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I. Introduction

Fungi are well known for their ability to pro-
duce copious numbers of bioactive small mole-
cules known as natural products or secondary
metabolites (SMs), the moniker used in this
chapter. Since the discovery of penicillin in
1928 by Alexander Fleming, the number of par-
tially or fully characterized fungal SMs has
risen exponentially. The interest in fungal SMs
lies primarily in their useful antibiotic and
pharmaceutical activities, although several of
these metabolites are also potent phytotoxins
or mycotoxins, contributing adversely to plant,
animal, and/or human health (Leitio and
Enquita 2014). A literature survey of fungal
metabolites, covering 1500 compounds that
were isolated and characterized between 1993
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and 2001, showed that more than half of the
molecules had antibacterial, antifungal, or anti-
tumor activity (Pelaez et al. 2005). In particular,
certain members of the Ascomycetes and Basi-
diomycetes encode a large wealth of SMs that—
as observed from genomes of sequenced
fungi—remain largely untapped.

The first genetically characterized fungal
SMs, the B-lactam antibiotics—penicillin and
cephalosporins (Martin 1992) and the myco-
toxins—aflatoxin and sterigmatocystin
(Brown et al. 1996; Yu et al. 1995; Trail et al.
1995), revealed the near-universal clustered
arrangement of genes involved in the produc-
tion of a single SM. This clustering of fungal SM
genes (reviewed in Hoffmeister and Keller
2007) has accelerated the ability to identify SM
clusters in fungal genomes and led to the devel-
opment of various bioinformatic algorithms,
such as SMURF, antiSMASH, or MIDDAS-M
(Khaldi et al. 2010; Medema et al. 2011; Ume-
mura et al. 2013). While unable to predict inter-
twined superclusters containing genes for more
than one SM (Wiemann et al. 2013) or account
for genes outside of the cluster (Sanchez et al.
2011), these programs have greatly assisted in
initial predictions of fungal SM gene clusters.

A major goal of studying SM is to under-
stand how SM cluster genes are regulated. Some
of the clusters contain cluster-specific tran-
scription factors (e.g., AflR regulating expres-
sion of aflatoxin and sterigmatocystin clusters,
Fernandes et al. 1998; Woloshuk et al. 1994)
that, when activated naturally or through
genetic manipulations, induce expression of
other genes within the cluster (examples in
Hoffmeister and Keller 2007; Brakhage 2013).
Rarely, these types of in-cluster transcription
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factors have been reported to regulate another
SM cluster such as AflR regulation of the
asperthecin gene cluster (Yin et al. 2012).
Thus, the discovery of LaeA, capable of regulat-
ing multiple SM clusters simultaneously, was
remarkable and recognized early on as a useful
tool in SM sleuthing (Bok and Keller 2004; Bok
et al. 2006a). Here, we present an overview of
LaeA function in SM production in fungi, and
in so doing, compile a list of all SMs currently
known to be regulated by this protein. For a
more thorough review of LaeA impact on other
aspects of fungal development, we refer the
reader to Jain and Keller (2013).

II. LaeA Mechanism

LaeA was identified through a chemical muta-
genesis of an Aspergillus nidulans norsolorinic
acid-producing strain. This compound is a vis-
ible orange precursor of both sterigmatocystin
and aflatoxin, and loss of its production is easy
to screen (Butchko et al. 1999). Twenty-three
single gene mutants were obtained with LaeA
representing one of three mutants showing loss
of afIR expression. Chemical characterization of
AlaeA showed a decrease not only in sterigma-
tocystin production but also in multiple sec-
ondary metabolites (Bok and Keller 2004). The
number and types of LaeA regulated SMs in A.
nidulans and other fungi are described in the
next section.

A. Methyltransferase

LaeA contains an S-adenosyl methionine
(SAM)-binding site that when mutated yields
a null-LaeA phenotype (Bok and Keller 2004),
presumably indicative of methyltransferase
activity. However, to date, other than demon-
strating automethylation at a methionine resi-
due near the SAM-binding site, a modification
which is not required for in vivo function (Pata-
nanan et al. 2013), no substrate-specific methyl-
transferase activity has been found for LaeA.
Interestingly, microarray analysis of the A.

fumigatus AlaeA mutant shows it to be down-
regulated in the sulfur/methionine regulon
(Perrin et al. 2007); however, no mechanistic
connection between LaeA and this metabolic
pathway has been established.

