
theory assessment. For us, evidence is evidence, whether or not the subject knows it, and con-
versely, whether or not the subject knows something does not thereby qualify it as “evidence” for
any particular hypothesis.
22See Mayo (2014).
23We use “LR” rather than “BF” in what follows to underline the fact that our account of evidence
is not in any narrow sense “Bayesian.”.
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Call this the Evidential condition. It serves to characterize data which, in context,
play an evidential role. But a quantitative measure is immediately possible by
taking account of the numerical ratio of the two hypotheses. Note in this connection
that if 1 < LR ≤ 8, then D is often said to provide “weak” evidence for H1 against
H2, while when LR > 8, D provides “strong” evidence for H1 over H2 (Royall
1997). This cut-off point is sometimes determined contextually by the relevant
scientific communities and may vary depending on the nature of the problem
confronting the investigator, but it follows a statistical practice common among
investigators.24 It follows from the Evidential Condition that the range of values for
the LR can vary from 0 to ∞ inclusive.25

Since Bayesians by definition do not assign the end-point probabilities 0 or 1 to
any empirical proposition, it follows that an agent’s (subjective) degree of belief in
the hypotheses over which she has distributed prior probabilities does not affect
whether D is evidence for H1 as against H2.

26 This is especially evident if we assign
the extreme probability 0 to H1. In that case, the LR for H1 against H2 relative
to D becomes Pr(D│H1)/Pr(D│H2) = [Pr(D & H1)/Pr(H1)]/ [Pr((D & H2)/
Pr(H2)] = 0/0, which is undefined.27

We have argued that evidence has to do with the degree to which data help
distinguish the merits of competing hypotheses. Several measures are available to
capture the resulting evidential strength of one hypothesis as against another. We
have fixed on ratios of likelihood functions as our exemplar in this monograph for
three reasons. First, it is the most efficient evidential function in the sense that we
can gather strong evidence for the best model with the smallest amount of data.28

Second, the LR brings out the essentially comparative feature of evidence in a clear
and straightforward way. Third, and as we have pointed out, it is a measure of

24Royall (1997) points out that the benchmark value = 8, or any value in that neighborhood, is
widely shared. In fact, the value 8 is closely related to the Type I error-rate 0.05 in classical
statistics and to an information criterion value of 2. See Taper (2004) and Taper and Ponciano
(2016) for more on this issue.
25One might argue that the posterior-prior ratio measure (PPR) is equal to the LR measure and
therefore precludes the necessity of a separate account of evidence. But the objection is misguided.
The LR is equal to Pr(H│D)/Pr(H) only when Pr(D)/Pr(D│ ̴ H) is close to 1. That is, [Pr(D│H)/
Pr(D│ ̴H)] = Pr(H│D)/Pr(H) x [Pr(D) x Pr(D/ ̴H)] ≈ 1. Otherwise, the two measures, LR and
PPR, yield different values, over and above the fact that they measure very different things.
26Berger (1985, p. 146). Levi (1967) also emphasizes the objective character of the likelihood
function.
27We are indebted to Robert Boik for this clarification.
28See Lele (2004) for the proof. It is worth noting the comments of a referee on a similar claim in
another paper of ours: “…if in the end we hope for an account of evidence in which evidence gives
us reason to believe, it is totally unclear why efficiency in the sense described would be taken as a
sign of a meritorious measure of evidence.” One of the principal aims of this monograph is to
disabuse its readers of what we call the “true-model” assumption, that evidence gives us reasons to
believe that a hypothesis is true. In our view, evidence provides information about a hypothesis on
the basis of which we can make reliable inferences and not reasons to believe that it is true. Since
evidence is a way of identifying and assessing such information, efficiency in the sense indicated is
indeed a meritorious property of it.
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evidence embraced by such otherwise diverse approaches to statistical inference as
Bayesian and Likelihoodist (Evidentialist) insofar as we confine ourselves to simple
statistical hypotheses. We are in good company.

We wish to be clear, however, that the likelihood ratio is a special case of a rich
family of evidence measures or functions.29 In principle, an evidence function, Ev
(D, M1, M2), is the difference between the statistical distance30 between the prob-
ability distributions generated by each of the models,M1 and M2, and an estimate of
the “true” underlying distribution based on D. That is to say,

Ev D;M1;M2ð Þ ¼ n SD ŝD;M1ð Þ � SD ŝD;M2ð Þð Þ:

where n is the sample size, SD(•,•) is a statistical divergence (distance) between two
probability distributions indicated by place-holders, ŝD is the estimate of the “true”
distribution based on the data D. For discrete distributions, this could be simply the
proportion of observations in each discrete data category. For continuous distri-
butions, it will be some smoothed estimate such as a kernel density estimate
(Silverman 1986). The inclusion of n in the formula for evidence conforms to the
intuitive expectation that the strength of evidence should increase with increased
amounts of data.31

The most famous statistical distance is the Kullback-Leibler Distance (KLD), the
expected log likelihood ratio between two distributions. For discrete distributions,
P and Q with categories indexed by I, this is given as:
KLDðP;QÞ ¼ P

i
Pi � log Pið Þ � log Qið Þ½ �

It is easy to show that the log (LR) is the KLD-based evidence function for
comparing simple hypotheses. Similarly, the differences of information criterion
values are KLD-based evidence functions for cases where the models compared
differ in the number of parameters estimated.32

29What follows is drawn from Lele (2004). We go into the details, technical as some of them are,
simply because evidence functions are so much less familiar than confirmation functions.
30In fact, evidence functions only use the weaker criterion of divergences (statistical distances are
divergences with some additional constraints). A divergence quantifies the dissimilarity between
two probability distributions. The statistical literature is quite loose in its use of the terms “di-
vergence,” “disparity,” “discrepancy,” and “distance.” We use “distance” rather than the more
general term “divergence” because “distance” is more intuitively evocative. Good discussions of
statistical distances can be found in Lindsay (2004) and Basu et al. (2011).
31Although it does not do so in a linear fashion.
32The technical definition of evidence functions (Lele 2004) includes a consistency requirement
(i.e., the probability of correctly selecting the best approximating model must go to 1 as sample
size goes to infinity). Thus only “order consistent” information criteria such as Schwarz’s criterion
(variously denoted as the SIC or BIC) can be used to construct evidence functions.
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A large number of potential statistical distances could be used to construct
evidence functions in response to different types of evidence question. For example,
one alternative to the KLD is the Hellinger distance.33 Evidence functions based on
different distances will have different statistical properties. For instance, while
KLD-based evidence functions will be maximally efficient, Hellinger-based evi-
dence functions will be more resistant to the presence of outliers. But none of the
following discussion turns on these technical details.

Absolute and Incremental Confirmation

An important objection that has been made to our account is that its main theme,
that confirmation and evidence should be distinguished, has already been developed
in the literature in terms of confirmation alone.34 The objection is that both (Carnap
1950) and (Salmon 1983) long ago made a parallel distinction between “absolute”
and “incremental” confirmation which does all of the work that ours does without
recourse to any distinct notion of evidence. On the absolute concept, sometimes
also called “the high probability requirement,” the data confirm H if and only if the
probability of H given D exceeds some suitably high threshold, say, 0.9 (or min-
imally >0.5). It thus picks up on an ambiguity in the word “confirmed” already
introduced. In certain contexts, the word connotes something like “well confirmed”
or “put to rest”, as in “Well, we certainly managed to confirm that guess.” In this
respect it is to be contrasted with the incremental way in which we confirm
hypotheses or for that matter hunches, gathering evidence as we go along,
becoming more and more sure that our hunch was right or wrong.