B. Epigenetics

Due to LaeA’s similarities to methyltrans-
ferases, its localization in the nucleus, and its
often precise regulation of SM clusters (Bou-
hired et al. 2007), it has been suggested that
LaeA regulates transcription by protein lysine
or protein arginine methyltransferase functions
(Bok and Keller 2004; Bok et al. 2006b; Fox
and Howlett 2008). Although no direct bio-
chemical studies have demonstrated such a
role, this protein has been linked to changes
in chromatin structure in SM gene clusters
where loss of LaeA leads to increased hetero-
chromatin marks (Reyes-Dominguez et al.
2010). Several papers have indicated a role for
LaeA in interactions with canonical histone-
modifying enzymes, including HdaA, HstD,
and CclA (Kawauchi et al. 2013; Bok et al.
2009; Shwab et al. 2007).

C. Velvet Complex Member

A clue to how LaeA works also came from the
finding that it is a member of a nuclear complex
known as the Velvet Complex composed of
LaeA, VeA, and VelB (Bayram et al. 2008).
Although first noted for its role in SM regulation,
LaeA also has a profound effect on both asexual
and sexual spore development, as do both VeA
and VelB (Sarikaya Bayram et al. 2010; Bayram
and Braus 2012). Thus, the Velvet Complex as a
unit links morphological development with
chemical development in all fungi examined so
far (Wiemann et al. 2010; Lopez-Berges et al.
2013; Wu et al. 2012; Kosalkova et al. 2009;
Amaike and Keller 2009; Baba et al. 2012).
When described, the phenotypes of deletants of
these three genes are not equivalent but over-
lapping in some regulatory aspects of SM and
morphological development.



Insight into Fungal Secondary Metabolism from Ten Years of LaeA Research 23

II1. Secondary Metabolites Regulated
by LaeA

The initial characterization of LaeA in A. nidu-
lans reported LaeA as positively regulating two
well characterized endogenous SMs (sterigma-
tocystin and penicillin) as well as the heterolo-
gous lovastatin SM  cluster genetically
engineered into A. nidulans (Bok and Keller
2004). A second study of A. nidulans LaeA
using microarray analysis identified additional
uncharacterized SM clusters positively regu-
lated by LaeA where one was characterized as
producing terrequinone A (Bok et al. 2006a).
Many more A. nidulans SMs have been discov-
ered since these papers, and it is likely that LaeA
regulates some, perhaps a majority, of these
newly characterized SMs (Yaegashi et al. 2014).
Microarray studies of at least four additional
species (A. fumigatus, A. flavus, Fusarium fuji-
kuroi, and Trichoderma reesei) show that many
unknown and known SM clusters are regulated
by LaeA; however, here we will only focus on
those assigned to a metabolite (Bok et al. 2006a;
Perrin et al. 2007; Georgianna et al. 2010;
Karimi-Aghcheh et al. 2013; Wiemann et al.
2010 and Table 2.1). The reader should note
that Table 2.1 represents only a small fraction
of SMs regulated by LaeA, as many papers
report an association of SM with LaeA without
reporting what these metabolites are (Perrin
et al. 2007; Georgianna et al. 2010; Karimi-
Aghcheh et al. 2013; Wiemann et al. 2010; Rach-
mawati et al. 2013). Below, NRPS indicates a
non-ribosomal peptide synthase derived SM,
PKS a polyketide derived SM, and DMATS a
dimethylallyl tryptophan synthase derived SM.