On the incremental conception of confirmation favored by most Bayesians, the
data D confirm H if and only if the data raise the probability of H relative to its prior
probability. It is how we understand confirmation here. Although there are
important differences between the incremental and absolute conceptions, neither
can be used to explicate, still less is tantamount to, anything like the notion of
evidence that we and many others draw on. First, and as we will see in more detail
in the next chapter, strong evidence does not entail a high degree of confirmation,
either absolute or incremental. Second, confirmation of both varieties is sensitive to
an agent’s prior probability distribution and endorses a rule for up-dating degrees of
belief, whereas evidence is insensitive to prior probabilities, characterizes the
relation between data and hypothesis regardless of whether the agent knows or
believes that either data or hypothesis is probable, let alone certain or true, and
indicates no way in which to up-date degrees of belief. Third, and unlike our

33(HD): HDðP;QÞ ¼ 1� ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ffiffiffiffiffi
Pi

p � ffiffiffiffiffi
Qi

p� �2r
for discrete distributions.

34Two previous readers raised this objection. We are assuming the standard account of absolute
confirmation. Please see the following footnote for more on this point.
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characterization of evidence, absolute confirmation is, as its name suggests, abso-
lute; if one restricts what counts as evidence to data that confirm a hypothesis
absolutely, there is no way in which to determine whether some evidence is
stronger than others, still less a way to quantify its strength.35 Given a prior
Pr(H) = 0.2 and a posterior Pr(H│D) = 0.901, H is intuitively much more strongly
confirmed than in a parallel situation in which Pr(H) = 0.899 and Pr(H│D) = 0.90,
but the notion of absolute confirmation is unable to capture this intuition. Still
worse, it undermines it.

Finally, and perhaps most importantly, the concept of absolute confirmation,
unlike the more standard conception of evidence, applies to hypotheses considered
singly and not pair-wise, i.e., it does not necessitate a separation and comparison
between rival hypotheses which is, we contend, at the center of what we should
expect a measure of evidence to provide; again as in courts of law, evidence is what
distinguishes the guilty from the blameless and indicates which data determine who
is guilty and who not, and to what degree.

Quite apart from its failure to capture the intuitive concept of evidence, the
notion of absolute confirmation has its own difficulties. We mention two because
each throws more light both on the incremental conception and on the distinction
with evidence that we use it to make.

One difficulty with absolute confirmation is that it runs directly into the lottery
paradox.36 Suppose a fair lottery with a thousand tickets. Exactly one ticket will
win and, since the lottery is fair, each stands an equal chance of doing so. Consider
the hypothesis, “ticket #1 will not win.” This hypothesis has a probability of 0.999.
Therefore we have a conclusive reason, on the absolute conception, to believe that it
is true. But the same line of reasoning applies to all of the other tickets. In which
case, we should never believe the hypothesis that any one of them will win. But we
know, given our initial supposition, one of them will win. The paradoxical result
can be avoided by denying that any hypothesis is ever absolutely confirmed.37

The lottery paradox also exposes one way in which our distinction between
(incremental) confirmation and evidence is of real use. Sober uses the lottery
paradox to argue for a wholesale rejection of the notion of “acceptance.” First, to
accept a hypothesis is to have a good reason for believing that it is true (or
empirically adequate, or whatever). But the converse does not hold. However good
our reason for believing it to be true, however well-confirmed, we might still not
accept the hypothesis. We might not accept it because the otherwise confirming

35There is a non-standard account of “absolute confirmation” in the literature on which it does admit
of degrees; on this account a hypothesis is “absolutely confirmed” if it is “confirmed strongly,”
where “confirmed strongly” can have different degrees. See Eells (2006, p. 144). Our argument
depends on the standard account, on which D confirm H “absolutely” just in case Pr(H│D) = r,
where r is identified as a particular number (or, occasionally, any number greater than 0.5).
36First propounded by Kyburg (1961). We follow Elliott Sober’s informal statement of it (1993).
37Kyburg himself avoids the paradox by denying the uncritical “conjunction principle” on which it
rests, that if each of a set of hypotheses is accepted, then their conjunction must be as well.
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data are not evidentially significant.38 They are not evidentially significant, on our
characterization, when they fail to distinguish between competing hypotheses. In
the lottery case, the likelihoods of all of the competing hypotheses, that is, the
likelihood of cashing a winning ticket on the hypothesis that it is not a winning
ticket, are the same. In which case, the data fail to distinguish between the com-
peting hypotheses, in which case they are, in context, evidence for none of them. If
acceptance requires evidential significance, as we will in more detail in Chap. 6,
then we should not accept any of the hypotheses.