A. Aspergillus species

LaeA regulated SMs have been partially char-
acterized in five Aspergillus spp., including A.
nidulans, A. fumigatus, A. flavus, A. oryzae, and
A. carbonarius. In A. fumigatus, LaeA regulated
SMs include gliotoxin (NRPS, cluster size:
25 kb), fumitremorgin (NRPS, cluster size:
25 kb), pseurotin (PKS/NRPS hybrid, part of
an intertwined cluster with fumagillin, cluster

size: 50 kb), fumagillin (PKS/terpene hybrid),
endocrocin (PKS, cluster size: 15 kb), festucla-
vine (DMATS), elymoclavine (DMATS), fumi-
gaclavines (DMATS), helvolic acid (terpene,
cluster size 17kbref), fumiquinazolines (NRPS
cluster size: 15 kb), and hexadehydroaste-
chrome (NRPS, cluster size: 25 kb). Several of
these metabolites have been implicated as play-
ing a role in virulence in this human pathogen
(Abad et al. 2010).

LaeA in A. flavus regulates aflatoxin (PKS,
cluster size: 80 kb), diastereomeric piperazines
(two duplicated clusters encoding NRPS-like
adenylating reductases, cluster sizes each: 13
and 20 kb), morpholine (NRPS), pyrazines
(NRPS), cyclopiazonic acid (PKS/NRPS), 3-(p-
hydroxyphenyl)-1,2-propanediol (NRPS), kojic
acid (simple organic acid from glucose), asper-
gillic acid (NRPS), paspaline (DMATS), paspa-
linine (DMATS), aflatrem (DMATS, cluster
size:10 kb), and aflavinines (DMATS). LaeA in
A. oryzae regulates kojic acid and the heterolo-
gously expressed terrequinone A (NRPS, clus-
ter size: 10 kb) and monacolin K (PKS/NRPS)
clusters. LaeA in A. carbonarius regulates
ochratoxin A (NRPS).

B. Other Genera

LaeA orthologs have been identified in other
fungal genera. LaeA has been characterized in
several Fusarium species including F. oxy-
sporum where it regulates beauvericin (NRPS,
cluster size: 10 kb), ferricrocin (NRPS), and
triacetylfusarinine C (NRPS). Lael in F. verti-
cillioides regulates bikaverin (PKS, cluster size:
12 kb), fumonisin (PKS, cluster size 43 kb),
fusaric acid (PKS, cluster size: 13 kb), and
fusarins (PKS/NRPS). FfLael in F. fujikuroi
regulates gibberellin (terpene, cluster size:
15 kb), fumonisin (PKS, cluster size: 42 kb),
fusarin C (PKS/NRPS, cluster size: 25 kb), and
bikaverin (PKS, cluster size: 12 kb). FgLaeA in
F. graminearum regulates trichothecenes (ter-
pene, cluster size: 25 kb) and zearalenone (PKS,
cluster size: 22 kb).

ChLael in Cochliobolus heterostrophus reg-
ulates T-toxin (PKS) and melanin (PKS). LaeA
in Monascus pilosus regulates monacolin K
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Table 2.1 LaeA linked secondary metabolite regulation in filamentous fungi