The other difficulty with the absolute conception of confirmation is that it entails
what is sometimes called the inconsistency condition: the data can never confirm
incompatible hypotheses. But when more than two hypotheses are at stake, the data
can and do incrementally confirm more than one, however incompatible they might
be.39

Our Two Accounts and Interpretations of Probability40

Before proceeding further, we need to make explicit what has been implicit from
the outset, that adequate accounts of confirmation and evidence presuppose dif-
ferent interpretations of the concept of “probability”, and therefore different read-
ings of the probability operator in our various conditions and equations as it is
applied to events, hypotheses, and propositions. What is important to our funda-
mental distinction is not so much the details of these readings, still less the wide-
spread and often intense controversies to which they have given rise, but that some

38This is our view, not Sober’s.
39A well-known example was provided by Popper (1959, p. 390). “Consider the next throw with a
homogeneous die. Let x be the statement ‘six will turn up’; let y be its negation…; and let z be the
information ‘an even number will turn up’. We have the following absolute probabilities: p
(x) = 1/6; p(y) = 5/6; p(z) = 1/2. Moreover, we have the following relative probabilities: p(x,
z) = 1/3; p(y, z) = 2/3. We see that x is supported by z, for z raises the probability of x from 1/6 to
2/6 = 1/3. We also see that y is undermined by z, for z lowers the probability of y by the same
amount from 5/6 to 4/6 = 2/3. Nevertheless, we have p(x,z) < p(y, z).” Popper mistakenly drew the
conclusion that there was a logical inconsistency in Carnap’s confirmation theory. But the
inconsistency follows only if we were to take confirmation in its “absolute” sense, i.e., just in case
the data raise the probability of a hypothesis beyond a high threshold. There is no inconsistency if
confirmation is taken, as we do, in its incremental sense. See also Salmon (1983, pp. 102−03).
40John G. Bennett has drawn our attention to the need to address the varying interpretations
of probability involved in our accounts. In a very helpful e-mail communication, Marshall Abrams
has underlined some of the difficulties in calculating probabilities from probabilities defined
by two different interpretations and in taking as paradigm some of the ways in which the likelihood
relationship between data and hypothesis has been construed. As for the first, we offer reasons
in what follows for taking posterior probabilities as subjective despite their embedding objective
components. As for the second, our account of objective probabilities uses empirical frequencies
to estimate and not to “define” probabilities.
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of them are generally “subjective” and others “objective”, and that there are “ob-
jective” ingredients in our account of confirmation as well as in our account of
evidence. In our view, one needs to mix and match probabilities of different kinds
and not rely on one to the exclusion of the others. As we will now show, to do
otherwise would be to seek an overly monistic methodology.

Consider first our account of confirmation. It is informed by a subjective
Bayesianism. D confirm H just in case an agent’s prior degree of belief in H is
raised. The degree to which D confirm H is measured by the extent to which the
degree of belief has been raised. The probabilities involved have to do with belief,
and are in this sense subjective. But determining an agent’s degree of belief in a
hypothesis, Pr(H│D) requires determining the probability of D on H, Pr(D│H),
which is independent of an agent’s belief and is therefore objective.

One possible response to this claim is that the probability function is mistakenly
construed as objective; it needs to be construed as a conditional belief-probability in
which the probability operator is understood in subjective terms. But even otherwise
staunch Bayesians are not in full agreement to do so, witness L.J. Savage’s
admission in his famous 1963 paper with W. Edwards and H. Lindman41 that
likelihoods are “public,” implying that they are objective. As Isaac Levi points out
in this connection,42 likelihoods are agent-invariant and fixed, and in this sense
objective, and unlike variable conditional probabilities which are
agent-dependent.43 At the same time, subjectivity spreads through a compound
probability like falsehood through conjunctions and truth through disjunctions;
since the posterior probability, Pr(H│D), is calculated in part on an agent’s prior
degree of belief it is subjective, as should be expected on a Bayesian account of
confirmation.