Gene
name  Species Secondary metabolites References
LaeA  Aspergillus nidulans Sterigmatocystin, penicillin, Bok and Keller (2004), Bok et al. (2006b)
lovastatin
Hyphal pigments Sarikaya Bayram et al. (2010)
Terrequinone A Bok et al. (2006a), Bouhired et al. (2007)
Monodictyphenone, F9775A , F9775B Bok et al. (2009)
LaeA  A. fumigatus Gliotoxin Bok et al. (2005), Bok and Keller (2004),
Sugui et al. (2007), Ben-Ami et al.
(2009), Perrin et al. (2007)
Fumagillin Dhingra et al. (2013)
Fumitremorgin, pseurotin Wiemann et al. (2013), Perrin et al. (2007)
Endocrocin Lim et al. 2012
Festuclavine, elymoclavine, Perrin et al. (2007)
fumigaclavines
Hexadehydroastechrome Yin et al. (2013)
Helvolbic acid Lodeiro et al. (2009)
Fumiquinazolines Lim et al. (2014)
LaeA  A. flavus Aflatoxin Amaike and Keller (2011), Kale et al.
(2008), Georgianna et al. (2010)
Diastereomeric piperazines, Forseth et al. (2013)
morpholine, pyrazines, 3-(p-
hydroxyphenyl)-1,2-propanediol
Cyclopiazonic acid Kale et al. (2008), Georgianna et al. (2010)
Aspergillic acid, paspaline, Kale et al. (2008)
paspalinine, aflatrem, aflavinines,
kojic acid
LaeA  A. oryzae Kojic acid Oda et al. (2011)
Terrequinone A, monacolin K Sakai et al. (2012)
LaeA  A. carbonarius Ochratoxin A Crespo-Sempere et al. (2013)
ChLael Cochliobolus T-toxin, melanin Wu et al. (2012)
heterostrophus
LaeA  Fusarium oxysporum Beauvericin Lopez-Berges et al. (2014)
Triacetylfusarinine C , ferricrocin Lopez-Berges et al. (2013)
Lael E. verticillioides Bikaverin, fumonisins, fusaric acid, = Butchko et al. (2012)
fusarins
FfLael F. fujikuroi Gibberellin, fumonisins, fusarin C, ~ Wiemann et al. (2010)
bikaverin
Fusarin C Niehaus et al. (2013)
FglaeA F. graminearum Trichothecenes, zearalenone Kim et al. (2013)
LaeA  Monascus pilosus Monacolin K, pigments Lee et al. (2013), Zhang and Miyake (2009)
LaeA  Penicillium citrinum ML236B Baba et al. (2012)
PcLaeA P. chrysogenum Penicillin Kosalkova et al. (2009), Kopke et al.
(2013), Hoff et al. (2010), Martin et al.
(2012), Veiga et al. (2012)
Pigments Kosalkova et al. (2009)
Lael Trichoderma reesei  Sterigmatocystin, siderophore Karimi-Aghcheh et al. (2013)

(PKS, cluster size: 42 kb) and various pigments.
LaeA in Penicillium citrinum regulates ML236B
(PKS/NRPS, cluster size: 20 kb). PcLaeA in P.
chrysogenum regulates penicillin (NRPS, clus-

ter size: 15 kb) and pigments. Lael in Tricho-
derma reesei controls siderophore (NRPS) and
the heterologously expressed sterigmatocystin
cluster (PKS, 60 kb).
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IV. Processes Identified Through LaeA
Microarrays

As mentioned above, several microarray stud-
ies have led to characterization of several SMs,
including but not limited to terrequinone A
(Bok et al. 2006b), piperazines (Forseth et al.
2013), pseurotin (Wiemann et al. 2013), fuma-
gillin (Wiemann et al. 2013), endocrocin (Lim
et al. 2012), fumiquinazoline (Lim et al. 2014),
and hexadehydroastechrome (Yin et al. 2012).
However, other non-SM genes regulated by
LaeA also may impact SM production. Charac-
terization of LaeA regulated transcription fac-
tors include the sporulation specific regulatory
protein BrlA as mediating LaeA regulation of
spore-specific SMs (Berthier et al. 2013; Lim
et al. 2014), NosA as mediating germination
defects of the AlaeA mutant (Soukup et al.
2012b), and MeaB, a bZIP protein, enhancing
virulence in A. flavus (Amaike et al. 2013).
Details of BrlA are discussed in Chap. 1.

Both BrlA and MeaB affect SM production.
BrlA is required for transcription and produc-
tion of several spore-specific SMs, including
endocrocin, fumiquinazoline, fumigaclavines,
trypacidin, and various uncharacterized SMs
in A. fumigatus (Berthier et al. 2013; Lim et al.
2014; Twumasi-Boateng et al. 2009; Coyle et al.
2007; Gauthier et al. 2012). Currently, it is not
known if LaeA regulation of spore SMs is also
mediated by BrlA—or the appropriate sporula-
tion transcription factor in non-Aspergilli—in
other fungal spp. Although not reported to be
through BrlA, one study suggested that LaeA
regulation of aflatoxin in A. flavus might be
mediated through alterations in conidial devel-
opment (Chang et al. 2012), and it was noted
that laeA loss also impacted hydrophobin con-
tent in A. fumigatus spores (Dagenais et al.
2010). MeaB had a regulatory impact on afla-
toxin synthesis in A. flavus where loss of MeaB
greatly reduced production of this mycotoxin
(Amaike et al. 2013).