There is a possible justification from the subjective Bayesian standpoint
regarding how one could mix and match those two types of probabilities together.
David Lewis argues that when the chance probability of a proposition, A, is
available, one needs to set an agent’s subjective probabilities, Pr(A|M) = Pr(M)
where M is a statistical model (Lewis 1980.)44 Lewis thinks that this alignment of
subjective probability with objective chance is possible because of the Principal
Principle. The idea behind this principle is that when we have the likelihood of a

41Edwards et al. (1963).
42Levi (1967).
43This is perhaps clearest when D are entailed by H, for in this case Pr(D│H) = 1, regardless of
what anyone happens to believe.
44We are indebted to both John. G. Bennett and Colin Howson for some clarifications about the
need to introduce the Principal Principle. For more on the justification of the Principal Principle,
see the forthcoming book by Robert Pettigrew, Accuracy and the Laws of Credence, Part II of
which is devoted to it. We are indebted to Jason Konek for calling our attention to this important
discussion.
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model given the data (what we have just called “propositions”) available we should
treat an agent’s subjective probability which is a conditional probability of the data
given a model to be equal to its objective likelihood. This alignment of the sub-
jective probability with the objective chance helps treat both probabilities, the
likelihood functions, and prior probabilities, in the application of the Bayes theorem
as subjective.45

Consider, second, our evidentialist account. It makes no use of
belief-probabilities and in this sense is thoroughly objective. But in a way generally
similar to the account of confirmation, it too mixes and matches interpretations of
the probability operator in a way that without explication might invite misunder-
standing but that, though nuanced, is necessary to get our inference-engine running.
The likelihood of a model given the data is an essential component of the account.
For simplicity’s sake, we identify it with a conditional probability, Pr(D0|M), where
“D0” stands for a yet to be realized model-generated datum and M is the generating
model. What data will be realized a priori depends on what sorts of models we have
proposed. At the initial stage, when no data have yet been realized, the relationship
between a model46 and its unrealized data is deductive. One could come up with an
open-ended number of distinct models, M1, M2, M3,…Mk. Let’s assume M1 says
that the coin has 0.9 probability to land with heads. Assume further that M2 says
that it has 0.3 probability, M3 says that it has probability 0.5, and so on. Given these
models, before any real data have been observed, each will tell us how probable any
set of observations would be under the model. So, the relationship between M1 and
D0 is completely deductive. So, too, are the relationships between other competing
models and 0. Now assume that a real coin has been flipped. Further assume that out
of 100 flips, 60 of them have landed with heads and the rest are tails. Let’s call the
data D1 60 heads and 40 tails. The relationships expressed via Pr(D1|M1), Pr(D1|H2)
…..Pr(D1|Hk) continue to be deductive. We find that each model tells us how
probable those data are under that model, although the probability values will vary
from one model to the next.

It is natural to assume that the “propensity” of a model to generate a particular
sort or set of data represents a causal tendency on the part of natural objects being
modeled to have particular properties or behavioral patterns and this tendency or

45Given the limited scope of this Monograph, we are not going to evaluate rigorously whether this
consideration is well-grounded.
46As we noted earlier and for the reason given, we use “model” (less often) and “hypothesis”
(more often) interchangeably. But there are crucial differences between them that in the present
context might give rise to misunderstandings. A hypothesis is a verbal statement about a state of
nature or some natural process. A model is a mathematical abstraction that captures some
dimensions of the hypothesis. When we say that the likelihood relationship between data and
hypothesis is “logical,” this is not in the precise sense in which Keynes or Carnap use the term; it
has to do rather with the evaluation of a single hypothesis based on the statistical data. On the other
hand, the calculation of the probabilities of the data given two or more models is in our sense of the
term “deductive.” The central point is that the relationships between data and hypothesis and data
and models must be kept distinct; our use of the words “logical” and “deductive” is intended to do
so, whatever other connotations those words might carry.
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“causal power” is both represented and explained by a corresponding hypothesis.
According to the propensity interpretation of probability,47 the probability of an
event is a dispositional property of it.48 In our case, the probability of a coin’s
landing heads, if it is flipped, is estimated at 0.6. The theme behind this interpre-
tation is that the probabilistic statement is true because the object in the nature of
the case possesses a special sort of dispositional property, called a propensity. If a
sugar cube would dissolve when immersed, the sugar cube has the dispositional
property of solubility. In the same vein, if a coin has a 0.6 probability of landing
heads when flipped, the coin is to have a propensity of a certain strength to land
heads when flipped. However, we have no way to know for sure what this tendency
is except to estimate it through finite empirical frequencies.

The empirical interpretations of probability championed by von Mises49 and
Reichenbach50 define probability in terms of the limits of relative frequencies; but
the empirical sequences we encounter in the world are always finite, and we have
often good reason to suppose that they cannot be infinite. Although there are
significant mathematical considerations for that kind of idealization in their fre-
quency interpretation, that is, that sequences are infinite, insofar as scientific
experiments are concerned this kind of idealization is not implausible. We cannot
assume that in a physical experiment we have an infinite number of helium nuclei in
various stages of excitation. Nor should we assume in any case that the probability
operator is to be “defined” in frequency terms.51 Rather, finite frequency is no more
than a way of estimating propensities in particular cases. Troublesome cases do not
undermine an interpretation of “probability” so much as they raise difficulties for
approximating values under certain conditions.

In other words, and in our view, it is misleading to say that there are three
distinct interpretations of objective probability—deductive, propensity, and finite
frequency. Rather, likelihoods allow us to choose models whose deductive prob-
abilities best match natural propensities as approximated by finite frequencies. It is
in this way, we think, that they are best to be understood, a case for their
agent-independence and objectivity to be made, and a distinction with subjective
belief-probabilities to be drawn. As we indicated at the outset, confirmation is in a

47See Popper (1957). See also Berkovitz (2015) for a defense of the propensity interpretation of
probability against the traditional twin criticisms that the explication of propensities is circular and
therefore non-informative and that it is metaphysical and therefore non-scientific.
48A doctor in Molière’s Le Malade Imaginaire attributes a “dormitive power” to opium, becoming
the object of ridicule then and for the next 300 years. But to attribute a dispositional property is not
to provide a causal explanation but to aggregate natural processes which must then be explained at
a deeper, in this case pharmaceutical, level of analysis. Sugar has a propensity to dissolve in water,
but it has almost no propensity to dissolve in gasoline. This difference can be understood through
the chemical structure of sugar, water, and gasoline.
49See von Mises (1957).
50See Reichenbach (1949).
51See Hàjek (1997).
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fundamental sense “in the head”, evidence in that same sense “in the world.” The
fundamentally two-fold interpretation of “probability” makes this sense clearer.

The Limits of Philosophical Taxonomy

Philosophical taxonomies play a useful role in locating positions on the conceptual
map, drawing attention to their general features, and instructing students. But they
can mislead. Although there is a functional, but not conceptual, connection between
our characterizations of evidence and confirmation, they are, as just indicated,
otherwise quite distinct, and it would be a mistake to bring them under some such
common rubric as “Partial-Subjective Bayesianism” or “Probabilistic
Evidentialism.” Confirmation is to some degree “subjective”, involving personal
probabilities and the up-dating of beliefs. Evidence is not. Following Kant’s
guidance, our task here in any case is not to suggest a new statistical or
hypothesis-testing paradigm, but to use two already well-established paradigms to
draw a distinction which, once drawn and understood, will help chart a new
direction in our thinking about uncertain epistemic inference, mitigate, to some
extent, the overly adversarial nature of its discussion, and dissolve some traditional
epistemological puzzles.