A microarray analysis of Trichoderma ree-
sei showed that lael loss in this species resulted
in complete loss of enzymes (CAZymes)
responsible for lignocellulose degradation. On

the other hand, overexpression of lael led to
enhanced CAZyme gene transcription (Seiboth
et al. 2012). Another study, this one in P. chry-
sogenum, resulted in the identification of 62
genes co-regulated by both PcVelA and
PcLaeA. One gene positively regulated by both
proteins was PcchiBl encoding a class V chit-
inase required for cell wall integrity and pellet
formation in P. chrysogenum (Kamerewerd
et al. 2011). These two studies did not examine
if there was relationship between SM produc-
tion and these enzymes.

V. Processes Identified Through LaeA
Mutagenesis

A multicopy suppressor screen looking for res-
toration of secondary metabolism in an A.
nidulans AlaeA background has resulted in
the identification of several novel regulators of
SM. RsmA (remediation of secondary metabo-
lism A) is a bZIP protein that directly regulates
the sterigmatocystin gene cluster by binding to
the intergenic region of AfR and Afl] (Shaaban
et al. 2010; Yin et al. 2012, 2013). Asperthecin
was also regulated by RsmA, apparently
through transactivation by AflR (Yin et al.
2012). Overexpression of RsmA partially
restored sterigmatocystin synthesis but not
sporulation defects in both AlaeA and AveA
backgrounds. The RsmA ortholog in A. fumi-
gatus positively regulates gliotoxin in that spe-
cies (Sekonyela et al. 2013).

The same screen also found EsaA, a histone
acetyltransferase, to be a global regulator of SM.
Like RsmA, overexpression of EsaA partially
restored sterigmatocystin  synthesis (and
again, not sporulation defects) in AlaeA
(Soukup et al. 2012a). Moreover, EsaA was
determined to increase transcript levels of mul-
tiple SM cluster genes; this increase was asso-
ciated with an increase in total H4 acetylation
and specifically H4K12 acetylation of SM gene
promoters. As mentioned earlier, several
histone-modifying enzymes have been found
to be important in SM regulation, often in rela-
tion with LaeA functionality.
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VI. Conclusion

Since its discovery in 2004, LaeA has provided
the research community with a new paradigm of
regulation of SM gene clusters in fungi. The
global nature of SM regulation by LaeA, presum-
ably as part of the Velvet Complex, suggests an
evolved requirement for production of certain
SM in concert with morphological development,
possibly as part of a stress response in protecting
fungi from both abiotic and biotic stresses (Hong
et al. 2013). Although present in most Ascomy-
cetes, LaeA and other members of the Velvet
complex are conspicuously missing in Saccharo-
myces cerevisiae and Schizosaccharomyces
pombe. Recently, putative VeA and VelB ortho-
logs have been found in the Basidiomycete Usti-
lago maydis (Karakkat et al. 2013), and it remains
to be seen if LaeA also exists in this fungus.

Considering the large number of sequenced
fungi and unknown SM clusters, LaeA is likely
to continue to be a valuable tool in natural
product studies, both as a means to activate
endogenous SM clusters and also, increasingly,
as a tool to activate heterologously expressed
clusters. This was recently demonstrated where
laeA overexpression in A. oryzae activated
transcription of the monacolin K gene cluster
from M. pilosus and the terrequinone A gene
cluster from A. nidulans (Sakai et al. 2012). In
another embodiment, A. nidulans laeA was
overexpressed in Cordyceps militaris to awaken
silent secondary metabolite clusters in that fun-
gus (Rachmawati et al. 2013). An alternative
approach in utilizing LaeA as a SM enhancer
was recently demonstrated in P. chrysogenum
where 1,3-diaminopropane and spermidine
were found to enhance laeA transcript levels
and, thus, increase penicillin production (Mar-
tin et al. 2012; Pfeifer and Khosla 2001).
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