Appendix

A Note on the Likelihoodist Treatment of Simple
and Composite Hypotheses

Bayesians use the Bayes Factor (BF) to compare52 hypotheses (Kass and Rafferty
1995), while others use the likelihood ration (LR) to measure evidence. For simple
hypotheses, as in the tuberculosis example discussed near the outset of the next
chapter, the Bayes Factor and the Likelihood Ratio are identical; both capture the
essential core of our analysis of the concept of evidence. Throughout the mono-
graph we assume that the hypotheses being tested are simple statistical hypotheses,
which specifies a single value to a parameter, in contrast to a compound or

52Glymour (1980), p. 102, rightly draws attention to what he calls “misplaced rigor.” But rigor is
otherwise indispensable. Error-statisticians have focused their criticisms of the evidential position
on an alleged failure to deal with composite hypotheses; see Mayo (2014). This is our reply
(following Taper and Lele 2011, Sects. 6 and 7). It is rather technical in character, and does not
affect the main line of our argument. We have similarly added technical Appendices to Chap. 6 to
reply to another error-statistical criticism of our evidential account, that it needlessly employs
multiple models in its account of hypothesis testing, and to Chap. 11, to illustrate some of our main
themes in more mathematical detail.
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composite hypothesis which restricts a parameter θ only to a range of values.53

Since some philosophers have claimed recently that the likelihood account of
evidence cannot deal with composite hypotheses, it is worth our while to argue why
they are mistaken.

Here is a test case:54

[M]edical researchers are interested in the success probability, θ, associated with a new
treatment. They are particularly interested in how θ relates to the old treatment’s success
probability, believed to be about 0.2. They have reason to hope θ is considerably greater,
perhaps 0.8 or even greater. To obtain evidence about θ, they carry out a study in which the
new treatment is given to 17 subjects, and find that it is successful in nine.

How would an evidentialist test the composite hypothesis that the true propor-
tion (θ) is greater than 0.2?

The maximum likelihood or ML 0.5294. The k = 32 support interval for quite
strong evidence is [0.233, 0.811]. Royall would say that for any value θ’ outside of
this interval, there is quite strong evidence for the maximum likelihood estimate or
MLE as opposed to θ’. For an evidentialist, this is sufficient to infer with strong
evidence that (θ) > 0.2, even though the likelihood of the MLE is not the likelihood
of the composite. The following considerations support this claim.

(1) There is quite strong evidence against any value outside the interval relative to
a value inside the interval (i.e. the maximum likelihood estimate).

(2) No two values inside the interval can be quite strongly differentiated.
(3) (1) and (2) together imply that there is quite strong evidence that the true

proportion θ is in the support interval [0.233, 0.811].
(4) Since 0.2 is entirely below the support interval, there is therefore quite strong

evidence that the 0.2 is less than the true proportion.

It does make explicit that there are limits on how high the true proportion is
likely to be.

We will use a notion called “the probability of misleading evidence”which will be
discussed in much detail in Chap. 8. The probability for the presence of evidence for a
hypothesis is called misleading because although there is probability for the presence
of the evidence for the hypothesis, the latter is in fact false. If one had set up k = 32
(quite strong evidence) then the probability of misleading evidence for this statement
is MG < 1/32 = 0.031. TheML represents the probability of misleading local evidence
after the data have been gathered. The MG represents the probability of misleading
global evidence before the data have been gathered. Both ML and MG represent a

53This assumption is common to different schools of statistics. Both Royall (1997), who is
committed to a likelihoodist (and not, as already noted, Bayesian) approach, and Mayo (1996) who
operates within the error-statistical framework, also take the assumption for granted (at least Mayo
did in 1996, although she does so no longer; again see Mayo 2014).
54Royall (1997, pp. 19–20).
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bound on the probability of misleading evidence for a hypothesis. The post hoc
probability of misleading evidence is a little lower MG = 0.011.

Taper and Lele (2011) suggest that since there is an estimated parameter in finding
the MLE, the MG is biased high, and that composite intervals should use a biased
corrected estimate of the likelihood. We use Akaike’s bias correction (for simplicity).
With the bias correction, the quite strong evidence support interval is a little bit wider
at [0.201, 0.840]. The inference is still the same. There is still quite strong evidence
that the true proportion is greater than 0.2, but now the post hoc probability of
misleading evidence is slightly greater at 0.030. Using the more severe Swartz bias
correction, we find that there is only fairly strong evidence for 0.2 being less than the
true value, with a M of 0.045 (see also Taper and Ponciano 2016).
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